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Summary

Movement is an essential feature of life. It allows organisms to move to-
wards a more favorable environment and to search for food. There are
many biological systems that fall under the category active matter, from
molecular motors walking on microtubules inside cells to flocks of birds.
What these systems have in common is that each of its constituents con-
verts energy into directed motion, that is, they propel themselves for-
ward. Besides the many biological examples, there is also synthetic ac-
tive matter, these are self-propelled particles made in a laboratory. These
are typically colloidal sized particles that can propel themselves forward
by self-phoresis. In this work the focus is on the low Reynolds number
regime, meaning that the typical size of the constituents is less than a few
micrometers. The models that are used to describe such active matter
are can be viewed as nonequilibrium extensions to Brownian motion (the
thermal motion of small particles dissolved in a fluid).

In many systems the self-propulsion speed (activity) is not homoge-
neous in space: the particles swim faster in some areas than in others.
The main topic of this dissertation is how a single active particle, or a
few active particles tied together by a potential, behave in such systems.
It is known that a single active particle without any steering mechanism
spends most time in the regions where it moves slowly, or in other words,
they spend most time in regions where they are less active. However,
it is shown in Chapter 5 that, even though they spend most time in the
less active regions, dynamical properties, such as the probability to move
towards the more active regions is higher than moving towards the less
active regions.

Furthermore, when the active particles are connected to a passive Brow-
nian ”cargo” particle, chained together to form a colloidal sized polymer
(Chapter 6), or fixed to another active particle (Chapter 7), the resulting
active dimers or polymers either accumulate in the high activity regions
or the low activity regions, depending on the friction of the cargo parti-
cle, the number of monomers in the polymer, or the relative orientation of
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active particles.
Lastly, when the activity is both time- and space-dependent, a steady

drift of active particles can be induced, without any coupling between the
self-propulsion direction and the gradient in the activity (Chapter 8). This
phenomenon can be used to position the particles depending on their size.

Part I introduces the basic physics and mathematical models of active
matter. The new research is shown in Part II. While dissertation focuses
on inhomogeneous active matter, other publications completed as part
of my doctoral research, mainly on odd-diffusion and liquid-state theory,
are listed on page 205.
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4 CHAPTER 1. BROWNIAN MOTION

In 1828, the botanist Robert Brown observed with a microscope the ir-
regular motion of dissolved granules from pollen grains. He was not the
first to observe this (the first was Ingen-Housz [1]); however, he was the
first to systematically investigate its origin. Initially he thought the irreg-
ular motion was due to the organic nature of the granules. He found,
however, that this motion was not limited to organic substances. With
this observation, Brown showed that this motion is not only of interest to
biologists, but also to physicists. Besides showing that Brownian motion
is not limited to organic molecules, Brown disproved that the motion he
observed was due to other physical processes, such as the evaporation of
the fluid.

What follows is a short history of the theory of Brownian motion.
This serves as an introduction to the mathematical models used to de-
scribe Brownian motion and forms the basis of models later in this work.
Only those methods on which later models are build are explained; there-
fore, many important theoretical contributions (in particular those of M.
Smoluchowski [2, 3]) are omitted.

1.1 Historical Development of the Theory of Brow-
nian Motion

Fick’s Laws

If the solute in an ideal solution is inhomogeneously distributed, the so-
lute diffuses in such a way as to decrease the inhomogeneity. Fick’s first
law states that the flux due to this diffusion is proportional to the gradient
of the density [4]:

J(r, t) = −D∇ρ(r, t), (1.1)

where the proportionality constant D is called the diffusion constant. The
flux is the amount of solute moving through a unit area per unit time.

If the solute is locally conserved, the density obeys a continuity equa-
tion [4]:

∂tρ(r, t) = −∇ · J(r, t). (1.2)

This equation is also known as Fick’s second law. Using the divergence
theorem, one can show that this equation ensures local particle conserva-
tion because the change in particle number at location r is equal to the net
flow out of the infinitesimal volume centered at r. Combining Fick’s first
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and second laws gives

∂tρ(r, t) = D∇2ρ(r, t), (1.3)

which is called the diffusion equation.

Einstein’s theory of Brownian motion

The first explanation of Brownian motion came from Einstein [5]. What
follows is a short summery of his theory based on his original article [5]
and a later, more didactic article [6] (see Ref. [7] for English translations).

In the classical theory of thermodynamics (that is, before the atomistic
theory of matter was accepted), the free energy of a system consisting of
a number of large suspended bodies in a fluid does not depend on the
positions of the suspended bodies. Therefore, according to this theory,
the suspended bodies do not exert an osmotic pressure on a membrane
that is only permeable to the fluid. Einstein realized that in contrast to the
classical theory of thermodynamics, according to the molecular kinetic
theory of heat [5]

” ... unterscheidet sich ein gelöstes Molekül von einem sus-
pendierten Körper lediglich durch die Größe, und man sieht
nicht ein, warum einer Anzahl suspendierter Körper nicht der-
selbe osmotische Druck entsprechen sollte, wie der nämlichen
Anzahl gelöster Moleküle. Man wird anzunehmen habe, daß
die suspendierten Körper infolge der Molekularbewegung der
Flüssigkeit eine wenn auch sehr langsame ungeordnete Bewe-
gung in der Flüssigkeit ausführen ...”1

In other words, suspended bodies exert the same osmotic pressure as dis-
solved molecules, and because of this they must perform irregular motion
due to the motion of the fluid molecules.

The osmotic pressure of an ideal solution of N particles in a volume
V is is given by Van ’t Hoff’s law Π = Tρ, where Π is the osmotic pres-
sure, T is the temperature in units such that the Boltzmann constant is
unity2 and ρ = N/V is the density of Brownian particles. When there is

1” ... a disolved molecule differs from a suspended body only in size, and one cannot
see why a number of suspended bodies would not exert the same osmotic pressure as
the same number of dissolved molecules. One must take for granted that as a result of
the molecular movement of the fluid, the suspended body must move irregularly, albeit
very slowly... ”

2Temperature then has units of energy. Room temperature (≈ 300K) correponds to
Troom = 1.4 × 10−23 × 300 ≈ 4 × 10−21 J.
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a gradient in the osmotic pressure (due to a gradient in the density) the
corresponding thermodynamic force density is ∇Π = −T∇ρ. This force
is balanced by the frictional force on the Brownian particle. The frictional
force is proportional to the velocity of the particle and can be written as
γv, where v is the velocity and γ the friction constant of the particle. The
force balance equation is γvρ = −T∇ρ. The flux of particles is equal to
vρ, which, according to Fick’s law (Eq. 1.1), is equal to −D∇ρ. Substitut-
ing this for vρ in the force balance equation gives −γD∇ρ = −T∇ρ. This
gives for the diffusion constant

D =
T
γ

. (1.4)

For a spherical particle the friction constant is given by Stokes’ law: γ =
6πaηs, where a is the radius of the particle and ηs is the dynamic viscosity
of the surrounding fluid [8] (see App. A.4 for a derivation). Together with
the previous equation for the diffusion constant, this gives the Stokes-
Einstein relation:

D =
T

6πaηs
. (1.5)

Subsequently, Einstein related this macroscopic description to the ir-
regular movement of the Brownian particle. For simplicity, only one spa-
tial dimension is considered. Because he assumed that the Brownian
particles are independent, the probability density of a single particle is
p(x, t) = ρ(x, t)/N. Then he considers a time interval that is small com-
pared to the time between observations of the particle, but large enough
such that the displacements in each time interval are independent. This
means that the time interval should be longer than the velocity autocor-
relation time of the particle. If ϕ(∆) is the probability that the particle
displaces ∆ in a time interval τ, then

p(x, t + τ) =
∫ ∞

−∞
d∆ ϕ(∆)p(x + ∆, t). (1.6)

Because the time interval τ and the displacement are small, one can use a
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Taylor expansion for the probability on both sides:

p(x, t) + ∂t p(x, t)τ =p(x, t)
∫ ∞

−∞
d∆ ϕ(∆)

+ ∂x p(x, t)
∫ ∞

−∞
d∆ ϕ(∆)∆

+
1
2

∂2
x p(x, t)

∫ ∞

−∞
d∆ ϕ(∆)∆2. (1.7)

Because the particle must make some displacement, the first integral is
unity. The second integral is zero because a displacement in the positive
and negative direction are equally likely, and therefore ϕ(∆) = ϕ(−∆).
Collecting the remaining terms of the previous equation, and multiplying
by N gives

∂tρ(x, t)τ =

[
1

2τ

∫ ∞

−∞
d∆ ϕ(∆)∆2

]
∂2

xρ(x, t). (1.8)

Comparing this with the diffusion equation (Eq. 1.1) shows that

D =
1

2τ

∫ ∞

−∞
d∆ ϕ(∆)∆2. (1.9)

This relates the diffusion constant to ϕ(∆), which is determined by micro-
scopic dynamics of the Brownian particle.

From this equation one can deduce the corresponding equation for
higher dimensions. Because the displacements in each dimension is in-
dependent, the equation for the time evolution of ρ(r, t) in d dimensions
is

∂tρ(r, t) =
d

∑
i=1

∂2
xi

ρ(r, t) = D∇2ρ(r, t), (1.10)

which is just the diffusion equation of Fick’s second law in Eq. 1.1.
The fundamental solution to the diffusion equation is readily obtained

using Fourier transformation methods. When the initial density is a delta
distribution at the origin, the solution is

ρ(r, t) =
e−

r2
4Dt

(4πDt)
d
2

, (1.11)

where d is the number of spatial dimensions.
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From the solution to the diffusion equation one can find the average
and mean squared displacement:

⟨r⟩ =
∫

dr rρ(r, t) = 0, (1.12)〈
r2
〉
=
∫

dr r2ρ(r, t) = 2dDt. (1.13)

This shows that taking many small steps in random directions (a ran-
dom walk) gets you nowhere on average, that is, your average end point
is your starting point; however, the typical traveled distance (the mean
squared displacement) grows in time:√

⟨r2⟩ =
√

2dDt ∝
√

t. (1.14)

That the mean squared displacement grows as
√

t is typical for diffusive
processes.

One can use the Stokes-Einstein relation (Eq. 1.5) to calculate estimate
the order of magnitude of the diffusion constant for a colloid. A colloid
has a size of about 0.1 µm, at room temperature T ≈ 4 × 10−21 J, and
the viscosity of water is 1 mPa · s. This gives for the diffusion constant
D ≈ 2 × 10−11 m2/s. The typical distance a colloid moves in a second is√
⟨r2⟩ =

√
6D ≈ 10−5 m, so it moves about 100 times its own size per

second.
On the other hand, a granular particle with a typical size of 1 mm dif-

fuses very little. Its diffusion constant is about D ≈ 2 × 10−15 m2/s. The
typical distance it diffuses in a second is approximately

√
6D ≈ 10−7 m,

which is 10−4 times its own size per second. This shows that diffusion
(that is, thermal motion) becomes less important when the length scale
increases.

Langevin’s theory of Brownian motion

A few years after Einstein’s theory of Brownian motion, Paul Langevin
derived the same results, but using a completely different method, which
is, in his own words, ”infinitely more simple”[9]3. His method is based
on Newton’s seconds law of motion, according to which the acceleration
of the Brownian particle is governed by the forces acting on it:

m∂2
t x(t) = Ff luid, (1.15)

3See Ref. [10] for an English translation of Langevin’s paper.
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where m is the mass of the Brownian particle, and Ff luid is the force of
the surrounding fluid on the particle. This force accounts for the friction
force, −γ∂tx, which is the average of the fluid force. In addition to this,
there is a fluctuating force, with zero average, on the particle due to the
discrete nature of the fluid. Indicating the fluctuating force by ξ(t), the
equation of motion becomes

m∂2
t x(t) = −γ∂tx + ξ. (1.16)

Multiplying this equation by x and using x∂tx = ∂tx2/2, and x∂2
t x =

∂2
t x2/2 − (∂tx)2, this becomes

1
2

m∂2
t x2 − m(∂tx)2 = −1

2
γ∂tx2 + xξ. (1.17)

This is an equation for the motion of a single particle. For many nonin-
teracting dissolved particles, one can take an ensemble average over the
noise, indicated by < · >. According to Langevin, the average noise
term, xξ, is zero because of the irregularity of the fluctuating force ξ. Us-
ing the equipartition theorem, m

〈
(∂tx)2〉 = T, and defining z = ∂t

〈
x2〉,

the equation becomes

1
2

m∂tz − T = −1
2

γz. (1.18)

The solution to this equation is

z(t) = 2
T
γ
+ Ce−t/τ, (1.19)

where C is a constant, and τ = m/γ. For a colloid this time scale is
of the order of 10−8s.4 The time scales of interest for the mean squared
displacement are much larger that this, so the second term of the previous
equation can be ignored. Using z(t) = ∂t

〈
x2〉 and integrating once more,

gives for the mean square displacement〈
x2
〉
= 2

T
γ

t, (1.20)

4For a spherical colloid of radius a the friction is given by Stokes law (Eq. A.30)
γ = 6πaηs. The mass of a colloid is its volume, 4πa3/3, times its mass density. The mass
density of a colloid is about twice that of water: ρcolloid ≈ 2 × 103kg m−3. The typical
size of a colloid is of the order of a ≈ 10−7m, and the viscosity of water is ηs ≈ 10−3Pa s.
With this the time scale becomes τ = m/γ = (4πa3ρcolloid/3)/(6πaηs) ≈ 5 × 10−9 s.
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where it is assumed the particle started at x = 0. By comparison with
Eq. 1.13, one finds the same diffusion constant as with Einsteins method
D = T

γ .

Ornstein and Uhlenbeck’s theory

Ornstein and Uhlenbeck extended Langevin’s theory of diffusion by solv-
ing the Langevin equation also for t < m/γ, and make explicit under
which conditions the assumptions underlying Einstein’s and Langevin’s
theory are valid [11]. The Langevin equation is

m∂tv = −γv + ξ, (1.21)

where v = ∂tx is the velocity and ξ is the random force.
The random force is rapidly fluctuating with zero mean. This force

fluctuates rapidly because the positions of the fluid molecules change
rapidly. The time scale of the fluctuations in the positions of the fluid
molecules is called the fluid relaxation time τf luid and is much smaller
than any other relevant time scale in the problem.5 From these consider-
ations one can conclude that the average of the fluctuation force is zero:
⟨ξ(t)⟩ = 0, and the random force autocorrelation function ϕ(|t′|) = ⟨ξ(t′ + t)ξ(t)⟩
is only nonzero for t′ < τf luid because ϕ(|t′| >> τf luid) = ⟨ξ(t′ + t)⟩ ⟨ξ(t)⟩ =
0.

The solution to the Langevin equation is

v = v0e−t/τ +
1
m

e−t/τ
∫ t

0
dt′ et′/τξ(t′), (1.22)

where v0 = v(t = 0), and τ = m/γ. Averaging over the noise and using

5A rough estimate of the fluid relaxation time can be obtained as follows [12]. As
the typical speed of a fluid molecule one can take the root mean square velocity

√
⟨v2⟩,

which by the equipartition theorem is of the order
√

T/m, where m is the mass of the
molecule. The molecules in the surrounding fluid are all close together. Therefore, they
collide with other fluid particles when they move about their own size. The fluid equi-
librates due to these collisions, so the time between collision is of the same order as the
fluid relaxation time: τf luid ≈ a/

√
< v2 >, where a is the size of a fluid molecule. For

water a ≈ 2× 10−1 nm, m ≈ 3× 10−26 kg, and at room temperature T ≈ 4× 10−21 J. This
gives τf luid ≈ 5 × 10−13 s. This is some what larger than the 10−14 s from what is known
from experiments [13, Ch. 2]; however it is still orders of magnitude smaller than the
velocity relaxation time of a Brownian particle τ ≈ 5 × 10−9 s.
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< ξ(t) >= 0 gives the mean velocity:

⟨v⟩ = v0e−t/τ. (1.23)

The mean squared velocity is〈
v2
〉
= v2

0e−2t/τ +
1

m2 e−2t/τ
∫ t

0
ds
∫ t

0
ds′ e(s+s′)/τϕ(s − s′),

= v2
0e−2t/τ +

Aτ

2m2

(
1 − e−2t/τ

)
, (1.24)

where ∫ t

−t
dt′ ϕ(t′) ≈

∫ ∞

−∞
dt′ ϕ(t′) ≡ A, (1.25)

was used. This is valid because for any time difference t of interest, ϕ(t)
is zero. The equipartition theorem states that limt→∞

〈
v2〉 = T/m. This

requires that A = 2Tγ, and therefore〈
v2
〉
= v2

0e−2t/τ +
T
m

(
1 − e−2t/τ

)
. (1.26)

Integrating Eq. 1.22 once more, gives the solution for the position of
the particle:

x(t) = v0τ
(

1 − e−t/τ
)
+

1
m

∫ t

0
ds e−s/τ

∫ s

0
ds′ e−s′/τξ(s′), (1.27)

for x(0) = 0. The mean is ⟨x⟩ = v0τ
(
1 − e−t/τ

)
, and, using the same

methods as before, the mean squared displacement becomes〈
x2
〉
= 2Dt + v2

0τ2
(

1 − e−t/τ
)2

− Dτ
(

3 + e−2t/τ − 4e−t/τ
)

, (1.28)

where x(t = 0) = 0. A plot of this result is shown in Fig. 1.1.
This solution captures both the t >> τ as well as the t << τ behavior,

see Fig. 1.1. In these limits

〈
x2
〉
∼
{

v2
0t2 as t/τ → 0,

2Dt as t/τ → ∞.
(1.29)

This reproduces the t/τ → ∞ behavior from Einstein’s and Langevin’s
theories. So these theories are valid for time increments longer than the
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Figure 1.1: The mean squared
displacement on a log-log scale
with x(0) = 0, and v2

0 =
〈
v2

0
〉
=

T/m = D/τ = 1. For t/τ << 1
the displacement increases bal-
listically, that is, x(t) ∝ t, so〈

x2(t)
〉

∝ t2. For t/τ >>
1 the mean squared displace-
ment increases diffusively, that
is,
〈

x2(t)
〉

∝ t.

velocity autocorrelation time τ. In addition, it shows that for short times√
⟨x2⟩ = ⟨x⟩ = v0t. There are two kinds of behavior, on times scales

shorter than the velocity autocorrelation time the typical displacement
grows linearly in time (ballistic behavior), and for times scales longer than
the velocity autocorrelation time the typical displacement grows as

√
t

(diffusive behavior).

1.1.1 The Overdamped Limit

The reason for the absence of the short time behavior in Einstein’s treat-
ment (see Sec. 1.1), is that Einstein only considered the position variable
and assumed that the increments in the position are independent. On a
time scale shorter than the velocity autocorrelation time τ = m/γ, the
changes in position are not independent, but are correlated, and therefore
Einstein’s assumption is not valid on those time scales.

If one is only interested in time scales much larger that τ, it is not
necessary to consider the velocity degree of freedom. Equation 1.22 can
be rewritten as an equation for the position variable:

∂tx = v = v0e−t/τ +
2
γ

∫ t

0
dt′

1
2τ

e−(t−t′)/τξ(t′). (1.30)

If one is only interested in t >> τ, one can take the τ → 0 limit of this
equation. Using that in this limit v0e−t/τ → 0, and e−(t−t′)/τ/(2τ) →
δ(t − t′), the equation becomes

∂tx =
2
γ

∫ t

0
dt′ δ(t − t′)ξ(t′) =

1
γ

ξ(t). (1.31)



1.2. STOCHASTIC DIFFERENTIAL EQUATIONS 13

One would obtain the same result by setting m∂tv = 0 in Eq. 1.21. This
is only allowed if the noise strength is not dependent on the variable x,
otherwise a more careful limiting procedure is needed (see Sections 1.3.2
and 1.A).

This limit is called the overdamped limit. In all problems considered
in this work τ is shorter than any other time scale of interest, and therefore
only the overdamped limit is considered.

1.2 Stochastic Differential Equations

The Langevin equation (Eq. 1.16) is an example of a stochastic differential
equation (SDE). Stochastic differential equations are used to model a wide
variety of phenomena, from natural sciences such as physics, chemistry,
and biology [14–20], to social sciences, economy and finance [21–23]. In
order to describe such a wide variety of phenomena, a more general SDE
than the Langevin equation is needed. The more general version of the
Langevin equation is

∂tx(t) = a (x(t)) + b (x(t)) ξ(t), (1.32)

where x(t) does not necessarily represent the position of a particle. The
functions a and b can also have explicit time dependence. This would not
change any of the results shown in this section. Here a simple, nonrigor-
ous explanation is given, a more rigorous treatment see for example Ref.
[14].

In the discussion on the Ornstein-Uhlenbeck theory of Brownian mo-
tion, it was assumed that the random force ξ fluctuates on a time scale
shorter than any other time scale in the problem. In the limit that the
time scale of fluctuations goes to zero, the noise autocorrelation function
becomes a delta function: ⟨ξ(t′ + t)ξ(t)⟩ ∝ δ(t′). The proportionality con-
stant can be set to unity, and the strength of the noise is changed by chang-
ing the factor b in Eq. 1.32. The Langevin equation for the Brownian par-
ticle can then be written as m∂tv = −γv +

√
2T/mξ, where

√
2T/m is

the noise strength A in Eq. 1.25. The time scale of the noise fluctuation is
m/γ. In the limit that this time scale goes to zero, the Langevin equation
becomes ∂tx =

√
2Dξ. The increment of the variable x is dx =

√
2DdW,

where dW = ξdt. Because dx obeys a Gaussian distribution (Eq. 1.11),
with ⟨dx⟩ = 0 and

〈
dx2〉 = 2D dt, the distribution of dW is also Gaussian

but with ⟨dW⟩ = 0 and
〈
dW2〉 = dt. The stochastic process W(t) is called

a Wiener process [14]. Because the distribution of dW is Gaussian with
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zero mean,
〈
dW2n〉 = O(dtn) are all negligible. One can view the SDE

1.32 as an other way of writing

dx = a(x)dt + b(x)dW. (1.33)

The equation
〈
dW2〉 = dt also holds without the average. The follow-

ing explanation of this is based on Ref. [24]. Consider the integral

I =
∫ t

0
dW2 = lim

N→∞
IN (1.34)

where IN = ∑N
i=1(∆Wi)

2, and N = t/∆t. Because
〈
(∆Wi)

2〉 = ∆t, the
average is ⟨IN⟩ = N ∆t, and ⟨I⟩ = t. The average of the square is

〈
I2
N

〉
=

N

∑
i,j=1

〈
(∆Wi)

2(∆Wj)
2
〉

. (1.35)

Because dW is Gaussian distributed, Isserlis’s formula holds [25]:〈
(∆Wi)

2(∆Wj)
2
〉
=
〈
(∆Wi)

2
〉 〈

(∆Wj)
2
〉
+ 2

〈
∆Wi∆Wj

〉2 .

Because the increments are independent
〈
∆Wi∆Wj

〉2
=
〈
(∆Wi)

2〉2
δij. With

this 〈
I2
N

〉
=

N

∑
i,j=1

(∆t)2 + 2(∆t)2δij = N2∆t2 + 2N∆t2, (1.36)

and using I = limN→∞ IN with ∆t = t/N gives
〈

I2〉 = t2. So the mean
of the integral is I = t, and its variance is

〈
I2〉 − ⟨I⟩2 = 0. Because the

variance is zero I is not a stochastic variable at all, but I =
∫ t

0 dW2 = t.
Taking the differential on both sides gives

dW2 = dt. (1.37)

What this means is that any SDE with dW2 has the same properties as the
same SDE with dW2 replaced by dt.

1.2.1 The Fokker-Planck Equation

Because of the stochastic nature of SDEs, the quantities of interest are usu-
ally averages and not particular solutions to the equation. Therefore, one
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can study the probability density corresponding the stochastic variable
instead of the SDE itself. The partial differential equation for the time
evolution of the probability density corresponding to the SDE in Eq. 1.32
is called a Fokker-Planck equation (FPE). The relation between the SDE
and the corresponding FPE is explained in this section. The cases with x
independent b and x dependent b(x) are treated separately.

Additive Noise

When the function b is not dependent on the stochastic variable, as in

∂tx(t) = a (x(t)) + bξ(t), (1.38)

the noise in the SDE is called additive noise. The discretized version of
the previous equation is

dx = a(x)dt + b dW(t), (1.39)

where x = x(t). Note that the value of x at time t is independent of dW at
time t. The differential of a function of the stochastic variable f (x(t)) is

d f (x) = dx∂x f (x) + (dx)2 1
2

∂x f (x)

=

[
a(x)∂x f (x) +

1
2

b2∂2
x f (x)

]
dt + b dW ∂x f (x), (1.40)

where dW2
i = dt was used and terms of order dt3/2 were ignored. The

average of this is

⟨d f (x)⟩
dt

=
∫

dx P(x, t)
[

a(x)∂x f (x) +
1
2

b2∂x f (x)
]

,

=
∫

dx f (x)
[
−∂x (a(x)P(x, t)) +

1
2

b2∂2
xP(x, t)

]
. (1.41)

The time differential can moved into the average:

⟨d f (x)⟩
dt

=

〈
d f (x)

dt

〉
=
∫

dx f (x)∂tP(x, t). (1.42)
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Because the function f (x) is arbitrary, the integrands of the last two inte-
grals are equal. This gives the FPE corresponding to the SDE 1.38:

∂tP(x, t) = −∂x [a(x)P(x, t)] +
1
2

b2∂2
xP(x, t). (1.43)

The extension to multiple dimensions is straightforward. The multidi-
mensional equivalent of Eq. 1.38 is

∂tr = A(r) + B · ξ, (1.44)

where A(r) is a d-dimensional vector, B is d×n-dimensional matrix, and
ξ is an n-dimensional vector, where d is the number of elements of r and
n ≤ d. The corresponding FPE is

∂tP(r, t) = −∇ ·
[

A(r)P(r, t)− 1
2

B · BT · ∇P(r, t)
]

. (1.45)

Multiplicative Noise

When the noise strength in an SDE is dependent on the stochastic vari-
able, as in Eq. 1.32, it is called multiplicative noise. When this occurs,
the integral of this equation is not uniquely defined. This somewhat tech-
nical concept is explained in detail in Ref. [14]. What follows is a short
summary of the basic properties of such an SDE.

When an SDE has multiplicative noise, one must specify how to inte-
grate the equation. Two of the most used choices are Itô and Stratonovich
integration. The difference lies in how the noise term is evaluated. With
the Itô rule the function b is evaluated at the left side of the time interval.
The discrete version of the SDE is

dxti = a (xti) dt + b (xti) dWti . (1.46)

With the Stratonovich rule the function b is evaluated at the average of xti
and xti+1 :

dxti = a (xti) dt + b
(

xti + xti+1

2

)
dWti . (1.47)

The advantage of the Itô integration is that b (x(t), t) and ξ(t) are not cor-
related. However, a downside of this choice is that the ’normal’ rules of
calculus no longer apply, that is d f ̸= f ′dx, where f ′ = ∂x f (x). Instead
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one has to use Itô’s formula

d f (x(t)) =
[

a (x(t), t) f ′ (x(t)) +
1
2

b2 (x(t), t) f ′′ (x(t))
]

dt

+ b (x(t), t) f ′ (x(t)) dW(t), (1.48)

where dW(t) =
∫ t+dt

t dxξ(s). With the Stratonovich rule the normal rules
of calculus apply:

d f (x(t)) = f ′(x(t))dx. (1.49)

However, b (x(t), t) and ξ(t) are correlated. Which integration rule should
be used is either indicated in the text, or by (I) or (S) before the SDE for,
respectively, the Itô and Stratonovich rule.

When Eq. 1.32 is an Itô SDE, the corresponding FPE is

∂tP(x, t) =− ∂x [a(x, t)P(x, t)] +
1
2

∂2
x

[
b2(x, t)P(x, t)

]
. (1.50)

When Eq. 1.32 is a Stratonovich SDE, the corresponding FPE is

∂tP(x, t) =− ∂x [a(x, t)P(x, t)]

+
1
2

∂x {b(x, t)∂x [b(x, t)P(x, t)]} . (1.51)

Comparing the two FPEs shows that

(I) ∂tx = a + bξ(t), (1.52)

and

(S) ∂tx = a − 1
2

bb′ + bξ(t), (1.53)

have the same FPE, and therefore correspond to the same stochastic pro-
cess. This means that there is no ”right” integration rule for a phys-
ical process, but the same process can be described by different SDEs
with different integration rules. The correspondence between the Itô and
Stratonovich SDEs can be used to transform from one to the other, if that
is more expedient for the problem at hand.

The same holds for the d-dimensional SDE

∂tr = A(r, t) + B(r, t) · ξ(t), (1.54)
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where A is a d-dimensional vector, B is a d×n -dimensional matrix, and
ξ is an n-dimensional vector. The vector r are the degrees of freedom,
which are not necessarily the position coordinates but can be the velocity
or other degrees of freedom. If this is an Itô SDE, the corresponding FPE
is

∂tP(r, t) =−∇i [AiP(r, t)] +
1
2
∇i∇j

[
BikBjkP(r, t)

]
, (1.55)

and if it is a Stratonovich SDE, the corresponding FPE is

∂tP(r, t) =−∇i [AiP(r, t)] +
1
2
∇i
{

Bik∇j
[
BjkP(r, t)

]}
. (1.56)

1.3 Examples

To elucidate the concept of Brownian motion further, three examples are
worked out. These examples will be part of more complicated models
that are introduced later in Part II.

1.3.1 Diffusion in a Potential

A Brownian particle in force field F can be described by the SDE

m∂tv = −γv + F +
√

2Tγξ, (1.57)

this is the Langevin equation (Eq. 1.16) with a force term added to the
force balance. If only time scales much larger than m/γ are considered,
the left-hand side is negligible, and the SDE becomes

∂tr =
1
γ

F +
√

2Dξ. (1.58)

If the force field F is conservative, it is the gradient of a potential F =
−∇U, as is the case for, for example, a Brownian particle in an optical
trap [26]. The corresponding FPE is

∂tP(r, t) = −∇ · J, (1.59)

with

J = − 1
γ
∇UP(r, t)− D∇P(r, t). (1.60)
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In steady state the flux J must be a constant vector. Because the probabil-
ity is normalized, it and its derivatives must vanish as |r| → ∞, so J = 0
in this limit, and because it is a constant, it must be zero everywhere.

Integrating the expression of the flux gives

P(r) ∝ exp [−U(r)/T] . (1.61)

The proportionality constant can be obtained from the normalization con-
dition. This solution is nothing but the Boltzmann distribution of the par-
ticle.

In case of colloids of radius a in a gravitational field U(x) = mgh,
where m = 3

4 πa3(ρcolloid − ρsolvent) is the Archimedean weight of the col-
loid, g is the gravitational acceleration, and h is the height of the colloid.
Then, for and ideal solution,

ρ(h) = ρ(0) exp [−mgh/T] , (1.62)

which is the same as the barometric law for gases.

1.3.2 Diffusion in Inhomogeneous Media

Brownian motion can be generalized to diffusion with a space dependent
temperature and friction [27–32]. This introduces certain complications
that can already be seen in Fick’s laws [Eqs. 1.2 and 1.1]: ∂tρ = D∇2ρ. If D
is constant, there are (at least) two generalizations of this equation: ∂tρ =
∇ · [D(x)∇ρ] and ∂tρ = ∇2D(x)ρ. The other option ∂tρ = D(x)∇2ρ is not
possible because it violates particle conservation. If the temperature and
friction are space dependent, the diffusion constant is space dependent.
It is not obvious how one should generalize Fick’s law in this case and
which, if any, of the generalizations of Fick’s law is correct.

The Langevin equation (Eq. 1.21) with space dependent temperature
and friction is

m∂tv = −γ(x)v +
√

2T(x)γ(x)ξ, (1.63)

where the noise is normalized such that ⟨ξ(t)ξ(t′)⟩ = δ(t − t′). Note
that this equation does not have multiplicative noise (it is the equation
of motion for v and the noise strength depends on x) so it is irrelevant
how (Itô or Stratonovich) one integrates this equation. The equation for
the position variable is ∂tx = v. If one takes the overdamped limit of
this equation (that is, one sets (m/γ)∂tv = 0), just as one would do for
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constant T and γ, a problem arises. The equation would be

∂tx =
√

2T(x)/γ(x)ξ, (1.64)

which has multiplicative noise, and therefore, one should specify how this
equation should be integrated. However, which integration rule should
be used does not follow from the derivation. A more careful derivation
(see 1.A) shows that, the Itô SDE

∂tx = −γ′(x)T(x)
γ3(x)

+

√
2

T(x)
γ(x)

ξ, (1.65)

where γ′(x) = ∂xγ(x). The corresponding FPE is

∂tP(x, t) = −∂x J, (1.66)

J =
1

γ(x)
∂x [T(x)P(x, t)] . (1.67)

This shows that if only T is space dependent the correct generalization of
Fick’s law is ∂tρ = ∂2

xD(x)ρ (for a single particle the difference between
the probability P and the density ρ is a constant), and if only γ is space
dependent the correct generalization of Fick’s law is ∂tρ = ∂x [D(x)∂xρ],
and if both T and γ are space dependent, neither of the suggested gener-
alizations is correct.

The generalization of Fick’s law in case of space dependent γ and con-
stant T could be obtained from physical arguments. Because the tem-
perature is constant, this is an equilibrium system, and therefore obeys a
Boltzmann distribution in steady state, which leads to the only general-
ization ∂tρ = ∂x [D(x)∂xρ].

If T is space dependent and γ is constant, the steady-state probability
density is

P(x) ∝
1

T(x)
. (1.68)

The probability is larger in regions where the temperature is small. The
temperature is what causes the motion of the fluid and the particle, in
other words, it is what agitates the particle. So the particle moves to re-
gions where it is less agitated.

This mechanism also explains an other, perhaps more familiar, phe-
nomenon. In the Autumn fallen leaves accumulate at the edges of streets.
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Figure 1.2: Rotational Brownian motion
of the unit vector n (red) in three di-
mensions. The wire mesh represents the
unit sphere. The start point is n0 = x̂,
and the blue line represents the history
of the orientation. One can view this
both as rotational Brownian motion of a
unit vector, as well as Brownian motion
of a particle on the unit sphere where
the particle’s position is indicated by the
end of the unit vector.

When the leaves are in the middle of the street, cars will move them
around (i.e. agitate them). The cars do not drive, or at least less often,
right along the edge of the street, so when a leave is moved near the edge,
it is not moved again and will stay there.

One could argue that the friction also appears in the noise strength in
Eq. 1.63 in the same way as the temperature. However, it also appears in
the dissipative term (−γ(x)v), so when the friction constant is space de-
pendent, the noise (fluctuations) is space dependent, but the dissipation
is space dependent as well. These two effects cancel each other in steady
state and therefore result in a Boltzmann distribution.

1.3.3 Rotational Brownian Motion

Rotational diffusion of a unit vector n can be written down by analogy
with the diffusion equation (Eq. 1.1). In two dimensions, rotational dif-
fusion describes the diffusive motion of a unit vector n. This vector is a
function of the angle ϕ. The corresponding SDE is

∂tϕ =
√

2Drξ, (1.69)

or in Cartesian coordinates this becomes

∂tn =
√

2Drn · ϵ · ξ, (1.70)

where

ϵ =

[
0 1
−1 0

]
.

It may seem odd that in contrast to the SDE for ϕ, this SDE has mul-
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tiplicative noise. However, the equation should be supplemented with
the condition ∂t|n| = 0 because it is a unit vector. With this condition,
the difference between the Itô and Stratonovich integration for the SDE
vanishes.

Because n is a unit vector, its increments are always perpendicular to
n itself and therefore the radial component of the probability flux is zero.
The FPE for two dimensional rotational diffusion is

∂tP(ϕ, t) = Dr∂2
ϕP(ϕ, t), (1.71)

where Dr is the rotational diffusion constant (with units of inverse time),
and ∂2

ϕ is the Laplacian on the unit circle. This can also be written in
Cartesian coordinates:

∂tP(n, t) = −DrR · J, (1.72)

where J is the flux

J = −RP(n, t), (1.73)

where R = (1 − nn) · ∇n is the nabla operator projected onto the direc-
tion perpendicular to n.

In three dimensions, rotational diffusion describes the diffusion of a
unit vector n that depends on two angles: n = n(θ, ϕ), where θ and ϕ
are the polar and azimuthal angle, respectively (see Fig. 1.2). Because
the change of the unit vector, the radial component of the probability flux
is zero, and therefore the FPE for rotational Brownian motion of the unit
vector n is

∂tP(n, t) = R · J, (1.74)

where J = DrRP(n, t), Dr is the rotational diffusion constant (with units
of inverse time), and R is the angular part of the nabla operator, which in
Cartesian coordinates can be written as R = n×∇n = (1 − nn) · ∇n. For
a sphere of radius a, the rotational diffusion constant is Dr = T/(8πηsa3)
(see Chapter A, Eq. A.14).

Using the Cartesian expression for the FPE of n, and comparing with
Eq. 1.56, shows that the corresponding Stratonovich SDE for n is

∂tn =
√

2Drn × η. (1.75)

And, just as in the two dimensional case, the constraint ∂t|n| = 0 should



1.3. EXAMPLES 23

be added to this equation. With this the difference between the Itô and
Stratonovich integration of the SDE vanishes.

The FPE for both two and three dimension can be written as

∂tP(n, t) = LP(n, t), (1.76)

where the Fokker-Planck operator is

L = DrR2 = Dr [(1 − nn) · ∇n]
2 . (1.77)

The formal solution to this equation is P(n, t|n) = eLtP(n, 0|n0), where
P(n, t|n0) is the probability of n at time t given that n = n0 at t = 0.

The mean square displacement of the unit vector n is〈
(n(t)− n0)

2
〉
= 2 − 2 ⟨n(t) · n0⟩ . (1.78)

For a fixed initial orientation, the vector n0 can be taken out of the av-
erage: ⟨n(t) · n0⟩ = n0 · ⟨n(t)⟩. The average can be calculated using the
solution to the FPE:

⟨n(t)⟩ =
∫

dΩ n(Ω)P(n(Ω), t|n0),

=
∫

dΩ n(Ω)eLtP(n(Ω), 0|n0), (1.79)

where Ω is the solid angle in d dimensions. The Fokker-Planck operator
L is self-adjoint, so the operator can be made to act on n(Ω) instead of
the probability. The vector n is an eigen function of this Fokker-Plack
operator with eigenvalue −(d − 1)Dr. With this the integral becomes

⟨n(t)⟩ =
∫

dΩ P(n(Ω), 0|n0)e−(d−1)Drtn(Ω). (1.80)

The exponential can be taken out of the integral, and the remaining inte-
gral is equal to n0, so ⟨n(t)⟩ = n0e−(d−1)Drt. The autocorrelation function
is

⟨n(t) · n0⟩ = e−(d−1)Drt, (1.81)

which defines the autocorrelation time

τ =
1

(d − 1)Dr
. (1.82)
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Because of isotropy, this can also be written as

⟨n(t)n0⟩ =
1
d

e−t/τ1, (1.83)

where 1 is the identity matrix.
The mean squared displacement is〈

(n(t)− n0)
2
〉
= 2 − 2 · ⟨n(t) · n0⟩ = 2 − 2e−(d−1)Drt. (1.84)

Expanding the exponential in the mean-square displacement shows that〈
(n(t)− n0)

2
〉
= 2(d − 1)Drt as t → 0. (1.85)

This is the same as ordinary diffusion (in flat space) in one dimension
lower because on short time scales the particle on the sphere (d = 3) or
circle (d = 2) does not move far enough to probe the curvature of the
space.
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1.A Appendix: The Small-Mass Limit With Space-
Dependent Friction and Temperature

When a m → 0 limit results in a SDE with multiplicative noise, one cannot
set the acceleration term in the Ornstein-Uhlenbeck process to zero, as
was done in Sec. 1.1.1. The following nonrigorous derivation is based
on Ref. [30]. For a more rigorous derivation using methods of stochastic
calculus see Refs. [31–33], for a rigorous derivation using the Fokker-
Planck equation see [27–29], or for a derivation based on path integrals,
see Ref. [34]. Alternatively, one can view diffusion with space-dependent
friction and temperature as a limiting case of run-and-tumble motion (see
Sec. 3.1.1), which is explained in Ref. [35].

The Ornstein-Uhlenbeck process with space dependent friction and
temperature is

m∂tv(t) = −γ(t)∂tx(t) +
√

2T(t)γ(t)ξ(t), (1.86)

where γ(t) = γ (x(t)), and T(t) = T (x(t)). To fix the noise term, it is
assumed that locally the fluctuation dissipation theorem still holds. Fur-
thermore, it was assumed that the velocity distribution is the equilibrium
distribution with the temperature replaced by the space-dependent tem-
perature:

p(v|x) =
√

m
2πT(x)

exp
[
− mv2

2T(x)

]
, (1.87)

which is a valid approximation as long as the persistence length vm/γ is
much smaller than the gradient in the temperature.

In the previous SDE it does not matter whether it is integrated with
the Itô or Stratonovich rule. The equation after the small-mass limit has
multiplicative noise, and therefore it does matter how that equation is
integrated. Because it simplifies the derivation, I use the Itô integration
rule.

Rearranging Eq. 1.86 gives for the position increment

dx(t) =
F(t)
γ(t)

dt +
√

2T(t)/γ(t)dW(t)− m
γ(t)

dv(t). (1.88)

Next dx is integrated from t to t + ∆t, where ∆t >> m/γ. Note that in the
limit m → 0 the time increment ∆t can be made arbitrarily small while
still satisfying ∆t >> m/γ. Therefore ∆t can be treated as a differential.
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The position increment becomes

∆x(t) =
∫ t+∆t

t
dt′

F(t)
γ(t)

+
∫ t+∆t

t
dW(t′)

√
2T(t)/γ(t)

−
∫ t+∆t

t
dv(t′)

m
γ(t)

,

=
F(t)
γ(t)

∆t +
√

2T(t)/γ(t)∆W(t)−
∫ t+∆t

t
dv(t′)

m
γ(t)

, (1.89)

where for the integral over the noise the Itô rule was used:∫ t+∆t

t
dW(t′)

√
2T(t)/γ(t) =

√
2T(t)/γ(t)

∫ t+∆t

t
dW(t′),

in the limit ∆t → 0.

The last integral in ∆x(t) can be rearranged as follows:

dv(t)
m

γ(t)
=d
[

mv(t)
γ(t)

]
+ mv(t)

1
γ2(t)

dγ(t),

=d
[

mv(t)
γ(t)

]
+ mv(t)

γ′(t)
γ2(t)

dx(t) + mv(t)
γ′′(t)
2γ2(t)

[dx(t)]2 ,

=d
[

mv(t)
γ(t)

]
+ mv2(t)

γ′(t)
γ2(t)

dt + m
γ′′(t)T(t)

γ3(t)
dx(t), (1.90)

where for the last line [dx(t)]2 = 2T(t)dt/γ(t) and dx(t) = v(t)dt was
used. The first and last term vanish in the small-mass limit when inte-
grated from t to t + ∆t. Therefore∫ t+∆t

t
dv(t′)

m
γ(t)

=
∫ t+∆t

t
dt′mv2(t′)

γ′(t′)
γ2(t′)

,

=
γ′(t)
γ2(t)

∫ t+∆t

t
dt′mv2(t′). (1.91)

Because the integral extends over a time interval ∆t >> m/γ, the inte-
gral sums over many uncorrelated samples of mv2(t) because m/γ is the
correlation time of the velocity v. By the law of large numbers the result
is equal to the mean. Therefore,

∫ t+∆t
t dt′mv2(t′) =

∫ t+∆t
t dt′

〈
mv2(t′)

〉
=

T(t)∆t because it is assumed that the velocity distribution is the equilib-
rium distribution with the local temperature T(x). With this the space
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increment becomes

∆x(t) =
F(t)
γ(t)

∆t +
√

2T(t)/γ(t)∆W(t)− γ′(t)T(t)
γ3(t)

∆t. (1.92)

The ∆s can be replaced by infinitesimal differentials because the time in-
crements ∆t can be made arbitrarily small as m → 0. The corresponding
(Itô) SDE then becomes

∂tx =
F(x)
γ(x)

− γ′(x)T(x)
γ3(x)

+

√
2T(x)
γ(x)

ξ. (1.93)

The corresponding Fokker-Planck equation is

∂tP(x, t) = −∂x

[
F(x)
γ(x)

P(x, t)
]
+ ∂x

[
1

γ(x)
∂x [T(x)P(x, t)]

]
. (1.94)
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Active matter are particles that convert energy (either stored or ab-
sorbed from the environment) into directed motion [36]. This means that
these particles are driven out of equilibrium on a local level. This can
be contrasted with systems that are driven out of equilibrium in a global
way. For example, a sheared liquid is driven out of equilibrium due to the
energy input at the boundaries. Much work is done on the collective ef-
fects emerging from a large number of active particles [36–39]; this work,
however, focuses on the behavior of a single or a few particles.

There are many biological examples of active matter. This class covers
a wide range of length scales, from molecular motors walking on fila-
ments inside cells [40, 41], and active proteins [42–46], to moving animals
such as birds and fish [47]. Here the focus is on micrometer scale. On this
scale, biological active matter are also referred to as microswimmers [48].
Two prominent examples are the bacterium e. coli and sperm cells, both
of which swim by deforming their bodies.

Besides the many biological examples of active matter, there is active
matter that can be made in a laboratory. This, so called synthetic ac-
tive matter, are typically micrometer sized particles that can propel them-
selves forward by different phoretic mechanisms [49]. Besides the phoretic
self-propulsion, there are synthetic active particles that can propel them-
selves forward by changing their shape much like, and inspired by, bio-
logical active matter [50–52]. Furthermore, there are active particles whose
activity can be tuned by light [53–58].

Because the typical self-propulsion mechanism of biological and syn-
thetic active matter is often different, each is discussed separately. To get
a basic understanding of how biological and synthetic active matter can
propel itself forward, one simplified model system of each type of active
matter is explained in the following two sections.

2.1 Biological Active Matter

Movement is essential for life. For example, it allows organisms to move
towards more favorable conditions or to escape predators. Prokaryotic
and eukaryotic micro-organisms1 can move by a variety of methods; for
example, they can crawl on a substrate, or propel themselves forward by

1Eukaryotes and prokaryotes are two classes of living cells. Eukaryotes are organisms
consisting of cell that have their DNA enclosed in its nucleus. Examples are fungi, algae,
plants and animals. Prokaryotes are organisms that do not keep their DNA enclosed in
its nucleus. Most prokaryotes are simple, single-celled organisms. The most prominent
example of prokaryotes are bacteria [64].
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Figure 2.1: Examples of biological microswimmers. Each organism has its own
scale bar. The sperm cell [59] and the algae chlamydomonas [60] are eukaryotes.
Their flagella are deformed by motors proteins (dynein) inside the flagellum (see
zoomed-in image with the sperm cell). The motors (red) slide the microtubules
(green) along their length. Because the sliding is hindered by the cross linkers
(blue), the flagellum bends. The sperm cell swims by wave-like beating of its
flagellum. The different drawings of chlamydomonas show stages of the swim
stroke. It swims upward, and time increases from bottom to top, red arrows
indicate the direction of movement of the flagella. This stroke is similar to the
breast-stroke swimming [61]. The prokaryote E. coli has passive flagella that are
rotated by a rotary motor in the cell membrane [62, 63]. This rotary motor rotates
a rigid hook to which the flagellum is attached (see zoomed-in image with e. coli).
When the motor rotates counter-clock wise, the flagella of e. coli form a helical
bundle.

deforming their body, by movement of cilia on their membrane, and, one
much studied example, by moving flagella [65–68]. The latter will be used
to introduce the basics of self-propulsion of micro-organisms.

The flagella of prokaryotic cells and those of eukaryotic cells are very
different. The prokaryotic flagellum is a rigid filament, which has roughly
a diameter of 20 nm. The movement of this flagellum is caused by a molec-
ular motor in the cell membrane that rotates the flagellum [63]. An organ-
ism can have a single flagellum, for example pseudomonas aeruginosa, or
multiple flagella, for example e. coli (see Fig. 2.1). When the flagella of e.
coli rotate counter clockwise, they form a helical bundle. The rotation of
this bundle results in a propulsive force, the origin of which is explained
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in the next section.
Although seemingly very similar, the origin of this force is not the

same as a propeller on a boat (which is in the high Reynolds number
regime and needs momentum), but is more similar to a corkscrew being
pulled into the cork when it is rotated.

The eukaryotic flagellum is flexible. Its core consists of microtubules,
between which there are molecular motors that slide the microtubules
with respect to each other along their length. Besides the molecular mo-
tors there are cross linkers that prevent the microtubules from sliding far,
which, together with the molecular motors, causes the flagellum to bend
[64]. Two examples of prokaryotic microswimmers, a sperm cell and the
algae chalimydomonas, are shown in Fig. 2.1.

2.1.1 Propulsion by Beating Flagella

Swimming at the micrometer scale is governed by different mechanics
as swimming on the meter scale (that is, swimming by humans). The
difference can be quantified by the Reynolds number (see Appendix A),
which is the ratio of the inertial and viscous forces:

Re =
ρVL

ηs
, (2.1)

where ρ is the density of the medium (for water ρ = 103 kg m−3), V the
typical velocity, L the length scale, and ηs is the viscosity of the medium
(for water ηs = 10−3 kg m−1 s−1). For a bacterium such as e. coli, with a
length L ≈ 2 µm and a velocity of V ≈ 20 µm s−1, the Reynolds number
is approximately Re ≈ 4 × 10−5. A swimming human (L ≈ 2 m, V ≈
1 m s−1) has a Reynolds number of Re ≈ 2 × 106. This shows that, unlike
for a swimming human, for a swimming bacterium momentum is not
important2. Low Reynolds swimmers make use of the viscosity of the
medium to swim. In particular, a common method is to use the fact that

2This becomes especially clear when one considers the coasting time and coasting
distance, that is, the time it takes for the swimmer’s momentum to dissipate and the
distance it would move after the swimmer stops swimming [69]. This time is τm = m/γ,
where m is its mass and γ is its friction constant. Assuming that the density of the
swimmer is the same order of magnitude as that of water, one obtains m ≈ ρwater4πL3/3,
where L is its linear size. Its friction follows from the Stokes equation (Eq. A.8), γ ≈
6πηsL. With this, coasting time of e. coli is τm ≈ ×10−6s. The coasting distance is
Vτm ≈ 2 × 10−12m. So if an e. coli bacterium would decide to stop swimming, it would
come to rest within microseconds and move for about an Ångström. (Of course it would
still move due to thermal fluctuations.)
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Figure 2.2: Self-propulsion due to a beating flagellum. The flagellum has a si-
nusoidal form with a wave velocity c in the negative x direction. The propulsion
mechanism can be explained by considering two segments of the flagellum that
are separated by half a wave length (gray segments). In this case the left seg-
ment moves up. This velocity can be decomposed in a velocity parallel to the
segment (v∥) and a velocity perpendicular to the segment (v⊥). The friction force
parallel to the segment is f∥ = −γ∥v∥, and friction force perpendicular to the
segment is f⊥ = −γ⊥v⊥. Because γ∥ ≈ 2γ⊥, the total friction force on the seg-
ment f = f∥ + f⊥ is not opposite to the velocity v and has a non-zero, positive
x component. Similarly, the friction force on the right segment has a non-zero,
positive x component. The y components of both segments cancel. This can be
done for each pair of segments separated by half a period. The net friction force
of each pair of segments is zero in the y direction (if the flagellum is long enough
to ignore end effects) and positive and non-zero in the x direction, resulting in
movement of the organism in the positive x direction with velocity V.

the viscosity of slender rod moving along its long axis is about half the
viscosity when it moves perpendicular to its long axis. The following
simple model shows how a microswimmer can exploit this to swim.

In this model the head is modeled as as sphere with a beating flag-
ellum attached to it (see Fig. 2.2). The analysis below is based on Refs.
[70–73]. This is a model of the beating flagellum of a sperm cell (see Fig.
2.1), but the principles for the helical flagellum of e. coli are the same. The
simplest method to calculate the velocity is resistive-force theory [73–76]
(for more accurate methods see Refs. [77, 78]). The viscous force per unit
length on the flagellum is f f ric = −γ̃⊥nn · v − γ̃∥tt · v, where v is the ve-
locity of an infinitesimal segment of the flagellum with unit normal vector
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n̂ and unit tangent vector t̂, and γ̃∥ and γ̃⊥ are the parallel and perpen-
dicular friction coefficients per unit length of a rod with the same radius
as the flagellum. In appendix A.5 it is shown that the friction coefficients
of a rod with length L and radius R are approximately

γ∥ =
2πηsL
ln
( L

2R
) , γ⊥ =

4πηsL
ln
( L

2R
) , (2.2)

where ηs is the viscosity of the medium. The friction coefficients per unit
length are γ̃∥ = γ∥/L and γ̃⊥ = γ⊥/L. Using that nn = 1 − tt, the fric-
tion force can be written as f f ric = −γ̃⊥v − (γ̃∥ − γ̃⊥)tt · v. The method
that the micro-organisms use to swim uses the anisotropy in the friction
constants γ̃⊥ ̸= γ̃∥ ; see Fig. 2.2.

The flagellum moves up and down to produce a traveling wave such
that the shape of the flagellum in the comoving frame is given by y(x, t) =
A sin (kx + ωt), where A is the amplitude, 2π/k is the wave length, and
ω its frequency. The wave propagates with a velocity c = ω/k in the
negative x direction. If the head moves with velocity V, the velocity of
the flagellum is given by v = Vêx + ∂tyêy. The unit tangent vector to the
flagellum is

t̂ =
êx + ∂xyêy√

1 + (∂xy)2
= êx + ∂xyêy +O(A2k2), (2.3)

where it is assumed that the amplitude is much smaller that the wave
length, and therefore terms of the order A2k2 can be ignored.

The total frictional force on the flagellum is F =
∫ L

0 ds f f ric, where
ds is the arc length of the flagellum and L its contour length, which is
L = N2π/k, where is N the number of simultaneous waves in the tail.
Because the Ak << 1, one can approximate ds ≈ dx. If one ignores the
end effects of the flagellum, there is no vertical motion. The horizontal
force is balanced by the friction force on the head:

0 =− γheadV − êx ·
∫ N2π/k

0
dx γ̃⊥v + (γ̃∥ − γ̃⊥)tt · v, (2.4)

where γhead is the friction coefficient of the head. Evaluating the integral
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using the expression for y, v and t, gives

V =
1
2

A2k2c

(
γ̃⊥
γ̃∥

− 1

)
1

1 + γhead
Lγ̃∥

. (2.5)

The speed is proportional to the square of the ratio of the amplitude and
the wavelength (A2k2) and the wave velocity (c). Furthermore, it depends
on the ratio of the perpendicular and parallel friction constants per unit
length of the flagellum (γ̃⊥/γ̃∥), and the ration of the friction of the head
γhead and the parallel friction of the straight flagellum Lγ̃∥. Note that, for
large L, γ⊥/γ∥ ≈ 2, so the velocity is positive, that is, it swims in the
opposite direction of the wave propagation.

The spermatozoa P. Miliaris uses a beating flagellum to propel itself
forward. Its beating amplitude is A = 4 µm, its wave number k = 0.26 µm−1,
it has N = 1.3 waves, its angular velocity is ω = 22 s−1, the radius of its
head is Rhead = 0.5 µm, and the radius of its flagellum is a = 0.2 µm [74].
Equation 2.5 and the Stokes equation (Eq. A.30) for the friction of the head
gives V ≈ 380 µm/s, which is about double the actual value. The reason
is that the assumption that the amplitude is small compared to the wave
length is violated, but Ak ≈ 1. A calculation without the assumption of
small amplitudes gives the correct value of V ≈ 190 µm/s [74].

The self-propulsion due to a single helical flagellum of, for example,
e. coli, is governed by the same mechanism as the beating flagellum of a
eukaryotic cell. In matter of fact, this mechanism might be more familiar.
Because the friction constant of corresponding to motion parallel to the
long axis of a rod is smaller than the friction constant corresponding to
motion perpendicular to a rod, a corkscrew is pulled into a cork when
it is rotated, so due to the anisotropy of the friction, rotational motion
is coupled to translational motion. The torque due to the rotation of the
flagellum must be balanced. The only way this is possible is to rotate the
body of the bacterium in the opposite direction.

Note that, even though, this mechanism looks similar to the propul-
sion due to a propeller of a motor boat, it is governed by completely differ-
ent physics. The bacterium is governed by low Reynolds number hydro-
dynamics (the Stokes equation) and it uses the viscosity of the medium to
propel itself forward; the propeller of a boat is governed by high Reynolds
number hydrodynamics and it uses momentum to propel itself forward.
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Figure 2.3: Run-and-tumble motion of
e. coli. When the rotary motors in the
membrane rotate counter clock wise, the
flagella form a helical bundle and the
bacterium is swims forward in a straight
line. This is called a run, which lasts
a bout 1 s. It swims with a speed of
about 30 µm/s making the run length
≈ 30 µm. When the rotary motors ro-
tate clock wise, the bundle disentangles
and spreads out. Due to this, the bac-
terium rotates. This is called a tumble
and lasts about 0.1 s. After a tumble the
bacterium has a random, approximately
uncorrelated new direction for the next
run.

2.1.2 Run-and-Tumble Motion

Biological swimmers do not swim in a straight line. Firstly, there is ro-
tational diffusion due to the thermal noise of the fluid. This causes the
swimmer to change its direction continuously. Secondly, some swimmers
have their own mechanism to re-orient. The most prominent example
of the latter is the run-and-tumble motion of e. coli [79]. When e. coli
is in the run phase, its flagella rotate counter clockwise and the flagella
form a helical bundle that propels it forward. After some time of swim-
ming in an almost straight line, a tumble event occurs. When this happens
one or more of the motors driving the flagella reverses its direction. This
causes the bundle of flagella to spread out, which in turn results in the
re-orientation of the bacterium. After the tumble event, the run phase
starts again and the bacterium moves in a new direction. The run time
of e. coli is roughly a second. Because the time it takes to tumble is only
about one tenths of that, the tumble time is often approximated by zero.
The speed of e. coli is about 30 µm/s, so the distance traveled in a single
run is roughly ten times its own length.

Eukaryotic swimmers can also perform run-and-tumble motion. For
example Chlamydomonas (see Fig. 2.1) swims in a straight run by beating
its two flagella synchronously, and tumbles by asynchronously beating its
flagella [80].
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2.2 Synthetic Active Matter

A much used strategy for self-propulsion of synthetic active matter is self-
phoresis. Phoresis is the motion of a particle due to an externally imposed
gradient such as a gradient in the electric potential (electrophoresis), a
gradient in the temperature (thermophoresis), or a gradient in the con-
centration of a dissolved solute (diffusiophoresis) [81–83]. When these
gradients are created by the particle itself, it is called self-phoresis. The
detailed mechanism behind the motion of a self-diffusiophoretic particle
is explained in the next section.

2.2.1 Self-Diffusiophoresis

Diffusiophoresis is the movement of a colloid due to a gradient in the so-
lute [82, 84]. When a colloid produces solute molecules in such a way that
there is a local gradient in the solute concentration around the colloid, the
colloid moves due to self-diffusiophoresis. The gradient in solute concen-
tration around the particle is typically maintained by covering half of the
particle’s surface with a catalyst for a chemical reaction. For example, a
polystyrene particle with half of its surface covered with platinum in a so-
lution of hydrogen peroxide (H2O2) and water. The platinum is a catalyst
for the reaction 2 H2O2 → 2 H2O + O2. Because the hydrogen peroxide
has a similar interaction with the colloid as water, the platinum is effec-
tively a source of O2 and the water and hydrogen peroxide can be ignored
(see Fig. 2.4).

The analysis presented here is based on Refs. [85–88]. The solute is
assumed to be dilute, and is therefore considered as an ideal solution3.
The equation for the time evolution of the solute concentration c(r) is
governed by a continuity equation:

∂tc +∇ · J = 0, (2.6)

where J is the flux of solute, which is

J = cv − D∇c + βDcf, (2.7)

where v is the fluid velocity, D is the diffusion constant of the solute, and
β is the inverse of the temperature, and f is the force of between solute
and the colloid (for example, steric repulsion and van der Waals forces

3Correlations due to the interactions between the solute molecules can affect the self-
propulsion velocity, and even reverse its direction [89].
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Figure 2.4: Diffusiophoresis of a colloidal particle. Gray part of the surface is a
catalyst for a chemical reaction. Here it is assumed that the reaction effectively
produces a single species of solute molecules (red particles). The inhomogeneous
distribution of the catalytic surface on the colloid results in a self-generated so-
lute gradient. The gradient in the solute concentration causes the particle to
move due to diffusiophoresis. The zoomed-in figure shows the inner and outer
region, and the coordinates used in the analysis of the inner region. The inter-
action range of the solute is δ, n̂ indicates the unit normal vector to the surface
of the colloid, h is the distance between the solute and the surface of the colloid,
and rc a vector pointing to a location the surface of the colloid. The position of a
solute molecule in the inner region is determined by rc and h.

[49]). The first term accounts for the convection of the solute due to the
flow of the fluid. The second and third terms are, respectively, the flux
due to diffusion and the force.

The dynamics of the fluid is governed by the Stokes equation (see Sec-
tion A.2):

∇ · Σ + cf = 0, (2.8)

where Σ = −p1 + ηs

[
∇v + (∇v)T

]
is the stress tensor with pressure p

and viscosity ηs. The force on the solute appears in this equation because
the force on the solute is transmitted to the fluid. With the incompress-
ibility equation ∇ · v = 0, the gradient of the stress tensor can be written
as ∇ · Σ = −p1 + ηs∇2v. The boundary conditions for the fluid are no
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slip at the surface of the colloid and zero velocity at infinity:

v(r) = V for r ∈ Sc, (2.9)
v(r) = 0 as |r| → ∞, (2.10)

where Sc is the surface of the colloid and V is the self-propulsion velocity
of the colloid. The goal of the following calculation is to find an expression
for V .

The equation for the solute and the equation for the fluid dynamics
are coupled: v appears in the equation for c, and c appears in the equa-
tion for v. This complication can be overcome because on the length scale
of the colloid (∼ µm) diffusion of molecules in water is more efficient than
convection. The time it takes a molecule to diffuse a distance equal to the
radius of a colloid, is tdi f f = a2/(2D) where a is the radius of the colloid,
and D is the diffusion constant of a solute molecule (see Eq. 1.13). The
time it takes for convection with velocity V = |V | to transport a molecule
the same distance is tconv = a/V. The ratio of these times is called the
Péclet number: Pe = (tdi f f )/(tconv) = (Va)/(2D). If this number is small
diffusion is more important than convection. The diffusion constant of
a solute molecule in water is D ≈ 10−9m2/s 4, the size of a colloid is of
the order of a micrometer, and a typical self-propulsion velocity of a self-
phoretic colloid is about ten times its size per second [90]. This results in
Pe ≈ 5 × 10−3. Because the Péclet number is small, the convection in the
equation for the solute concentration can be ignored. The case of nonva-
nishing Péclet number makes the treatment much more complicated [91].

As the colloid moves it sets up a gradient in solute concentration which
is constant in the coordinate frame that moves along with the colloid. The
time dependence only comes from the boundary conditions, which de-
pend on the position of the colloid; therefore, in the comoving frame, the
time derivative ∂tc is zero. In the comoving frame, the equation for the
solute concentration reduces to 0 = ∇ · J, with J = −D∇c + βDcf. The
boundary conditions are a constant concentration far away from the col-
loid, c(r) ∼ c0 as |r| → ∞, and on the surface of the particle n̂ · J =
α(r) for r ∈ Sc, where n̂ is the unit normal vector of the surface of the

4The diffusion constant can be calculated using the Stokes-Einstein equation (Eq.
A.31) D = T/(6πηsam), where am is the linear size of the molecule (for oxygen
am ≈ 10−10m). The viscosity of water is ηs = 10−3Pa s, and at room temperature
T ≈ 4 × 10−21 J. This gives D ≈ 2 × 10−3m2/s. The Stokes equation used to derive
the Stokes-Einstein equation is not applicable to such small length scales, because the
fluid cannot be considered a continuum; it does however give roughly the correct value
for the diffusion constant.
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colloid, and α(r) is called the surface activity [92], which accounts for the
source of solute particles at the surface of the colloid (the O2 production
in the example above). This is what drives the system out of equilibrium.
For a self-phoretic colloid α is not constant on the surface, and therefore
the solute concentration is not uniform on the surface of the colloid. Be-
cause the solute concentration no longer depends on the fluid dynamics,
it can be solved independently, and the result can subsequently be used
in the calculation of the fluid velocity.

Furthermore, the hydrodynamic problem of the fluid flow can be split
in solving the flow near the boundary of the colloid (called the inner re-
gion) and solving the flow in the region far from the colloid (called the
outer region); see Fig. 2.4. The width of the inner region is equal to the
interaction ranger of the solute and the colloid δ.

Because the inner region has a width equal to the interaction range of
the colloid and the solute, the curvature of the colloid is much larger than
this length and can therefore be ignored: δ/a ≈ 0. The coordinates in the
inner region are than the location on the surface of the colloid rc and the
distance to the surface h (see Fig. 2.4). The goal of the calculation of inner
problem is to find the fluid flow at the boundary between the inner and
outer region (h = δ). This flow is called the slip velocity and serves as a
boundary condition for the fluid flow in the outer region.

The equation for the solute concentration in the inner region is

0 = ∇ · J = −D∇2cin − Dcin∇(βU), (2.11)

where cin = cin(rc, h) is the solute concentration in the inner region, and
U is the potential that gives rise to the force f = −∇U. The boundary
condition is

[n̂ · (−D∇cin − Dcin∇βU)]h=0 = α(rc). (2.12)

The gradients occur on a length scale δ, and the typical value of the con-
centration in the inner region, obtained by solving the problem without
a potential, is cin = αa/D, where α is the typical value of α(rc). Defin-
ing the dimensionless quantities h̃ = h/δ, ∇̃ = δ∇, and c̃in = cinD/(αa)
turns the boundary condition into n̂ ·

[
∇̃c̃in + c̃in∇̃βU

]
h̃=0 = −δ/a. This

shows that up to zeroth order in δ/a, the boundary condition becomes
n̂ · [∇cin + cin∇βU]h=0 = 0. The solution to Eq. 2.11 can then be obtained
by integration:

cin(rc, h) = cout(rc)e−βU(h), (2.13)
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where cout(rc) is the solute concentration in the outer region evaluated at
the position (rc, h + δ). Note that this is just the Boltzmann distribution.

The equation for the fluid flow in the h direction in the inner region is

−∂h pin + ηs∇2vh = cin∂hU. (2.14)

Because the boundary of the colloid is impenetrable for the fluid, vh is
zero at the boundary, and because the inner region has a small width it
can be ignored in the whole inner region. In the outer region the pressure
is a constant, and because of the incompressibility condition this constant
is irrelevant and can be set to zero. The remaining equation can be inte-
grated with the boundary condition pin(rc, h = δ) = pout = 0:

pin(rc, h) =
1
β

cout(rc)
[
e−βU(h) − 1

]
(2.15)

Because of the no-slip condition on the surface of the colloid, at this
surface the fluid flows with the same velocity as the colloid. This deter-
mines the boundary condition for the fluid flow parallel to the surface:

v∥ = V∥, (2.16)

where V is the velocity of the colloid.

The force on the fluid parallel to the surface f∥ = 0, so equation for the
fluid flow parallel to the surface is

−∇∥pin + ηs∂
2
hv∥ = 0, (2.17)

where the approximation ∇2 ≈ ∂2
h was used, which holds if δ/a << 1,

and ∇∥ = (1 − n̂n̂) · ∇ is the gradient in the direction parallel to the
surface. Using Eq. 2.14 for pin gives

∂2
hv∥ =

1
βηs

(
∇∥cout

) [
e−βU − 1

]
. (2.18)

The solution can be obtained by asymptotic matching of the fluid flow in
the inner and outer region vin(rp, h → ∞) = vout(rp) = vslip, where vslip
is the so called slip velocity. The boundary conditions are v∥ = 0 at h = 0
(no slip at the surface), and v∥ = vslip for h → ∞ (no external shear rate)
[88]. Multiplying the previous equation by h and integrating from zero to



42 CHAPTER 2. ACTIVE MATTER

infinity results in

vslip =
λ2

D
βηs

(1 − n̂n̂) · ∇cout(rc), (2.19)

where

λ2
D =

∫ ∞

0
dh 1 − e−βU(h), (2.20)

is called the Derjaguin length [88]. Note that λ2
D can be both positive and

negative. If the interaction between the particle and the solute is repulsive
λ2

D > 0, and if the interaction is attractive λ2
D < 0.

The problem in the outer region consists of a particle moving with
velocity V . The radius of the spherical surface separating the inner and
outer region is a + δ, where a is the radius of the colloid. Because the fluid
at the boundary between the inner and outer region moves with velocity
vslip relative to the colloid, the boundary condition is v = V + vslip at the
boundary between the inner and outer region.

To calculate V , one can use Lorentz’s reciprocal theorem (see Sec. A.6).
According to this theorem

∫
S+

c
dS n̂ · Σ′ · v =

∫
S+

c
dS n̂ · Σ · v′, where (Σ, v)

and (Σ′, v′) are both solutions to the Stokes equation in the same domain,
but with different boundary conditions. The integrals are over a spherical
surface S+

c with radius a+ δ. For (Σ′, v′) a known solution can be used, in
this case the fluid flow around a particle dragged with a force F′ and with
no-slip boundary condition. This problem is solved in Appendix A.4. The
solution is that the particle moves with velocity V ′ = F′/(6πηsa). At the
surface the fluid moves with the particle, so v′ = V ′ at the surface of the
particle is constant. Then

∫
S+

c
dS n̂ · Σ · v′ = V ′ ·

∫
S+

c
dS n̂ · Σ.

Integrating the Stokes equation ∇ · Σ + cf = 0 over the volume of the
inner region

0 =−
∫

a<r<a+δ
dV n̂ · Σ + cf

=
∫

Sc
dS n̂ · Σ −

∫
S+

c

dS n̂ · Σ −
∫

a<r<a+δ
dV cf, (2.21)

where Sc is the surface of the colloid, and the normal vectors n̂ are di-
rected out of the spherical surfaces. The first integral is the hydrodynamic
force on the colloid. The third integral is the force of the solute particles
on the colloid (f is the force of the colloid on the solute). The sum of the
first and third integral is the total force, which must be zero because there
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is no external force acting on the system. Therefore, the second integral
vanishes, and because of that

∫
S+

c
dS n̂ · Σ′ · v = 0.

The force on the colloid in the primed system is F′ =
∫

S+
c

dS n̂ ·Σ′. This
force is constant over the surface of the colloid, so n̂ · Σ′ = F′/(4πa2).
Using this,

∫
S+

c
dS n̂ · Σ′ · v = 0, and v = V + vslip on the surface gives

V · F′ = − 1
4πa2 F′ ·

∫
S+

c

dS vslip. (2.22)

Because the force F′ is arbitrary

V =− 1
4πa2

∫
S+

c

dS vslip = −
λ2

D
βηs

1
4πa2

∫
S+

c

dS (1 − n̂n̂) · ∇cout. (2.23)

What remains is to calculate the concentration in the outer region,
which is governed by ∇2c(r) = 0 with boundary conditions n̂ · ∇c(r) =
−α(r)/D for r ≡ |r| = a + δ ≈ a and c(r) = 0 as |r| → ∞. The solution to
these equations is [92]

c(r) = c(r, θ) =
a
D

∞

∑
l=0

αl
l + 1

( a
r

)l+1
Pl(cos θ), (2.24)

where θ is the angle with the x-axis, Pl(x) are the Legendre polynomi-
als and αl are the coefficients of the expansion of the surface activity in
Legendre polynomials: α(rc) = α(θ) = ∑∞

l=0 αlPl(cos θ).
As an example, a so called Janus particle is considered. Such a particle

has half its surface covered with a catalyst (see Refs. [85, 92, 93] for other
patterns of the catalytic surface). If the part of the colloid with x > 0 in
the comoving frame is covered with the catalyst, as shown in Fig. 2.4, the
surface activity can be expressed as α(rc) = α(cos θ) = ᾱ [1 − H(cos θ)],
where ᾱ is the number of solute molecules produced per unit time per
unit area, and H(x) is the Heaviside step function. The coefficients of
the expansion in Legendre polynomials are then α0 = ᾱ/2 and αl>0 =
ᾱ (Pl+1(0)− Pl−1(0)) /2.

Using this in Eq. 2.23 gives [85, 94]

V =
λ2

D
βηs

ᾱ

4D
êx. (2.25)

If the interaction between the colloid and the solute is repulsive then λ2
D >

0, and the particle ”swims” in the positive x direction. That is, it swims
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with the catalytic side behind. If the interaction between the colloid and
the solute is attractive it swims with the catalytic side in front.

The constant ᾱ is the number of produced solute molecules (O2 in the
example reaction) per unit area per unit time. This depends on the num-
ber of fuel molecules (H2O2 in the example reaction) that are converted
to water and solute molecules. If the reaction is diffusion limited, that is
the limiting factor is the time it takes for fuel to diffuse towards the reac-
tion site and not the time it takes to convert the fuel to solute, this scales
as ∼ a−1. This scaling can be obtained as follows. The surface activity ᾱ
is proportional to the total number of produced solute molecules per unit
time. This is equal to the number of fuel molecules converted to water and
solute per unit time: Ns =

∫
dS n̂ · J f , where J f = −D f∇c f is the flux of

fuel molecules, with D f the diffusion constant of a fuel molecule, and c f
the fuel concentration. The integral is over the catalytic surface of the col-
loid with unit normal vector n̂. However, for the scaling one can approxi-
mate the Janus colloid by a colloid that is fully covered by the catalyst and
extend the integral over the full surface. The fuel concentration obeys the
diffusion equation ∇2c f = 0, with boundary conditions c f (r → ∞) = c∞

f
and c f (a) = 0 because as soon as as fuel molecule reaches the catalytic
surface it is converted to water and solute. The solution to this equation
is obtained by integration, which gives c f (r) = c∞

f (1 − a/r), which in
turn results in Ns = D f c∞

f /a. If only a part of the colloid is covered with
a catalytic surface, this result does not hold. It does, however, still give
the correct scaling Ns ∼ a−1. The self-propulsion speed of this Janus
colloid is proportional to ᾱ which is proportional to Ns, and therefore
|V | ∼ a−1. That is, smaller particles have a higher self-propulsion veloc-
ity than larger particles. For a more detailed analysis of the dependence
of the self-propulsion velocity on the particle’s size, see Refs. [95, 96].

The Janus colloid does not swim in the same direction forever, but,
because the colloid rotates due to rotational Brownian motion (see Sec.
1.3.3), it changes its direction continuously. The rotational diffusion con-
stant is also affected by the activity. However, this effect if usually much
weaker than the effect of the self-propulsion [97]. Note that the rotational
diffusion constant is is also dependent on the radius of the particle.

Light-Activated Self-Diffusiophoresis

There are many other ways to self-propel besides the self-phoretic ac-
tive mechanism described in the previous section, In particular, there are
mechanism that need a light source, resulting in so called light-activated
active particles. One of such methods is based on locally demixing a fluid
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[54]. In this case half of the colloid is covered with a light absorbing mate-
rial such as gold [54] or carbon [57]. When such a particle is illuminated,
one side heats up, creating a local temperature gradient. If such a par-
ticle is placed in a (near) critical binary mixture, for example lutidine in
water [54], and is illuminated, the cap heats up and locally demixes the
mixture. If the cap is hydrophobic, the water rich phase depletes the re-
gion near the cap, and the solute (e.g. lutidine) rich phase absorbs at
the hydrophobic cap. The colloid moves in the resulting gradient due to
self-diffusiophoresis, as described in the previous section. The rotational
diffusion of the colloid, and with that the orientational correlation time of
the self-propulsion direction, is independent of the illumination intensity,
and therefore, independent of the swim speed [54].

One advantage of this method of self-propulsion is that the energy
source is the light source, which can be supplied externally. In case of
self-diffusiophoresis due to a catalytic cap (as in the previous section), a
constant source of fuel is needed to keep the particles moving.

2.3 Inhomogeneous Activity

The particular behavior of active matter manifests itself when the parti-
cles interact either with other active particles [36, 37, 98, 99], , when they
interact with walls or other obstacles [90, 100, 101], or when is inhomo-
geneous; that is, their self-propulsion speed is space, and possibly time,
dependent. This is the main topic of the work presented in Part II. Some
examples of biological and synthetic active matter systems with inhomo-
geneous activity are given below.

2.3.1 Inhomogeneous Activity in Biological Systems

Nucleus centering is essential for the proper functioning of a cell. In most
cells the centrosome takes care of this [102]. Recently, it has been dis-
covered that in certain cells that do not have a centrosome (for example
mouse oocytes) the nucleus is centered by active diffusion [103–105]. In-
side these cells there are molecular motors (myosin) that walk on a net-
work of filaments (actin). These molecular motors interact with the cell
nucleus by pushing against it. The speed with which the motors move
is larger near the cell cortex that in the center. This gradient in the self-
propulsion speed of the motors results in an effective pressure gradient
[106]. The corresponding effective force pushes the nucleus down the
pressure gradient towards the center of the cell.
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Bacteria, such as e. coli, can also have a space dependent activity. In
general e. coli needs oxygen to drive its rotary motor [107, 108]. Cer-
tain strains of e. coli can also drive their motor when there is no oxygen
available. This alternative mechanism uses photons [109, 110]. The self-
propulsion speed of these bacteria is proportional to the light intensity
[111]. Because one can easily control the illumination pattern in time and
space [58, 111, 112], light-powered e. coli are an excellent system to test
theories of active matter with inhomogeneous activity.

2.3.2 Inhomogeneous Activity in Synthetic Systems

The self-diffusiophoretic active particles described earlier have a swim
speed proportional to the number of produced solute molecules. This
means that as long as the number of fuel molecules reaching the catalytic
cap of the colloid is the limiting factor, the more fuel is present the faster
they propel themselves forward (up to a saturation speed). This was used
in Ref. [113] to study experimentally active colloidal rods with space de-
pendent swim speed. The gradient in the fuel was created by placing
a hydrogel soaked with the fuel in the experimental setup. The fuel is
slowly released resulting in a concentration gradient of fuel. This cor-
responds to a swim speed gradient because the particles move slower if
there is less fuel. This method is not difficult to implement; however, it
does not give much control over the shape of the swim speed profile, as
the resulting swim speed gradient depends on the diffusion of the fuel.

In case of light-activated self-diffusiophoresis, it straight forward to
impose any desired activity pattern by patterning the illumination inten-
sity [54, 57, 114]. Furthermore, one can change the illumination patter in
time as well.

The gradient in the swim speed due to a gradient in the fuel concen-
tration or light intensity (or other source for the driving mechanism) can
cause a torque on the particle such that it aligns its self-propulsion direc-
tion along the gradient in the swim speed [57, 114, 115]; however, there
are methods that avoid this [116–119]

2.4 Active Colloidal Molecules and Polymers

Atoms can form chemical bonds with other atoms to form molecules. The
typical size of molecules is several Ångström. The constituent atoms and
how they are arranged determine the properties of the resulting material.
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Similarly, one can bind colloidal sized particles together, to form col-
loidal molecules [120–124]. When at least one of the colloids is active, the
resulting molecule is called an active colloidal molecule [125]. The active
colloidal ”atoms” can be bound together by the same mechanisms as for
passive colloids. Here a few mechanisms are mentioned that can be used
to make active dimers and polymers, for more details see Ref. [125]. Col-
loids can be chained together by DNA [126]. The persistence length of the
colloidal polymer can by controlled by changing the length of the DNA
between the colloids. Furthermore, active colloids can be configured into
different collective states. For example, when the two sides of the active
colloids have opposite charge, they assemble in chains, that is active poly-
mers [127]. Lastly, diffusiophoretic active particles can self-assemble into
dimers [128, 129].
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There are several models for active matter, all of which have two defin-
ing features: local energy input and persistent motion. Here three of the
most common models of active particles – namely, run-and-tumble, ac-
tive Brownian and active Ornstein-Uhlenbeck particles – are presented.
In order to understand how activity affects these systems, several basic
properties are discussed.

3.1 Models

3.1.1 Run-And-Tumble Particles

Run-and-tumble (RT) motion is a commonly used model for the dynamics
of a large group of bacteria [35]. The behavior of RT particles is character-
ized by two states: the run state, in which it moves (roughly) in a straight
line with constant speed vs, and the tumble state in which it re-orients
its direction (see Fig. 2.3). For bacteria such as e. coli the run state lasts
about 1 s and the tumble state about 0.1 s. Because the tumble state lasts
much shorter than the run state, it is approximated as instantaneous. Fur-
thermore, it is assumed that after a tumble the orientation is uncorrelated
with the previous orientation.

The autocorrelation function of the orientation in the RT process can
be obtained from the master equation. The master equation for the RT
process is

∂tP(Ω, t|Ω0) = −αP(Ω, t|Ω0) +
α

Ωd
, (3.1)

where n = n(Ω), Ωd is the solid angle in d dimensions, Ω0 is the ori-
entation at t = 0, α is the tumble rate, and Ωd is the surface area of a d
dimensional unit sphere (Ω2 = 2π and Ω3 = 4π). The first term on the
right-hand side accounts for the tumbling from orientation n(Ω) to any
other orientation. The second term on the right-hand side accounts for
the tumbling from any orientation to an orientation n(Ω). The solution to
this equation can be obtained by integration:

P(Ω, t|Ω0) = δ(d−1) (Ω(t)− Ω0) e−αt +
1 − e−αt

Ωd
, (3.2)

where n(Ω0) is the orientation at time t = 0.
This can be used to obtain the autocorrelation function for the orienta-
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tion vector:

⟨n(0) · n(t)⟩ = n(0) ·
∫

dΩ n(Ω)P(Ω, t|Ω0) = e−αt, (3.3)

where
∫

dΩ n(Ω) = 0 was used. Just as for the rotational diffusion (see
Eq. 1.83), the autocorrelation function decays exponentially. For the RT
process the autocorrelation time is

τ =
1
α

. (3.4)

For RT motion, that is a RT particle that moves with speed vs in the
direction of its orientation, there are also the spatial degrees of freedom.
The master equation corresponding to RT motion is

∂tP(t) = −vsn · ∇P(t)− αP(t) +
α

Ωd
ρ(t), (3.5)

where P(t) = P(r, Ω, t), and ρ(t) = ρ(r, t) ≡
∫

dΩ P(t) is the local density
of particles, irrespective of their orientation. The first term on the right-
hand side accounts for the drift in the direction n due to the active motion,
and the last two terms account for the tumble dynamics and are the same
as in Eq. 3.1.

From the master equation one can obtain the long-time mean squared
displacement (MSD) corresponding to RT motion [130]. Here, however,
a method based on the ideas from ideal chains in polymer physics is
used [131, 132]. If the particle tumbles with rate α, the time intervals
∆t between tumbles are distributed according to a Poisson distribution1

Pα(∆t) = αe−α∆t. The first two moments of this distribution are ⟨∆t⟩ =

α−1 and
〈
(∆t)2

〉
= 2α−2.

The length of a straight run between tumbles is li = vsni, where vs
is the swim speed, and ni the unit vector in that points in the swimming
direction. The position after N runs is ∑N

i li∆ti, which leads to

〈
r2(t)

〉
=

〈
N

∑
i,j

liljni · nj

〉
(3.6)

1The probability of to tumble in dt is αdt. Therefor the probability of a run time ∆t,
where this time can be separated in n → ∞ infinitesimal intervals ∆t = ndt, is the
probability not to tumble n − 1 times in a time interval dt and to tumble once at the end
in a time interval dt: Pα(∆t)dt = (1 − αdt)n−1 αdt. For n → ∞ this becomes the Poisson
distribution shown in the main text.
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for the mean-squared displacement. The run length (or time) and the ori-
entation are independent, therefore the average over the orientation vec-
tors can be performed independently, which gives

〈
ni · nj

〉
= δij because

each orientation is independent. Due to the delta function, only one of
the sums remain: 〈

r2(t)
〉
=

〈
N

∑
i

l2
i

〉
. (3.7)

The number of runs is given implicitly by t = ∑N
i ∆ti. If the number of

runs is large, this becomes t = N ⟨∆t⟩, by the law of large numbers. Using
this to replace N in the average of the MSD gives〈

r2(t)
〉
=

t
⟨∆t⟩

〈
l2
i

〉
=

t
⟨∆t⟩v2

s

〈
(∆t)2

〉
= 2dDat, (3.8)

with diffusion constant

Da =
v2

s
dα

. (3.9)

The bacterium e. coli swims with a speed of vs ≈ 30 µms−1, and has
a tumble rate of α ≈ 1 s−1 [62]. The diffusion constant due to the active
motion is2 Da = 300 µm2s−1. If this bacterium would stop swimming, it
would move around due to the thermal motion. Using the Stokes-Einstein
relation (Eq. 1.5) with the size 2 µm of the bacterium for the radius gives
D = 0.1 µm2s−1. This shows that for this bacterium the active motion is
much more important than the motion due to thermal agitation.

More on the mean-squared displacement of active particles, in partic-
ular their short and intermediate time behavior, is discussed in Sec. 3.2.1.

3.1.2 Active Brownian Particles

Synthetic active particles (see Section 2.2.1) propel themselves forward
and are subject to thermal noise. This thermal noise affects both the trans-
lational as well as the rotational motion. Unlike the RT model, in the ac-
tive Brownian particle (ABP) model the change in orientation is continu-
ous, in particular it is modeled as rotational Brownian motion(see Section
1.3.3).

2The diffusion constant of e. coli is actually some what larger than this because when it
tumbles its new orientation is correlated with the previous orientation and other details
that are ignored in the model used here [18].
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The Langevin equation corresponding to the translational motion of
this model is

∂tr = vsn +
√

2Dξ, (3.10)

where vs is the swim speed, n the instantaneous orientation, D the passive
diffusion constant, and ξ is a random Gaussian vector with ⟨ξ(t)⟩ = 0 and
⟨ξ(t)ξ(t′)⟩ = δ(t − t′)1. The orientation vector n undergoes rotational
diffusion. In two dimensions this corresponds to

∂tθ =
√

2Drη, (3.11)

where n = (cos(θ), sin(θ)), Dr is the rotational diffusion constant, and η
is a random Gaussian number with mean ⟨η(t)⟩ = 0, and ⟨η(t)η(t′)⟩ =
δ(t− t′). In three dimensions, rotational Brownian motion is described by

∂tn =
√

2Drn × η, (3.12)

where η is a random Gaussian vector with mean ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ =
δ(t − t′)1.

3.1.3 Active Ornstein-Uhlenbeck Particles

The active Ornstein-Uhlenbeck model was originally proposed as an ap-
proximation to ABPs [133]. However, it has become a much used model in
its own right [134–139]. In this model, the self-propulsion in the equation
for the translational degrees of freedom, vsn, is replaced by a Gaussian
noise that has the same first two moments:

∂tr = χ +
√

2Dξ, (3.13)

where ⟨χ(t)⟩ = ⟨vsn(t)⟩ = 0 and

〈
χ(t)χ(t′)

〉
=
〈
vsn(t)vsn(t′)

〉
=

1
d

v2
s e−(t−t′)/τ1 (3.14)

where the correlation function of n is given in Eq. 1.83, and τ = (d− 1)Dr.
The time correlated stochastic processes χ is related to an uncorrelated

stochastic process η by

τ∂tχ = −χ +
√

2Daη, (3.15)

where η is a random Gaussian vector with ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ =
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Figure 3.1: The MSD of an
ABP normalized by the MSD of a
passive Brownian particle in time
equal to the orientational corre-
lation time τ for different active
diffusion constants D̃a = Da/D.
For t/τ < 2D/Da the behavior
is dominated by passive diffusion,
and scales linearly with time. Be-
tween t/τ = 2D/Da and t/τ =
2 the behavior is ballistic due to
the persistent active motion. For
t/τ > 2 the behavior is diffusive again, but with an enhanced diffusion constant
D + Da. The active diffusion constant Da can be orders of magnitude larger than
the thermal diffusion constant.

δ(t− t′). Because both Eq. 3.13 and 3.15 are Gaussian processes, the active
Ornstein-Uhlenbeck process has many advantages regarding analytical
calculations [135]. In this work, however, the active Ornstein-Uhlenbeck
model is only used as an approximation in Chapter 5.

3.2 Basic Results

Even though, on a long time scale the behavior of a free active parti-
cle is diffusive, and therefore similar to the behavior of an equilibrium
Brownian particle, as already shown in Sec. 3.1.1. Due to the inherently
nonequilibrium nature of active particles, their behavior in more complex
environments can be quite different from equilibrium Brownian particles.
In this section some of the basic features of active particles are discussed.
These examples serve as an introduction to the methods that are used
throughout the rest of this work.

3.2.1 Enhanced Diffusion

In Section 3.1.1 it was shown that on long times scales the RT process is
diffusive. On shorter time scales, however, active particles have richer be-
havior. The following theory holds for run-and-tumble, active Brownian
and active Ornstein-Uhlenbeck particles because it only uses the first two
moments of the active force.

The time integral of the stochastic differential equation for an active
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particle is

r(t) =
∫ t

0
dt′
[
vsn(t′) +

√
2Dξ(t′)

]
, (3.16)

with r(0) = 0. The mean squared displacement is〈
r(t)2

〉
=
∫ t

0
dt′

∫ t

0
dt′′
〈[

vsn(t′) +
√

2Dξ(t′)
]
·[

vsn(t′′) +
√

2Dξ(t′′)
]〉

. (3.17)

The passive thermal noise ξ and the orientation vector are uncorrelated,
therefore ⟨n(t′) · ξ(t′′)⟩ = 0. The thermal noise autocorrelation is ⟨ξ(t′) · ξ(t′′)⟩ =
δ(t′− t′′), and the autocorrelation of the orientation vector is ⟨n(t′) · n(t′′)⟩ =
exp(−|t′ − t′′|/τ), where τ = 1/(α + (d − 1)Dr) is the correlation time
(see Eqs. 3.4 and 1.82). Using this gives [94]〈

r(t)2〉
2dDτ

=
t
τ
+

Da

D
t
τ
+

Da

D

(
e−t/τ − 1

)
, (3.18)

where the MSD is divided by the MSD due to thermal noise in a time τ,
and

Da ≡
1
d

τv2
s , (3.19)

is the active diffusion constant.
The MSD has three regimes (see Fig. 3.1). The first two regimes can be

obtained by expanding in t/τ:〈
r(t)2〉
2dDτ

=
t
τ
+

1
2

Da

D

(
t
τ

)2

+O
(

t3

τ3

)
. (3.20)

This shows that for short times the MSD is diffusive and only the thermal
diffusion is important: 〈

r(t)2〉
2dDτ

∼ t
τ

. (3.21)

At intermediate times the MSD behaves ballistically, that is MSD ∼ t2.〈
r(t)2〉
2dDτ

∼ 1
2

Da

D

(
t
τ

)2

. (3.22)
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Note that this ballistic behavior is not a consequence of momentum, but
is a result of the self-propulsion of the ABP.

For long times the exponential in Eq. 3.18 vanishes, which results in
diffusive behavior again:〈

r(t)2〉
2dDτ

∼
(

1 +
Da

D

)
t
τ

. (3.23)

On time scales longer than the orientional correlation time τ, an ABP is
diffusive with an effective diffusion constant De f f = D + Da. On this
time scale the ABP behaves like a ”hot” passive Brownian particle with
temperature Te f f = T + Ta, where Ta = γDa = γτv2

s /d. This effective
temperature may be a useful quantity for noninteracting ABPs without
obstacles. With interactions, either with other ABPs or obstacles, the ef-
fective temperature can most often not be used to describe the system.

The crossover time between the first diffusive regime and the ballistic
regime can be obtained from:

t(1)×
τ

≈ 1
2

Da

D

(
t(1)×
τ

)2

→
t(1)×
τ

≈ 2D
Da

. (3.24)

The crossover time between the ballistic regime and the long time diffu-
sive regime can be obtain in the same way:

1
2

Da

D

(
t(2)×
τ

)2

≈
(

1 +
Da

D

)
t(2)×
τ

→
t(2)×
τ

≈ 2, (3.25)

where it is assumed that Da/D >> 1.
The thermal translational diffusion constant is inversely proportional

to the size of the particle D ∝ a−1 (see Eq. A.31); the rotational diffusion
constant, on the other hand, is inversely proportional to the cube of the
size of the particle Dr ∝ a−3 (see Eq. A.14). This means that the behavior
on the MSD strongly depends on the size of the particle [96, 141] (see Fig.
3.2).

3.2.2 Coarse-Grained Fokker-Planck Equation

Properties of the spatial distribution of active particles can be obtained
from the equation of motion of the active particles. For this a coarse-
graining method is introduced. This method is used extensively in the
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Figure 3.2: The MSD of two ac-
tive particles with different sizes.
The microsphere has a radius of
0.5 µm and a swim speed of vs =
20 µm/s, which is the same as the
ABP in Ref. [90]. This corresponds
to D = 0.4 µm2/s, Da = 52 µm2/s,
and τ = 0.4s. The nanosphere
has a radius of 15 nm and a swim
speed of vs = 600 µm/s, which
is the same as the ABP in Ref.
[140]. This corresponds to D =
14 µm2/s, Da = 1.3 µm2/s, and τ = 10−5s. In case of the microsphere, one can
clearly observe the transition between motion dominated by passive diffusion
and ballistic motion at time t(1)× ≈ 6 × 10−3 s, and the transition to diffusion with
diffusion constant D + Da ≈ Da at time t(2)× ≈ 0.8 s. For the nanosphere there is
no ballistic regime because t(1)× > t(2)× . At time t(2)× = 2 × 10−5 there is a transi-
tion between thermal diffusion and active diffusion; however, as Da ≈ 0.1D, the
effect of the activity is not visible in the log-log plot.

rest of this work.
The equation of motion of an active Brownian particle subjected to a

force F is

∂tr = − 1
γ

F − vsn +
√

2Dξ (3.26)

and the rotational dynamics is governed by

∂tn =
√

2Drn × η, (3.27)

in three dimensions, or

∂tθ =
√

2Drη, (3.28)

in two dimensions. Instead of, or in addition to, the rotational diffusion
of the orientation vector n, one can have tumble motion, which can be
added to the Fokker-Planck equation (FPE). The FPE corresponding to
these stochastic differential equations is

∂tP(r, n, t) =−∇ · JP
r + DrR2P(t)− αP(t) +

α

Ωd
ρ(t), (3.29)
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where

JP
r =

(
1
γ

F + vsn
)

P(t)− D∇P(t), (3.30)

is the probability flux in position space, and R2 is the rotation operator
(see Section 1.3.3). The terms with α account for the tumble motion with
rate α = α(r), and ρ(t) = ρ(r, t) =

∫
dΩ P (r, n(Ω), t). Here the swim

speed, the rotational diffusion constant, and the tumble rate are taken to
be space dependent.

This equation can be coarse grained by integrating out the orienta-
tional degrees of freedom. This results in an equation for the particle den-
sity ρ(r, t). To this end, the probability density P(r, n, t) can be expanded
in eigenfunctions of R2. In two dimensions the eigenfunction are sin(θl)
and cos(θl), for l = 0, 1, 2, ..., and in three dimensions the eigenfunction
are the spherical harmonics Ylm(Ω) = Ylm(θ, ϕ) [142]. In the case at hand
it is more convenient to use a so called Cartesian multipole expansion
[143]. In two dimensions the Cartesian eigenfunctions of R2 are

T(l) =
(−1)l

l!
(l + δl,0)∇⊗l [1 − ln(r)]

∣∣∣∣∣
r=n

, (3.31)

where T(l) is a symmetric rank l tensor. The first three tensors are

T(0) =1, T(1) = n, T(2) = 2nn − 1. (3.32)

One can easily see that the components of T(l) are linear combinations of
sin(θl) and cos(θl). Because of this, it is clear that the eigenvalues of T(l)

are −l2.

In three dimensions the Cartesian eigenfunction of R2 are

T(l) =
(−1)l

l!
∇⊗l 1

r

∣∣∣∣∣
r=n

. (3.33)

The first three are

T(0) =1, T(1) = n, T(2) =
1
2
(3nn − 1) , (3.34)

where T(l) is a symmetric rank l tensor. Again, it is clear that the elements
of T(l) are linear combinations of Ylm(θ, ϕ), and therefore the eigenvalues
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are −l(l + 1). Note the eigenvalues for both two and three dimensions
can be written as −l(l + d − 2).

In all that follows, at most the first three eigenfunctions are used. The
probability density P(r, n, t) can be expanded in the tensors T(l) defined
above; however it is more convenient to define

T(2) = nn − 1
d

1, (3.35)

for both two and three dimensions. The expansion is

P(r, n, t) =ρ(r, t) + σ(r, t) · n + ω(r, t) :
(

nn − 1
d

1
)
+ Θ (P) , (3.36)

where Θ (P) is the projection onto the third and higher order eigenfunc-
tions. Note that because (nn − 1/d) is traceless symmetric tensor, this
expansion only defines the traceless symmetric part of ω. Therefore the
isotropic part Tr [ω] δij/d and the antisymmetric part can be taken to be
zero [143].

In order to obtain expressions for the coefficients (ρ, σ, ω) of the ex-
pansion,

⟨ f (n)⟩ = 1
Ωd

∫
dΩ f (n(Ω)) (3.37)

is defined3. Note that
〈

g(n)R2 f (n)
〉
=
〈

f (n)R2g(n)
〉
. Clearly ⟨1⟩ = 1,

and because of isotropy ⟨n⟩ = 0. Again because of isotropy the ele-
ments of ⟨nn⟩ must be invariant under rotations of the coordinates. This
means that it must be an isotropic rank two tensor [143]. Because the
only isotropic rank two tensor is the identity ⟨nn⟩ = a1, where a is a con-
stant, which can be obtained by contracting both sides with the identity.
The left-hand side becomes 1 : ⟨nn⟩ = ⟨n · n⟩ = 1, and the right-hand
side becomes a1 : 1 = a d. Therefore, ⟨nn⟩ = 1/d. Similarly, one gets
⟨nnn⟩ = 0, and

〈
ninjnknl

〉
=

1
d(d + 2)

(
δijδkl + δikδjl + δilδjk

)
. (3.38)

3The angle brackets are used for both this integral over the orientations as well as the
average over the noise. Which is meant is clear from context.
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With this, one can show that the eigenfunctions are orthogonal:

⟨1n⟩ = 0, (3.39)〈
1
(

nn − 1
d

1
)〉

= 0, (3.40)〈
n
(

nn − 1
d

1
)〉

= 0. (3.41)

Furthermore, ⟨1Θ (P)⟩ = 0, ⟨nΘ (P)⟩ = 0, and
〈(

nn − 1
d 1
)

Θ (P))
〉
= 0.

The coefficients can now be obtained by projecting out the eigenfunctions:

⟨P(t)⟩ =ρ, (3.42)

⟨nP(t)⟩ =1
d

σ, (3.43)〈(
nn − 1

d
1
)

P(t)
〉

=
2

d(d + 2)
ω, (3.44)

where the derivation of the last equation relies on the traceless symmetric
properties of ω.

With these results about the properties of integrals over the orienta-
tional degrees of freedom, it is straightforward to determine the equations
for the coefficients in Eq. 3.36. The equation for the density is

∂tρ(r, t) = ⟨∂tP(t)⟩ = −∇ · J, (3.45)

with

J =
1
γ

Fρ(r, t) +
1
d

vsσ(r, t)− D∇ρ(r, t). (3.46)

The equation for σ is

∂tσ = d ⟨n∂tP(t)⟩ . (3.47)

The nontrivial orientational integrals are

d
〈
ninjP(t)

〉
=d
〈(

ninj − δij/d
)

P(t)
〉
+ δij ⟨P(t)⟩

=
2

d + 2
ωij + δijρ(r, t), (3.48)
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and

d
〈

DrnR2P(t)
〉
=dDr

〈
P(t)R2n

〉
= −d(d − 1)Dr ⟨nP(t)⟩

=− (d − 1)Drσ. (3.49)

With this the equation for σ becomes

∂tσi =− ∂j

[
1
γ

Fjσi

]
− 2

d + 2
∂j
[
vsωij

]
− ∂i [vsρ(r, t)]

+ D∇2σi − τ−1σi,

=− ∂j J
(σ)
ji − τ−1σi, (3.50)

with τ−1 = (d − 1)Dr + α is the orientational correlation time, and

J(σ)ji =d
〈
ni Jj
〉

=
1
γ

Fjσi +
2

d + 2
vsωji + vsρ(r, t)δij − D∂jσi, (3.51)

is the first moment of the flux.
Instead of the coefficient σ(r, t), one can define the polarization, that

is the average orientation per particle:

p(r, t) =
⟨n(t)δ(r(t)− r)⟩
⟨δ(r(t)− r)⟩ =

σ(r, r)
dρ(r, t)

. (3.52)

Lastly, the equation for ω can be derived by the same methods, which
results in

∂tωij =− ∂k

[
1
γ

Fkωij

]
− 1

2
∂k
[
vsχijklσl

]
− ∂k

[
vsΥijk

]
+ D∇2ωij − [2dDr + α]ωij, (3.53)

where

χijkl =
1

d(d + 2)

(
δikδjl + δilδjk −

2
d

δijδkl

)
. (3.54)

and Υijk comes from the projection onto Θ(P). Clearly this procedure
results in an infinite hierarchy of equations, where the equation of T(l)

depends on T(l+1). In order to use these equations an approximation is
needed to truncate the hierarchy at a finite order. Here, it is assumed that
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ω = 0, that is, the quadrupole moment is zero. The reasoning behind and
limitations of this approximation will be explained by considering three
examples of active matter systems.

Equation 3.50 show that, if ω is negligible, then an active Brownian
particle with rotational diffusion constant Dr is equivalent to a run-and-
tumble particle with tumble rate α = (d − 1)Dr. When ω cannot be ne-
glected. Equation 3.53 shows that the correlation time of ω is 2dDr + α.
To make a run-and-tumble particle equivalent to an active Brownian par-
ticle both this correlation time and the correlation time of σ should be
equal. Clearly it is not possible to satisfy both α = (d − 1)Dr and α = 2d.
Therefore, whenever ω is not negligible, active Brownian particles and
run-and-tumble particles are not equivalent. For more on the similarities
and differences between active Brownian particles and run-and-tumble
particles under different conditions, see Refs. [144, 145].

3.2.3 Wall Accumulation

One of the interesting features of active matter is that the steady-state
density does not (necessarily) obey a Boltzmann distribution because it
is not an equilibrium system. This is particularly notable for an active
particle near a wall [100, 146, 147]. Here as system with a hard wall at
x = 0 and periodic boundary conditions in the other two directions is
studied. The potential of the wall is

U(r) =

{
0, for x > 0,
∞, for x < 0.

(3.55)

In an equilibrium system the density would follow a Boltzmann distribu-
tion, ρ(r) ∝ e−U/T, so the density would be uniform for x > 0.

In case of an active particle, Eq. 3.29 needs to be solved in steady state
with the appropriate boundary conditions. The force of the wall is only
present at x = 0, and therefore it only affects the boundary conditions.
The probability flux JP

r (Eq. 3.30) in the direction perpendicular to the
wall (êx) is zero at x = 0. This means that all its moments are zero. In
particular, êx ·

〈
JP

r
〉
= êx · J = 0 and êx ·

〈
nJP

r
〉
= êx · J(σ) = 0. At

infinite distance from the wall the density is equal to the bulk density
ρ(x → ∞) = ρb.

In steady state the particle flux in the x direction is constant because of
the symmetry of the problem, and because êx · J|x=0 = 0, it must be zero
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everywhere:

0 = êx · J =
1
d

vsσ − D∂xρ, (3.56)

where σ = êx · σ. The first moment of the probability flux, that is J(σ) is
not zero everywhere. In steady state the equation for ∂tσ = 0 (Eq. 3.50)
gives

0 = −vs∂xρ + D∂2
xσ − τ−1σ. (3.57)

The solutions for the density and polarization can be obtained by sub-
stituting Eq. 3.56 in Eq. 3.57 and integrating, which gives

ρ(x)
ρb

=1 +
Da

D
e−x/lw , (3.58)

p(x) =
σ(x)
dρ(x)

= − Da

vslw
e−x/lw

1 + Da
D e−x/lw

, (3.59)

with decay length

lw =

√
τD

1 + Da/D
. (3.60)

These results are an approximation because it is assumed that ω ≈ 0. The
value of the density at the wall, however, turns out to be exact [146]. See
Fig. 3.3 for a comparison between theory and simulations.

From the Stokes-Einstein relation for the translational and rotational
diffusion constants (Eqs. A.31 and A.14) gives

lw = a

√
4

3(d − 1)
1√

1 + Da/D
, (3.61)

where a is the particle’s radius. This shows that the decay length is at
most of the order of the particle’s radius.

Note that the density increases towards the wall (x = 0) (see Fig. 3.3
a) even thought there is no attractive potential between the wall and the
particle. Furthermore, the polarization near the wall (see Fig.3.3 b) is in
the direction of the wall, without any torque exerted by the wall on the
particle. This is a common feature in active matter that can be summa-
rized as follows: active particles accumulate in regions where the active
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Figure 3.3: (a) Accumulation and
(b) polarization of ABPs at a hard
wall (x = 0). The symbols show
simulation results. The solid lines
show the theoretical prediction of
Eqs. 3.58 and 3.59 in, respectively,
a and b. Without activity (vs = 0,
black symbols) the density is ho-
mogeneous. The ABPs (red and
blue), on the other hand, have a
higher density at the wall. (b)
Near the wall, the ABPs are on av-
erage oriented in the direction of
the wall. The active accumulation
and polarization near the wall can
be explained as follows: The par-
ticles that swim to the left are stopped by the wall, which decreases their swim
speed, thereby increasing the density. The particles that swim to the right can
swim away, therefore, the remaining particles have an average orientation to-
wards the wall. The units are such that D = τ = 1.

motion is hindered.
As before, the size of the active particle matters for the magnitude of

the wall accumulation. For the micro sphere from the previous section
lw = 0.07 µm (about 0.14 times the particle’s radius) and ρ(0)/ρb = 124.
For the nanosphere lw = 0.01 µm (about 0.8 times the particle’s radius)
and ρ(0)/ρb = 1.09. For both particles the decay length is smaller than
the particle’s radius. The increase of density at the wall of the nanosphere
is about 10 %, and for the micro sphere 123 % because the active diffusion
constant of the micro sphere is much larger and the thermal diffusion
constant much smaller.

3.2.4 Sedimentation

As a second example, the sedimentation of active particles is considered.
The problem of sedimentation of active particles has been considered the-
oretically in refs. [145, 148–151] and experimentally in ref. [152]. Here,
following ref. [148], passive diffusion is ignored (D = 0) and the details
of the interaction with the bottom are ignored, meaning that the results
hold for z > lw, where z is the distance from the bottom and lw is the
length scale of the wall accumulation given in Eq. 3.60.
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As with the previous example, due to symmetry there is no particle
flux in the steady state:

0 = −vρ +
1
d

vsσ, (3.62)

and,

0 =v∂zσ − vs∂zρ(r, t)− τ−1σ, (3.63)

which comes from Eq. 3.50 with ∂tσ = 0. Note that the no-flux boundary
condition for the first moment of the probability flux êz ·

〈
nJP〉 |z=0 = 0,

is not imposed. The reason is that if D = 0, that boundary condition and
the boundary condition on the particle flux êz · J|z=0 = êz ·

〈
JP〉 |z=0 = 0

cannot both be obeyed. This inconsistency arises because of the vanishing
decay length of the wall accumulation if D = 0 (see Eq. 3.60), and results
in a boundary layer 0 < z < lw → 0 within which the theory breaks
down.

The solutions to Eqs. 3.62 and 3.63 up to first order in v/vs are

ρ(z) =ρ0e−z/ls , (3.64)

p(z) =
σ(z)
dρ(z)

=
v
vs

, (3.65)

where ρ0 is a normalization constant, p is the polarization, and

ls =
τv2

s
dv

=
Da

v
, (3.66)

is the sedimentation length; see Fig. 3.4. Theories including thermal dif-
fusion and higher order correction in v/vs exist but the calculations are
more involved [145, 148–150].

This density profile has the same form as passive, thermal sedimen-
tation (Eq. 1.62), but with a different sedimentation length. In equilib-
rium the sedimentation length is l(eq)

s = D/v, where D = T/γ is the
thermal diffusion constant. In case of active particles ls = Da/v, with
Da = τvs2/d, only in the limit v << vs. Beyond this limit, ABPs and
RTPs are not equivalent, indicating that ω and higher order expansion
coefficients are not negligible.

The v << vs limit corresponds to the experiments on active colloids
reported in Ref. [152]. In that experiment the colloids had a passive dif-
fusion constant of D = 0.33 µm2s−1, an active diffusion constant up to
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Figure 3.4: Sedimentation of an ABP
with swim speed vs = 1, sedimentation
speed v = 1/10, and persistence time
τ = 1 without thermal diffusion. Figure
a shows the theoretical prediction (solid
line, Eq. 3.64) together with simulation
data (symbols) on a semi-log plot. Fig-
ure b shows the theoretical prediction
for the polarization (solid line, Eq. 3.65)
together with the simulation data (sym-
bols). The effect of the hard repulsion
of the bottom is not taken into account
in the theoretical prediction. This occurs
on a length scale lw = 0 (Eq. 3.60 with
D = 0) and is therefore only present in
the left most simulation data point.
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Da = 1.57 µm2s−1, a persistence time of τ = 0.9 s, and a sedimentation
velocity of v = 0.05 µms−1. In this case Da/v >> τv/d, resulting in
a sedimentation length of ls = Da/v = 31 µm. In the limit vs >> v
the effect of passive diffusion is to increase the sedimentation length:
ls = v/(D + Da), which gives ls = 38 µm for the values above, and is
in good agreement with experimental results [152].

3.2.5 Inhomogeneous Activity

As a last example, an active particle with space dependent activity with-
out an external force is considered. In ref. [153] as similar system was
considered, but with interacting active particles. For completion, both the
swim speed and the orientational diffusion constant are space dependent.
The equation for σ is

∂tσ(r, t) =−∇ [vs(r)ρ(r, t)]− τ−1σ(r, t)

+ D∇2σ(r, t)− 2
d + 2

∇ · [vs(r)ω(r, t)] . (3.67)

The vector σ is not conserved, as indicated by the τ−1σ term in the pre-
vious equation. This means that the relaxation time is at least τ. The
equation for ρ (Eq. 3.45) clearly shows that it is a locally conserved quan-
tity that relaxes on a time scale ∼ O

(
∇−1). So when gradients are small

σ relaxes much faster than ρ, and therefore on time scales longer than τ
one can set ∂tσ = 0.
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Figure 3.5: Density and polarization
of ABPs in three dimensions with inho-
mogeneous activity. Symbols represent
simulation results, and solid lines the-
oretical predictions (Eq. 3.71 in panel
a, and Eq. 3.73 in panel b). Where
the swim speed (panel a) is small, the
density (panel b) large. The density ac-
cumulation becomes more pronounced
for increasing swim speed. The polar-
ization (panel c) points in the direction
antiparallel to the swim-force gradient,
which coincides with the direction par-
allel to the density gradient. As the gra-
dient in the swim force increases, the
theoretical prediction starts to deviate
from the simulation results (see the blue
symbols). When this happens the higher
order coefficients of the expansion of the
probability density (Eq. 3.36) become
significant (see Fig. 3.6).
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When the system is homogeneous, ω = 0 because of the system is
isotropic. This shows that ω is at least of first order in the gradient. Re-
taining terms up to and including ∼ O (∇) in the equation for σ results
in

σ(r, t) = −τ(r)∇ [vs(r)ρ(r, t)] . (3.68)

Note that σ(r, t) is still time dependent, but only through the time depen-
dence of the density. Using this for the particle flux (Eq. 3.46) gives

J =− 1
d

τ(r)vs(r)∇ [vs(r)ρ(r, t)]− D∇ρ(r, t). (3.69)

As shown in Ref. [35], this flux can be related to the flux of thermal dif-
fusion (Eq. 1.67) with space dependent friction and/or space dependent
temperature by choosing τ(r) and vs(r) appropriately. In particular, if
both τ and vs constant in space, the flux becomes J = −(Da + D)∇ρ(r, t),
which is just Fick’s law (Eq. 1.1) with an effective space-dependent diffu-
sion constant Da + D. This is consistent with the calculation of the long-
time mean-squared displacement Eq. 3.23.

From here on only space-independent rotational correlation times are
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Figure 3.6: The expansion coef-
ficient ω of the probability density
(see Eq. 3.36) measured in simu-
lations for the same parameters as
Fig. 3.5. When the gradient of the
swim speed becomes larger, ω be-
comes more important. When it be-
comes significant, Eq. 3.71 starts to
deviate from the simulation results
(v(0)s = 10 µm/s in Fig. 3.5). Fur-
thermore, it indicates that the cor-
respondence between ABPs and RTs
break down.
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considered. The particle flux (Eq. 3.46) then becomes

J =− 1
2
[∇Da(r)] ρ(r, t)− [Da(r) + D]∇ρ(r, t), (3.70)

where, as before, Da(r) = τv2
s (r)/d is the active diffusion constant. The

flux-free steady-state solution is

ρ(r) ∝
[

1 +
Da(r)

D

]− 1
2

, (3.71)

where the proportionality constant is determined by normalization. In
absence of passive diffusion the steady-state density is

ρ(r) ∝
1√

Da(r)
∝

1
vs(r)

. (3.72)

The steady-state density is large where Da is small, which means that the
active particles accumulate where the swim speed vs(r) is small. This
phenomena is akin to the accumulation of leaves at the side of the road
in the fall. The leaves are moved around on the road due to the driving
cars (that is, due to ”active” noise). Because there are more cars driving
near the middle of the road than right along the side of road, the ”active”
noise at the side of the road is smaller than in the middle, which causes
the accumulation of the leaves near the sides of the road.
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The corresponding polarization is

p(r) =
σ(r)
dρ(r)

= −τ

d
D

D + Da
∇vs(r). (3.73)

That is, the active particles have an average polarization in the direction
of smaller activity. Note that in absence of thermal diffusion (D = 0), the
polarization vanishes.

The theoretical prediction compares well with simulations for experi-
mentally relevant values of the parameter; see Fig. 3.5. When the gradient
in the swim speed increases, higher order expansion coefficients in the ex-
pansion of the probability density (Eq. 3.36) become more important and
may not be negligible (see Fig. 3.6). When this happens active Brownian
particles and run-and-tumble particles are no longer equivalent [144, 145].
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Many biological microswimmers have the ability to perform chemo-
taxis [154–158]. Chemotaxis is directed motion of an organism towards
a more favorable environment where there is a larger concentration of a
certain chemical c(r), for example, its energy source. The most straightfor-
ward method for chemotaxis would rely on the difference of the chemical
concentration at the back and front end of the organism. However, as e.
coli has a length of about 2 µm the fluctuations in the chemical concentra-
tion are typically too large to give a reliable estimate of the local gradient
[159–161]. Therefore e. coli uses a different strategy [162–166]. It measures
the concentration as it swims, and it has a way to integrate the measured
concentrations with a kernel K(t). This kernel has a maximum near t = 0
and a minimum at t > 1/α0, where α0 is its tumble rate for ∇c = 0 (see
Fig. 4.1). Note that 1/α0 = τ0 is the time of a run if the concentration is
uniform. If this integral is positive (negative), it decreases (increases) its
tumble rate α:

α(t) = α0 −
∫ t

−∞
dt′ K(t − t′)c

(
x(t′)

)
, (4.1)

where x(t) is the position of the bacterium at time t. This means that it ef-
fectively compares a weighted average of the concentration it measured in
the previous run to a weighted average of the concentration measured in
the current run. With this it can estimate the gradient in the concentration
in its run direction. This strategy leads to a net drift up the concentration
gradient, see Fig. 4.1.

The mechanism for chemotaxis that e. coli and other organisms rely
on requires complicated biochemical mechanism to a) measure the local
chemical concentration c(r) in its neighborhood, b) integrate the mea-
sured concentration over time, which requires a form of memory, and c)
change its behavior, that is, its tumble rate, depending on the result of the
integral [167–173]. These mechanism are not available to synthetic active
particles.

Besides chemotaxis (or other kinds of taxis) particle migration can be
caused by kinesis. Kinesis is the migration due to inhomogeneous ki-
netics of the active particle, that is migration due to a space dependent
swim speed, called orthokinesis, or space-dependent orientational dynam-
ics, called klinokinesis, such as the rotational diffusion constant. Unlike
taxis, which depends on a space-dependent vector field (i.e. gradient of
a concentration of a chemical), kinesis relies on a space-dependent scalar
field (i.e. local concentration of a chemical), and therefore does not have
an obvious direction. Furthermore, because kinesis relies on the local



75

Figure 4.1: Left: Schematic of chemotaxis of e. coli. The red color gradient indi-
cates the concentration of the chemical the bacterium is attracted to (e.g. its fuel),
the black line indicates the path of the bacterium, and the blue arrows the direc-
tion of the self-propulsion. As the bacterium performs run-and-tumble motion, it
integrates the local concentration in time with the kernel K(t)shown in the right
figure. It effectively compares a weighted sum of the concentration measured in
a previous run (t/τ0 > 1) with a weighted sum of the concentration measured
in the current run (t/τ0 < 1). If the integral in Eq. 4.1 is positive, meaning that
there is a higher concentration in the current run than in the previous run, the
tumble rate decreases resulting in longer runs, as shown in the left figure. This
strategy results in a net drif up the concentration gradient.

value of a scalar field, it does not need an estimate of the gradient, and
therefore no memory or any other complicated mechanism that for exam-
ple e. coli relies on to perform chemotaxis. Taxis and kinesis can both play
a role in biological active matter such as microswimmers [164].

Active matter has a wide range of applications [174–177]: material sci-
ence [178], environmental science (e.g. clean up of pollutants [179–181]),
transport of cargo [182–185], and biomedical science [186–188] (e.g. drug
delivery [189–197]). For many applications it is important to steer the
active particles towards the correct target zone. Steering of active par-
ticles has been realized experimentally by feedback mechanisms, where
the state of the active particle (position and orientation) are measured and
accordingly the external stimuli are modified [118, 119]. However, since
it is not always be possible to externally measure the state and tune the
behavior of active particles, an autonomous approach is desirable where
an active particle senses the local environment and adjusts its behavior
accordingly [198], similar to the complex behavior of biological active mi-
croswimmers such as e. coli [199].

Two possible autonomous approaches to steer the particles are taxis
and kinesis. Because synthetic active particles do not have any mech-
anisms from memory, they can only rely on the local measurement of
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the gradient. For example, self-diffusiophoretic active particles experi-
ence a torque proportional to the local fuel gradient [115]. Similarly, light
driven particles experience a torque due to a gradient in the light intensity
[57, 114]. This torque orients the particle either parallel (or antiparallel)
to the fuel or light intensity gradient, resulting in chemotaxis (antichemo-
taxis) in case of the self-diffusiophoretic particles or phototaxis (antipho-
totaxis) in case of the light driven particles. Whether the particle orients
parallel or antiparallel to the gradient can, for example, be controlled by
the patterning of the catalytic surface on the colloid [115].

Besides the tactic response, there is also a kinetic response. If for ex-
ample there is a fuel gradient, the active particle moves faster where there
is more fuel present than in areas with less fuel resulting in klinokinesis.
Furthermore, the orientational dynamics, that is the rotational diffusion
constant, can change due to the different amount of fuel.

Besides the relevance to artificial active matter, studying inhomoge-
neous activity could shed light on the evolution of early life forms or
catalytic enzymes [42–45] that do not have any complicated biochemi-
cal mechanism of bacteria such as e. coli (integrating a concentration over
time and adjusting the orientational dynamics accordingly). The results
of this section could help understand the movement of life forms in ac-
tivity gradients. For example, if food or fuel is the limiting factor for the
movement of these organisms, they would move faster where there is
more fuel. The results of the following part of the thesis could help ex-
plain how this strategy can still lead to movement towards the regions
with higher food concentration.

The remainder of this thesis concerns active particles with inhomoge-
neous activity. In particular orthokinetic particles are studied. That is,
there is no torque on the orientation of the particle, and the rotational
diffusion constant is assumed to be independent of the activity. In Sec-
tion 3.2.5 it was shown that such particles accumulate where the activity
is small. The next four chapters explain active system where the behav-
ior of active particles is different, that is, where the particles are moving
towards regions of higher activity, and the physics that determines the
behavior of these particles.



Chapter 5

Pseudochemotaxis of Active
Brownian Particles

This chapter contains results which have been published in ref. [200].
Reprinted (adapted) with permision from H.D. Vuijk, A. Sharma, D. Mon-
dal, J.-U. Sommer, and H. Merlitz. Physical Review E 96, 042612, 2018.
Copyright (2018) by the American Physical Society.
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In Chapter 3.2.5 it was shown that that in steady state active particles
accumulate where they are less active, that is, where they move slowly. If
one assumes that the activity is positively correlated with the fuel avail-
able to the active particle, the regions of low activity correspond to regions
with less fuel. The accumulation in low activity regions then mimics an-
tichemotactic behavior as the active particles move away from regions
where the fuel concentration is high. However, as there is no torque on
the particle due to the gradient in the activity, the accumulation should
not be called antichemotaxis, but is a result from orthokinesis.

In this chapter we investigate if orthokinesis can lead to chemotactic
like behavior, that is movement toward regions of higher activity without
directional cues. A first step towards an answer is the inspection of a most
simple system which features both activity and a primitive concept for a
”food-source” namely an increasing activity towards the source caused
by a gradient of available food in the proximity of the source. Motivated
by this, we consider in this chapter systems for which the activity varies
in space, focusing on two dynamical properties of an active system: target
finding probability and the mean first passage time (MFPT) to the target.
The target finding probability is the probability that a particle introduced
at a given location, exits through a specified boundary representing the
target. The MFPT to target is a measure of average reaction time in finite
domains [201].

Here we show that both these dynamical properties are strongly de-
pendent on the spatial distribution of activity. In particular, we find that
the insights gained from steady-state inhomogeneous active systems, such
as preferential accumulation in the low-activity regions and orientation of
particles antiparallel to the activity gradient (see Chapter 3.2.5), cannot be
used to understand the dynamical properties of an inhomogeneous ac-
tive system. When the activity is distributed such that high-activity zone
is located between the target and the starting location, the target finding
probability is increased and the passage time is decreased in comparison
to a uniformly active system. Moreover, for a continuously distributed
profile, the activity gradient results in a drift of active particle up the gra-
dient bearing resemblance to chemotaxis. The theoretical predictions are
based on an approximate Fokker-Planck equation (FPE) and are shown to
be in good agreement with the Brownian dynamics simulations.
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Figure 5.1: Schematic of the inhomogeneous
active system. The sketch shows a two di-
mensional cut through the spherical set up.
The target zone (sphere with radius r0) in the
center has an absorbing boundary and is as-
sumed to be the source of the fuel of the active
particles. The fuel distribution in the spheri-
cal geometry is shown in red, which results in
a swim speed that of the form r−α, where r is
the distance to the center. The active particle
is shown as a gray circle with an orientation
vector (blue). For the MFPT calculation the
active particle starts at the outer boundary (with radius R), which in this case is
reflective. For the target finding probability calculation the particle starts where
the probability to be absorbed by the target zone is 1/2 if there is no activity
(c = 0). In this case the outer boundary is an absorbing boundary.

5.1 Model and Theory

We consider a three dimensional system of active, noninteracting, spheri-
cal Brownian particles with position r and orientation specified by an em-
bedded unit vector n(t) (see Fig. 5.1). A space-dependent self-propulsion
speed v0(r) acts in the direction of orientation. Omitting hydrodynamic
interactions the motion can be modeled by the Langevin equations

∂tr = v0(r) n +
√

2Dξ,

∂tn =
√

2Drn × η. (5.1)

The stochastic vectors ξ(t) and η(t) are Gaussian distributed with zero
mean and have time correlations ⟨ξ(t)ξ(t′)⟩ = 1δ(t− t′) and ⟨η(t)η(t′)⟩ =
1δ(t − t′). The (passive) translational and rotational diffusion coefficients,
D and Dr, are treated as independent parameters. The set of equations
in 5.1 are used for the Brownian dynamics simulations to compare the
theoretical predictions.

To make further analytical progress, we replace the active noise term
(v0(r)n) in the equation of motion for r with a noise term with the same
mean and autocorrelation [133, 202–205]. The mean of n is zero, and the
autocorrelation is ⟨n(t + t′)n(t′)⟩ = 1

3 e−t/τ, where τ = 1/(2Dr) (see Sec.
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1.3.3). The equation of motion for r then becomes

∂tr = v0(r)χ +
√

2Dξ, (5.2)

where ⟨χ(r, t + t′)χ(r, t′)⟩ = 11
3 e−|t|/τ. This approximation transforms

the active Brownian particle into an active Ornstein-Uhlenbeck particle
(see Sec. 3.1.3).

Because this equation has colored noise, there is no corresponding
FPE. If in the limit that the autocorrelation time vanishes (τ → 0), the ac-
tive noise χ becomes white noise with autocorrelation ⟨χ(r, t + t′)χ(r, t′)⟩ =
12τ

3 δ(t). After this limit the equation for r has multiplicative white noise,
so one should specify the integration rule for the SDE. If multiplicative
white noise is the limit of multiplicative colored noise, the correct integra-
tion rule is the Stratonovich rule. After rescaling the noise the equation
for the position becomes

∂tr =
√

2Da(r)η+
√

2Dξ =
√

2 (Da(r) + D)ξ, (5.3)

where

Da(r) =
1
6

τv2
0(r) =

v2
0(r)
6Dr

, (5.4)

is the space dependent active diffusion coefficient. This Stratonovich SDE
is equivalent to the Itô SDE

∂tr =
1
2
∇Da(r) +

√
2 (Da(r) + D)ξ, (5.5)

where the ∇Da(r)/2 is called the noise-induced drift.

We use this equation to derive Fokker-Planck equation for P(r, t), de-
fined as the probability density of finding an active particle at position r
at time t:

∂tP(r, t) = −∇ ·
[

1
2

P(r, t)∇Da(r)
]
+∇2 [(Dt + Da(r))P(r, t)] . (5.6)

We note that Da(r) can be much larger than Dt and hence, the diffusion
of a particle may be governed predominantly by the activity. For non-
interacting particles, the enhanced diffusivity of active particles is remi-
niscent of Brownian particles at an increased effective temperature [144].
In fact, Eq. 5.6 describes a nonequilibrium process which breaks detailed
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balance and can be interpreted as describing a passive system with spa-
tially varying temperature. The Fokker-Planck equation obtained above
is based on the Markovian process in Eq. 5.5. However, even for the non
Markovian process in Eq. 5.2, there exist different schemes [204, 206, 207],
following which an approximate FPE can be derived. These schemes
yield an FPE with first order correction in the persistence time of the par-
ticle [133, 208]. However, the correction is coupled to a potential term
[133, 208], which is not present in our model, and therefore the error in
the white-noise approximation of χ(r) is of the order τ2.

We consider activity to be distributed spherically symmetric, continu-
ously varying with distance r from the center as

v0(r) =
c
rα

[∫ R

r0

dr 4πr2 1
rα

]−1

, (5.7)

where the exponent α is varied to obtain different distributions. We con-
sider α ≥ −1. The volume integral of the activity is c which can be inter-
preted as the ‘total activity’ available in the spherical geometry between
r0 and R. The region 0 < r ≤ r0 may represent a source of fuel for the
active particles [209] (see Fig. 5.1). We assume that the activity (i.e., the
self-propulsion speed of an active particle) is proportional to the local con-
centration of the fuel. The total activity is, in this sense, proportional to
the total amount of fuel present in the system. If one considers that the
fuel source is emitting fuel at a constant rate which then diffuses isotropi-
cally in the surroundings, one obtains the steady state fuel distribution as
1/r which corresponds to α = 1. If the source emits a constant number
of fuel particles per unit time which travel ballistically radially outwards,
the corresponding steady state fuel is distributed as 1/r2. Since our fo-
cus in this study the effect of different distributions, we do not concern
ourselves with the specific details of how a particular fuel distribution
is obtained. In order to compare the effect of different distributions, we
impose the constraint of fixed total activity (fuel) c for all values of α.

In Brownian dynamics simulations, we consider noninteracting parti-
cles with translational diffusion constant Dt = 1/30. The rotational dif-
fusion constant Dr = 1/2. This corresponds to a quick rotation of the
particle as compared to translation in the spirit of our approximation of
short reorientation times made above. Based on the choice of parameters,
the radius a of the particle can be calculated using the Stokes-Einstein
Dr/Dt ∼ a−2 ≈ 1/4. The total activity c is a free parameter. The trajec-
tory of each particle is generated by integrating the Langevin equations
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Figure 5.2: Target finding probabil-
ity πr0 of active particles as a func-
tion of the total activity c. The ac-
tivity profiles considered are of the
form v0(r) ∝ r−α. Each profile is nor-
malized such that the total activity is
same for all values of α. Simulation
data are shown as symbols and were
obtained from Brownian dynamics
simulation of Eqs. 5.1. The lines cor-
respond to the theoretical prediction
of Eq. 5.8 in. The target finding prob-
ability πr0(r) is calculated for r =
50/3, which yields equiprobable exit from r = r0 or r = R for c = 0. πr0(r)
does not change when the system is uniformly active (circles). However, when
the same amount of total activity is distributed such that it increases towards the
target r = r0, the probability is strongly biased.

in Eq. 5.1 using a time step dt = 3 × 10−3τD, where τD = 1/Dt is the time
scale of translational diffusion over a unit length. We fix the inner bound-
ary of the spherical geometry as r0 = 10. The outer boundary is fixed to
R = 50. With these parameters the distance between the inner and outer
boundary is much larger than the particle’s diameter.

5.2 Target Finding Probability

We first consider target finding probability, πr0(r), defined as the prob-
ability that a particle that is introduced at r at time t = 0 reaches the
specified target, i.e., exits through the inner boundary r0 before it van-
ishes through the outer boundary. This is shown in Fig. 5.2 as a function
of the total activity c and can be calculated from Eq. 5.6 as (see Appendix
5.A)

πr0(r) =

∫ R
r dz z−2 (Dt + Da(z))

− 1
2∫ R

r0
dz z−2 (Dt + Da(z))

− 1
2

. (5.8)

The scenarios considered are (i) the activity increases as one moves away
from the target v0(r) ∝ r, corresponding to α = −1, (ii) uniformly dis-
tributed activity as corresponding to α = 0 and (iii) activity distributed
such that it increases towards the inner boundary r0 (target) correspond-
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Figure 5.3: Mean first passage time
to target T relative to the MFPT with
c = 0 of active particles as a func-
tion of the total activity c. The ac-
tivity profiles considered are of the
form v0(r) ∝ r−α. Each profile is nor-
malized such that the total activity is
same for all values of α. Simulation
data are shown as symbols and were
obtained from Brownian dynamics
simulation of Eqs. 5.1. The lines cor-
respond to the theoretical prediction
Eq. 5.9. The mean first passage time
to target (r = r0) in is calculated for a particle starting at the outer boundary,
that is at r = R. It is normalized to its corresponding value T0 in a passive sys-
tem. Inhomogeneously distributed activity leads to a larger decrease in MFPT in
comparison to a uniformly active system.

ing to α = 1, 2, 3 (Eq. 5.7). The target finding probability does not change
in the case of uniform activity, see Fig. 5.2. Only when the activity is
increases towards the target the probability is strongly biased to reach
the target at r0. As can be seen in Fig. 5.2, the theoretical predictions
are in good agreement with the simulation data. The starting location
r = 50/3 is chosen as it corresponds to an equally likely exit from either
of the two boundaries in a passive or a uniformly active system. We note
that the qualitative behavior remains the same for any other starting loca-
tion, i.e., probabilities to exit from either of the boundaries do not change
in presence of uniform activity whereas in the case of inhomogeneous
activity, the probability increases at the end where the activity increases.
Although, here we consider smoothly distributed activity as in Eq. 5.7,
the same qualitative behavior is obtained for piecewise distributed activ-
ity. For instance, if the activity is assumed to be uniform between r0 and R
except a step-like larger activity of arbitrary length anywhere between r0
and r, the probability of escaping through the target boundary increases.

5.3 Mean First Passage Time to Target

The MFPT of an active particle starting at the outer boundary r = R to
reach the target at r = r0 is shown in Fig. 5.3. Considering r = R as
a reflecting boundary, MFPT to target of a particle, T (r), is the average
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time taken by a particle starting at r to reach the target r = r0. This can be
calculated from the Fokker-Planck Eq. 5.6 as (see Appendix 5.A)

T (r) =
∫ r

r0

dz
z−2√

Dt + Da(z)

∫ R

z
dy

y2√
Dt + Da(y)

. (5.9)

We normalize the MFPT with its corresponding value in a passive system
(T0). Increasing activity always decreases the MFPT. However, the de-
crease in MFPT is much more pronounced when the activity is spatially
distributed such that it increases towards the target. As can be seen in Fig.
5.3, the theoretical predictions are in good agreement with the simulation
data. In our coarse-grained approach, it can be easily seen from Eq. 5.6
that a uniformly active system is equivalent to a passive system with an
effective diffusion constant (Dt + Da). The decrease in the MFPT can thus
be simply attributed to the increased diffusivity of the particle. However,
when the activity is inhomogeneously distributed, the decrease in MFPT
is more pronounced.

As in the case of target finding probability, the spatial distribution of
the activity strongly influences the MFPT. A particularly simple but in-
structive case that illustrates the role of the spatial distribution of activ-
ity can be constructed as follows. We consider two scenarios, called the
forward and the backward scenario. In the forward scenario, the region
r0 < r < rs is uniformly active and rs < r < R passive. In the backward
scenario, the situation is reversed with the active region becoming passive

and vice versa. The intermediate distance rs = 3
√
(r3

0 + R3)/2 is chosen
such that the total activity in both scenarios is the same (see inset of Fig.
5.4). The activity gradient is everywhere zero except at r = rs implying
that the noise-induced drift of the particle occurs only at r = rs towards
r0 in the forward scenario and R in the backward scenario. In Fig. 5.4, we
plot the MFPT as a function of the total activity c for the forward (T f (R))
and backward (Tb(R)) scenarios. Clearly, the forward scenario yields a
much faster passage to the target. One can show in a straightforward cal-
culation that the difference between the MFPTs of the backward and the
forward scenario, δT = Tb(R)− T f (R) is given as

δT =
Da

6(Dt + Da)

[
2r3

s
r0

− 2R3

rs
+ 3R2 − 4r2

s + r2
0

]
, (5.10)

where Da = c2/(6Dr). It can be easily shown that δT is always posi-
tive. This simple case serves to illustrate the strong influence of the spa-



5.4. PSEUDOCHEMOTAXIS 85

0 5 10 15 20
104c

0.0

0.2

0.4

0.6

0.8

1.0

0

forward
backward

c
v0(r)forward

r0 rs R

c
v0(r)backward

Figure 5.4: Mean first passage time to
target for stepwise uniform activity as
shown in the inset. Symbols denote
data from Brownian dynamics simu-
lations and the lines to the theoretical
predictions of Eq. 5.9. The forward
scenario corresponds to the active re-
gion close to the target whereas in the
backward scenario, the active region
is away from the target towards the
outer boundary. Both scenarios have
the same total activity. The forward
scenario yields a much faster passage
to the target.

tial distribution of activity on the MFPT. With the active region closer to
the absorbing boundary, the MFPT in the forward scenario is significantly
smaller than in the backward scenario.

The agreement between the theoretical predictions and the simula-
tions decreases with increasing α as can be seen in Fig. 5.3. The theo-
retical description based on Eqs. 5.2 and 5.5 ignores the coupling between
fluctuations in orientation and positional degrees of freedom. With in-
creasing α, the activity increases near the target and the position of the
particle can change significantly during orientational relaxation. Ignor-
ing this coupling between orientation and position is the main reason for
the disagreement between theory and simulations.

5.4 Pseudochemotaxis

The increase in likelihood of escaping through the target boundary is rem-
iniscent of the chemotaxis phenomenon [62]. Chemotaxis is a fundamen-
tal sensory mechanism by which bacteria and other single- or multicellu-
lar organisms monitor the concentration gradients of specific chemicals,
translating the information into motion either uphill or downhill to the
gradient. The increased likelihood of escaping from the inner boundary,
where activity increases, can be likened to an active particle climbing up
the fuel gradient. This chemotactic behavior has been recently realized in
experiments on supramolecular nanomotors which climb up the hydro-
gen peroxide concentration gradient [209].

Considering that the stationary distribution of active particles in an
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inhomogeneous activity profile tends to accumulate in the low activity
region, the chemotactic behavior of active particles appears paradoxical.
Recently, Ghosh et. al [210] addressed this paradox by emphasizing the
distinction between the dynamical and stationary behavior of inhomo-
geneous active systems. The stationary distribution is obtained under
the assumption that the active particle is trapped between two reflecting
boundaries. The target finding probability, in contrast, is the likelihood of
reaching a target boundary. In a stationary scenario, the drift of the par-
ticle towards the end where activity increases, is a dynamical effect and
does not impact the stationary distribution. Because of this, and that the
particle does not experience a torque due to the gradient in the activity,
this increase in the target finding probability is not due to chemotaxis, but
is called pseudochemotaxis [35, 210].

5.5 Conclusion

In this chapter we studied the dynamical properties of noninteracting ac-
tive particles in an inhomogeneous activity profile. Using Brownian dy-
namics simulations, we calculated the probability to reach a fixed target
and the mean first passage time to the target of an active particle. We
showed that both these quantities are strongly dependent on the spatial
distribution of the activity. When the activity is distributed such that high-
activity zone is located between the target and the starting location, the
target finding probability is increased and the passage time is decreased
in comparison to a uniformly active system. Moreover, for a continuously
distributed profile, the activity gradient results in a drift of active particle
up the gradient bearing resemblance to chemotaxis [210, 211].

We found that the insights gained from steady-state inhomogeneous
active systems, such as preferential accumulation in the low-activity re-
gions and orientation of particles antiparallel to the activity gradient, can-
not be used to understand the dynamical properties of an inhomogeneous
active system. The noise-induced drift emerges naturally in a system with
spatially varying noise and it points in the direction of the activity gradi-
ent. As a consequence, a particle starting anywhere in the system drifts
towards higher activity. The particle moves increasingly faster as it gets
closer to the target. The drift aids the passage of the particle to the target
giving rise to the observed increase in target finding probability. How-
ever, this does not mean that the particle has a larger residence time in
the high activity regions. If the particle is reflected from the target, it can
move into low activity regions where it resides for a longer time than in
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the high activity regions.
Finally, considering activity profiles in general the following interest-

ing questions arise: Which activity profile, for a given total activity c,
yields the minimum mean first passage time? Which profile yields the
maximum target finding probability? In a recent study [158] on chemo-
taxis, the authors have considered a source emitting a chemical signal
which develops a spatio-temporal distribution.
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5.A Appendix

The calculations of the MFTP and exit probability are shown here for the
one dimensional FPE of the form ∂t p(x, t|x0, t0) = Lp(x, t|x0, t0), where
p(x, t|x0, t0) is the probability density for x at time t given that it was x0
at time t0, and the operator can be written as

L =
∂

∂x
A(x) +

∂2

∂x2 B(x). (5.11)

The adjoint of this operator is

L† = −A(x)
∂

∂x
+ B(x)

∂2

∂x2 , (5.12)

where the adjoint is defined by
∫

dx f (x)Lg(x) =
∫

dx g(x)L† f (x). Note
that the adjoint in curvilinear coordinates needs to be defined with the
appropriate integral. The analysis presented in the remainder of this ap-
pendix is based on refs. [14, 16].

5.A.1 The Backwards Fokker-Planck Equation

The stochastic process in Eqs. 5.1 is a Markov process [212]. This means
that the process has no ”memory”, and that the state of the process at time
t + dt only depends on the state at time t. The probability density for the
system to be at position x1 at time t1 given that it was at x2 at time t2, x3 at
time t3, and so on, where t1 > t2 > t3 > ..., is p(x1, t1|x2, t2; x3, t3, ...). If the
process is a Markov process than p(x1, t1|x2, t2; x3, t3, ...) = p(x1, t1|x2, t2).
Using this, one can write the three point probability density as

p(x1, t1; x2, t2; x3, t3) = p(x1, t1|x2, t2)p(x2, t2|x3, t3)p(x3, t3). (5.13)

Integrating this over x2 and dividing by p(x3, t3) results in the Chapman-
Kolmogorov equation:

p(x1, t1|x3, t3) =
∫

dx2 p(x1, t1|x2, t2)p(x2, t2|x3, t3), (5.14)

where p(x1, t1; x3, t3)/p(x3, t3) = p(x1, t1|x3, t3) was used.

The backwards Fokker-Planck equation can be derived from the Chapman-
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Kolmogorov equation by taking the derivative with respect to t2:

0 =
∂

∂t2
p(x1, t1|x3, t3)

=
∫

dx2

[
p(x2, t2|x3, t3)

∂

∂t2
p(x1, t1|x2, t2)

+ p(x1, t1|x2, t2)
∂

∂t2
p(x2, t2|x3, t3)

]
. (5.15)

The time derivative in the last line can be replaced by the Fokker-Planck
operator, and by using the definition of the adjoint this becomes

0 =
∫

dx2 p(x2, t2|x3, t3)

[
∂

∂t2
p(x1, t1|x2, t2) + L†(x2)p(x1, t1|x2, t2)

]
,

(5.16)

where L†(x2) depends and acts on x2. The term in the square brackets
must be zero because p(x2, t2|x3, t3) ≥ 0, and therefore

∂

∂t2
p(x1, t1|x2, t2) =− L†(x2)p(x1, t1|x2, t2). (5.17)

If A(x) and B(x) are independent of time, the probability is invariant un-
der time translations, and therefore

∂

∂t2
p(x1, t1|x2, t2) =

∂

∂t2
p(x1, 0|x2, t2 − t1)

=− ∂

∂t1
p(x1, 0|x2, t2 − t1)

=− ∂

∂t1
p(x1, t1|x2, t2). (5.18)

This together with Eq. 5.17 gives the backwards FPE:

∂

∂t1
p(x1, t1|x2, t2) =L†(x2)p(x1, t1|x2, t2). (5.19)
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5.A.2 Mean First Passage Time

The probability that a ≤ x ≤ b at time t given that it was at x at time t = 0
is

Pa,b(x, t) =
∫ b

a
dx′ p(x′, t|x, 0). (5.20)

If p(x′, t|x, 0) obeys the backwards FPE, so does Pa,b(x, t):

∂tPa,b(x, t) = L†Pa,b(x, t) (5.21)

The probability Pa,b(x, t) is equal to the probability that x leaves the
interval a ≤ x ≤ b at a time later than t. The probability distribution of
exit times is than equal to minus the time derivative of Pa,b(x, t). The first
moment of this distribution gives the MFPT:

T (x) = −
∫ ∞

0
dt t∂tPa,b(x, t) =

∫ ∞

0
dt Pa,b(x, t). (5.22)

By applying the backwards Fokker-Planck operator on both side one ob-
tains a differential equation for the mean first passage time

L†T (x) =
∫ ∞

0
dt L†Pa,b(x, t) =

∫ ∞

0
dt ∂tPa,b(x, t). (5.23)

Using that Pa,b(x, t = ∞) = 0 and Pa,b(x, 0) = 1 gives

L†T (x) = −1, (5.24)

which can be solved for a particular operator to yield the MFPT.

5.A.3 Exit Probability

In this case both the a and b boundaries of the interval (a, b) are absorbing.
The probability of exiting the interval through boundary a given that it
started at x is

πa(x) = −
∫ ∞

0
dt′ J(a, t′|x, 0), (5.25)

where J is the flux, which for the general FPE

∂t′ p(a, t′|x, 0) = Lp(a, t′|x, 0) = −∂a J(a, t′|x, 0) (5.26)
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can be written as

J(a, t′|x, 0) = −A(a)p(a, t′|x, 0)− ∂a
[
B(a)p(a, t′|x, 0)

]
, (5.27)

for some A and B. Using this for the exit probability πa gives

πa(x) =
∫ ∞

0
dt′
[
A(a)p(a, t′|x, 0)

]
+ ∂a

[
B(a)p(a, t′|x, 0)

]
. (5.28)

Acting with the adjoint Fokker-Planck operator gives

L†(x)πa(x) =
∫ ∞

0
dt′ [A(a) + ∂aB(a)] L† p(a, t′|x, 0)

=
∫ ∞

0
dt′ ∂t′ [A(a) + ∂aB(a)] p(a, t′|x, 0)

= −J(a, 0|x, 0). (5.29)

Because p(a, 0|x, 0) = δ(a − x), the flux on the right-hand side vanishes
for a ̸= x, which gives the differential equation for the probability to exit
through boundary a:

L†πa(x) = 0. (5.30)

The boundary conditions are πa(a) = 1 because it is immediately ab-
sorbed at a, and πa(b) = 0 because it is immediately absorbed at b.

5.A.4 MFTP and Exit Probability

The probability density corresponding to the FPE in Eq. 5.6 only depends
on the radial coordinate r = |r|. Integrating out the angular dependence
results in

∂tP(r, t) = LP(r, t), (5.31)

where the Fokker-Planck operator is

L f (r) = −1
2

1
r2

∂

∂r

[
r2 ∂Da

∂r
f (r)

]
+

1
r2

∂

∂r

[
r2 ∂

∂r
[(Da + D) f (r)]

]
. (5.32)
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In spherical coordinates the adjoint of an operator acting only on the ra-
dial coordinate is defined by∫

dr r2 f (r)Lg(r) =
∫

dr r2g(r)L† f (r), (5.33)

which gives

L† f (r) =
1
2

∂Da

∂r
∂

∂r
f (r) +

1
r2 (Da + D)

∂

∂r

[
r2 ∂

∂r
f (r)

]
. (5.34)

The equation for the exit probability for the system in Sec. 5.2 with
this operator is

ϕ(r)∂rπr0(r) + ∂2
r πr0(r) = 0, (5.35)

where

ϕ(r) =
1
2

∂r [ln (D + Da(a))] +
2
r

. (5.36)

The boundary condition are πr0(r0) = 1 because the particle is immedi-
ately absorbed at the target, and πr0(R) = 0 because the particle is im-
mediately absorbed at the outer boundary. Equation 5.8 can be obtained
from Eq. 5.35 by integration.

Using the adjoint Fokker-Planck operator (Eq. 5.34), the equation for
the mean first passage time (Eq. 5.24) for the system in Sec. 5.2 can be
written as

ϕ(r)∂rT (r) + ∂2
rT (r) = − 1

Da(r) + D
. (5.37)

The boundary conditions are T (r0) = 0 as the particle is immediately ab-
sorbed at the target, and ∂rT (r)|r=R = 0 because of the reflecting outer
boundary with radius R. Equation 5.9 is obtained by integrating the pre-
vious equation with the appropriate boundary conditions.



Chapter 6

Chemotaxis of Cargo-Carrying
Self-Propelled Particles

This chapter contains results which have been published in ref. [185].
Reprinted (adapted) with permision from H.D. Vuijk, H. Merlitz, M. Lang,
A. Sharma, and J.-U. Sommer. Physical Review Letters 126, 208102, 2021.
Copyright (2018) by the American Physical Society.
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Figure 6.1: Crossover from anti-chemotactic to chemotactic behavior. ABPs are
sketched as circles with arrows. Cargo particles (sketched as empty circles) are
bound to ABPs. (a) When the cargo is small, that is, its friction coefficient is small,
the dimer accumulates in low activity regions (anti-chemotaxis). When the cargo
is large, the dimer accumulates in the high activity regions (chemotactis). (b) Self
emergence of cargo in active chains. When active particles are connected in a
chain, one observes the crossover from anti-chemotactic to chemotactic behavior
with increasing chain length. (c) A sketch of the Born-Oppenheimer approxima-
tion. A single ABP is connected to a cargo (black circle) with a fixed position.
Because the cargo is fixed in space, the ABP (open circle with arrow) is able to
explore the space around the cargo (translucent ABPs) and sense the gradient in
the swim force ( fs). On average the ABP pulls on the cargo in the direction of the
gradient of the swim force, which results in an effective force (Fe f f ) on the cargo.
The bottom graph shows the swim force in the neighborhood of the cargo.

Although active particles can display interesting transient behavior in
fuel gradients, called pseudochemotaxis [200, 209, 210, 213, 214], as shown
in the previous chapter, activity does not lead to an advantage in the
search for fuel sources as compared to passive diffusion on long time
scales (see Section 3.2.5). These observations have led to the general belief
that chemotaxis, by which we mean the migration to regions of higher ac-
tivity (or fuel), a prominent feature of living systems, cannot be reflected
by uninformed moving objects, in particular not by active particles with-
out a coupling between the gradient in the activity and a torque on the ori-
entation. In this chapter, we demonstrate that active Brownian particles
(ABPs) can show chemotactic behavior in activity gradients when they are
bound to a passive cargo particle. With increasing size of the cargo, the
active-passive complex switches its behavior from anti-chemotactic like
to chemotactic and accumulates in regions with a large fuel concentration
(see Fig. 6.1). Furthermore, we show that an explicit distinction between
cargo and active particles is not fundamental to our proposed mechanism
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and can self-emerge in an active system. We demonstrate this in a sys-
tem of ABPs connected in a chain: with increasing chain length there is a
crossover from anti-chemotactic like behavior to chemotaxis.

6.1 The Model

The dimer model consists of an ABP (see Section 3.1.2) attached to a pas-
sive cargo. All results hold for both d = 2 and d = 3 dimensions. Results
for d = 1 are shown App. 6.A.8. The equations of motion for the dimer
are

∂tr1 =
1
γ

F +
1
γ

fs(r1)n +
√

2T/γξ1, (6.1)

∂tn =
√

2Drn × η (6.2)

∂tr2 = − 1
qγ

F +
√

2T/qγξ2, (6.3)

where r1 is the coordinate of the active particle and r2 the coordinate of
the (passive) cargo particle, n is the orientation of the active particle, and
F is the force the cargo particle exerts on the active particle (the force on
the passive particle is −F). The orientation vector changes because of ro-
tational Brownian motion (see Section 1.3.3). The results in this chapter
also hold if the particle tumbles – that is, with a certain rate the active
particle completely randomizes its orientation abruptly (see Section 3.1.1)
– in addition to the continuous diffusion of the orientation vector. T is
the temperature in units such that the Boltzmann constant kb is unity. The
friction of the active particle is γ. The friction of the passive cargo particle
is q times that of the active particle. The swim force of the active parti-
cle is fs, which makes the swim speed is vs = fs/γ. The vectors ξ1, ξ2
and η are random, Gaussian vectors with zero mean and autocorrelation
⟨ξ1(t)ξ1(t

′)⟩ = ⟨ξ2(t)ξ2(t
′)⟩ = ⟨η(t)η(t′)⟩ = 1δ(t − t′), where 1 is the

identity matrix. Note that in this model the rotation of the active particle
is not hindered by the bond. In the next chapter a dimer is considered
of which the active particles have a fixed orientation with respect to the
bond vector, see also ref. [215].

The potential holding the two particles together is

U(r1, r2) =
1
2

k(|r1 − r2| − l0)2, (6.4)

where k is the spring constant, and l0 is the rest length. We consider two
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cases theoretically: i) A rigid bond, which we model by taking the limit
k → ∞. ii) A harmonic spring with zero rest length (l0 = 0) and general
spring constant k. The force on the active particle is F = −∇1U = −k(r′−
l0)r̂′, where r′ = r1 − r2, r′ = |r′|, and r̂′ = r′/r′. Other potentials are
considered numerically.

The activity of the ABP is characterized by its persistence time τ =
(d− 1)Dr (characteristic time of rotation of the active particle) and a space-
dependent swim force fs(r), which we assume to be proportional to the
local fuel concentration. Regions where the swim force is large (small) we
call high (low) activity regions.

The Fokker-Planck equation (FPE) corresponding to the probability
density of this system is

∂tP(t) =− 1
γ
∇1 · [FP(t) + fsnP(t)− T∇1P(t)]

+
1

qγ
∇2 · [FP(t) + T∇2P(t)] +

1
(d − 1)τ

R2P(t), (6.5)

where P(t) = P(r1, n, r2, t), and R = p × ∇p is the rotation operator
[216].

We coarse grain Eq. 6.5 in two steps. First we expand P(t) in eigen-
functions of R2 (see Sec. ). and transform to the ’center-of-friction’ co-
ordinate R = 1

1+q r1 +
q

1+q r2, which we take as the position of the dimer,
and the internal coordinate r′ = r1 − r2. Then we integrate out the ori-
entational degrees of freedom p and the internal coordinate and ignore
terms O

(
∇3). In Appendix 6.A details are shown of the derivation and

the approximation. This approximation is valid when the separation be-
tween the ABP and the passive particle and the persistence length of the
ABP are small compared to gradients in the system. This results in the
following equation for the probability density of the dimer:

∂tρ(R, t) = −∇ · J, (6.6)

where the flux of the dimers is

J = −1
2

ϵρ(R, t)∇D(R)− D(R)∇ρ(R, t), (6.7)

with
ϵ = 1 − q

d − 1
d

, (6.8)
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Figure 6.2: Density distributions
of ABPs relative to the bulk den-
sity ρb = 1

56

∫ 28
−28 dxρ(x) bound to

a passive cargo particle with differ-
ent friction (top figure). The bond
length of the dimer is unity, d = 3,
τ = 1/40, and the swim force is
fs(x) =

√
6(x + 30) (bottom fig-

ure). The dimensions of the sim-
ulation box are 60 × 60 × 60. The
particles interact with the confin-
ing walls via a Weeks-Chandler-
Anderson potential [219]. Because
the theory ignores boundary ef-
fects, the density is shown for −28 < x < 28. Boundary effects could be included
using the methods described in [220, 221]. Symbols show simulation results, and
solid lines Eq. 6.10. With a highly mobile cargo particle (blue diamonds) the
dimer accumulates in regions of low activity (anti-chemotactic like behavior). At
q = 3/2 a uniform density is found (black squares). With a less mobile cargo (cir-
cles) the dimer accumulates where the activity is high (chemotaxis). The dashed
line shows the 1 → ∞ limit, corresponding to the Born-Oppenheimer approxi-
mation. The dotted line shows the q → 0 limit.

and
D(R) =

1
1 + q

T
γ
+

1
(1 + q)2

τ

dγ2 f 2
s (R), (6.9)

is the coarse-grained space-dependent diffusion coefficient of the dimer.
The theoretical results are validated by Brownian dynamics simulations
[217, 218].

6.2 Chemotaxis of Active Dimers

Figure 6.2 shows the stationary density distribution of dimers with a dif-
ferent friction ratio q. As long as the cargo is highly mobile (small q),
the dimer accumulates in regions of low activity like a single ABP, which
– being an orthokinetic swimmer – behaves like an antichemotactic par-
ticle. When the cargo has large friction (large q), it exhibits chemotaxis
and accumulates where the activity is high. The crossover from anti-
chemotactic to chemotactic behavior is captured by the coarse-grained
equations, which yields the following expression for the steady-state den-
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sity of the dimer:

ρ(R) ∝
[

1 +
1

1 + q
τ

γTd
f 2
s (R)

]− 1
2 ϵ

. (6.10)

For q < d/(d − 1), ϵ is positive, and the dimer is chemotactic. For q >
d/(d − 1), ϵ is negative, and the dimer is anti-chemotactic. At the thresh-
old q = d/(d − 1), the distribution of the dimer is uniform and inde-
pendent of the swim force. Note that in the limit of q → 0 the density
distribution of the dimer reduces to that of a single ABP, and it accumu-
lates in the region of low activity. In general, the exponent ϵ depends on
the potential between the two particles.

In order to understand the mechanism behind the switch from anti-
chemotaxis to chemotaxis for increasing q, we consider the small and
large q limits separately. When the friction coefficient of the cargo par-
ticle is much smaller than that of the ABP, the cargo relaxes to its quasi-
steady state distribution at each position of the ABP. In this limit, one
can consider the dimer to be a single ABP with an increased friction co-
efficient. Accordingly, the dimer accumulates in the low activity regions
(antichemotactic like behavior). In the limit of large friction of the cargo
particle, the ABP relaxes to a quasi-steady state distribution at each po-
sition of the load particle, and the ABP probes the neighborhood of the
cargo particle. The activity gradient results in an effective force on the
cargo particle in the direction of the activity gradient. In this limit, one
observes the accumulation of the system in high activity regions (chemo-
taxis).

The steady-state density in the large friction limit can be obtained fol-
lowing an independent approach similar to the Born-Oppenheimer ap-
proximation in quantum mechanics [222]. When the cargo is large, one
can consider it as immobile and the ABP as moving in a stationary po-
tential. The ABP explores the environment around the load and exerts an
effective force

Fe f f (r2) =
d − 1

d
τ

2dγ
∇2 f 2

s (r2) (6.11)

on it, which is up the swim force gradient (see Fig. 6.1). This effective
force can be considered as the driving force for the total system. The
steady-state density of a passive Brownian particle with friction qγ in a
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Figure 6.3: Time derivative at
t = 0 of the average posi-
tion of the dimer in the same
setup as Fig. 6.2 starting
with a uniform distribution
(dx̄/dt). Symbols show simu-
lation results (colors as in Fig.
6.2). The line is the theoreti-
cal prediction dx̄/dt ∝ ϵ/(1+
q)2 with the proportionality
constant fitted to the data (for
details see App. 6.A.6). Inset:
initial time evolution of the average position (x̄(t)) for several values of q. The
solid lines show the linear fit for short time from which the data in the main fig-
ure is extracted. For q < d/(d − 1) = 3/2 the dimers move to the left down the
swim force gradient. For q > 3/2 the dimers move to the right up the swim force
gradient. As q increases beyond (3d − 1)/(d − 1) = 4, the dynamics start to slow
down due to the increase in the friction of the dimer.

such an effective force field is

ρ(R) ∝ exp
[

1
T

d − 1
d

τ

2dγ
f 2
s (R)

]
, (6.12)

which shows that for large q the dimer moves preferentially to regions of
high fuel concentration. For details of the calculations, see the Appendix.
Note that this density is the q → ∞ limit of Eq. 6.10. This considera-
tion shows that it is indeed the ability of the active particle to explore the
activity gradient that causes the chemotaxis.

Whereas the steady-state distribution measures the chemotactic be-
havior of the dimer, it does not shed light on the ‘efficiency’ of the chemo-
tactic transport of cargo particles by the ABPs. Though large q results in
the strongest chemotactic behavior, it also slows down the transport of
the cargo particle due to the increased friction of the dimer. In our case,
this leads to an optimum q that yields the fastest transport to regions of
high activity. To quantify this, we use the initial rate of change of the
average position of the dimer, starting with a uniform distribution (see
Fig. 6.3). For this setup, the displacement of the dimer is determined by
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the convective velocity, which can be read off from Eq. 6.7,

V(R) = −1
2

ϵ∇D(R) ∝
ϵ

(1 + q)2∇ f 2
s . (6.13)

Depending on the value of q, this is either up the swim force gradient
(chemotaxis) or down the swim force gradient (anti-chemotaxis). The
convective velocity has a maximum at q = (3d − 1)/(d − 1) which co-
incides with the simulation result. Note that for biased movement up
the swim-force gradient, only a large enough cargo is necessary, and no
memory [223], temporal integration of the fuel concentration [224], or an
explicit coupling between the swim-force gradient and the orientation of
the ABP [57, 225] is required.

6.3 Other Potentials

The same analysis can be done for a harmonic potential with zero rest
length (that is, l0 = 0 and k is finite in Eq. 6.4). In this case the steady-
state density is the same as that of a dimer with a rigid bond (Eq. 6.10),
but with

ϵ = 1 − q2

q + (1 + q) τk
γ

. (6.14)

Note that in the limit k → ∞, ϵ = 1, and the dimer behaves like a single
active particle with a increased friction constant. This shows again the im-
portance of the separations of time scales between the active and passive
cargo particle for the emergence of chemotaxis. The value of q for which
the density is flat, obtained by equating ϵ to zero, is

q0 =
1
2

(
1 +

τk
γ

)
+

1
2

√(
1 +

τk
γ

)2

+ 4
τk
γ

. (6.15)

6.3.1 Run-and-Tumble Dimer in One Dimension

The FPE corresponding to a one-dimensional dimer where the active par-
ticle is a run-and-tumble (RTP) particle can be solved numerically (see
Section 6.A.8 for details). Because this is computationally less intensive
than simulations, the following cases are explored using this one dimen-
sional model.
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mension with periodic boundary
conditions. The theoretical pre-
diction (lines, Eqs. 6.10 and 6.14)
agrees with the numerical solu-
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with box size L = 100. The spring
constant is k = 8. Dimers with a cargo with a small friction (small q, blue dia-
monds) are anti-chemotactic and accumulate where the swim force is small (left
side of the box); dimers with a cargo with a large friction (large q, red circles)
are chemotactic and accumulate where the swim force is small (right side of the
box). The cross over happens at q ≈ 1.3483 (black squares) as predicted by Eq.
6.15. This behaviour is qualitatively the same as that of a dimer with a fixed bond
discussed in the main text.

The orientation of an RT particle changes abruptly, that is, with rate α
it picks a random new direction (see Section 3.1.1). The autocorrelation
function of the orientation decays exponentially.

If the ABP in the dimer is replaced by a run-and-tumble particle, the
results of the previous section holds with d = 1 (see Appendix 6.A.8).
The case of a rigid bond results in a coarse-grained equation that is equal
to that of a single run-and-tumble particle, as there is no internal degree
of freedom and the two particles always move together, so there is no
separation of time scales. Therefore, we only consider analytically the
case of a harmonic bond.

The equations of motion are

∂tx1 =
1
γ

F +
1
γ

fs(x1)n +
√

2T/γξ1 (6.16)

∂tx2 = − 1
qγ

F +
√

2T/γξ2, (6.17)

where x1 is the coordinate of the active particle with friction constant γ
and swim force fs, x2 is the coordinate of the passive cargo particle with
friction constant qγ, and ξ1 and ξ2 are white noise with zero mean and
autocorrelation ⟨ξ1(t)ξ1(t′)⟩ = ⟨ξ2(t)ξ2(t′)⟩ = δ(t − t′). The orientation
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Figure 6.5: Steady-state den-
sity of RTP dimers with different
spring constant (k) in one dimen-
sion with periodic boundary con-
ditions. The theoretical predic-
tion (lines, Eqs. 6.10 and 6.14)
agrees with the numerical solu-
tion (circles) to Eqs. 6.117 and
6.118. For clarity, every other data
point is shown. The swim force
is fs(X) = 20 (1 + sin(X2π/L))
with box size L = 100. The fric-
tion of the passive cargo particle is q = 4 times that of the active RTP particle.
For this value of q the dimer is chemotactic (accumulates in regions where the
swim force is large). In creasing the spring constant (k) decreases the chemo-
tactic behaviour because it limits the ability of the active particle to explore the
space around the passive cargo particle and thus limits the dimer’s ability to
sense gradients in the swim force.

of the active particle is p ∈ {+1,−1}, which points either in the positive
(right moving) or the negative (left moving) direction. With rate α the
active particle randomizes its orientation (so it changes direction with rate
α/2). All results are shown here are for γ = 1, T = 1, and α = 1/τ = 40.

Figure 6.4 shows the steady-state density of dimers with harmonic po-
tential for different friction of the cargo particle. The behaviour is qualita-
tively the same as the of a three-dimensional dimer with a fixed bond:
the dimer is chemotactic if the cargo has a large friction, and is anti-
chemotactic if the cargo has a small friction.

If the spring constant k increases, the active particle is no longer able to
explore the neighbourhood of the passive cargo particle and can therefore
no longer sense the gradient in the swim force, which results in a decrease
in the chemotaxis (see Fig. 6.5). The chemotactic behaviour is most pro-
nounced in case of the weakest potential; however, the limit k → 0 is not
possible, as it violates the assumption that the separation between the ac-
tive particle and the cargo particle is small compared to gradients of the
swim force.

To show that the transition from anti-chemotaxis to chemotaxis as the
friction of the cargo increases is a general feature that happens for differ-
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Figure 6.6: Steady-state density of
RTP dimers with a ’rope’ potential
(Eq. 6.18) with l0 = 2 in one dimen-
sion with periodic boundary con-
ditions The swim force is fs(X) =
20 (1 + sin(X2π/L)) with box size
L = 100. The symbols show the nu-
merical solution to Eqs. 6.117 and
6.118. Note that even though the po-
tential is very different compared to
the harmonic potential in Fig. 6.4,
the density profiles are very similar.
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ent kinds of potentials, we consider the following potential:

U(x1, x2) =

{
0 if |x1 − x2| < l0,
∞ else.

(6.18)

This potential corresponds to an active particle and a cargo particle bound
by a rope, so the active particle can explore the space around the passive
particle with out exerting any force, as long as the separation is smaller
that the length of the ’rope’ l0. The behaviour of an active-passive dimer
with such a potential is qualitatively similar to the cases shown before
(see Fig. 6.6).

Because the FPE governing the dynamics of the one-dimensional run-
and-tumble dimer (Eq. 6.131) are qualitatively the same as the FPE for
the two and three-dimensional cases (Eq. 6.7), one can assume that the
results for the one-dimensional dimer with a rope potential also hold for
a two and three-dimensional dimer. In two dimensions, an active passive
dimer with a rope potential (Eq. 6.18) corresponds to an active particle
inside a movable ring, where the ring has the role of the passive particle.
This provides a possible experimental setup to test the theory.

6.4 Chemotaxis of Active Polymers

Instead of coupling an ABP to a passive cargo, several ABPs can be com-
bined to form chains or clusters of N ’monomers’ [226, 227]. Then, each
individual ABP may be regarded as an active pulling agent connected
to a ’cargo’ of N − 1 particles because the other N − 1 ABPs do not pull
coherently in identical directions but rather in random directions. Fig-
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Figure 6.7: Stationary con-
centrations of ABP-molecules
inside a spherical container of
radius rmax = 25. The sym-
bols show simulation data,
and the lines are a guide for
the eye. The source of activity
is at its center and the driv-
ing force decreases as fs(r) =
15/r for r ≥ 1, and remains
constant fs(r) = 15 for r < 1.
This activity profile corresponds to a stationary fuel source emitting fuel by dif-
fusion. The mono- and dimers are anti-chemotactic and are driven out of the
region of high activity (blue diamonds) The quadromer is distributed uniformly
(black squares). Longer polymers (N > 4, red circles) are chemotactic and accu-
mulate near the peak of the fuel concentration.

ure 6.7 displays the stationary radial density distribution profiles of the
molecules inside the container. Short oligomers are anti-chemotactic and
stay away from regions of high activity. Long polymers, on the other
hand, are chemotactic and accumulate where activity is high. The crossover
point is seen with the quadromer which is roughly uniformly distributed
in the activity field.

Polymeric ABPs are therefore qualitatively similar to a single ABP cou-
pled to a passive cargo. If either the cargo is sufficiently inert or the degree
of polymerization sufficiently high, such that it inhibits the free motion of
an individual ABP, then the situation of a single ABP inside an approxi-
mately stationary potential arises: Inside an activity gradient, the particle
is running up the confining potential in the direction of increasing activ-
ity. This bias generates a net force which – if the system is mobile – drives
the same up the activity gradient. If, however, the cargo is rather mobile,
then the motion of the ABP remains approximately undisturbed and the
complex runs down the activity gradient as an individual ABP does.

6.5 Discussion

ABPs are equivalent to other models of active matter (see Section 3.1),
such as run-and-tumble [144, 228], active Ornstein-Uhlenbeck particles
[134, 135], and the results shown here also apply to these models. We
show in the Appendix that the chemotactic behavior observed in the active-
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passive dimer cannot be reproduced in a system of dimers in which the
active particle is replaced by a passive Brownian particle coupled to a
spatially inhomogeneous thermostat

An interesting outlook is the development of artificial nano-machines
which can locate origins of fuel gradients based on the design principle of
coupling ABPs to passive cargo without a complex sensing and steering
system. Furthermore, a natural progression of this work is to study how
the behavior of a single active-passive dimer or more complex clusters in
an activity gradient affect the collective properties of a system with a large
number of such components [229–232].

The coupling of active bodies with or without passive bodies leads
to effective sensing of gradients of activity (fuel) and can be generalized
in several directions. First, the connectivity between the bodies does not
need to be linear as in the studies presented in this letter. Virtually any
kind of topology of connecting the active bodies leads to effective chemo-
taxis, given that the complex provides sufficient friction to single active
bodies. Moreover, active bodies moving inside a container that is perme-
able for the fuel but not for the active bodies can give rise to chemotactic
motion of the container, provided the activity gradient is present inside
the container. Also in this case, it is the exploration of the active bodies
in the gradient field which leads to a higher averaged pressure on the
container walls located at the higher activity. Our results may shed light
on the origin of prebiotic forms of life and how chemotactic sensing has
emerged during evolution.
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6.A Appendix

In this appendix details of the derivations are shown. All results hold for
two and three dimensions and for both active Brownian particles (ABPs)
and run-and-tumble particles (RTPs). Section 6.A.1 shows the derivation
of the steady-state density of the active-passive dimer with a rigid bond in
a swim force gradient (Eq. 6.10 in the main text), as well as the derivation
for a dimer with a harmonic bond with zero rest length. Section 6.A.5
shows the derivation of the Born-Oppenheimer approximation for the
q → ∞ limit (Eqs. 6.11 and 6.12 in the main text). Section 6.A.6 shows the
derivation of the average position of the dimer in a rectangular box as in
Fig. 6.3. In Section 6.A.7 we comment on how the model relates to a dimer
with a passive Brownian particle in a temperature gradient instead of an
ABP with a swim-force gradient. In Section 6.A.8 we show the deriva-
tion of the density for a dimer in one dimension and consider the effect of
the spring constant of the potential between the active and passive par-
ticle on the steady-state density. Furthermore, we consider numerically
an nonharmonic potential to show that the transition to chemotaxis exists
for a wide range of potentials, and briefly discuss a possible experimental
setup to test the theory.

6.A.1 Coarse Graining The Active-Passive Dimer

The derivations shown here rely on two coarse-graining steps. First, the
orientational degrees of freedom are eliminated from the FPE by expand-
ing in eigenfunctions of the Laplacian on the unit sphere. This results in
a hierarchy of equations for functions that depend only on the position
coordinates of the active particle and the cargo particle. This method is
based on the adiabatic elimination by the eigenfunction expansion method
developed in ref. [233] and has been used to study both interacting and
noninteracting active Brownian particles [35, 144–146, 234]. Second, be-
cause we are interested in the large-scale behaviour of the system (that is,
length scales much larger that the separation between the two particles),
we integrate out the internal degrees of freedom. Because of this second
coarse-graining step, one does not need to determine explicitly the expan-
sion coefficients in the expansion in eigenfunctions of the Laplacian, and
the combination of the two steps results in accurate predictions for the
relevant quantities.
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6.A.2 The Active-Passive Dimer Model

The equations of motion for an ABP [90] bound to a passive cargo particle
are

∂tr1 =
1
γ

F +
1
γ

fs(r1)n +
√

2T/γξ1, (6.19)

∂tn =
√

2Drn × η+ tumble, (6.20)

∂tr2 = − 1
qγ

F +
√

2T/qγξ2, (6.21)

where r1 is the coordinate of the active particle and r2 the coordinate of
the (passive) cargo particle, p is the orientation of the active particle, and
F is the force the cargo particle exerts on the active particle. The orien-
tation vector changes because of orientational diffusion and because of
tumbling, which means that with rate α the orientation vector changes
to a random position on the unit sphere. T is the temperature in units
such that the Boltzmann constant kb is unity. The friction of the active
particle is γ. The friction of the passive cargo particle is q times that of
the active particle. The swim force of the active particle is fs. (The swim
speed is vs = fs/γ.) The vectors ξ1, ξ2 and η are random Gaussian vec-
tors with zero mean and autocorrelation ⟨ξ1(t)ξ1(t

′)⟩ = ⟨ξ2(t)ξ2(t
′)⟩ =

⟨η(t)η(t′)⟩ = 1δ(t − t′), where 1 is the identity matrix.
The potential holding the two particles together is

U(r1, r2) =
1
2

k(|r1 − r2| − l0)2, (6.22)

where k is the spring constant, and l0 is the rest length. We consider two
cases: i) A rigid bond, which we model by taking the limit k → ∞. ii) A
harmonic spring with zero rest length (l0 = 0) and general spring constant
k. The force on the active particle is F = −∇1U = −k(r′ − l0)r̂′, where
r′ = r1 − r2, r′ = |r′|, and r̂′ = r′/r′. The force on the passive particle is
−F. Other kinds of potentials are considered in Section 6.A.8.

The FPE corresponding Eqs. 6.19, 6.20 and 6.21 is [235]

∂

∂t
P(t) =− 1

γ
∇1 · [FP(t)]− 1

γ
∇1 · [ fsnP(t)] +

T
γ
∇2

1P(t)

+
1

qγ
∇2 · [FP(t)] +

T
qγ

∇2
2P(t)

+ DrR2P(t)− αP(t) + αϕ(t), (6.23)
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where P(t) = P(r1, r2, n, t) and R = n ×∇n is the angular momentum
operator in the space of n [216], and R2 is the Laplacian on the unit
sphere. The last two terms account for tumbling with rate α [35]. And
ϕ(t) = ϕ(r1, r2, t) =

∫
dΩdP(r1, r2, n(Ωd), t), with Ωd the d-dimensional

solid angle. 1

6.A.3 Eliminating the Orientational Degrees of Freedom

To find an equation for the density, the coarse-graining procedure de-
scribed in Section 3.2.2 is used. In particular, we expand P(t) in eigen-
functions of the R2 operator and integrate out the orientational degrees
of freedom. The first three eigenfunctions of R2 are 1, n, nn − 1/d. The
eigenvalues are, respectively, 0, −(d − 1) and −2d. The probability can be
expanded in the eigenfunctions of R2 as [144, 145]

P(t) = ϕ + σ · n + ω : (nn − 1/d) + Θ (P(t)) . (6.24)

This is the Cartesian multipole expansion. One could equivalently use
a angular multipole expansion, where P(t) is expanded in spherical har-
monics (or circular harmonics for d = 2) [236]. The functions ϕ, σ and ω
depend on r1, r2 and t. σ and ω are the dipole and quadrupole moments,
and are proportional to the polar and nematic order parameter [237]. Note
that ω can be made symmetric and traceless [145]. The expansion coeffi-
cients can be calculated using the integral over the orientations

⟨ f (n)⟩ = 1
ωd

∫
dΩ f (n), (6.25)

where n = n(Ωd).

Because most operators in Eq. 6.23 do not depend on n, we rewrite it
as

∂

∂t
P(t) =LP(t) + Ls · [nP(t)] + DrR2P(t)− αP(t) + αϕ, (6.26)

1For two and three dimensions Ω2 = 2π,
∫

dΩ2 =
∫ 2π

0 dθ sin θ, Ω3 = 4π,
∫

dΩ3 =∫ π
0 dϕ

∫ 2π
0 dθ sin θ.
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where

LP(t) =− 1
γ
∇1 · [FP(t)] +

T
γ
∇2

1P(t)

+
1

qγ
∇2 · [FP(t)] +

T
qγ

∇2
2P(t), (6.27)

and

Ls · [pP(t)] = −∇1 ·
[

1
γ

fspP(t)
]

(6.28)

accounts for the swim force.
To get an equation for ϕ, we integrate Eq. 6.26 over the orientational

degrees of freedom, which gives

∂tϕ = ⟨∂tP(t)⟩ = Lϕ +
1
d

Ls · σ. (6.29)

The integral over the orentational degrees of freedom of the product
of n with Eq. 6.26 gives an equation for σ:

∂tσ =d ⟨n∂tP(t)⟩

=− τ−1σ + Lσ + Lsϕ +
2

2 + d
Ls · ω (6.30)

where τ−1 = (d − 1)Dr + α is the inverse of the relaxation time of the σ
mode, which is equal to the autocorrelation time of the orientation vector
n (see Eqs. 1.82 and 3.4).

The integral over the orientational degrees of freedom of the product
of nn − 1/d with Eq. 6.26 gives an equation for ω:

∂tω =− τ−1
ω ω + Lω + A : Lsσ + Ls · Υ, (6.31)

where τ−1
ω = 2dDr + α is the inverse of the relaxation time of the ω mode,

and

Υ =
2d

2 + d
⟨n (nn − 1/d)Θ (P(t))⟩ , (6.32)

involves higher order coefficients of the expansion in Eq. 6.24.
Equations 6.29, 6.30 and 6.31 are exact and form a hierarchy of equa-

tions. However, this hierarchy is not closed due to the Υ term in Eq. 6.31.
Often the hierarchy is closed by assuming that the ”nematic” order (ω) in
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the system is negligible [146], or that the projection onto the higher order
modes is zero [238]. Here we do not do this as ω is not small in general.
However, as shown explicitly, below, on a coarse-grained level where one
only considers the position of the dimer and not the positions of the two
particles individually, it will turn out that the contribution to the flux from
ω and Υ are of the order ∼ ∇3 and can therefore be ignored.

6.A.4 Elimination of the Internal Degree of Freedom

Next we use the following coordinate transformation:

R =
1

1 + q
r1 +

q
1 + q

r2, r′ = r1 − r2, (6.33)

where R is the ’center-of-friction’ coordinate, which we call the collective
coordinate, and r′ is the internal degree of freedom. The gradient with
respect to the R coordinate is ∇R, and the gradient with respect to the
r′ coordinate is ∇r′ . With this, the equation for the density (Eq. 6.29)
becomes

∂tϕ =
1

1 + q
T
γ
∇2

Rϕ − 1
1 + q

1
d

1
γ
∇R · ( fsσ)

−∇r′ ·
[

1
γ

fsσ +
1 + q

q
1
γ

Fϕ − 1 + q
q

T
γ
∇r′ϕ

]
. (6.34)

We are interested in the large scale behaviour of the system, so we want
to know

ρ(R, t) =
∫

V
ddr′ ϕ(R, r′, t), (6.35)

which obeys

∂tρ = −∇R · J, (6.36)

where J = JD + Jσ,

JD = − 1
1 + q

T
γ
∇Rρ (6.37)
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is the flux due to passive diffusion, and

Jσ =
1

1 + q
1

dγ

∫
V

ddr′ fsσ, (6.38)

is the flux due to the activity. In the new coordinates, the equations for p
and ω become,

(1 + τ∂t)σ =−
(

1
1 + q

∇R +∇r′

)
τ

γ
( fsϕ)−

1 + q
q

τ

γ
∇r′ · (Fσ)

+ τ

(
1

1 + q
∇2

R +
1 + q

q
∇2

r′

)
σ

− 2
2 + d

τ

γ

(
1

1 + q
∇R +∇r′

)
· ( fsω) , (6.39)

(1 + τω∂t)ω =− τω∇R · MR − τω∇r′ · Mr′ . (6.40)

The form of the tensors MR and Mr′ are not shown explicitly because
these terms are only used to show that they have a contribution to ρ of
the order of ∼ O

(
∇3

R
)

and can therefore be neglected.

The density ρ obeys a continuity equation, is therefore locally con-
served and relaxes on a time scale ∼ O

(
(∇R)

−1). The p and ω modes
relax on a time scale τ and τω, respectively. So ρ can be identified as the
slow mode, n and ω are the fast modes; therefore, one can set the time
derivatives in the two previous equations to zero.

Furthermore, we are interested in the limit where the gradient of the
swim force is small compared to the separation between the two parti-
cles and small compared to the persistence length of the active particle
(τ fs/γ). The expansion coefficients are functions of R and r′. Gradients
in R of these functions are of the same order as gradients of the swim
force and are therefore small. Gradients in r′ of the expansion coefficients,
however, are not small, but these can be moved around in the integral by
integration by parts and turned into gradients with respect to R by using
∇r′ fs = ∇r′ fs(R + q

1+q r′) = q
1+q∇R fs. We will neglect terms ∼ O

(
∇3

R
)

in
Eq. 6.36, which means that we neglect terms ∼ O

(
∇2

R
)

when calculating
Jσ .
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We can than use Eq. 6.39 to calculate Jσ :

Jσ =− 1
(1 + q)2

1
dγ2

∫
V

ddr′ τ fs∇R( fsϕ)

− 1
1 + q

1
dγ2

∫
V

ddr′ τ fs∇r′( fsϕ)

− 1
q

1
dγ2

∫
V

ddr′ τ fs∇r′ · (Fσ)

+
1

1 + q
1

dγ

∫
V

ddr′ τ fs

(
1

1 + q
∇2

R +
1 + q

q
∇2

r′

)
σ

+
2

2 + d
1

1 + q
τω

dγ2

∫
V

ddr′ d fs

(
∇R

1 + q
+∇r′

)
· ( fsω). (6.41)

In the last two integrals, one can use integration by parts to make the ∇r′ ’s
(also the ones in ω, see Eq. 6.40) act on fs, and ∇r′ fs ∝ ∇R fs to show that
the last two integrals are second order in ∇R and can be neglected. For
the second and third integral we use integration by parts. This gives

Jσ =− 1
(1 + q)2

τ

dγ2

∫
V

ddr′ fs∇R( fsϕ)

+
q

(1 + q)2
τ

dγ2

∫
V

ddr′ ϕ fs∇R fs +
1

1 + q
τ

dγ2 I, (6.42)

where

I =
∫

V
ddr′ (F · ∇R fs) σ, (6.43)

=− τ

γ

∫
V

ddr′ F · (∇R fs)∇r′ ·
(

1ϕ fs +
1 + q

q
Fσ

)
(6.44)

=
τ

γ

∫
V

ddr′
(

1ϕ fs +
1 + q

q
σF
)
· ∇r′ (F · ∇R fs) . (6.45)

Next we use

∇r′(F · ∇R fs) = (∇r′F) · ∇R fs +O(∇2
R fs), (6.46)

and

∇r′F = −k∇r′ [(r′ − l0)r̂′] = −kA, (6.47)

with A = r̂′ r̂′ + (1 − r/r′)(1 − r̂′ r̂′), and r′ = |r′| and r̂′ = r′/r′. Note that
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F · A = F. With this, I becomes

I =− τk
γ

∫
V

ddr′ ϕ fs A · ∇R fs −
1 + q

q
τk
γ

∫
V

ddr′ (F · ∇R fs) σ, (6.48)

=− τk
γ

∫
V

ddr′ ϕ fs A · ∇R fs −
1 + q

q
τk
γ

I, (6.49)

=− qτk/γ

q + (1 + q)τk/γ

∫
V

ddr′ ϕ fs A · ∇R fs. (6.50)

With this Eq. 6.42 becomes

Jσ =− 1
(1 + q)2

τ

dγ2

∫
V

ddr′ fs∇R( fsϕ) +
q

(1 + q)2
τ

dγ2

∫
V

ddr′ ϕ fs∇R fs

− 1
(1 + q)2

τ

dγ2
q(1 + q)τk/γ

q + (1 + q)τk/γ

∫
V

ddr′ ϕ fs A · ∇R fs. (6.51)

Next we consider two cases for the potential: First, a rigid bond mod-
eled as a harmonic spring with infinite spring constant and a nonzero rest
length. Second, a harmonic spring with zero rest length.

Rigid Bond

If the force is infinitely strong, that is k → ∞,

lim
k→∞

q(1 + q)τk/γ

q + (1 + q)τk/γ
= q. (6.52)

Furthermore, we can approximate ϕ(R, r′, t) ≈ ρ(R, t)δ(r′ − l0)l1−d
0 /Ωd,

because r′ ≈ l0 as k → ∞, and the deviation from a uniform distribution
on a sphere (or circle for d = 2) is proportional to gradients of the swim
force and therefore contributes to the flux terms of the order ∼ O

(
∇2

R
)
.

With this approximation the first two integrals in Eq. 6.51 become

− 1
(1 + q)2

τ

dγ2

∫
V

ddr′ fs∇R( fsϕ) +
q

(1 + q)2
τ

dγ2

∫
V

ddr′ ϕ fs∇R fs

=− 1
(1 + q)2

τ

dγ2

(
f 2
s ∇Rρ − qρ

1
2
∇R f 2

s

)
, (6.53)

where the swim force has been taken out of the integral because fs =
fs(r) = fs(R + r′q/(1 + q)) = fs(R) +O(∇R fs). The last integral in Eq.
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6.51 becomes

− q
(1 + q)2

τ

dγ2

∫
V

ddr′ ϕ fs A · ∇R fs

=− q
(1 + q)2

τ

2dγ2 ρ fs(∇R fs) ·
∫

V
ddr′

r′1−d

Ωd
δ(r′ − l0)R,

=− q
(1 + q)2

τ

dγ2 ρ fs(∇R fs) ·
∫

dΩ
r̂′(Ω)r̂′(Ω)

Ωd
,

=− q
(1 + q)2

τ

dγ2 ρ
1

2d
∇R f 2

s , (6.54)

where we used
∫

dΩd r̂′(Ω)r̂′(Ω) = Ωd1/d. With this, we find

Jσ =− 1
(1 + q)2

τ

dγ2 f 2
s (R)∇Rρ − ϵ

(1 + q)2
τ

dγ2 ρ
1
2
∇R f 2

s (R), (6.55)

where

ϵ = 1 − q
d − 1

d
. (6.56)

The total flux is

J =JD + Jσ ,

=− 1
1 + q

T
γ
∇Rρ − 1

(1 + q)2
τ

dγ2 f 2
s (R)∇Rρ

− ϵ

(1 + q)2
τ

dγ2 ρ
1
2
∇R f 2

s (R),

= V(R)ρ − D(R)∇Rρ, (6.57)

where

D(R) =
1

1 + q
T
γ
+

1
(1 + q)2

τ

dγ2 f 2
s (R), (6.58)

is the space-dependent diffusion coefficient, and

V(R) = −1
2

ϵ
1

(1 + q)2
τ

dγ2∇R f 2
s (R), (6.59)

= −1
2

ϵ∇RD(R), (6.60)

is the drift velocity.
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The flux-free steady-state solution for ρ is

ρ ∝
[

1 +
1

1 + q
τ

dγT
f 2
s (R)

]− 1
2 ϵ

. (6.61)

For ϵ = 0 the density is flat and independent of the swim-force profile.
This happens when q is equal to

q0 =
d

d − 1
=

{
3/2 for d = 3,
2 for d = 2.

(6.62)

In the limit of highly mobile cargo, that is q → 0, the density becomes

ρ ∝
[

1 +
τ

dγT
f 2
s (R)

]− 1
2

, (6.63)

which is the density of a single active particle in a space dependent swim
force [144, 153]

In the limit of high friction cargo (q → ∞) the density becomes

ρ ∝ exp
[

d − 1
2d

τ

dγT
f 2
s (R)

]
. (6.64)

Whether the drift velocity (Eq. 6.60) is up or down the swim force
gradient, depends on the sign of ϵ: when ϵ > 0 ( q < d/(d − 1)) the
drift velocity is down the swim force gradient, which corresponds to an-
tichemotaxis; when ϵ < 0 ( q > d/(d− 1)) the drift velocity is up the swim
force gradient, which corresponds to chemotaxis. For the infinitely strong
potential with nonzero rest length, ϵ = 0 for q = d/d − 1, and decreases
with increasing q, so with increasing friction of the cargo, the chemotactic
behaviour increases. The maximum drift velocity is obtained for

qmax =
3d − 1
d − 1

=

{
5 for d = 2,
4 for d = 3.

(6.65)

Harmonic Force With Zero Rest Length

We are interested in the range where the separation between the two par-
ticles is small compared to the gradients of the swim force. Because of this,
for the first two integral in Eq. 6.51, we can use ϕ(R, r′, t) ≈ ρ(R, t)δ(3)(r′).
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This, together with A(l0 = 0) = 1, gives

Jσ =− 1
(1 + q)2

τ

dγ2 f 2
s (R)∇Rρ − ϵ

(1 + q)2
τ

dγ2 ρ
1
2
∇R f 2

s (R), (6.66)

where

ϵ = 1 − q2

q + (1 + q) τk
γ

. (6.67)

The total flux and steady-state density are the same as for the rigid bond
(Eq. 6.57 and Eq. 6.61), but with ϵ given by the previous equation. Note
that in the limit k → ∞, ϵ = 1, and the dimer behaves like a single active
particle with a increased friction constant. The k = 0 limit cannot be
captured by the theory, as it violates the assumption that the separation
between the two particles is small compared to the gradients in the swim
force. The value of q for which the density is flat, obtained by equating ϵ
to zero, is

q0 =
1
2

(
1 +

τk
γ

)
+

1
2

√(
1 +

τk
γ

)2

+ 4
τk
γ

. (6.68)

In the small q limit the dimer behaves the same as a single active parti-
cle with an increased friction constant, and the steady-state density is the
same as for the rigid bond (Eq. 6.63). In the limit of large q, the steady-
state density becomes

ρ(R) ∝ exp

[
1

1 + τk
γ

τ

2dγT
f 2
s (R)

]
. (6.69)

6.A.5 The Born-Oppenheimer Approximation

Here we derive the steady-state density in the limit q → ∞. Only the
derivation for the dimer with a rigid bond is shown; the derivation for
the harmonic potential is similar. In this limit, the dynamics of the cargo
particle are much slower than the dynamics of the active particle. Due to
this separation of time scales, we can use a Born-Oppenheimer approxi-
mation [222]. In this approximation, we calculate the average force that
the active particle exerts on the passive cargo particle that is fixed at the
origin. To be more precise, we start by calculating the average force on
the active particle due to a fixed potential U. The equations for an active
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particle in a potential are

∂tr =
1
γ

F + fs(r)n +
√

2T/γξ, (6.70)

∂tn =
√

2Drn × η+ tumbling, (6.71)

where F = −∇1U(r) with U(r) = 1
2 k(r1 − l0)2. The corresponding FPE is

∂tW(r, n, t) =−∇1 ·
[

1
γ

FW − T
γ
∇1W

]
−∇1 ·

[
1
γ

fsnW
]

+ DrR2W − αW + αϕ, (6.72)

where the last two terms account for the tumbling and

ϕ(r, t) =
∫

dΩdW(r, p(Ωd), t). (6.73)

The probability density W can be expanded in the same way is P(t):

W(t) = ϕ + σ · n + ω : (nn − 1/d) + Θ (W(t)) , (6.74)

where ϕ, σ and ω are functions of r and t. The equation for the coefficients
are obtained, as before, by taking scalar products. The equation for ϕ is

∂tϕ = −∇1 · J, (6.75)

where

J =
1
γ

Fϕ − T
γ
∇1ϕ +

1
dγ

fsσ. (6.76)

The equation for σ is

∂tσ =− τ−1σ −∇1 ·
[

1
γ

Fσ − T
γ
∇1σ

]
−∇1

[
1
γ

fsϕ

]
−∇1 ·

[
1
γ

fsω

]
. (6.77)

The average force on the active particle due to the potential is

Favg =
∫

ddr F(r)ϕ(r), (6.78)

where ϕ is the steady-state density. In steady state, the flux is zero, and
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Eq. 6.76 can be used to rewrite the expression for the average force:

Favg =
∫

ddr T∇1ϕ −
∫

ddr γ
1

dγ
fsσ. (6.79)

The first integral is zero because ϕ(r = ∞) = 0, which shows that thermal
diffusion does not contribute to the average force. In the second integral,
σ can be replaced by the expression in Eq. 6.77 with ∂tσ = 0. This gives

Favg =
1

dγ

∫
ddr fsτ∇1( fsϕ) +

1
dγ

∫
ddr fsτ∇1 · (Fσ)

− 1
dγ

T
∫

ddr fsτ∇2
1σ +

1
dγ

∫
ddr fsτ∇1 · ω. (6.80)

The third and fourth integrals are second order in ∇1 and can be ne-
glected. This can be seen by integrating by parts twice (there is also a
∇1 in ω). For the first two integrals we use integration by parts. This
gives

Favg =− τ

dγ

∫
ddr ϕ fs∇1 fs −

τ

dγ

∫
ddr σF · ∇1 fs, (6.81)

=− τ

dγ

∫
ddr ϕ fs∇1 fs −

τ

dγ
I, (6.82)

where

I ≡
∫

ddr σF · ∇1 fs, (6.83)

=− τ

γ

∫
ddr F · (∇1 fs) [∇1 · (Fσ) +∇1( fsϕ)] , (6.84)

=
τ

γ

∫
ddr [σF + fsϕ1] · ∇1(F · ∇1 fs), (6.85)

where in the second line we ignored terms O
(
∇2

1 fs, (∇1 fs)2), and used
integration by parts to go to the last line. Next we use again that

∇1 (F · ∇1 fs) = (∇1F) · ∇1 fs +O
(
∇2

1 fs

)
, (6.86)

and

∇1F = −k∇1 [(r − l0)r̂1] = −kA, (6.87)
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where A ≡ r̂1r̂1 +
(

1 − l0
r1

)
(1 − r̂1r̂1) , r1 = |r1|, and r̂1 = r1/r1. With this

I becomes

I = −τk
γ

∫
ddr ϕ fs A · ∇1 fs −

τk
γ

∫
ddr σF · fs, (6.88)

= −τk
γ

∫
ddr ϕ fs A · ∇1 fs −

τk
γ

I, (6.89)

= − τk/γ

1 + τk/γ

∫
ddr ϕ fs A · ∇1 fs, (6.90)

where we used F · A = F.
The average force then becomes

Favg =− τ

dγ

∫
ddr ϕ fs∇1 fs +

τk/γ

1 + τk/γ

τ

dγ

∫
ddr ϕ fs A · ∇1 fs. (6.91)

For an infinitely stiff potential k → ∞, and

lim
k→∞

τk/γ

1 + τk/γ
= 1, (6.92)

and we can approximate ϕ(r) ≈ 1
Ωd

r1−d
1 δ(r1 − l0), because the deviation

from a uniform distribution is proportional to gradients in the swim force,
so it contributes to the second order term in the average force. Further-
more, if gradients in the swim force are small compared to r, the terms
with swim force can be taken out of the integral, as the error is ∼ O(∇R).
In this limit, the average force becomes

Favg =− τ

2dγ

[
∇1 f 2

s

]
r1=0

∫
ddr ϕ +

τ

2dγ

[
∇1 f 2

s

]
r1=0

·
∫

dΩd
1

Ωd
r̂1r̂1,

=− d − 1
d

τ

2dγ

[
∇1 f 2

s

]
r1=0

, (6.93)

where we used
∫

dΩd r̂1r̂1 = 1Ωd/d. Note that the average force on the
cargo particle is −Favg.

Now consider the case where the position of the passive cargo particle
is no fixed to the origin, but it moves slowly compared to the active parti-
cle. Then, if the cargo particle is at position r2, it experiences an effective
force

Fe f f =
d − 1

d
τ

2dγ
∇2 f 2

s (r2), (6.94)
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which is minus Favg with the origin shifted to the location of the cargo par-
ticle. The equation of motion of a passive Brownian particle with friction
qγ diffusing in a force field Fe f f is

∂tr2 =
1

qγ
Fe f f +

√
2T/qγχ. (6.95)

The corresponding FPE is

∂tρ(r2, t) = −∇2 · J, (6.96)

J =
1

qγ
Fe f f ρ − T

qγ
∇2ρ. (6.97)

Equating the flux to zero gives the steady-state density distribution:

ρ(r2) ∝ exp
[

d − 1
d

τ

2dγT
f 2
s (r2)

]
, (6.98)

which is the same as Eq. 6.64. Note that to calculate the effective force (
Eq. 6.94) and the flux (Eq. 6.97) in this limit it is not necessary to calculate
the steady-state density of an active particle in a fixed potential, which is
a difficult problem on its own [145, 148].

6.A.6 Average Position of the Dimer

In this section we show the derivation of the average position of the dimer
in a box with length L. This is the theory shown in Fig. 3 in the main text.
The simulations were done with a Weeks-Chandler-Anderson potential
[219] for the walls. Here we ignore the details of the interaction of the
dimer with the walls and model the walls as zero-flux boundary condition
at the walls. The average position of the dimer in the box is

R̄ =
∫ L/2

−L/2
dR Rρ(R, t). (6.99)

The time derivative of this is

∂tR̄ = −
∫ L/2

−L/2
dR R∂R J(R, t), (6.100)

=
∫ L/2

−L/2
dR J(R, t), (6.101)
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where we used the zero-flux condition at the boundaries. If the system
starts with a homogeneous bulk density ρb, and we substitute Eq. 6.57 for
the flux, the time derivative at t = 0 becomes

∂tR̄|t=0 = −1
2

ϵρb

∫ L/2

−L/2
dR∂RD, (6.102)

= −1
2

ϵ

(1 + q)2
τ

dγ2 ρb

∫ L/2

−L/2
dR∂R f 2

s . (6.103)

The most important feature of this equation is

∂tR̄|t=0 ∝
ϵ

(1 + q)2 , (6.104)

because indicates the dependence of ∂tR̄|t=0 on q independent of the swim-
force profile or the geometry of the container.

For the case in Fig. 3 in the main text fs(R) = f0
√

R + L/2, with
f0 =

√
6. With this we get,

∂tR̄|t=0 = −1
2

ϵ

(1 + q)2
τ

dγ2 f 2
0 ρbL, (6.105)

which is what is shown in Fig. 3 in the main text with ρb = 1/L and f0 =√
6. In Fig. 6.8 we show a comparison between the theoretical prediction

(Eq. 6.105 and a fit of 6.104 to simulation data.

6.A.7 Comparison to Active Temperature

Because Brownian particles coupled to different thermostats have shown
interesting behaviour [239–242], we consider here a modification of the
active-passive dimer model where the dimer is made up from a passive
particle and a particle with a space-dependent temperature. We do not
consider this an approximate model for the active-passive dimer, where
the activity is approximated by an effective temperature, as this concept,
although useful in some contexts, is not a well defined in general for far-
from-equilibrium active-matter systems [243, 244]. Models where parti-
cles have different temperatures have recently received much attention
[239–242].

The steady-state density of a single passive Brownian particle with a
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Figure 6.8: The system setup
is the same as Fig. 2 in the
main text. The data (sym-
bols) and theoretical predic-
tion (dashed line, Eq. 6.105)
for the initial change in the
average position of the dimer
in the box. The solid shows
Eq. 6.104 with the prefactor
fitted to the data (as in Fig.
3 of the main text). Even-
though there is a discrepancy
between the theoretical prediction and the simulation results for small values of
q, the dendence on q is accurately captured by the theory, as is indicated by the
fit of Eq. 6.104 (sollid line). The mismatch between the theoretical prediction and
the data is likely due to boundary effects in the simulation, which are ignored in
the theory.

space-dependent temperature is [27]

ρ(r1) ∝
1

T(r1)
, (6.106)

see Section 1.3.2 Eq. 1.68. If a high temperature corresponds to a high
activity, this corresponds to antichemotactic behaviour. If such a particle
is bound to a heavy cargo particle, does it, as the active-passive dimer,
become chemotactic?

If the persistence length of the active particle δ = τ fs/γ is constant all
the integration by parts for ∇r′ in Eq. 6.41 yield zero, and up to first order
in the gradient, Jσ becomes

Jσ = − 1
(1 + q)2

1
dγ2

∫
V

ddr′ τ fs∇R( fsϕ). (6.107)

Using the same approximations as before yields for the total flux the same
as Eq. 6.57 but with ϵ = 1. The density of the dimer in this case is just
that of a single active particle with friction (1 + q)γ. So the only effect of
increasing q is that it increases the friction of the dimer, and there is no q
for which the dimer is chemotactic. Note that this holds for any δ, not just
in the ”active temperature” limit.

This result can also be obtained from the Born-Oppenheimer approach.
In this case all the integrals in Eq. 6.80 yield zero (this can be obtained
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by integrating by parts), and the average force is zero. So again, this
shows that if the persistence length is constant the dimer acts as a single
active particle with increased friction and does not exhibit chemotactic
behaviour for any q.

In the limit δ → 0, a self-propelled particle with space-dependent
swim force but constant persistence length becomes equivalent to a pas-

sive Brownian particle with temperature Te f f = τ f 2
s

dγ + T [35]. Therefore,
the previous consideration shows that a dimer build from a passive Brow-
nian particle in a temperature gradient attached to a passive cargo parti-
cle with a spatially independent temperature does not exhibit chemotactic
behaviour for any value of q.

6.A.8 Run-and-Tumble Dimer in One Dimension

Because ABPs are not defined in one dimension, and RTPs in one dimen-
sion have a discrete orientation (either in the positive or in the negative
direction), we show the derivation of the flux of the collective coordinate
for this case separately. Because a fixed bond length in one dimension
means that there is no internal degree of freedom, we only consider the
case of a harmonic potential with different spring constants between the
active and passive particle. The equations of motion are

∂tx1 =
1
γ

F +
1
γ

fs(x1)n +
√

2T/γξ1 (6.108)

∂tx2 = − 1
qγ

F +
√

2T/γξ2, (6.109)

where x1 is the coordinate of the active particle with friction constant γ
and swim force fs, x2 is the coordinate of the passive cargo particle with
friction constant qγ, T is the temperature in units such that the Boltzmann
constant is unity, and ξ1 and ξ2 are white noise with zero mean and auto-
correlation ⟨ξ1(t)ξ1(t′)⟩ = ⟨ξ2(t)ξ2(t′)⟩ = δ(t − t′). The orientation of the
active particle is n ∈ {+1,−1}, which points either in the positive (right
moving) or the negative (left moving) direction. With rate α the active
particle randomizes its orientation (so it changes direction with rate α/2).
The force of the RTP on the passive cargo particle is F = −∂1U, where
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U = − 1
2 k(x1 − x2)

2. The corresponding FPE equation is [228]

∂tϕR(t) =− ∂1

[
vϕR(t) +

1
γ

FϕR(t)−
T
γ

∂1ϕR(t)
]

− ∂2

[
− 1

qγ
FϕR(t)−

T
qγ

∂2ϕR(t)
]

− 1
2

αϕR(t) +
1
2

αϕL(t), (6.110)

∂tϕL(t) =− ∂1

[
−vϕL(t) +

1
γ

FϕL(t)−
T
γ

∂1ϕL(t)
]

− ∂2

[
− 1

qγ
FϕL(t)−

T
qγ

∂2ϕL(t)
]

+
1
2

αϕR(t)−
1
2

αϕL(t), (6.111)

where ϕR(t) = ϕR(x1, x2, t) (ϕL(t) = ϕL(x1, x2, t)) is the probability den-
sity of a right (left) moving RTP at x1 and a cargo particle at x2.

Next we perform the same steps as in the two or three dimensional
case. First we transfrom the equations using

ϕ(t) = ϕR(t) + ϕL(t), (6.112)
σ(t) = ϕR(t)− ϕL(t), (6.113)

where ϕ(t) = ϕ(x1, x2, t) is the density and σ(t) = σ(x1, x2, t) is the excess
of dimers with a right moving RTP. The equation density is

∂tϕ(t) =− ∂1

[
vσ(t) +

1
γ

Fϕ(t)− T
γ

∂1ϕ

]
− ∂2

[
− 1

qγ
Fϕ(t)− T

qγ
∂2ϕ

]
,

(6.114)

and

∂tσ(t) =− ασ(t)− ∂1

[
vϕ(t) +

1
γ

Fσ(t)− T
γ

∂1σ

]
− ∂2

[
− 1

qγ
Fσ(t)− T

qγ
∂2σ

]
. (6.115)

We use the same coordinate transformation as before:

X =
1

1 + q
x1 +

q
1 + q

x2 x′ = x1 − x2. (6.116)
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In these coordinates, the equations for ϕ and σ become

∂tϕ(t) =− 1
1 + q

1
γ

X [ fsσ − TXϕ]

− 1
γ

x′
[

fsσ +
1 + q

q
Fϕ − 1 + q

q
Tx′ϕ

]
, (6.117)

∂tσ(t) =− ασ − 1
1 + q

1
γ

X [ fsϕ − TXσ]

− 1
γ

x′
[

fsϕ +
1 + q

q
Fσ − 1 + q

q
Tx′σ

]
. (6.118)

Note that, in contrast with the two or three-dimensional cases (Eqs. 6.29
and 6.30), the set of equations for ϕ and σ is exact and closed.

6.A.9 Coarse Graining the RTP Dimer

Because we are interested in the large scale behaviour of the system, we
want to know

ρ(X, t) =
∫

dx′ ϕ(X, x′, t), (6.119)

which obeys

∂tρ = −∂X J, (6.120)

where J = JD + Jσ,

JD = − 1
1 + q

T
γ

∂Xρ (6.121)

is the flux due to passive diffusion, and

Jσ =
1

1 + q
1
γ

∫
dx′ fsσ (6.122)

is the flux due to the activity. The density obeys a continuity equation
(Eq. 6.119), so is locally conserved and relaxes on a time scale of the order
∼ O

(
(∂X)

−1). From Eq. 6.117 it follows that σ relaxes on a time scale
1/α. So, as in the three dimensional case, ρ can be identified as the slow
degree of freedom and σ as the fast degree of freedom; one can therefore
neglect the time derivative in Eq. 6.118. Derivatives with respect to X
of ρ and σ are of the same order as ∂X fs, which is small. Derivatives
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with respect to x′ of ρ and σ are not small, but the can be turned into
derivatives with respect to X by integration by parts and using ∂x′ fs =
∂x′ fs(X + q

1+q x′) = q
1+q ∂X fs. Because derivatives with respect to X are

small, we neglect terms of the order O
(
∂3

X
)

in Eq. 6.119, which means we
can neglect terms of the order O

(
∂2

X
)

in Eq. 6.122.

Using Eq. 6.118 and ∂tσ ≈ 0 to replace σ in Eq. 6.122, we find

Jσ =
1

(1 + q)2
T

γ2α

∫
dx′ fs∂

2
Xσ − 1

(1 + q)2
1

γ2α

∫
dx′ fs∂X ( fsϕ)

− 1
1 + q

1
γ2α

∫
dx′ fs∂x′ ( fsϕ)−

1
q

1
γ2α

∫
dx′ fs∂x′ (Fσ)

− 1
q

T
γ2α

∫
dx′ fs∂

2
x′σ. (6.123)

The first integral can be ignored because it is second order in derivatives
with respect to X. The same holds for the last integral because one can
integrate by parts twice. For the second and third integral we use integra-
tion by parts. This gives

Jσ =− 1
(1 + q)2

1
γ2α

∫
dx′ fs∂X ( fsϕ) +

q
(1 + q)2

1
γ2α

∫
dx′ ϕ fs∂X fs

+
1

1 + q
1

γ2α
I, (6.124)

where

I ≡
∫

dx′ σF∂X fs. (6.125)

Using Eq. 6.118 again to replace σ and ignoring second order derivatives
with respect to X, we find

I =− 1
αγ

∫
dx′ F(∂X fs)∂x′

[
fsϕ +

1 + q
q

Fσ

]
, (6.126)

=
1

αγ

∫
dx′ ∂x′ [F(∂X fs)]

[
fsϕ +

1 + q
q

Fσ

]
. (6.127)

The force is F = −kx′, so ∂x′ [F(∂X fs)] = −k∂X fs +O(∂2
X fs). With this, I
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becomes

I =− k
αγ

∫
dx′ ϕ fs∂X fs −

k
αγ

1 + q
q

∫
dx′ σF∂X fs,

=− k
αγ

∫
dx′ ϕ fs∂X fs −

k
αγ

1 + q
q

I,

=−
q k

αγ

q + (1 + q) k
αγ

∫
dx′ ϕ fs∂X fs. (6.128)

With the approximation ϕ(X, x′, t) ≈ ρ(X, t)δ(x′) and the result for I, Jσ

becomes

Jσ =− 1
(1 + q)2

1
γ2α

f 2
s (X)∂Xρ − 1

(1 + q)2
1

γ2α

1
2

ϵρ∂X f 2
s (X), (6.129)

where

ϵ = 1 − q2

q + (1 + q) k
γα

. (6.130)

The total flux is

J =JD + Jσ = V(X)ρ − D(X)∂Xρ, (6.131)

where

D(X) =
1

1 + q
T
γ
+

1
(1 + q)2

1
γ2α

f 2
s (X) (6.132)

is the space-dependent diffusion constant, and

V(X) = −1
2

ϵ∂XD(X) (6.133)

is the drift velocity. The zero-flux steady-state density is

ρ(X) ∝
[

1 +
1

1 + q
1

γTα
f 2
s (X)

]− 1
2 ϵ

. (6.134)

Note that this is the same as the three dimensional case (Eq. 6.61 and ϵ
shown in Eq. 6.67) with d = 1 and τ = 1/α, the autocorrelation time of
the orientation of a one-dimensional RTP.
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6.A.10 Numerical Solution

Equations 6.117 and 6.118 can be solved numerically by a first order dis-
cretization of the space and time coordinates. Because these equations are
exact, the numerical solution can be used to test the theoretical predic-
tion for the steady-state density distribution Eq. 6.134, as well as explore
interparticle potentials for which there is no theoretical prediction.
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Active Colloidal Molecules

This chapter contains results which have been published in ref. [185].
Reprinted (adapted) with permision from H.D. Vuijk, S. Klempahn, H.
Merlitz, J.-U. Sommer, and A. Sharma. Physical Review E 106, 014617,
2022. Copyright (2018) by the American Physical Society.

129



130 CHAPTER 7. ACTIVE COLLOIDAL MOLECULES

In this chapter, we consider a rigid assembly of two active Brownian
particles (ABPs), forming a so called active colloidal dimer, in a gradient
of activity. We show analytically that depending on the relative orien-
tation of the two particles the active dimer accumulates in regions of ei-
ther high or low activity, corresponding to, respectively, chemotaxis and
antichemotaxis. Certain active dimers show both chemotactic and an-
tichemotactic behavior, depending on the strength of the activity. Our
coarse-grained Fokker-Planck approach yields an effective potential, which
we use to construct a nonequilibrium phase diagram that classifies the
dimers according to their tactic behavior. Moreover, we show that for
certain dimers a higher persistence of the motion is achieved similar to
the effect of a steering wheel in macroscopic devices. The results of this
chapter could be useful for designing autonomous active colloidal struc-
tures which adjust their motion depending on the local activity gradients,
without any feedback mechanism [116, 118, 119] or time-dependent activ-
ity [211, 225, 245–247].

Colloidal sized active Brownian particles (APBs) can be assembled
into active colloidal molecules [125], for example, dimers and tadpole
shaped particles [128, 129, 248], active polymers [127], or more complex
structures [249, 250]. From a theoretical perspective, active particles con-
nected in a chain to form polymers, have recently received much atten-
tion [185, 227, 251–257]. In contrast to Chapter 6, here we consider an
active dimer where the orientation of the active particles that constitute
the dimer are fixed with respect to the bond vector (see Fig. 7.1), which
corresponds to the experimental systems in refs. [128, 129, 248]. In par-
ticular, we study the behaviour of active colloidal dimers with a space
dependent swim force, and how the orientation of the active particles rel-
ative to the bond vector affects the dimer’s behaviour, as proposed in Ref.
[258]. With the recent advances in fabrication techniques, colloidal parti-
cles can now be assembled into desired structures [259–264]. Since struc-
ture determines the functionality of the active dimer our study could be
important for the design of active matter for environmental and medical
applications where, generally, one has little or no control over the external
gradients [92].

7.1 The Model

We consider a two dimensional model consisting of two ABPs [90] at-
tached to each other forming an active colloidal dimer, see Fig. 7.1. The
motion of the dimer is governed by the following stochastic differential
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Figure 7.1: A sketch of an active
colloidal dimer consisting of two active
Janus particles. The orientation vectors
n1 and n2 of the active particles are
shown in blue. The angles ϕ1 and ϕ2
are the angles between n1 and n2 and
the vector connecting the centers of the
particle.

equations (SDEs):

∂tr1 = 4F + 4 fs(r1)n1 + 2ξ1, (7.1)
∂tr2 = −4F + 4 fs(r2)n2 + 2ξ2, (7.2)

where r1 and r2 are the positions of particle 1 and 2, the vector ξ1 and ξ2
are random Gaussian vectors with ⟨ξ1(t)⟩ = ⟨ξ2(t)⟩ = 0, ⟨ξ1(t)ξ1(t

′)⟩ =
⟨ξ2(t)ξ2(t

′)⟩ = 1δ(t − t′), fs(r) is the active force at position r, and n1
(n2) is the direction of the active force on particle one (two). The force F
holds the two particles together. In the following we take this force to be
strong enough to keep the two particles at a fixed distance l from each
other. Furthermore, this force fixes the orientation of the two ABPs rela-
tive to the bond vector. The unit of length and time are such that l = 1
and the diffusion constant of the center-of-mass coordinate of the dimer
is unity. The unit of force is 2T/l, where T is the temperature in units
such that the Boltzmann constant is unity. Note that in contrast to other
theoretical studies [133, 153, 208, 265], the rotational diffusion constant
is not a free parameter, but comes from the translational diffusion of the
two particles. Note that, in order to keep our analysis general, we do not
take into account the torque on the two active particles due to the activity
gradient because this depends on the specific self-propulsion mechanism
[266]. However, this torque can be included in the analysis presented
here. We ignore the hydrodynamic interaction between the two particles,
and their effect on the self-propulsion [93, 267–270] Because the distance
between the two particles is constant, the two translational degrees of
freedom of the two particles can be transformed to the center-of-mass co-
ordinate of the dimer R = (r1 + r2)/2 and θ, the angle between the bond
vector n = r1 − r2 = (cos θ, sin θ) and the x-axis. We call the bond vector
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n the orientation of the dimer. The corresponing SDEs are

∂tR = 2 [ fs(r1)n1 + fs(r2)n2] +
√

2ξ, (7.3)

∂tθ = −4n·ϵ· [ fs(r1)n1 − fs(r2)n2] +
√

8η, (7.4)

where r1 = R + 1
2 n, r2 = R − 1

2 n, ϵyx = −ϵxy = 1, ϵxx = ϵyy = 0, ξ and η
are a random Gaussian vector and number, respectively, with ⟨ξ(t)⟩ = 0,
⟨ξ(t)ξ(t′)⟩ = 1δ(t − t′), and ⟨η(t)⟩ = 0, ⟨η(t)η(t′)⟩ = δ(t − t′). The free
parameters in this study are the swim force fs(r) and the two angles ϕ1
and ϕ2.

The Fokker-Planck equation (FPE) corresponding to the SDEs 7.3 and
7.4 governs the time evolution of the probability density P(R, θ, t) [235].
We coarse grain this equation by integrating out θ and only retain terms
up to order ∼ O

(
∇2). This results in an FPE for the probability density

of the dimer ρ(R, t) = 1
2π

∫
dθP(R, θ, t). In the following we only con-

sider steady-state properties. From the FPE one can extract the steady-
state density ρ(R), flux J(R) and polarization p(R) = ρ−1(R)

∫
dθnP(R).

Details of the coarse graining procedure and the calculation of the steady-
state properties are shown in App.7.A.1.

7.2 Results and Discussion

Before we discuss the solution to the FPE, we inspect Eqs. 7.3 and 7.4 to
understand what kind of behavior one can expect from this system. To do
this, we ignore terms ∼ O(∇2 fs), and assume that the swim force only
depends on the x coordinate. Equations 7.3 and 7.4 then become

∂tx =2 fs(x)
(
c+nx − s+ny

)
−
(
c−nx − s−ny

)
nx∂x fs(x) +

√
2ξx (7.5)

∂ty =2 fs(x)
(
s+nx + c+ny

)
−
(
s−nx + c−ny

)
nx∂x fs(x) +

√
2ξy (7.6)

∂tθ =− 4s− fs(x)− 2s+nx∂x fs(x) +
√

8η, (7.7)

where x = R · êx, y = R · êy, c± = cos(ϕ1)± cos(ϕ2), and s± = sin(ϕ1)±
sin(ϕ2).

Because of the torque on the orientation of the dimer, that is the −4s− fs
term in Eq. 7.7, these dimers are chiral active particles [90, 271], and be-
cause of that they are odd diffusive [272], meaning that they have diffu-
sive fluxes perpendicular to density gradients (see App. 7.A.3).

In order to get a better physical understanding of the different contri-
butions to the equations of motion, a few illustrative examples are dis-
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cussed. A dimer with ϕ1 = ϕ2 = 0, shown in the inset of Fig. 7.2 (a), is
structurally similar to a single ABP. Accordingly, this dimer accumulates
where the swim force is small. Dimers where the two active particles have
opposite orientations along the orientation vector are shown in the insets
of Fig. 7.2 (b) and (c). These dimers are symmetric under nx → −nx. Since
the swim-force varies only along the x coordinate, at any location, a dimer
with ϕ1 = 0, ϕ2 = π, experiences a net force towards the region of small
swim force (antichemotactic) whereas an dimer with ϕ1 = π, ϕ2 = 0 ex-
periences a net force towards the region of large swim force (chemotactic).

A particularly interesting structure is an dimer with ϕ1 = ϕ2 = π/2
shown in the inset of Fig. 7.2 (f). In this case, the orientations of the two
particles are parallel to each other and perpendicular to the orientation
vector. The equations of motion are

∂tx =− 4ny fs(x) +
√

2ξx, (7.8)

∂ty =4nx fs(x) +
√

2ξy, (7.9)

∂tθ =− 4nx∂x fs(x) +
√

8η. (7.10)

The first two of these equation are the same as that for a ABP with rotated
orientation vector. In the equation of motion of the angle, however, a
new feature appears. There is an active torque on the dimer prortional
to nx and the gradient in the swim force. This torque rotates the dimer,
like a steering wheel, in such a way that the orientation vector points in
the direction perpendicular to the gradient in the swim force, therefore,
this torque stabilizes the dimer such that the active forces point in the
direction opposite the gradient in the swim force. Accordingly, this dimer
accumulates where the swim force is small.

Dimers in which the orientations of the two active particles have oppo-
site orientations and perpendicular to the orientation vector are shown in
the insets of Fig. 7.3 (a) and (b). For ϕ1 = π/2, ϕ2 = 3π/2, the equations
of motion are

∂tx =2nynx∂x fs(x) +
√

2ξx, (7.11)

∂ty =− 2n2
x∂x fs(x) +

√
2ξy, (7.12)

∂tθ =− 8 fs +
√

8η. (7.13)

Two features of these equations are noteworthy. Firstly, there is an ac-
tive torque acting on the dimer (the −8 fs part in the equation for the time
evolution of the angle). This is equivalent to the active torque in case of
an active chiral particle [55, 271, 273]. Secondly, the term −n2

x∂x fs(x) in
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Figure 7.2: Density for different
dimers (see insets) relative to the bulk
density ρb =

∫ L
0 dxρ(x)/L, where L =

25 is the simulation box with peri-
odic boundary conditions. The ori-
entations of the particles in the dimer
are indicated in the figure. The sym-
bols show the simulation of Eqs. 7.3
and 7.4, the solid line show the the-
oretical prediction (Eq. 7.15), and the
red dashed line in (a) shows the shape
of the swim-force profile fs(x) =
8 [1 + sin (2πx/L + 3π/2)]. The ori-
entation of the particles in the dimer
can be used to control wether the
dimer accumulates in regions where
fs is small (panels a,b, e and f), or in
regions where fs is large (panels c and
d).

the time evolution equation for the y coordinate is nonzero on average
for a fixed value of x. Since there is translational invariance in the y di-
rection, this effective force, remains unbalanced giving rise to stationary
fluxes perpendicular to the swim-force and density gradients. Note that
since the dimer is symmetric under nx → −nx, on average the x coor-
dinate gets no contribution from the swim-force gradients. Accordingly,
this dimer shows no preferential accumulation in a swim-force gradient.
The behaviour of a dimer with ϕ1 = 3π/2, ϕ2 = π/2 (inset of Fig. 7.3 (b))
is similar except that its chirality is reversed.

The structural properties of the dimer, namely net activity propor-
tional to fs, force proportional to ∇ fs, torque proportional to fs, and a
torque proportional to ∇ fs, are determined by the orientation of the two
particles and result in two classes of steady-state behaviour. One could
design the dimer in such a way that it preferentially moves towards re-
gions with high or low swim force. Going beyond the examples above, for
a generic structure of the dimer, the stationary density distribution can be
obtained from the coarse grained Fokker Planck equation by setting the
flux along the gradient of swim force to zero (for details of the derivation
see App. 7.A.4). This yields

ρ(x) ∝ exp(−U), (7.14)
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Figure 7.3: Flux perpen-
dicular to swim-force gra-
dients. The bulk density is
ρb =

∫ L
0 dxρ(x)/L with L = 25.

These transverse fluxes are
reminiscent of, for instance,
chemotactic sea urchin sperm
swimming in the presence
of a chemical source [274].
The swim force is fs(x) =
8 [1 + sin (2πx/L + 3π/2)]
(same as Fig 7.2). The orien-
tations of the particles in the
dimer are shown in the figures.

with

U =
c

2d
fs +

b
4d

ln
(

1 + d f 2
s

)
+

ad − c
2d3/2 atan

(√
d fs

)
, (7.15)

where a = c−, b = c2
+ + 2s2

+, c = s2
−c− − s−s+c+, and d = 1

2(2s2
− + c2

+ +

s2
+). Figure 7.2 shows the stationary density distribution of dimers with

different structures obtained from simulations of Eqs. 7.3 and 7.4. De-
pending on the structure, dimers accumulate in the regions where swim
force is small or large. The theoretical predictions (Eq. 7.15) are in agree-
ment with the simulations.

The steady-state density distribution obtained from the coarse grained
Fokker Planck equation is Boltzmann-like with an effective potential (U).
However, this does not imply that on this coarse-grained level the dy-
namics obey detailed balance; there are configurations of the dimer that
result in steady-state fluxes in the direction perpendicular to gradients
in the swim force (see Fig. 7.3). For instance, a dimer with ϕ1 = π/2
and ϕ2 = 3π/2 is a chiral particle that rotates clockwise whereas a dimer
with ϕ1 = 3π/2 and ϕ2 = π/2 rotates anticlockwise. While these dimers
show no preferential accumulation (U = 0 in Eq. 7.15), the gradient in the
swim force gives rise to a net force along the y direction that gives rise to
fluxes Jy = −ρb∂x fs for the clockwise dimer (Fig. 7.3(a)) and Jy = ρb∂x fs
for the anticlockwise dimer (Fig. 7.3(b)). In case of a generic dimer struc-
ture, for which the stationary distribution is not homogeneous (Fig. 7.3(c-
d)), the flux along the y direction is perpendicular to the density gradient
(along x). Fluxes perpendicular to the density gradients is a characteristic
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Figure 7.4: Phase diagrams for the tactic behaviour of dimers for fs = 0.5 in (a)
and fs = 5 in (b). Every point in the ϕ1-ϕ2 plane corresponds to a different dimer
structure. The blue region corresponds to antichemotactic dimers, which experi-
ence an effective force down the swim-force gradients (U′ > 0). The red region
corresponds to chemotactic dimers (U′ < 0). These tactic regions are separated
by white boundaries which correspond to dimers which show no preferential ac-
cumulation (U′ = 0). The phase behaviour is dependent on the magnitude of the
swim force implying that the same dimer can be chemotactic or antochemotactic
depending on the magnitude of the swim force.

property of odd-diffusive systems [234, 272, 275]. The odd-diffusive flux
of active dimers can be obtained from the coarse grained Fokker Planck
equation (see App. 7.A.4). These fluxes are a clear indication of broken
detailed balance, and show that on this coarse-grained level not all prop-
erties of the dimer can be captured by the effective potential (Eq. 7.15)
alone.

Whether a dimer accumulates in small or large swim-force regions is
determined by the effective force that it experiences in swim-force gradi-
ents. The effective force can be obtained from the effective potential as
−∇U = −U′∇ fs, where U′ = dU

d fs
. Wherever U′ < 0 (U′ > 0) the dimer

moves up (down) the swim-force gradient, corresponding to chemotactic
(antichemotactic) behaviour. Figure 7.4(a) shows a phase diagram in the
ϕ1-ϕ2 plane that categorises different dimer structures according to their
tactic behaviour for fs = 0.5. Dimers which show no preferential accu-
mulation in a swim-force gradient correspond to the white lines shown in
Fig. 7.4(a) obtained as U′ = 0.
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Figure 7.5: Top: Density relative to the
bulk density for a dimer with ϕ1 = π/2
and ϕ2 = 0 (see inset) for different val-
ues of the swim force. This is the same
dimer as Fig. 7.2 d. The bulk den-
sity is ρb =

∫ L
0 dxρ(x)/L, where L =

25 is the simulation box with periodic
boundary conditions. The swim force
is fs(x) = f 0

s [1 + sin (2πx/L + 3π/2)],
with the value of f 0

s as indicated in the
legend. Bottom: Derivative of the effec-
tive potential U′ = dU/d fs. Wherever
U′ < 0 (U′ > 0) the dimer is chemotac-
tic (antichemotactic). The density profile
changes qualitatively when the swim
force increases. In this case there is a
single peak in the density where fs is
large for f 0

s = 1/4, as the swim force in-
creases ( f 0

s = 1/2) the peak split in two,
and if the swim force is increased fur-
ther ( f 0

s = 1) a third peak appears.

As can be seen in Fig. 7.4(b), the phase behaviour depends on the mag-
nitude of the swim force. This means that a dimer can be antichemotactic
in case of a small swim force and chemotactic in case of a large swim
force, or vice versa. This can result in ”local” (anti)chemotaxis, as shown
in Fig. 7.5, where at low swim force there is a single peak in the density
that coincides with the peak in fs, as the swim force increases, the peak
splits in two, and on further increasing the swim force a third peak ap-
pears. The density distribution has multiple peaks because U′ is negative
in some regions and positive in others which can be regarded as coexist-
ing chemotactic and antichemotactic dynamic phases.

Using experimental values from Ref. [128] for dimers with a constant
activity, we estimate the change in density relative to a passive region
for the dimer shown in Fig. 7.2 (d) to be ρactive/ρpassive ≈ 4 (see App.
7.A.6 for details of the estimate). While this is a conservative estimate,
it is likely possible to obtain much larger density changes, for example
for the dimer in Fig. 7.2 (b), or by different experimental conditions. To
obtain better predictions for experimental system, it would be interesting
to include the effects of the specific self-propulsion mechanism [276] and
the hydrodynamic interaction between the two particles in the dimer [268,
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269].
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7.A Appendix

7.A.1 Active Dimer Model

The equations of motion for the dimer (see Fig. 7.2) are

∂tr1 =
1
γ

F +
1
γ

fs(r1)n1 +
√

2T/γξ1, (7.16)

∂tr2 = − 1
γ

F +
1
γ

fs(r2)n2 +
√

2T/γξ2, (7.17)

where r1, n1, r2, and n2 are, respectively, the position and orientation vec-
tors of particles 1 and 2, γ is the friction constant of a single particle in the
dimer, fs(r) is the swim force, T is the temperature in units such that the
Boltzmann constant is unity, the vectors ξ1 and ξ2 are random Gaussian
vectors with ⟨ξ1(t)⟩ = ⟨ξ2(t)⟩ = 0 and ⟨ξ1(t)ξ1(t

′)⟩ = ⟨ξ2(t)ξ2(t
′)⟩ =

1δ(t− t′). The force between the two active particles F is always such that
the distance between the two is constant and equal to l.

We make the equations dimensionless by r1 → lr1, r2 → lr2, t →
2γl2t/T and fs(r) → 2T fs(r)/l, so length is measured in units such that
the distance between the two particles is unity, time is measured in units
such that the dimer typically diffuses a unit length per unit time, and
forces are measured in units of 2T/l. The dimensionless equations corre-
sponding to Eqs. 7.16 and 7.17 are

∂tr1 = 4F + 4 fs(r1)n1 + 2ξ1, (7.18)
∂tr2 = −4F + 4 fs(r2)n2 + 2ξ2. (7.19)

These equation can be rewritten using the center-of-mass coordinate
R = 1

2 (r1 + r2) and the relative coordinate r = r1 − r2:

∂tR = 2 [ fs(r1)n1 + fs(r2)n2] +
√

2ξ, (7.20)

∂tr = −8F − 4 [ fs(r1)n1 − fs(r2)n2] +
√

8η, (7.21)

where ⟨ξ(t)⟩ = ⟨η(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = ⟨η(t)η(t′)⟩ = 1δ(t − t′). The
second equation accounts for the relative movement of the two particles,
which can be decomposed in a rotation of the unit vector pointing from
r1 to r2, and a change in the distance between the two particles (see Sec.
7.A.5). r = rn, with n = (cos(θ), sin(θ)). The Langevin equation for the
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change in the distance is

∂tr = −8n·F − 4n· [ fs(r1)n1 − fs(r2)n2] +
√

8n·η. (7.22)

Because the particles are connected by a stiff rod, the force due to the rod
F is always such that r = 1 and ∂tr = 0. The equation for the orientation
is

∂tn =− 8 (1 − nn) ·F − 4 (1 − nn) · [ fs(r1)n1 − fs(r2)n2]

+
√

8 (1 − nn) ·η. (7.23)

This equation should be integrated with the Stratonovich rule. The first
term on the right-hand side is zero because F ∝ n, and the last term can
be replaced by ϵ·nη where ϵyx = −ϵxy = 1 and ϵxx = ϵyy = 0, so

∂tn = 4 (1 − nn) · [ fs(r1)n1 − fs(r2)n2] +
√

8ϵ·η. (7.24)

The previous equation is equivalent to

∂tθ = 4n·ϵ· [ fs(r1)n1 − fs(r2)n2] +
√

8η, (7.25)

with ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t − t′). This equation together with
Eq. 7.20 describes the dynamics of the dimer and are used for the simula-
tions.

7.A.2 Small Gradient Approximation

The orientation vectors of the active particles can be written as a rotation
of the orientation vector of the dimer: n1 = R1n and n2 = R2n, where
R1 = R(ϕ1), R2 = R(ϕ2) and

R(ϕ) =
[

cos ϕ − sin ϕ
sin ϕ cos ϕ

]
. (7.26)

We define A = R1 + R2 = c+1 + s+ϵ and B = R1 − R2 = c−1 + s−ϵ,
where c± = cos(ϕ1)± cos(ϕ2) and s± = sin(ϕ1)± sin(ϕ2).

We assume gradients in the swimforce to be small, so we expand the
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swim force in Eqs. 7.20 and 7.25:

∂tR = 2 fs A·n − n·(∇ fs)B·n +
√

2ξ +O(∇2 fs), (7.27)

∂tθ = 4n·ϵ·B·n fs − 2n·ϵ·A·n n·∇ fs +
√

8η +O(∇2 fs),

= −4s− fs + 2s+n·∇ fs +
√

8η +O(∇2 fs), (7.28)

where fs = fs(R), and ∇ is the gradient with respect to R.

The motion of a single chiral active Brownian particle is described by
[90, 271]

∂tr = vsn +
√

2Dξ, (7.29)

∂tθ = Ω +
√

2Drη, (7.30)

where vs is the swim speed, D the thermal diffusion constant, Ω the
angular velocity of the orientation vector, and Dr is the rotational dif-
fusion constant. Comparing with Eqs. 7.27 and 7.28 shows that, if the
swim force is constant, the swim speed of the dimer is vs = |2 fs A · n| =
2 fs

√
c2
+ + s2

+, its thermal diffusion constant is D = 1, its angular velocity
is Ω = −4s− fs, and its rotational diffusion constant is Dr = 4. The active
diffusion constant is

Da =
v2

s
2Dr

=
1
2

fs

(
c2
+ + s2

+

)
. (7.31)

If Ω ̸= 0 there is a torque on the particle and it swims in circles. These
particles are called circle swimmers [55] or chiral active particles [273]. The
chirality results in diffusive fluxes perpendicular to density gradientss.
This property is called odd diffusion (see App. 7.A.3). By tuning s− one
can tune the chirality and with that the odd diffusivity of these dimers.

The FPE corresponding to Eqs. 7.27 and 7.28 is

∂tP =− 2∇· [ fs A·nP] +∇· [B·n n·(∇ fs)P]

+∇2P + 4s− fsRP − 2s+R [n·(∇ fs)P]

+ 4R2P +O
(
∇3
)

, (7.32)

=− 2Aij∇i
[

fsnjP
]
+ Bij∇i

[
(∇k fs)njnkP

]
+∇2P + 4s− fsRP − 2s+(∇i fs)R [niP]

+ 4R2P +O
(
∇3
)

, (7.33)
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where R = ∂
∂θ = nx

∂
∂ny

− ny
∂

∂nx
. The previous equation is valid up to

third order in the gradient operator because the SDEs (Eq. 7.27 and 7.28)
are only valid up to second order in the gradient.

We expand the probability density in eigenfunctions of R2 (see Sec.
3.2.2):

P(R, n(θ), t) =ρ(R, t) + σ(R, t)·n + τ(R, t): (nn − 1/2) + Θ,

where ρ(R, t) = 1
2π

∫
dθP(R, t) is the density, σ and τ are the coefficients

of, respectively, the second and third moment, and Θ is the projection
onto higher-order moments. If the swim force is uniform (∇ fs = 0), the
system is isotropic and therefore σ = 0, τ = 0 and Θ = 0, all moments
except the zeroth are at least proportional to ∇. For the integral over the
orientation n(θ) we write ⟨·⟩ = 1

2π

∫ 2π
0 dθ ·. The equation for ρ can be

obtained by averaging Eq. 7.33:

∂t ⟨P(t)⟩ =− 2Aij∇i
[

fs
〈
njP
〉]

+ Bij∇i
[
(∇k fs)

〈
njnkP

〉]
+∇2 ⟨P⟩+ 4s− fs ⟨RP⟩ − 2s+ (∇i fs) ⟨RPni⟩

+ 4
〈
R2P

〉
+O

(
∇3
)

. (7.34)

All averages with R in this equation are zero. With ⟨P⟩ = ρ,
〈
njP
〉
= σj/2

and
〈
njnkP

〉
= δjk ⟨P⟩+

〈(
njnk − δjk/2

)
P
〉
= δjkρ/2 + τjk/4 the previous

equation becomes

∂tρ =−∇·J, (7.35)

with

Ji =Aij fsσj −
1
2

Bij
(
∇j fs

)
ρ − 1

4
Bij (∇k fs) τjk −∇iρ +O

(
∇2
)

,

=Aij fsσj −
1
2

Bij
(
∇j fs

)
ρ −∇iρ +O

(
∇2
)

, (7.36)

where in the last step we ignored the term with τ because if there is no
gradient in the swim force, the system is isotropic, so there is no nematic
ordering (τ = 0), and therefore τ ∼ O (∇ fs) and τjk∇k fs ∼ O

(
∇2).

To get an equation for σ, we multiply Eq. 7.33 by nl and average over
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n:

2∂t ⟨nlP⟩ =− 2Aij∇i
[

fs2
〈
njnlP

〉]
+ Bij∇i

[
(∇k fs) 2

〈
njnknlP

〉]
+∇22 ⟨nlP⟩+ 4s− fs2 ⟨nlRP⟩ − 2s+ (∇i fs) 2 ⟨nlRniP⟩

+ 8
〈

nlR2P
〉
+O

(
∇3
)

. (7.37)

With what we used before together with

2
〈
njnknlP

〉
= 2σm

〈
njnknlnm

〉
+
〈
njnknlΘ

〉
= σmT(4)

jklm + χjkl

where T(4)
jklm =

(
δjkδlm+ δjlδkm + δjmδkl

)
and χjkl is the projection of njnknl

on Θ,
2
〈
nlRP

〉
= −2

〈(
Rnl

)
P
〉
= −ϵlm2

〈
nmP

〉
= −ϵlmσm,

2
〈
nlRniP

〉
= −2

〈(
Rnl

)
niP
〉
= −ϵlm2

〈
nmniP

〉
= −ϵlm2

(1
2

δmiρ +
1
4

τmi
)
= −ϵliρ − 1

4
ϵlmτmi,

and
2
〈
nlR2P

〉
= 2

〈(
R2nl

)
P
〉
= −2

〈
nlP
〉
= −σl,

the previous equation becomes

∂tσl =− 2Ail∇i [ fsρ]− Aij∇i
[

fsτjl
]

+ Bij∇i

[
(∇k fs)

(
σmT(4)

jklm + χjkl

)]
+∇2σl − 4s− fsϵlmσm + 2s+ϵli (∇i fs) ρ

+ s+ (∇i fs) ϵlmτmi − 4σl +O
(
∇3
)

. (7.38)

Equation 7.35 shows that the time scale of the time evolution in the den-
sity is ∼ O

(
∇−1). The previous equation show that the time scale of the

time evolution of σ is at least ∼ 4, so compared to ρ, σ is a fast degree
of freedom, and therefore ∂tσ ≈ 0. With this together with σ ∼ O (∇),
τ ∼ O (∇), χ ∼ O (∇), we can re-arrange the previous equation:

σj =− 1
2

1
1 + s2

− f 2
s

[
δjl − s− fsϵjl

]
× [Akl∇k ( fsρ)− s+ϵlk (∇k fs) ρ] +O

(
∇2
)

. (7.39)



144 CHAPTER 7. ACTIVE COLLOIDAL MOLECULES

Equations 7.35, 7.36 and 7.39 describe the coarse-grained dynamics of the
dimer.

7.A.3 Odd Diffusion

Odd-diffusive systems have a diffusion tensor with antisymmetric com-
ponents which can be written as [234, 272, 275, 277]

Dij = D∥δij + D⊥ϵij. (7.40)

Such a diffusion tensor appears in many different kinds of systems, as
chiral active matter [271, 273, 278, 279] and diffusion under Lorentz force
[272, 280–283]. The diagonal components of this tensor (D∥) are related to
the diffusion along the density gradient; the antisymmetric components
(D⊥) are related to the diffusion perpendicular to the density gradient.

The diffusion tensor of the dimers can be calculated from Eqs. 7.36
and 7.39 resulting in

D∥ = 1 + Da
1

1 + ω2 , (7.41)

D⊥ = Da
ω

1 + ω2 , (7.42)

where ω = Ω/Dr = −s− fs is the active angular velocity divided by the
rotational diffusion constant.

7.A.4 Steady State

Density

We calculate the steady-state density for fs = fs(x), so ρ = ρ(x) and
σ = σ(x). In this case the flux in the x-direction is zero:

0 = Jx = fs Axjσj +
1
2

Bxx (∇x fs) ρ −∇xρ. (7.43)

For the first term we use Eq. 7.39:

Axjσj =− 1
2

1
1 + s2

− f 2
s

(
c2
+ + 2s2

+ − s−s+c+ fs

)
(∇x fs) ρ

− 1
2

fs

1 + s2
− f 2

s

(
c2
+ + s2

+

)
∇xρ. (7.44)
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With this, the steady-state density becomes

ρ ∝ e−U, (7.45)

where

∇xU =
1
2
(∇x fs)

×
c− +

(
c2
+ + 2s2

+

)
fs + s− (s−c− − s+c+) f 2

s

1 + 1
2

(
c2
+ + s2

+ + 2s2
−
)

f 2
s

, (7.46)

U =
∫

dx ∇xU,

=
c

2d
fs +

b
4d

ln
(

1 + d f 2
s

)
+

ad − c
2d3/2 atan

(√
d fs

)
, (7.47)

where a = c−, b = c2
+ + 2s2

+, c = s2
−c− − s−s+c+, and d = 1

2

(
2s2

− + c2
+ +

s2
+

)
.

Polarization

The polarization is defined as the average orientation per particle:

p =
⟨nP⟩
⟨P⟩ =

σ

2ρ
. (7.48)

Together with Eq. 7.39, this gives

px = −1
4

1
1 + s2

− f 2
s
[(c+ − 2s−s+ fs)∇x fs − (c+ − s−s+ fs) fs∇xU], (7.49)

and

py =
1
4

1
1 + s2

− f 2
s
[(2s+ + s−c+ fs)∇x fs − (s+ + s−c+ fs) fs∇xU]. (7.50)

Flux

The flux in the y-direction (see Eqs. 7.36 and 7.39) is

Jy = fs Ayjσj −
1
2

Byx (∇x fs) ρ = 2 fs Ayj pjρ − 1
2

Byx (∇x fs) ρ = Vyρ, (7.51)



146 CHAPTER 7. ACTIVE COLLOIDAL MOLECULES

where

Vy =2 fs Ayx px + 2 fs Ayy py −
1
2

Byx (∇x fs) ,

=2 fs
(
s+px + c+py

)
− 1

2
s− (∇x fs) . (7.52)

7.A.5 Torque

The general langevin equation for a vector r is

∂tr = F(r) +
√

2η. (7.53)

The vector r can be decomposed in a length and a orientation: r = rn,
with |n| = 1. With Stratonovich integration one can use n·dn = 0 to find
the equations of motion for n and r:

∂tr = n·∂tr = n·F +
√

2n·η, (7.54)

∂tn =
1
r
(1 − nn) ·F +

√
2

1
r
(1 − nn) ·η. (7.55)

The Fokker-Planck equation corresponding to the last equation is

∂tP(n, t) =− 1
r
(
nx∂y − ny∂x

) [(
nxFy − nyFx

)
P
]

+
1
r2

(
nx∂y − ny∂x

)2 P, (7.56)

=− 1
r

∂θ

[(
nxFy − nyFx

)
P
]
+

1
r2 ∂2

θP, (7.57)

where in the last step we used n = (cos(θ), sin(θ)). The SDE for n is
equivalent to

∂tn =
1
r
(1 − nn) ·F +

√
2

1
r

ϵ·nη, (7.58)

where ϵ =

[
0 −1
1 0

]
, and it is equivalent to

∂tθ =
1
r

nxFy −
1
r

nyFx +
√

2
1
r

η = −1
r

n·ϵ·F +
√

2
1
r

η. (7.59)
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7.A.6 Mapping to Experimental Dimer

Reference [128] reports experiments on dimers similar to the dimers in
our work but with a costant swim force. Example c of Ref. [128] corre-
sponds to ϕ1 = π/2 and ϕ2 = π, which is shown in Fig. 2(e) of the main
text.

The dynamics of this dimer can be described by the following Langevin
equations

∂tr = ṽñ +
√

2D̃ξ, (7.60)

∂tθ = ω̃ +

√
2D̃rη, (7.61)

see Eq. 1, 2 and 3 of Ref. [128]. The experimentally measured value of
the parameters are ṽ = 1.3 µm/s, D̃ = 0.15 µm2/s, ω̃ = 1.1 s−1, and
D̃r = 1/16 s−1 (see Table I row c of Ref. [128]).

The difference between the dimer in Fig. 2(d) and 2(e) of the main text
dissapears if there is no activity gradient. The dynamics of the dimer in
Fig. 2(e) with a constant activity are described by

∂tx =
1

2γ
fs(nx − ny) +

√
T
γ

ξx, (7.62)

∂ty =
1

2γ
fs(nx + ny) +

√
T
γ

ξx, (7.63)

∂tθ = − 1
γl

fs +

√
4T
γl2 η, (7.64)

where we have put the dimensions back in order to compare with the
experimental system.

The x component of the active force is 1
2γ fs(nx − ny), which is equal to

1√
2γ

fsñx, and similarly, for the y component of the active force is 1√
2γ

fsñy,
where ñx and ñy are the x and y components of the unit vector ñ that
points in the direction of the active force. By comparing the previous
equations with Eqs. 7.60 and 7.61 shows that

ṽ =
fs√
2γ

, D̃ =
T

2γ
, ω̃ =

fs

γl
, D̃r =

2T
γl2 . (7.65)
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The dimensionless swim force l fs/(2T) can becalculated in two ways:

l
2T

fs =
ṽ2

2D̃ω̃
≈ 5.1, (7.66)

l
2T

fs =
ṽ√

2D̃D̃r
≈ 9.5. (7.67)

The two ways to calculate the dimensionless force do not agree because
in our model we ignore hydrodynamics and the fact that connnecting the
two ABPs has an effect on their activity.

The ratio of the density of the dimers in an active region and a region
without activity ρactive/ρpassive ≈ 4, or ρactive/ρpassive ≈ 16, depending on
which way the force is estimated.



Chapter 8

Active Brownian Particles in
Time-Varying Activity Fields

This chapter contains results which have been published in:
H. Merlitz, H.D. Vuijk, J. Brader, A. Sharma, and J.-U. Som-
mer. Linear response approach to active Brownian parti-
cles in time-varying activity fields. The Journal of Chemical
Physics, 148(19), 2018.
The text has been rewritten and the simulation data has be
regenerated with different parameters.

149



150 CHAPTER 8. TIME-VARYING ACTIVITY FIELDS

In this chapter the dynamics of an active Brownian particle (ABP) with
a space and time dependent swim speed is studied. In particular, the
polarization and density distribution are calculated for a sinusoidal swim
speed. Furthermore, it is shown that the polarization is phase shifted with
respect to the swim speed, which results in a drift velocity. As an appli-
cation of this result an experimental set up is suggested where the drift
velocity can be used to increase the density of an ABP near a boundary.

8.1 The Model

The motion of the ABP is modeled by the following stochastic differential
equations (SDEs):

∂tr = vs(r, t)n +
√

2Dξ, (8.1)

∂tn =
√

2Drn × η, (8.2)

where r is the position of the ABP, vs is the space and time-dependent
swim speed, n is the orientation of the ABP which is a function of the
solid angle Ω, D its passive diffusion constant, and Dr its orientational
diffusion constant. The stochastic vectors ξ and η are random Gaussian
white noise with ⟨ξ(t)⟩ = ⟨η(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = ⟨η(t)η(t′)⟩ =
1δ(t − t′). Note that there is no coupling between the gradient of the
swim speed and the orientation vector n. Throughout this chapter, the
swim speed is taken to be

vs(x, t) = v0 [s + sin (kx − kct)] , (8.3)

where k is the wave number, c is the wave velocity, and s is the offset,
which must be larger than 1 to make sure the swim speed is positive. In
the following s = 1. With the exception of Sec. 8.5, bulk properties are
studied, and therefore periodic boundaries are used.

The theory is tested with two different active particles with radius
a = 1/2 µm, and a = 1/8 µm. The thermal diffusion constants at room
temperature in water1 are D = 2/(3πa) µm2s−1. We assume that the rota-
tional correlation time is unaffected by the activity, and is therefore equal
to its equilibrium value τ = πa3 s.

1At room temperature T ≈ 4 × 10−21 kg m2 s−2, and the viscosity of water ηs =
10−3 kg m−1 s−1. These values together with the equations for thermal translational dif-
fusion (the Stokes-Einstein relation Eq. A.31 ) and rotational diffusion (Eq. A.14, with
τ = 1/(2Dr)) result in the values presented in the main text.
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The Fokker-Planck equation (FPE) corresponding to Eqs. 8.1 and 8.2 is

∂tP(t) =
(

Leq + δLs
)

P(t), (8.4)

with P(t) = P(r, n, t), δLeq = LD + LR is the equilibrium Fokker-Planck
operator where LD = D∇2 accounts for the thermal diffusion, LR = DrR2

accounts for the rotational diffusion, and δLs = −n · ∇vs accounts for
the nonequilibrium self-propulsion. In App. 8.A it is shown that when
δLs is treated as a perturbation, the nonequilibrium average of a generic
function g(r, n) can be calculated as

⟨g⟩ = ⟨g⟩eq +∫ t

−∞
dt′
∫

d3r′
∫

dΩ′ Peqg(r′, n′)e−(L′
D+L′

R)(t
′−t)n′ · ∇′vs(r′, t′),

(8.5)

where Ω is the solid angle in three dimensions, n′ = n(Ω′), the primed
operators depend and act on the primed variables, and terms of order
∼ O

(
v2

s
)

have been ignored.

8.2 Polarization

First, the polarization is calculated. The polarization is defined as the
average orientation per particle:

p(r, t) =
⟨δ(r − r′(t))n′(t)⟩

ρ(r, t)
, (8.6)

where r′(t) and n′(t) denote the position and orientation of the active par-
ticle at time t, and the angle brackets indicate an average over the noise.
Because the density does not have a linear response to the swim speed
[153], ρ(r, t) in the denominator can be replaced by the bulk density, as
the error is second order in the swim speed. Using Eq. 8.5 with the func-
tion g replaced by n for the remaining average in Eq. 8.6 gives

p(r, t) =
∫ t

−∞
dt′
∫

d3r vs(r′, t′)χ(|r − r′|, |t − t′|), (8.7)
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where

χ(|r − r′|, |t − t′|) = 1
3

exp
[
−|t − t′|

τ

] ∇′ exp
[
− |r−r′|2

4D|t−t′|

]
(4πD|t − t′|)3/2 , (8.8)

is the response function for the polarization (see App. 8.A.1).

Using the swim speed in Eq. 8.3 and evaluating the integrals in Eq. 8.8
gives for the x component of the polarization

p(x, t) = px(r, t) = − v0k cos (kx − kct + ψ)

3
√
(Dk2 + 1/τ)

2 + k2c2
, (8.9)

with phase shift

ψ = atan
(

kc
Dk2 + 1/τ

)
, (8.10)

see App. 8.A.1 for details of the calculations. The y and z components
of the polarization are zero because the swim speed only depends on
the x coordinate. In the comoving frame, x̃ = x − ct, the polarization
is p̃(x̃) = p(x + ct, t), where the tilde indicates coordinates and function
in the comoving frame. With increasing velocity of the activity wave, the
polarization decreases, and the phase shift increases and saturates at π/2.
The decrease of the polarization for increasing c indicates the ABP does
not have enough time to respond to the changing wave activity. A com-
parison between this result and simulations is shown in Fig. 8.1.

8.3 Density

As mentioned before, the density does not have a linear response to the
swim speed [153]. However, the linear-response result for the polariza-
tion can be used to determine the density. Integrating the FPE in Eq. 8.4
over y, z, and the orientational degrees of freedom results in the equation
for the density ρ(x, t) =

∫
dy
∫

dz
∫

dΩP(t):

∂tρ(x, t) =− ∂x J(x, t), (8.11)
J(x, t) =vs(x, t)p(x, t)ρ(x, t)− D∂xρ(x, t). (8.12)
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Figure 8.1: Density (panel b) nor-
malized with the bulk density ρb =
1/10 µm−1, and polarization (panel
c) in the comoving frame for the
swim speed shown in panel a. Sym-
bols show simulation results and the
solid lines the theoretical prediction
(Eq. 8.9 in panel b, and Eq. 8.14
in panel c). The wave velocity c of
the swim speed is indicated in the
legend. The particles have radius
a = 1/2 µm, and the systems size
is 10 µm. The theoretical predictions
match the simulation data. As c
increases, the density and polariza-
tion modulations decrease because
the particle does not have enough
time to respond to the changing swim speed. Note that for c ⪆ 4 µm s−1 the
density is almost flat. The polarization, on the other hand, is still inhomoge-
neous, indicating that even for high wave velocities the particles can respond to
the changing swim speed.

From this the density in the comoving frame can be calculated:

ρ̃(x̃) ∝
∫ λ

0
dx̃′ exp

(
−
∫ x̃+x̃′

x̃
dỹ b(ỹ)

)
, (8.13)

where the tilde indicates functions and variables in the comoving frame,
λ = 2π/k is the wave length of the activity wave, b(ỹ) = (ṽs(ỹ) p̃(ỹ)− c) /D,
and the proportionality constant is determined by the normalization

∫ L
0 dx̃ ρ̃(x̃) =

Lρb, where L is the system size, and ρb is the bulk density. The previous
equation holds for a generic swim speed. If the swim speed is given by
Eq. 8.3 the integrals can be evaluated up to second order in the swim
speed. This results in

ρ̃(x̃) ∝ e−Ũ(x̃), (8.14)
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with

Ũ(x̃) = −
v2

0k

3D
√
(Dk2 + 1/τ)2 + k2c2

×[
sin (kx̃ + ψ1)√

c2/D2 + k2
− cos (2kx̃ + ψ2)

2
√

c2/D2 + 4k2
,
]

(8.15)

for the swim force in Eq. 8.3, and where ψ1 = ψ + atan
( c

Dk
)
, and ψ2 =

ψ + atan
( c

2Dk
)
. See App. 8.A.2 for details of the calculations. Note that

the density modulation decreases as the wave velocity of the activity in-
creases. However, as shown in Fig. 8.1, for values of c for which the
density modulation is almost zero, there can still be a significant modula-
tion in the polarization, as shown in Fig. 8.1. The reason for this is that
the density is a conserved quantity and relaxes on times scales inversely
proportional to gradients (see Eq. 8.11). The polarization, on the other
hand, is not a conserved quantity and relaxes on a time scale τ, which is,
in the cases shown in Fig. 8.1 much shorter than the times scales of the
density relaxation.

8.4 Drift Velocity

Due to the moving activity wave, the active particle is ”dragged” along
with the wave. The drift velocity of the active particles is

vd = lim
t→∞

⟨x⟩ /t =
J

ρb
,

=
1
ρb

1
λ

∫ λ

0
dx vs(x)p(x)ρ(x) =

1
λ

∫ λ

0
dx vs(x)p(x) +O(v3

s ),

=
1
6

v2
0

k2c

(Dk2 + 1/τ)
2 + k2c2

, (8.16)

where the last equality holds for the swim speed in Eq. 8.3 with s = 1.
Note that if there is no phase shift in the polarization p(x) ∝ ∂xvs, and
because of that vd = 0.

The drift velocity has a maximum as a function of k at

km =
1√
Dτ

. (8.17)

As a function of c it has a maximum at cm = Dk + 1/(kτ), which, evalu-
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Figure 8.2: Drift velocity due to a
swim speed wave (Eq. 8.3). The
symbols correspond to simulation re-
sult and the solid line shows the the-
oretical prediction (Eq. 8.16). The
blue lines and symbols correspond to
the ”blue” particle with radius a =
a(b) = 1/2 µm and swim speed v0 =
1 µm/s. The red lines and sumbols
correspond to the ”red” particle with
a = a(r) = 1/8 µm and v0 = 4 µm/s.
The circles correspond to the wave
number such that the peak in the drift
velocity is maximal for the blue paricle: k = km(a = a(b)). Likewise the squares
correspond to k = km(a = a(r)). Note that for k = km(a = a(b)) (circles),
c = cm(a = a(b)) (dashed line), the drift velocity of the blue particle is an order
of magnitude larger than that of the red particle. Similarly for k = km(a = a(r))
(squares), c = cm(a = a(r)) (dotted line), the drift velocity of the red particle
is much larger that than that of the blue particle. The discrepancy between the
theory and the simulations of the blue particle with k = km(a = a(b)) (circles)
indicates the break down of the linear-response domain.

ated at km is

cm = 2

√
D
τ

. (8.18)

The maximum value of the drift velocity is

vd(km, cm) =
1

24
v2

0

√
τ

D
. (8.19)

Note that km and cm depend on D and τ, which are both functions of
the particle radius. Using the equilibrium values for τ = 1/(2Dr) =
4πηsa3/T and D = T/(6πηsa), where a is the radius of the particle, gives
km ∼ a−1, cm ∼ a−2, and vd(km, cm) ∼ v2

0a2. The self-propulsion velocity
of self-diffusiophoretic particles (see Section 2.2.1) scales inversely with
the size of the particle, vs ∼ a−1 (see Sec. 2.2.1). In that case, the maximum
drift velocity is independent of the size of the particle, vd(km, cm) ∼ a0.
The drift velocity as a function of c for two different particles sizes are
shown in Fig. 8.2.
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8.5 Confined Particles

On a time scale larger that 1/(kc) the effect of the activity can be captured
by an effective force Fe = γvd. This is the equivalent conservative force
that is needed to move a passive particle with friction constant γ with
velocity vd. The effective potential corresponding to this force is Ue =
−
∫ x dx Fe = −γvdx. One cannot have a linear potential and periodic

boundary conditions. Therefore, in this section the particle is confined
between walls at x = 0 and x = L.

In the low activity limit the effect of the active motion is to increase
the diffusion constant of the ABP. To take this into account an effective
temperature is used. In equilibrium the temperature is equal to γD. By
analogy, the effective temperature is Te = γ(D + Da), where

Da =
1
λ

∫ λ

0
dx Da(x) =

1
2

τv2
0, (8.20)

where Da(x) = τv2
s (x)/3 is the active diffusion constant (see Eq. 3.19),

and the last equality holds for the swim speed given in Eq. 8.3.
The steady-state density is given by the Boltzmann distribution

ρ(x) ∝ e−Ue(x)/Te = ex/λ, (8.21)

where

λ =
T + τv2

0/2
γvd

=
D + Da

vd
, (8.22)

is the length scale of the exponential decay of the density. Note the simi-
larity of this density and length scale and the density and length scale of
the sedimentation problem (Eqs. 3.64 and 3.66). The relative minus sign
in the exponential compared with the sedimentation problem, is there be-
cause in this case the ”sedimentation” velocity (vd) is in the positive x
direction in stead of the negative z direction.

As shown in Fig. 8.3, the particles size determines the drift velocity for
a given activity wave. The drift velocity of a particle with radius a = 1/2,
with a swim speed wave tuned to the optimal values (k = km and c = cm)
for a particle with radius a = 1/8, is orders of magnitude smaller that
the drift velocity of a particle of radius a = 1/8 with the same swim
speed wave. This results in a different effective potential for the two par-
ticles, and with that a different density distribution. In particular, one can
change the properties of the swim speed wave (k and c) and selectively
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Figure 8.3: Accumulation of active
particles at the right wall due to the
induced drift velocity. The particles
are contained between two walls at
x = 0 and x = 200 µm. The sym-
bols represent simulation results, and
the solid line show the theoretical pre-
diction (Eq. 8.21). The red and blue
colors correspond to the ”blue” (a =

a(b) = 1/2 µm, v0 = v(b)0 = 1 µm/s)
and ”red” (a = a(r) = 1/8 µm, v0 =

v(r)0 = 4 µm/s) particles in Fig. 8.2.
The top panel corresponds to k =
km(a = a(b)) (circles in Fig. 8.2) and
c = cm(a = a(b)) (dashed line in Fig.
8.2). The bottom panel corresponds to
k = km(a = a(r)) (squares in Fig. 8.2)
and c = cm(a = a(r)) (dotted line in Fig. 8.2). By choosing the wave number
and wave speed appropriately one can enrich particles with a specific size at the
boundary. This can possibly be used to separate particles by their size.

enrich the density of particles with a certain size at one of the boundaries
of the container; see Fig 8.3.

8.6 Conclusion

In this chapter it was shown how active particles orient in a time- and
space-dependent activity field, without a coupling between the gradient
in the activity and the orientation of the particle. In particular, it was
shown how this results in a drift velocity in the direction of the activity
wave. These results could be used to transport active particles, either
synthetic or biological, or their cargo to a desired location, which has a
wide range of applications [175, 182, 197, 198, 284, 285]
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8.A Appendix: Linear-Response Theory

The FPE corresponding to the SDEs 8.1 and 8.2 is

∂tP(t) =
(

Leq + δLs
)

P(t), (8.23)

with P(t) = P(r, n, t), δLeq = LD + LR is the equilibrium Fokker-Planck
operator where LD = D∇2 accounts for the thermal diffusion and LR =
DrR2 accounts for the rotational diffusion, and δLs = −n · ∇vs accounts
for the nonequilibrium self-propulsion2. The probability can be written
as P(t) = Peq + δP(t), where Peq is the equilibrium probability density,
that is, the probability density for vs = 0. In equilibrium the translational
and orientational degrees of freedom are not coupled:

Peq =
ρb
Ωd

, (8.24)

where ρb is the bulk density.

Because ∂tP(t) = ∂tδP(t), the time evolution of the nonequilibrium
part (δP(t)) of the probability is

∂tδP(t) = (LD + LR + δLs)
(

Peq + δP(t)
)

(8.25)

= (LD + LR) δP(t) + δLsPeq +O
(

v2
s

)
, (8.26)

where the δLsδP(t) term is ignored because it is second order in the swim
speed. The previous equation can be integrated with an integrating factor,
resulting in

δP(t) =e−(LD+LR)(ti−t)δP(ti) +
∫ t

ti

dt′ e−(LD+LR)(t′−t)δLs(t′)Peq, (8.27)

where ti an arbitrary initial time, the nonequilibrium operator is written
as δLs(t′) to indicate that the swim speed should be evaluated at t′. One
can take the initial probability to be Peq, such that δP(ti) = 0, and the

2Note that this is an operator equality meaning that δLs f (r, n, t) = −n ·
∇ [vs(r, t) f (r, n, t)] for a generic function f .
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initial time to be ti = −∞. With this,

P(t) =Peq + δP(t),

=Peq +
∫ t

−∞
dt′ e−(LD+LR)(t′−t)δLs(t′)Peq,

=Peq −
∫ t

−∞
dt′ Peqe−(LD+LR)(t′−t)n · ∇vs(r, t′), (8.28)

where in the last line δLs(r, n, t′)Peq = −Peqn · ∇vs(r, t′) was used.
The probability density can be used to calculate the average of a generic

function f (r, n):

⟨g⟩ = ⟨g⟩eq +∫ t

−∞

∫
d3r′

∫
dΩ′ Peqg(r′, n′)e−(L′

D+L′
R)(t

′−t)n′ · ∇′vs(r′, t′), (8.29)

where ⟨g⟩eq indicates and average with respect to the equilibrium proba-
bility density, and the primes indicate that the operators act on the primed
coordinates. Using that∫

d3r′
∫

dΩ′ h(r′, n′)e−(L′
D+L′

R)(t
′−t) f (r′, n′) =∫

d3r′
∫

dΩ′ f (r′, n′)e−(L′
D+L′

R)(t
′−t)h(r′, n′), (8.30)

the average can be written as

⟨g⟩ = ⟨g⟩eq +∫ t

−∞

∫
d3r′

∫
dΩ′ Peq

[
n′ · ∇′vs(r′, t′)

]
e−(L′

D+L′
R)(t

′−t)g(r′, n′),

(8.31)

where the square brackets indicate that the operator ∇′ only acts on vs.

8.A.1 Polarization

The polarization, that is the average orientation per particles, is

p(r, t) =
⟨δ (r − r′(t)) n′(t)⟩

⟨δ (r − r′(t))⟩ =
⟨δ (r − r′(t)) n′(t)⟩

ρ(r, t)
. (8.32)
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Because the density does not have a linear response to the swim speed, it
can be replaced by the bulk density [153]. The remaining average can be
calculated using Eq. 8.31:

pi(r, t) =− 1
ρb

∫ t

−∞
dt′
∫

d3r′
∫

dΩ′ Peq

[
n′

j · ∇′
jvs(r′, t′)

]
e−(L′

D+L′
R)(t

′−t)δ(r − r′)n′
i

=− 1
ρb

∫ t

−∞
dt′
∫

d3r′ ρb

[
n′

j · ∇′
jvs(r′, t′)

]
e−L′

D(t
′−t)δ(r − r′)∫

dΩ′ 1
Ω3

n′
je
−L′

R(t
′−t)n′

i, (8.33)

where Peq = ρb/Ω3 was used. For the last integral one can use

e−LR(t′−t)ni =
∞

∑
k=0

[−(t′ − t)]k

k!
(DrR2)kni

=
∞

∑
k=0

[−(t′ − t)]k

k!

(
−1
τ

)k
ni

=e−(t′−t)/τni, (8.34)

where DrR2n = −2Drn = −n/τ was used, and τ = 1/(2Dr) is the
orientational correlation time. Using this, together with

∫
dΩnn = Ω31/3

(see Sec. 3.2.2), the polarization becomes

pi(r, t) =− 1
3ρb

∫ t

−∞
dt′e−(t′−t)/τ

∫
d3r′ ρb

[
∇′

ivs(r′, t′)
]

e−L′
D(t

′−t)δ(r − r′). (8.35)

Using ∇′vs(r′, t′) =
∫

d3r′′δ(r′′ − r′)∇′′vs(r′′, t′) the polarization can be
written as

pi(r, t) =− 1
3ρb

∫ t

−∞
dt′e−(t′−t)/τ

∫
d3r′′

[
∇′′

i vs(r′′, t′)
]

∫
d3r′ ρbδ(r′′ − r′)e−L′

D(t
′−t)δ(r − r′)

=
1

3ρb

∫ t

−∞
dt′
∫

d3r′′ e−(t′−t)/τvs(r′′, t′)∇′′
i G
(
|r − r′′|, |t′ − t|

)
,

(8.36)
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where for the ∇′′ operator integration by parts was used, and

G
(
|r − r′′|, |t′ − t|

)
=
∫

d3r′ δ(r′′ − r′)e−L′
D(t

′−t)δ(r − r′)

=
exp

[
− |r′′−r′|2

4D|t−t′|

]
(4πD|t − t′|)3/2 (8.37)

is the probability that a particle starts at r and diffuses to r′′ in time t′ − t.
With this, the polarization can be expressed as

p(r, t) =
∫ t

−∞
dt′
∫

d3r′ vs(r′, t′)χ
(
|r − r′|, |t′ − t|

)
, (8.38)

where

χ
(
|r − r′|, |t′ − t|

)
=

1
3

e−(t′−t)/τ∇′G
(
|r − r′|, |t′ − t|

)
, (8.39)

is the response function for the polarization.

In order to calculate the polarization it is more convenient to use Eq.
8.36 and use integration by parts to let the operator ∇′′ act on the swim
speed:

p(r, t) =− 1
3

∫ t

−∞
e−(t′−t)/τ

∫
d3r′

[
∇′vs(r′, t′)

]
G
(
|r − r′|, |t − t′|

)
=− 1

3

∫ ∞

0
e−t′/τ

∫
d3r′

[
∇′vs(r′, t − t′)

] exp
[
− |r′′−r′|2

4Dt′

]
(4πDt′)3/2 . (8.40)

For the swim speed profile in the main text vs = v0 [1 + sin (kx − kct)],
only the x component of the polarization is nonzero. Evaluating the inte-
grals with this swim speed results in

p(x, t) =− v0kπ

3
cos (kx − kct + ψ)√
(Dk2 + 1/τ)

2 + c2k2
, (8.41)

where p(x, t) is the x component of p(x, t), and the phase shift is

ψ = atan
(

kc
Dk2 + 1/τ

)
, (8.42)

and τ = 1/(2Dr) is the orientational correlation time.
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8.A.2 Density

The equation for the particle density

ρ(x, t) =
∫

dy
∫

dz
∫

dΩ P(r, n, t) (8.43)

can be obtained by integrating the FPE 8.23 over the orientational degrees
of freedom, and using

∫
dΩR2P(x, t) = 0:

∂tρ(x, t) =− ∂x J(x, t), (8.44)
J(x, t) =vs(x, t)p(x, t)ρ(x, t)− D∂xρ(x, t), (8.45)

where the polarization comes from
∫

dΩnP(x, t) = ρ(x, t)p(x, t).

In the comoving frame, x̃ = x − ct, this equation becomes

∂tρ(x̃, t) =− ∂x̃ J(x̃, t), (8.46)

J̃(x̃, t) = [ṽs(x̃) p̃(x̃, t)− c] ρ̃(x̃, t)− D∂x̃ρ̃(x̃, t), (8.47)

where ρ̃(x̃, t) = ρ(x̃ + ct, t), p̃(x̃, t) = p(x̃ + ct, t) J̃(x̃, t) = J(x̃ + ct, t), and
ṽs(x̃) = vs(x̃ + ct, t), are, respectively, the density, polarization, flux and
swim speed in the comoving frame.

In the steady state in the comoving frame ∂tρ̃ = 0, and therefore the
flux in the comoving frame must be a constant. Integrating the flux over
one period λ = 2π/k gives

J̃ =
1
λ

∫ λ

0
dx̃ J̃ = −ρbc +

1
λ

∫ λ

0
dx̃ ṽs(x̃) p̃(x̃)ρ̃(x̃), (8.48)

where the time variable is no longer written because in the comoving
frame the functions do not depend on time.

To obtain an equation for the density, Eq. 8.47 is rewritten as

J̃
D

exp
(
−
∫ x̃

x̃0

dỹ b(ỹ)
)
= −∂x̃

[
exp

(
−
∫ x̃

x̃0

dỹ b(ỹ)
)

ρ̃(x̃)
]

, (8.49)

where x̃0 is an arbitrary constant. Integrating this from x̃ to x̃ + λ, and
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using that ρ̃ and b are periodic, gives

J̃
D

∫ λ

0
dx̃′ exp

(
−
∫ x̃+x̃′

x̃
dỹ b(ỹ)

)
=[

1 − exp
(
−
∫ λ

0
dỹ b(ỹ)

)]
ρ̃(x̃), (8.50)

after x̃′ → x̃′ + x̃. Integrating over x̃ from 0 to L and rearranging results
in

J̃
ρb

= DL
1 − exp

(
−
∫ λ

0 dỹ b(ỹ)
)

∫ λ
0 dx̃

∫ λ
0 dx̃′ exp

(
−
∫ x̃+x̃′

x̃ dỹ b(ỹ)
) , (8.51)

which gives, in addition to Eq. 8.48, another expression for the flux. Using
Eq. 8.50 to replace J̃ in the previous expression, gives an equation for the
density in the comoving frame:

ρ̃(x̃)
ρb

= λ

∫ λ
0 dx̃′ exp

(
−
∫ x̃+x̃′

x̃ dỹ b(ỹ)
)

∫ λ
0 dx̃

∫ λ
0 dx̃′ exp

(
−
∫ x̃+x̃′

x̃ dỹ b(ỹ)
) . (8.52)

Up to second order in the swim speed, the integrals can be evaluated:

ρ̃(x̃) ∝
∫ λ

0
dx̃′ exp

[
−
∫ x̃+x̃′

x̃
dỹ b(ỹ)

]
∝
∫ λ

0
dx̃′ ecx̃′/D

[
1 −

∫ x̃+x̃′

x̃
dỹ ṽs(ỹ) p̃(ỹ)

]
+O(v4

s ).

∝ 1 − c/D
ecλ/D − 1

∫ λ

0
dx̃′ ecx̃′/D

∫ x̃+x̃′

x̃
dỹ ṽs(ỹ) p̃(ỹ) +O(v4

s ). (8.53)

Resulting in

ρ̃(x̃) ∝ e−Ũ(x̃), (8.54)
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where in the comoving frame

Ũ(x̃) =
c/D

ecλ/D − 1

∫ λ

0
dx̃′ ecx̃′/D

∫ x̃+x̃′

x̃
dỹ ṽs(ỹ) p̃(ỹ) +O(v4

s ). (8.55)

=−
v2

0k

3D
√
(Dk2 + 1/τ)2 + k2c2

×[
sin (kx̃ + ψ1)√

c2/D2 + k2
− cos (2kx̃ + ψ2)

2
√

c2/D2 + 4k2
,
]

(8.56)

for the swim force in Eq. 8.3, and where ψ1 = ψ + atan
( c

Dk
)
, and ψ2 =

ψ + atan
( c

2Dk
)
.
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Appendix A

Hydrodynamics

This chapter reviews basic fluid dynamics. The main results are the
rotational and translational friction of a sphere (Sections A.3 and A.4), the
friction of a rod (Section A.5), and Lorentz’s reciprocal theorem (Section
A.6).

A.1 The Navier-Stokes Equation

The dynamics of fluids are governed by the Navier-Stokes equation. This
equation is a consequence of mass conservation and Newton’s equations
of motion applied to an infinitesimal fluid element. Because the mass of
the fluid is locally conserved, the change in density of an infinitesimal
fluid element at position r at time t is equal to minus the flow of mass
through the boundary of that element. This condition results in a conti-
nuity equation for the time evolution of the mass density:

∂tρ(r, t) +∇ · [u(r, t)ρ(r, t)] = 0, (A.1)

where ρ(r, t) and u(r, t) are, respectively, the mass density and the veloc-
ity of the fluid at position r at time t. That the second term in the conti-
nuity equation is equal to the flow of mass through the boundary follows
from the divergence theorem.

In many applications the fluid is incompressible1. This means that the

1Whether a fluid can be considered as incompressible depends both on the properties
of the fluid as on its flow. For example, air is highly compressible; however, when the
velocities are small compared to the speed of sound, it can be considered as incompress-
ible.
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density an observer moving along with the fluid measures is constant. So
if r(t) is the position of the observer, dr/dt = u(r(t), t). The equation
corresponding to this statement is

0 =
d
dt

ρ(r(t), t) =
∂

∂t
ρ + u · ∇ρ. (A.2)

In this case the continuity equation for the mass density (Eq. A.1) becomes

∇ · u = 0, (A.3)

which is called the incompressibility equation. In the following it is not
only assumed that the fluid is incompressible, but also that is has a con-
stant density.

Newton’s equations of motion applied to an infinitesimal volume ele-
ment gives the Navier-Stokes equation

ρ (∂tu + u · ∇u) = ∇ · Σ + fe, (A.4)

where Σ = Σ(r, t) is the stress tensor, and fe = fe(r, t) is an external force
per unit volume acting on the fluid (e.g. a force coming from the interac-
tion with a boundary or colloid in the fluid). The left-hand side represents
the inertial forces. The stress tensor accounts for the forces due to gradi-
ents in the pressure and due to viscous forces. This tensor has units of
force per unit area, so dS · Σ = dS n̂ · Σ, where dS is an infinitesimal area
with area dS and normal vector n̂, is the force on a infinitesimal area. For
an incompressible fluid with constant shear viscosity, the stress tensor is
[286]

Σ = −p(r, t)1 + ηs

[
∇u + (∇u)T

]
, (A.5)

where p(r, t) is the pressure, ηs is the shear viscosity, [∇u]ij = ∂iuj, and
the superscript T indicates a transpose. The second term on the right hand
side of the previous equation represent shear stresses. They are stresses
due to spatial inhomogeneities in the velocity field. These stresses result
in forces perpendicular to the normal vector of an area element called
shear forces. The expression for the shear stress comes from a lowest or-
der expansion in ∂iuj, because the shear stress vanishes if the flow field
is independent of space, and the requirement that shear stress vanishes
when u = Ω × r, where Ω is the angular velocity, because this corre-
sponds to a rotation of the fluid [13, 287]. With this stress tensor the
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Navier-Stokes equation becomes

ρ (∂tu + u · ∇u) = −∇p + ηs∇2u + fe, (A.6)

where ∇2u is the vector Laplacian acting on the flow field. For a more
rigorous derivation of the Navier-Stokes equation see for example Ref.
[288]. The force of the fluid acting on a object in the fluid is −

∫
∂ dS · Σ,

where integral is over the surface of the object and dS is in the direction
of the normal vector that points out of the object.

The goal of many problems in hydrodynamics is to solve Eqs. A.3 and
A.6 for p(r, t) and u(r, t) given certain boundary conditions. The Navier-
Stokes equation for and incompressible fluid (Eqs. A.3 and A.6) applies to
a vast range of problems. This equation is a nonlinear, second-order par-
tial differential equation, and cannot be solved for most systems. How-
ever, in some case not all terms in the equation are important. In most
biological micro- and nano-scale systems (such as biological or artificial
microswimmers), inertial forces are negligible. In this case the Navier-
Stokes equation reduces to the Stokes equation, which is the topic of the
next section.

A.2 The Stokes Equation

To quantify the importance of the inertial forces in the Navier-Stokes equa-
tion, one can nondimensionalize it by scaling distances by the typical
length scale L (e.g. the size of a colloid or length of a rod-like particle),
and velocities by the characteristic velocity V. The dimensionless quanti-
ties are r̃ = r/L, ũ = u/V, t̃ = tV/L, p̃ = L/(ηsV), and f̃e = feL2/(ηsV).
With this the nondimensionalized Navier-Stokes equation (Eq. A.6) be-
comes

Re
(
∂t̃ũ + ũ · ∇̃ũ

)
= −∇̃ p̃ + ∇̃2ũ + f̃e, (A.7)

where Re = ρVL/ηs is called the Reynolds number [289]. Note that both
ũ · ∇̃ũ and ∇̃2ũ are of the order unity. The Reynolds number quantifies
the importance of inertial forces (left-hand-side of the previous equation)
compared to viscous forces ηs∇2u. When the Reynolds number is small
the Navier-Stokes equation reduces to the Stokes equation:

∇p − ηs∇2u = −∇ · Σ = fe, (A.8)
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which is also called the creeping-flow equation. The absence of a time
derivative in the Stokes equation does not necessarily mean that the so-
lutions are independent of time, as the boundary conditions can be time
dependent. When the boundary conditions are time dependent, the sys-
tem is called quasi-steady, and time only plays the role of a parameter. In
this case the momentum of the fluid diffuses instantaneously to its quasi-
steady state, and there is no lag when the boundary conditions change in
time [77]. Note that one still needs to complement this equation with the
incompressibility equation (Eq. A.3) to solve for the pressure and the flow
field.

A.3 Friction of a Rotating Sphere

Because the Stokes equation is linear, the relation between the torque on
the sphere and the angular velocity of the surrounding fluid is linear τ =
γrotΩ, where τ is the torque, γrot is the rotational friction constant and Ω
is the angular velocity.. To determine this constant, consider a sphere with
radius a, with its center at the origin, rotating about the z-axis. The force
of the fluid on an infinitesimal area of the sphere is dS · Σ, so the torque
about the z-axis per unit area that must be applied to the sphere is minus
the ϕ component of that force (minus because this is the force on the fluid)
times the distance to the origin dτ(θ) = −a sin θΣrϕ(a, θ)dS.

Due to the symmetry of the problem, the velocity field can be written
as u = êϕ u(r, θ), where r is the radial distance, θ is the polar angle, and
ϕ is the azimuthal angle. There is no external force, and the pressure
is independent of ϕ, so the ϕ component of the Stokes equation for this
problem is

0 =
[
∇2u

]
ϕ

,

=
1
r2

∂

∂r

[
r2 ∂u

∂r

]
+

1
r2 sin θ

∂

∂θ

[
sin θ

∂u
∂θ

]
− u

r2 sin θ
. (A.9)

The fluid at the boundary of the sphere move along with the sphere with
the same velocity, therefore the so called no-slip boundary condition is
used [290]: u(a, θ) = aΩ sin θ. Far away from the sphere the fluid is at
rest: limr→∞ u(r, θ) = 0. The boundary condition at the surface of the
sphere suggests a solution of the form R(r) sin θ. The previous equation
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then becomes

0 = r2 d2R
dr2 + 2r

dR
dr

− 2R, (A.10)

which has solutions R = r and R = 1/r2. Together with the boundary
conditions, this gives for the flow field

u(r, θ) = a3Ωr−2 sin θ. (A.11)

The rϕ-component of the stress tensor is Σrϕ = ηs

[
∇u + (∇u)T

]
rϕ

=

−3ηsΩa3r−3 sin θ. With this the total torque about the z-axis becomes

τ =
∫

dτ = 3ηsΩa
∫ 2π

0
dϕ
∫ π

0
dθ sin θa2 sin2 θ

= 8πηsa3Ω. (A.12)

The rotational friction constant is

γrot = 8πηsa3. (A.13)

This also gives the rotational-diffusion constant

Dr =
T

γrot
=

T
8πηsa3 , (A.14)

so the rotational diffusion constant is inversely proportional to the cube
of the radius.

A.4 Friction of a Translating Sphere

The drag force on a translating sphere with radius a is proportional to its
velocity:

Fd = γV , (A.15)

where γ is the friction constant of the sphere. The force is equal to minus
the integral of the stress on the boundary of the sphere Fd = −

∫
dS · Σ.

Without loss of generality, the velocity is taken to be in the z-direction,
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V = Vêz. The z-component of the force is

Fdz = −
∫

dS · Σ · êz =
∫

dS Σrθ sin θ − Σrr cos θ. (A.16)

Due to the symmetry, the flow field can be writen as u = êrur(r, θ) +
êθur(r, θ). The equations are solved most easily in the comoving frame
with its origin coinciding with the center of the sphere. The boundary
conditions for the flow field in the comoving frame are u(r, t) = −V for
r → ∞, and no-slip boundary conditions [290] for r = a, u(a, θ) = 0.

It is convenient to define a so called Stokes stream function ψ(r, θ) such
that the incompressibility equation is always satisfied [286]. For

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
, (A.17)

∇ · u = 0, and the problem is reduced to finding the scalar function ψ.
The boundary conditions for ψ are ψ = − 1

2Vr2 sin2 θ as r → ∞, and ∂rψ =
∂θψ = 0 for r = a. The Stokes equation for this problem is

∇p = ηs∇2u = −ηs∇× (∇× u) , (A.18)

where the second equality holds when ∇ · u = 0. The equations for the r
and θ components are

∂p
∂r

=
ηs

r2 sin θ

∂

∂θ
E2ψ,

∂p
∂θ

= − ηs

sin θ

∂

∂r
E2ψ, (A.19)

where

E2 =
∂2

∂r2 +
sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
. (A.20)

Equating the θ derivative of ∂r p with the r derivative of ∂θ p gives

E2
(

E2ψ
)
= 0. (A.21)

The boundary condition for r → ∞ suggests a trial solution of the form
ψ = R(r) sin2 θ. This trial solution together with the boundary conditions
for ψ gives

ψ = −1
4

sin2 θ V
(

a3r−1 − 3ar + 2r2
)

. (A.22)
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From this solution and Eqs. A.19, one finds

dp(r, θ) =
3
2

Vaηsd
[
cos θr−2

]
, (A.23)

so the pressure, up to an arbitrary constant, is

p(r, θ) =
3
2

Vaηs
cos θ

r2 . (A.24)

The components of the velocity vector are

ur = −1
2

V cos θ

[
2 − 3

a
r
+
( a

r

)3
]

, (A.25)

uθ =
1
4

V sin θ

[
4 − 3

a
r
−
( a

r

)3
]

, (A.26)

from which one can calculate the relevant components of the stress tensor:

Σrr(a, θ) = −p(a, θ) + 2ηs
∂ur

∂r

∣∣∣∣
r=a

= −3Vηs

2a
cos θ, (A.27)

Σrθ(a, θ) = ηs
∂uθ

∂r

∣∣∣∣
r=a

− ηs
uθ

r

∣∣∣
r=a

+ ηs
1
r

∂ur

∂θ

∣∣∣∣
r=a

=
3Vηs

2a
sin θ, (A.28)

and Σrϕ = 0. Note that

êr · Σ(a, θ) = Σrr(a, θ)êr + Σrθ(a, θ)êθ = −3ηs

2a
V (A.29)

is a constant on the surface of the sphere. With this the force becomes
Fdz = γV, with

γ = 6πηsa, (A.30)

which is called Stoke’s law [8]. Using Einstein’s result for the translational
diffusion constant (Eq. 1.4), one obtains the diffusion constant

D =
T
γ
=

T
6πηsa

, (A.31)
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which shows that the translational diffusion constant is inversely propor-
tional to the radius of the sphere.

A.5 Friction of a Rod

In order to calculate the friction of a rod, a different approach is used than
in the previous two cases. For this problem the Green’s function method
explained in Refs. [13, 291] is used.

The Green’s function of the Stokes equation are the tensor T called the
Oseen tensor, which gives the response of the fluid flow due to a external
force density fe:

u(r) =
∫

dr′ T(r − r′) · fe(r′), (A.32)

and the vector ≫, which gives the response of the pressure to an external
force:

p(r) =
∫

dr′ g(r − r′)fe(r′). (A.33)

These Green’s functions satisfy

∇ · T(r) =0, (A.34)

∇g(r)− ηs∇2T(r) =1δ(r). (A.35)

One can easily check, by using Eqs. A.32 and A.33, that these equations
are equivalent to the Stokes equation (Eq. A.8). These equations can be
solved using Fourier transform methods [13], which give

T(r) =
1

8πηsr
[1 + r̂r̂] , (A.36)

where r = |r| and r̂ = r/r.
To calculate the friction of a rod with length L and radius R, one can

model the rod as a rigid chain of N = L/(2R) spheres with radius R.
When the rod is dragged, the resulting velocity field is

u(r) =
∫

∂N

dS′ T(r − r′) · f(r′), (A.37)

where ∂N indicates the surface of all the beads, and f(r′) is the force per
unit area that the rod exerts on a fluid element. Due to the force, the rod
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moves with a constant velocity u0, so the boundary condition is u(r) = u0
for r ∈ ∂N.

Defining the new coordinate x = r − ri where ri is the position of the
center of bead i, the equation for the velocity field can be written as

u(x + ri) =
N

∑
j=1

∫
∂

dS′ T(x − x′ + rij) · fj(x′), (A.38)

where the integral is over the surface of a single bead, fi(x′) is the force
per unit area on a surface element of bead j, and rij = ri − rj = (i − j)2Rt̂,
where t̂ is a unit vector along the rod. The boundary condition becomes

u0 =
N

∑
j=1

∫
∂

dS′ T(x − x′ + rij) · fj(x′) for |x| = R. (A.39)

This holds for all i. Integrating both sides over the surface of the rod
removes the i dependence:

u0 =
1

2πRL

N

∑
i,j=1

∫
∂

dS′
[∫

∂
dS T(x − x′ + rij)

]
· fj(x′). (A.40)

The integral in the square brackets can be evaluated using a Fourier
transformation and complex integration (see Ref. [13]). For i = j the
integral is 2R1/(3ηs). For i ̸= j one can use the approximation T(x − x′ +
rij) ≈ T(rij) because the error is of the order of the diameter of the rod,
which is assumed to be small.

With this, the integral in the square brackets becomes independent of
x′ and the primed integral only acts on fj(x′). The total hydrodynamic
force on bead j is Fh

j = −
∫

∂ dS′ fj(x′). The total hydrodynamic force on

the rod is the sum of the hydrodynamic forces on the beads Fh = ∑N
i=1 Fh

i .
For a long rod one can approximate the hydrodynamic force on bead j by
Fh

j = Fh/N. All together this gives

u0 = − 1
3πηsL

Fh − 4R2

L2

 N

∑
i,j=1
i ̸=j

T(rij)

 · Fh. (A.41)



176 APPENDIX A. HYDRODYNAMICS

The sum in the square brackets is

N

∑
i,j=1
i ̸=j

T(rij) =
1

16πηsR
[
1 + t̂t̂

] N

∑
i,j=1
i ̸=j

1
|i − j| ,

≈ 1
8πηsR

[
1 + t̂t̂

] L
2R

ln
(

L
2R

)
, (A.42)

where in the last line the double sum was approximated by integrals. The
velocity becomes

u0 = − 1
3πηsL

Fh −
ln
( L

2R
)

4πηsL
[
1 + t̂t̂

]
· Fh

≈ −
ln
( L

2R
)

4πηsL
[
1 + t̂t̂

]
· Fh. (A.43)

Inverting this relation gives the friction tensor: Fh = −γ · u0, with

γ = γ∥ t̂t̂ + γ⊥
[
1 − t̂t̂

]
, (A.44)

and

γ∥ =
2πηsL
ln
( L

2R
) , γ⊥ =

4πηsL
ln
( L

2R
) , (A.45)

are the parallel and perpendicular friction coefficients. For more accurate
calculations using different methods, see for example Refs. [289, 292, 293].

A.6 Lorentz’s Reciprocal Theorem

The reciprocal theorem is useful to find solutions to the Stokes equation if
one already has a solution for the same geometry, but different boundary
conditions [73, 289, 294]. Let (u, Σ) and (u′, Σ′) be solutions to the Stokes
equation, that is ∇ · u = 0, ∇ · Σ = 0, and ∇ · u′ = 0, ∇ · Σ′ = 0. The
domain is all space outside a body with boundary ∂. Then, because both
are solution to the Stokes equation

0 = u′ · (∇ · Σ)− u · (∇ · Σ′), (A.46)

= ∇ ·
[
u′ · Σ − u · Σ′]− (∇u′) : Σ + (∇u) : Σ′. (A.47)
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where the nabla operator does not act on anything outside of the brack-
ets. By using Σ = −p1 + ηs∇u + ηs(∇u)T, ∇ · u = 0, with the equiv-
alent equations for the primed system, and the tensor identities (∇u) :
(∇u′) = (∇u′) : (∇u), and (∇u) : (∇u′)T = (∇u′) : (∇u)T, one can
show that the last two terms of the previous equation cancel. Integrating
the remaining part over the total volume V gives

0 =
∫

V
d3r∇ ·

(
u′ · Σ − u · Σ′) (A.48)

=
∫

∂∞

dS ·
(
u′ · Σ − u · Σ′)+ ∫

∂
dS ·

(
u′ · Σ − u · Σ′) , (A.49)

where ∂∞ means a surface at infinity with a normal vector pointing out
of the enclosing volume. Assuming that the velocity and stress decay
sufficiently fast such that the integral over the surface at infinity vanishes,
this can be written as ∫

∂
dS · Σ · u′ =

∫
∂

dS · Σ′ · u, (A.50)

which is the reciprocal theorem.
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brownien,” C. R. Acad. Sci. (Paris) 146 , 530–533 (1908)]. American
Journal of Physics, 65(11):1079–1081, 1997.

[11] G. E. Uhlenbeck and L. S. Ornstein. On the theory of Brownian
motion. Physical review, 36(5):823, 1930.

[12] A. P. Philipse. Brownian Motion: Elements of Colloid Dynamics. Un-
dergraduate Lecture Notes in Physics. Springer, 2018.

[13] J. K. G. Dhont. An Introduction to Dynamics of Colloids. Elsevier, 1996.

[14] C. Gardiner. Stochastic Methods: A Handbook for the Natural and Social
Sciences. Springer, fourth edition, 2009.

[15] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry.
Elsevier, third edition, 2007.

[16] P. C. Bressloff. Stochastic Processes in Cell Biology, volume 41 of Inter-
disciplinary Applied Mathematics. Springer International Publishing,
Cham, 2014.

[17] W. Coffey and Y. P. Kalmykov. The Langevin Equation: With Appcli-
cations to Stochastic Problems in Physics, Chemistry and Electrical Engi-
neering, volume 27. World Scientific, third edition, 2012.

[18] H. C. Berg. Random Walks in Biology. Princeton University press,
1993.

[19] R. Kubo, M. Toda, and N. Hashitsume. Statistical Physics II: Nonequi-
librium Statistical Mechanics. Springer, 1991.

[20] A. Libchaber. From Biology to Physics and Back: The Problem of
Brownian Movement. Annual Review of Condensed Matter Physics, 10
(1):275–293, 2019.

[21] R. N. Mantegna and H. E. Stanley. An Introduction to Econophysics:
Correlations and Complexity in Finance. Cambridge University Press,
1999.

[22] A. A. Gushchin. Stochastic Calculus for Quantitative Finance. Elsevier,
2015.

[23] S. E. Shreve. Stochastic Calculus for Finance I The Binomial Asset Pric-
ing Model. Springer Science & Business Media, 2005.



BIBLIOGRAPHY 181

[24] D. S. Dean. Stochastic Density Functional Theory – Bangalore
School on Statistical Physics 2018, 2018.

[25] L. Isserlis. On a Formula for the Product-Moment Coefficient of
any Order of a Normal Frequency Distribution in any Number of
Variables. Biometrika, 12(1/2):134, 1918.

[26] G. Volpe and G. Volpe. Simulation of a Brownian particle in an
optical trap. American Journal of Physics, 81(3):224–230, 2013.

[27] N. G. van Kampen. Diffusion in inhomogeneous media. Zeitschrift
für Physik B Condensed Matter, 68(2):135–138, 1987.

[28] N. G. Van Kampen. Diffusion in inhomogeneous media. Journal of
physics and chemistry of solids, 49(6):673–677, 1988.

[29] N. G. van Kampen. Explicit calculation of a model for diffusion
in nonconstant temperature. Journal of Mathematical Physics, 29(5):
1220–1224, 1988.

[30] G. Volpe and J. Wehr. Effective drifts in dynamical systems with
multiplicative noise: A review of recent progress. Reports on
Progress in Physics, 79(5):053901, 2016.

[31] S. Hottovy, A. McDaniel, G. Volpe, and J. Wehr. The Smoluchowski-
Kramers Limit of Stochastic Differential Equations with Arbitrary
State-Dependent Friction. Communications in Mathematical Physics,
336(3):1259–1283, 2015.

[32] S. Hottovy, G. Volpe, and J. Wehr. Noise-Induced Drift in Stochastic
Differential Equations with Arbitrary Friction and Diffusion in the
Smoluchowski-Kramers Limit. Journal of Statistical Physics, 146(4):
762–773, 2012.

[33] D. P. Herzog, S. Hottovy, and G. Volpe. The Small-Mass Limit
for Langevin Dynamics with Unbounded Coefficients and Positive
Friction. Journal of Statistical Physics, 163(3):659–673, 2016.

[34] A. W. C. Lau and T. C. Lubensky. State-dependent diffusion: Ther-
modynamic consistency and its path integral formulation. Physical
Review E, 76(1):011123, 2007.

[35] M. J. Schnitzer. Theory of continuum random walks and application
to chemotaxis. Physical Review E, 48(4):2553, 1993.



182 BIBLIOGRAPHY

[36] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost,
M. Rao, and R. A. Simha. Hydrodynamics of soft active matter.
Reviews of Modern Physics, 85(3):1143–1189, 2013.

[37] S. Ramaswamy. The mechanics and statistics of active matter. An-
nual Review of Condensed Matter Physics, 1(1):323–345, 2010.
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G. Volpe, H. Löwen, and C. Bechinger. Circular Motion of Asym-
metric Self-Propelling Particles. Physical Review Letters, 110(19):
198302, 2013.
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[59] E. Gaffney, H. Gadêlha, D. Smith, J. Blake, and J. Kirkman-Brown.
Mammalian Sperm Motility: Observation and Theory. Annual Re-
view of Fluid Mechanics, 43(1):501–528, 2011.

[60] E. H. Harris. Chlamydomonas as a Model Organism. Annual Review
of Plant Physiology and Plant Molecular Biology, 52(1):363–406, 2001.



184 BIBLIOGRAPHY
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namics of active particles with space-dependent swim velocity.
arXiv:2111.10304 [cond-mat], 2021.

[139] L. Caprini, A. R. Sprenger, H. Löwen, and R. Wittmann. The
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