Dieses Dokument ist eine Zweitveroffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Per-Ake Larson, Wolfgang Lehner, Jingren Zhou, Peter Zabback

Exploiting self-monitoring sample views for cardinality estimation

Erstveréffentlichung in / First published in:

SIGMOD/PODSoy: International Conference on Management of Data, Beijing 11.06. -
14.06.2007. ACM Digital Library, S. 1073-1075. ISBN 978-1-59593-686-8

DOI: https://doi.org/10.1145/1247480.1247610

Diese Version ist verfiigbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-808360

TECHNISCHE
il SLUB UNIVERSITAT Oucosa

Wir fiihren Wissen. DRESDEN Quality Content of Saxony

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-808360
https://doi.org/10.1145/1247480.1247610

Final edited form was published in "SIGMOD/PODSO07: International Conference on Management of Data. Be jing 2007", S. 1073—-1075, ISBN 978-1-59593-686-8

https://doi.org/10.1145/1247480.1247610

Exploiting Self-Monitoring Sample Views
for Cardinality Estimation

Per-Ake Larson
Microsoft Research

ABSTRACT

Good cardinality estimates are critical for generating good
execution plans during query optimization. Complex predi-
cates, correlations between columns, and user-defined func-
tions are extremely hard to handle when using the tradi-
tional histogram approach. This demo illustrates the use
of sample views for cardinality estimations as prototyped
in Microsoft SQL Server. We show the creation of sample
views, discuss how they are exploited during query optimiza-
tion, and explain their potential effect on query plans. In
addition, we also show our implementation of maintenance
policies using statistical quality control techniques based on
query feedback.

Categories and Subject Descriptors

H.2.4 [Database Management]: System— Query Process-
mng

General Terms

Algorithms, performance

Keywords

Query optimization, cardinality estimation, sample views,
sequential sampling, statistical quality control

1. INTRODUCTION

Cardinality estimation for query optimization in commer-
cially available database systems relies on statistics, primar-
ily single-column histograms, extracted from the data. Al-
though histograms are useful for a wide range of queries,
they conceptually fail in many situations, e.g., in the pres-
ence of correlations in the underlying data set, when there
are references of user-defined functions in predicates, or when
predicate expressions are simply too complex. The use of
sampling in general and their exploitation for cardinality es-
timation has been studied from a conceptual point of view [4].
However, we are not aware of any practical implementation
of sampling to support cardinality estimation in combina-
tion with a statistically sound refresh strategy.

The demo presents our approach to exploiting sample
views for cardinality estimation. Sample views are views
that materialize only a random sample of the rows produced

*Work performed while a visiting researcher at Microsoft.

©2007 Copyright held by the owner/author(s).
Publication rights licensed to ACM. This is the
author’s version of the work. It is posted here for
your personal use. Not for redistribution. The
definitive Version of Record was published in

S GMOD’07, June 12-14, 2007, Beijing, China.
https://doi.org/10.1145/1247480.1247610

Wolfgang Lehner *
Dresden Univ. of Technology
palarson@microsoft.com wolfgang.lehner@tu-dresden.de

1

Jingren Zhou Peter Zabback
Microsoft Research Microsoft
jrzhou@microsoft.com pzabback@microsoft.com

by the view expression.
approach.

During optimization of a query, (sub)expressions of the
query will be matched with existing sample views. After
a successful match, the optimizer generates a specifically
tailored probe query. This probe query is executed against
the sample view and returns summary data needed as input
to a statistical estimator. The resulting cardinality estimate
is then injected into the optimization process and used in the
remainder of this process. The cycle of exploiting sample
views, generating cardinality estimates and injecting them
is illustrated in the left loop of Figure 1.

Figure 1 gives an overview of our

Exploita ion loop
(optimization ime)

Feedback loop
(execution ime)

N

Monitor quality
of estimates

Query
Report actual

v / cardinalities
a -,

Sample View
matching

GB

Probe query
generation

Injection of
new estimate [

>
/ ;

o

|

R

N
c —!

Probe query
execution

: S — :
................... > Sample View e

Figure 1: Conceptual Overview of Our Approach

\ Refresh
T Sample View

- |~

The second (right) loop in the figure illustrates our ap-
proach to maintenance of sample views, i.e., we trigger a
refresh of a sample view when a feedback monitoring sys-
tem detects that the sample is no longer statistically valid.
Query feedback is collected during runtime; every query that
used a sample view during the optimization phase reports
the actual cardinality. Errors are normalized relative to the
accuracy of the estimator used, resulting in a stream of nor-
malized errors. Every sample view maintains an exponen-
tially weighted moving average of its errors. If the average
error exceeds a control bound, with high probability the
data has changed so much that the current sample is no
longer a valid random sample [3]. The system schedules a
background job to recompute the sample.

In summary, our approach not only covers the exploitation
part using materialized view matching techniques and probe
queries issued during query optimization, it also applies sta-
tistical quality control techniques to trigger a sample refresh
only when it is statistically justified by query feedback.

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden

Final edited form was published in "SIGMOD/PODSO07: International Conference on Management of Data. Be jing 2007", S. 1073—-1075, ISBN 978-1-59593-686-8

https://doi.org/10.1145/1247480.1247610

2. DEMO OF EXPLOITATION LOOP

The first part of the demo shows the benefits and overhead
of exploiting sample views. In this demo, we use the FCC
Media Bureau CDBS Public Database [1]. It is the relational
database used by the Media Bureau to process broadcast
applications. It is no surprise that various correlations exist
among different tables.

For example, the following query summarizes “AM” appli-
cations in Hawaii. It contains a join between two correlated
tables party and app_party.

SELECT p.party_city, count (*)
FROM party p, app_party ap, application a
WHERE p.party_id = ap.party_id

AND ap.application_id = a.application_id

AND a.app_service = ’AM’ AND p.party_state = ’HI’
GROUP BY p.party_city
Est: 11260
2 Act: 2443] 5>
T Fash Tasen Clustered Tndex Sean
(g agaca) (tomar Jeam || (COBSI. (ol (pacey] . (parey, cluaax)
Com: 0 3 com: 25 4 ome: 154
]
Table Scan
ICDEE]. [dbo] . [app_partyl [ap]
Cose: 333
Clnscered Ingex Scan
ICDES] . [dbo). [applicacion]. [applica
com: 22 5
(a) Original Plan
Est: 2618
24 Act: 2443 =] 5]
Hash Nachn Hash Hateh Clustered Tndex Scan
ihggregate) (Inner Join} [CDBS]. [dbol . [party] . Iparty_cluidx] ..
Cost: 0 % Cosc: 26 % il
N

Table Scan
[CDES). [dbo) - [app_parcy] (ap]
Cost: 3§ 4

e

Clustersd Index Sesk
[CDBS] . (dbo). [applicstion). (spplica.
Cost: 22 %

(b) Better Plan
Figure 2: Query Execution Plans

Since the optimizer has no knowledge of the correlations
and always assumes independence, the histogram-based es-
timate is 11,260 rows output from the join. As shown in
Figure 2 (a), the final plan consists of two hash joins. Un-
fortunately, the real cardinality after the first join is only
2,443 so the chosen plan is suboptimal.

We create a sample view sv_app_party over the join be-
tween party and app-party. The view samples and mate-
rializes 1% of the join result. Its SQL definition is shown
below.

CREATE VIEW sv_app_party WITH SCHEMABINDING AS
SELECT p.party_id, p.party_state, p.party_city,
ap.application_id, ap.party_type
FROM dbo.party p, dbo.app_party ap

WHERE p.party_id = ap.party_id

CREATE UNIQUE CLUSTERED INDEX sv_clidx ON sv_app_party
ON (party_id, application_id, party_type)
ROWSAMPLE 1 PERCENT

With the sample view mechanism enabled, the system is-
sues a probe query during optimization and computes the
more accurate estimate of 2,618 rows. This results in the
plan change shown in Figure 2 (b), where the hash join is
replaced by a nested-loop join.

2

To reduce the cost of probe queries we store the rows of
the sample in random order and apply sequential sampling,
that is, we read only as many sample rows as is required to
produce an estimate of desired accuracy. The technical de-
tails can be found in our full paper [2]. The demo shows the
probe queries used and how the number of rows consumed
by a specific query depends on the predicate.

3. DEMO OF MAINTENANCE LOOP

As outlined in the introductory section, we apply a mon-
itoring loop in order to keep sample views in sync with the
underlying data. Standard incremental view maintenance
can be applied to sample views but we deemed it to be too
expensive. Instead we implemented a quality-based refresh
mechanism that fulfills two basic requirements. First, if the
base data does not change, it triggers very few ’false alarms,’
i.e. it does not trigger unnecessary refresh activity because
of normal statistical errors in the estimates. Second, if the
base data does change, it reacts as soon as the changes are
statistically significant.

To demonstrate both situations, we have developed a mon-
itoring application as shown in Figure 3. In the demo, the
application will issue queries against a table with 100,000
rows consisting of only two columns: an ID column holds a
unique integer value in the range from 1 to 100,000, and the
values of the second column are either 0 or 1, with a proba-
bility that can be controlled using the slider at the bottom
of the application window.

Query Mix Mode

The “query mix mode” of the demo application issues queries
against the database system with a range predicate on the
ID column. The size of the range is randomly determined for
every query. As described before, the corresponding sample
view is detected and then, a probe query is generated and
executed. After the query has finished, the monitoring ap-
plication shows three different data sets.

e Selectivities: The top sequence window shows the
estimated selectivity using the sample view and com-
pares it with the actual selectivity reported by the
query.

e Relative Error: The middle sequence window plots
the relative error of the estimate.

e Normalized Error: As outlined in the introduction,
we perform a statistical normalization of the estima-
tion error [2]. A value of 0 denotes that the estimate
exactly corresponds to the actual value; a value of 1
obviously denotes the maximum error after transfor-
mation. The statistically expected error can be found
at 0.5. The bottom sequence window then shows the
normalized error for each query and the exponentially
smoothed average over the sequence of normalized er-
rors.

The visitor sees a running sequence of queries with corre-
sponding estimates showing a small relative and normalized
error. As can be seen in the screenshot — although some
of the estimates are rather far from the actual value — the
smoothed normalized error permanently stays below a given
bound. Within this setup, we additionally explain the error
normalization process and the control bound is determined.

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden

Final edited form was published in "SIGMOD/PODSO07: International Conference on Management of Data. Be jing 2007", S. 1073-1075, ISBN 978-1-59593-686-8

https://doi.org/10.1145/1247480.1247610

Sample View Quality Control Menitor

Sample View Quality Control

Selectivities

Relative Error

Probabilties

— o)

‘
o s Update P Stop

(a) Stable Data Set

Sample View Quality Control Monitor

Microsoft

Selectivities

Relative Error

Probabilties

P

Y)
3 oo L S T

(b) Changing Data Set

Figure 3: Screenshots of the Monitoring Application

Refresh-Triggering Mode

The second mode of the demo application (“query sequence
mode”) illustrates the triggering of refresh activity for the
underlying sample view. In this setup, the demo application
is continuously issuing the same query with a constant predi-
cate addressing the rows with value 1 in the second column.
Upon request, the user may start a transaction updating
the values in the underlying table to match a desired query
selectivity. In order to illustrate the effect more clearly, we
run the read transactions in the READ UNCOMMITTED isolation
level.

The visitor of the demo will observe the behavior shown
in Figure 3 (b). The constant query produces statistically
accurate estimates as long as the base data has not changed.
As soon as the effects of the update transaction become vis-
ible through the feedback mechanism, the normalized error
goes up to the maximum. As can be seen, the average er-
ror follows the trend and hits the error bound after a few
queries. An immediately scheduled refresh recomputes the
sample. After the new version of the sample has been in-
stalled, the probe queries of the issued queries then exploit
the new version, thus producing accurate estimates again.
Unfortunately, this behavior is not visible in this screenshot
but will be seen in the live demo.

4. SUMMARY

The basic idea of sample views is to use regular material-
ized view matching infrastructure to find sample views that
can be used as a source for cardinality estimation. Probe
queries are generated and executed against the sample views
during the optimization of a query. This estimation pro-
cess is unaffected by correlations in the data or other ob-
stacles (e.g., user-defined functions) that cause traditional
techniques to produce extremely poor estimates.

3

In the demo, we describe the infrastructure for exploit-
ing sample views and demonstrate the overall benefit of us-
ing sample views for cardinality estimation. We show re-
sulting plan changes, the SQL and query plans for probe
queries, and the overhead caused by optimizing and running
probe queries during the optimization phase. In addition, we
demonstrate how we exploit query feedback to compute nor-
malized estimation errors and implement statistical quality
control of the underlying samples. Using two scenarios, we
can demonstrate that we do not produce any false alarms
if the base data does not change. We can also show how
changes in the base data are reflected in the error stream
and trigger a refresh of the underlying sample.

5. REFERENCES

[1] Consolidated Database System (CDBS) by the FCC
Media Bureau, available at
http://www.fcc.gov/mb/databases/cdbs/, 2006.

[2] P. Larson, W. Lehner, J. Zhou, and P. Zabback.
Cardinality estimation using sample views with quality
assurance. In Sigmod, 2007.

[3] N.N. Engineering Statistics Handbook. National
Institute of Standards and Technology,
http://www.itl.nist.gov/div898 /handbook, 2006.

[4] F. Olken and D. Rotem. Random sampling from
database files: A survey. In SSDBM, pages 92-111,
1990.

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden

	ADPC7EC.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Per-Ake Larson, Wolfgang Lehner, Jingren Zhou, Peter Zabback
	Exploiting self-monitoring sample views for cardinality estimation

