

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-807643

L. Schlesinger, A. Bauer, W. Lehner, G. Ediberidze, M. Gutzmann

Efficiently synchronizing multidimensional schema data

Erstveröffentlichung in / First published in:

CIKM01: International Conference on Information and Knowledge Management, Atlanta
06.11.2011. ACM Digital Library, S. 69–76. ISBN 978-1-58113-437-7

DOI: https://doi.org/10.1145/512236.512246

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-807643
https://doi.org/10.1145/512236.512246

EFFICIENTLY SYNCHRONIZING MULTIDIMENSIONAL SCHEMA DATA

L. Schlesinger, A. Bauer, W. Lehner, G. Ediberidze, M. Gutzmann
Department of Database Systems, University of Erlangen-Nuremberg, Martensstr. 3, 91058 Erlangen, Germany

{Schlesinger, bauer, lehner, ediberid, gutzmann}@immd6.informatik.uni-erlangen.de

ABSTRACT

Most existing concepts in data warehousing provide a central data-
base system storing gathered raw data and redundantly computed
materialized views. While in current system architectures client
tools are sending queries to a central data warehouse system and are
only used to graphically present the result, the steady rise in power
of personal computers and the expansion of network bandwidth
makes it possible to store replicated parts of the data warehouse at
the client thus saving network bandwidth and utilizing local com-
puting power. Within such a scenario a - potentially mobile - client
does not need to be connected to a central server while performing
local analyses. Although this scenario seems attractive, several pro-
blems arise by introducing such an architecture: For example
schema data could be changed or new fact data could be available.
This paper is focusing on the first problem and presents ideas on
how changed schema data can be detected and efficiently synchro-
nized between client and server exploiting the special needs and
requirements of data warehousing.

1 INTRODUCTION

Data warehousing ([12], [131) has nowadays become a common
technology. It has proven itself in everyday life. The success how-
ever calls for more extensive use and instant accessibility. In
general the goal of a data warehouse is to provide analysts and
managers with strategic information about the key figures of the
underlying business. For ease of integration data warehouses typi-
cally exhibit a centralized architecture ([4], [131). Usually raw data
are collected, purged, integrated and stored within a central data-
base system. The resulting data warehouse database is furthermore
enriched with materialized views ([2], [9]) transparently used
during runtime to speed up user queries. Sometimes data marts are
derived from the data warehouse by storing a part of the data in a
separated database system to meet the needs of special applications
or user requirements. Based on these databases, OLAP, data

personal

IKILAP ‘01. 9,200l.
13-437-1/01/001 I

mining, or special statistical tools are then used to explore the data-
base. From an architectural point of view, each tool issues queries
against the data warehouse, where the answer is computed. The
result is sent back to the tool, which displays the result. The most

©2001 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of
Record was published in DOLAP '01.November 9,2001 Atlanta, Georgia,
USA.
https://doi.org/10.1145/512236.512246 ..$S.OO.

important point is that the query is exclusively computed in the data
warehouse, while the tools only help the user to define the query
and display the result.

Future Requirements and Appearing Problems
Nowadays a data warehouse is not a subject for specialists. In fact,
analyses are done by users in many departments of a company, e.g.
purchase, sales or production. Furthermore, users of the data ware-
house are residing at different locations or even moving around; for
example travelling salesmen or branch offices are not always con-
nected to the central data warehouse but need access to the data
warehouse. To meet all these new requirements it appears useful to
cache parts of the warehouse at the client side and allow local com-
putation. As storage capacity on the client systems is limited and
the users usually need a smaller fraction of the data only a small part
of the full data warehouse is stored as a replicate at the client.
Assume a sales support system with data about sales values for each
customer and subsidiary. A salesman responsible for a certain
region is only interested in obtaining the data of his customers and
subsidiaries. This information is copied onto his laptop or updated
if an old version is already available when connecting to the central
warehouse system.

Since from our point of view it is safe to assume that the technical
problems like sufficient network bandwidth for synchronization or
local computer power and storage capacity are no longer existent in
a modern world, the problems of inconsistent data arising from a
not permanently connected client to the server are more difficult
and needs to be addressed:

l The schema or instance data can be changed on the server.
How is it possible to update the information on the client in
an easy and efficient way?

l How is it possible to integrate new fact data at the client?
l Which materialized views (summary data, pre-aggregates)

should be stored at the client?

This paper emphasizes the first problem. We start diving into more
detail by presenting an overview of the overall synchronization pro-
cess. The remaining sections discuss architectures and algorithms
for each step of the synchronization process.

Overview of the Synchronization Process
In general the update or synchronization process within our pro-
posed framework may be subdivided into three steps, two of them
are executed at the server while the last step is executed at the client.
Figure 1 illustrates the steps in a chronological and local order.
Each step is outlined in the following:

l Server-Update-Phase
During the first phase, the server database is updated.
Changes of the schema information are imported into the

Final edited form was published in "CIKM01: International Conference on Information and Knowledge Management. Atlanta 2001", S. 69–76,
ISBN 978-1-58113-437-7

https://doi.org/10.1145/512236.512246

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

time
I

Figure 1: Steps of the update process

database and stored in several specific data structures.
Details of this phase, especially the data are
explained in section 3 1

Replicates are computed during this phase A replicate con-
sists of the changes being relevant to a specific client The
detection of changes in the schema of the server database
and the composition of the data to be transferred
to the client during the following step are discussed in detail
in section 3 2

The last phase consists of the transfer of the replicate com-
puted during the second phase and the update of the local
database As this phase is basically not very complicated a
further discussion is omitted

The processing of each phase depends on the architecture of the cli-
ent-sewer-system Therefore, it is possible that the second phase is
executed while the client is or is not connected to the For this
reason it might be necessary to store the replicate at the sewer.
Details are discussed in section 2

Related Work
To the best of our knowledge there is not still any paper published
dealing with the problem of synchronizing multidimensional
schema data between and client. Indeed ideas from several

 are collected and the underlying work

Before discussing the
 t o

work, we need
introduce the idea of
the multidimensional
data model. As the
model is assumed to
he well known we
refer to the literature
for an in depth

)

The to be
Figure 2: Sample classification hierarchy

replicated at the cli-
ents are upon the classification hierarchies of the dimen-
sions specifying the multidimensional data cubes on the server By
picking a single classification node of a hierarchy in dimen-
sion as a new root node, a is unequivocally defined.
Figure2 shows a sample classification hierarchy of a product
dimension. By tagging the ‘Consumer Electronic’, a part of
the classification is selected area in figure 2)

A synchronization of multidimensional schema data is necessary as
soon as changes are performed and affect to the specified subcuhe
For having a history of changes the concept of ‘versioning’

 is introduced, which forms the basis of detecting and
synchronizing changes in the classification hierarchy The history
list holds all information about the possible operations on the clas-

sification, i.e. deleting or inserting node or assigning a node to a
new parent node of the schema also exhibit effect
to the fact data, which have to he adapted to the new For
this problem mechanisms and algorithms well known from the
research area of schema evolution and versioning, where formal-
isms for updating dimensions are introduced I])

Besides the multidimensional data model and closely related with
the area of versioning we found discussion on the time stamp
idea They introduce the of marking edges
and nodes with numbers representing a logical time

Finally it is annotated that the idea of synchronizing data can be
found in where objects are synchronized In particular

 ideas have strongly influenced the presented architectures
given in section 2

Contribution and Organization of the Paper
Detecting changes and efficiently synchronizing data could be a hot
topic in future due to the given by high preforming

 and networks. This paper outlines possible architectures
according to the phases of the process and presents algo-
rithms for processing the synchronization

The organization of this paper is as follows: Section I gives
 of possible client-server-architectures in a data warehouse

environment Necessary data and algorithms for synchro-
nizing are presented in section 3 Section 4 closes with a short sum-
mary and an of future work

2 ARCHITECTURE OF A
SERVER-DATA-WAREHOUSE

According to the discussion given above the architecture of the
 is equivalent to a client-server-architecture with some speciali-

ties due to the usage in a data warehouse The client is
 separated computer, which wants to synchronize its data with

the changes on the In this section three possible architectures
are outlined according to It is assumed that the data on the

 are already changed by a separate data-change-process and it
is possible to detect the changes without having a historic protocol

 details about the necessary data for detecting
changes and the update process itself are discussed in section 3

Figure 3: server-side replication with online modification

Final edited form was published in "CIKM01: International Conference on Information and Knowledge Management. Atlanta 2001", S. 69–76,
ISBN 978-1-58113-437-7

https://doi.org/10.1145/512236.512246

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Figure 4: Online computation and synchronization of modified data

2.1 Full Server-Side Replication with Online
Modification

The architectural approach shown in figure 3 is build up as fol-
lows: After changing data on the server (server-update-phase.
figure I) a process generates replicates of parts of the server data-
base for each client and stores the replicates during the
replicate-compute-phase (s Each replicate contains only
such data, which are interesting for one client or a set of clients with
the data in their database Therefore, replicate does
not need to be a complete image of the server database. In fact it
only contains the data, which have to be stored at the client During
the synchronization process (third phase of figure which
after establishing connection between client and all data
at client removed at first After that the new data (the

 replicate) are transferred the server to client and
are directly loaded into the client database An imaginable optimi-
zation might he that the client downloads the replicates and updates
the local database after disconnecting from sewer The final step
is to tag the replicate on the as downloaded by the client This
is a reasonable optimization: Before downloading data the cli-
ent checks, whether has already updated the local database In this

 nothing has to he done by the client; otherwise the update pro-
cess is started

The advantage of this architecture is that the power of the sewer is
used to generate the replicates, which can loaded from the

 the client any delay the client only needs
to load the data into the local database Although the bandwidth and
the transfer rate of network is powerful, the disadvantage of
transferring huge data volumes become serious problem

2.2 Online Computation and
zation of Modified Schema

While a sewer process computes replicates of the database in the
architecture presented in section 2.1 the architecture discussed in

 section provides an online computation and transfer of modi-
fied data Figure 4 illustrates the relevant parts and processes of this
architectore After establishing the connection between client and

 synchronization process on the server is started to detect
the changes, which are relevant to the client This step reflects the
replicate-compute-phase shown in figure 1 The detected changes
are transferred from sewer to the client the

Figure of data with offline

synchronization

 phase (figure I), where the local database is online changed
according to the received informations. As soon as all changes are
detected and transferred the client disconnects from server

The advantage of this architecture is that instead of a full client rep-
licate only changed data are transferred from to the
client Secondly, memory savings are tremendous as no replicate is
stored on the server That is why does not exist any server pro-
cess that computes the replicates and causes a heavy load on the

 at synchronization time

2.3 Replication of Modified Data with Offline
Synchronization

This architecture might he considered a combination of the preced-
ing architectural approaches while combining their advantages
(figure 5) According to section 2 1 idea is that replicates of the

 are computed and stored on server during
replicate-compute-phase 1); however, in contrast to the
approach in section 2.1 only information of the modifications
stored instead of the full replicate After connecting to the the
client downloads the changes Thereafter, replicate is marked as
downloaded by the client, because the client can check on connec-
ting next time, whether it has already updated local database.
Finally, the client disconnects from the sewer and updates the local
database. These steps are executed during the
phase I) and are similar to the approach of
section 2 2

The biggest of strategy can be seen the reduction of
communication cost due to the small of transferred data.
Furthermore, only replicates arc stored on the and the

 process can compute these replicates in offline mode

3 ALGORITHMS FOR UPDATING
SCHEMA DATA

When replicating data can become outdated if updates
occur. Those updates may concern the data itself well as the
schema of the data. data warehouse environments data updates

 comparatively unproblematic as existing data remain
unchanged new data are added Problems arise with derived

Final edited form was published in "CIKM01: International Conference on Information and Knowledge Management. Atlanta 2001", S. 69–76,
ISBN 978-1-58113-437-7

https://doi.org/10.1145/512236.512246

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

data like materialized views. Efficient algorithms of incrementally
updating dependent views is still a major research topic although a
lot of work has already been done. On the other hand schema
changes may happen in classification hierarchies if - for example -
new products are introduced or the product classification is restruc-
tured if the products are rearranged.

This section presents data structures for updating schema data and
explains the update process in detail. An overview of the update
process is already given in section 1. The individual steps depend
on the selected architecture (section 2). As the approach presented
in section 2.3 seems to be the best alternative, all ongoing explana-
tions are referred to this architecture. However, since the diffe-
rences of each step between the architectures are very small only
the update steps for the last architecture are discussed in detail. The
transfer to the other architectures is quite simple and, therefore,
omitted. In the following the necessary data structures and modifi-
cation operations, which are the reason for synchronizing, are
explained and illustrated by a few examples (section 3.1). The
second subsection deals with the most important and complex part
of the update process, the detection of changes and the construction
of the update structure (replicate-compute-phase, figure l), which
is transferred from the server to the client.

3.1 Data Structures and Modification
Operations

This section gives an overview of the data structures necessary to
track the schema changes on the server and build update informa-
tion for the client replicates. The objective of the presented method
is to enable server-side schema changes and client updates. When
synchronizing with the server the clients should be able to retrieve
only the latest state. This means a schema evolution mechanism is
implemented. As a full history of all modifications on the server
needs not to be available at the client, the data structures holds only
the latest state of the changed schema data. Therefore, intermediate
states being outdated are not taken into account and are not trans-
ferred to the client. Moreover an evolution mechanism is imagi-
nable where historical configurations are retrievable. This would be
subject of future work.

Data Structures
To be able to modify classification nodes themselves and their rela-
tionship to other classification nodes, a time stamping mechanism
for both the nodes as well as the edges has to be introduced. These
time stamps are logical time stamps and represent the last modifica-
tion time ([151). As new nodes may be introduced or deleted as well
as disabled or enabled there is also a valid flag which indicates if the
classification node is currently a valid part of a classification hier-

type node is record [
nodename string
validTag b o o l e a n
lastchange timestamp

type edge is record [
parentnode string
childnode
validTap

strini
boolean

lastchange timestamp
changedSubtreetimestamp

1

Figure 6: Data structures for nodes and edges

archy. On client side the nodes are not disabled and enabled but
always deleted and newly created. That means nodes deleted on the
server remain there until this information is propagated to all cli-
ents. For a description of changed parent-child relations in the clas-
sification tree the edges are also times stamped and have a valid flag
similar to that of nodes. Figure 6 gives an overview of the data
structures for nodes and edges.

Furthermore each edge has another time stamp ‘changedsub-
tree’ which indicates whether modifications in the subtree below
the current edge occurred. If an update of a node or an edge in the
classification hierarchy was done all edges on the path from the
modified object to the root node of the complete tree are marked
with the current time stamp. This way all changes in a hierarchy can
be tracked by starting at the root and traversing all subtrees with
time stamps newer than that of the last synchronization. The server
also holds a structure with time stamps of the last synchronization
time of each client to be able to extract all changes since the last
update.

As the clients usually just have a part of the server schema, the
nodes to be transferred to the clients have to be specified. This is
done by so called negative-lists identifying all nodes which are not
accessible by the client. If a node is an element of a negative-list,
the node itself including the whole subtree from this node to the leaf
nodes is excluded from synchronization. The server holds a nega-
tive-list for each client to regulate the access.

In figure 7(a) a possible server-side classification hierarchy is
shown. A negative-list for one client could contain the nodes C and
E. The resulting classification tree for the client can be seen in
figure 7(b). The nodes together with their subtrees are excluded
from the client hierarchy. When testing if a given node N is member
of the client hierarchy the tree is run through from N to the root
node. At every node K it is checked if the node is included in the
negative-list. If K is member of the negative-list node N cannot be
in the resulting tree and the pass is stopped.

negative-list = (C, E)

node. ,,,validTag
’ lastchange edge:

,,validTag
N’N ,

aHChange, changedsubtree

Figure 7: Example of the effect of a negative list

Final edited form was published in "CIKM01: International Conference on Information and Knowledge Management. Atlanta 2001", S. 69–76,
ISBN 978-1-58113-437-7

https://doi.org/10.1145/512236.512246

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Figure 8: Inserting a new classification node

Figure 7 also shows the notation for nodes and edges used in this
paper. The nodes are annotated with a valid tag and a time stamp of
the last modification. The edges additionally have a time stamp to
indicate the modification in the subtree with the node at the end of
the edge as the root of the subtree.

new parent E. The old edge DH gets inactive whereas the new edge
EH is introduced. The data structures of the node itself remain
untouched.

Modification Operations
The remainder of this section describes the possible operations to
modify the server side data schema and the resulting changes in the
data structures. Modification operations are insertion of a new clas-
sification node, deletion of a node and reconnecting a node to a new
parent.

When inserting a new classification node the node gets a time stamp
with the current logical time and is set valid. Furthermore a new
edge is implicitly generated to the specified parent node. The new
edge is also marked valid and gets the current time. Ail edges on the
path from the inserted node to the root node get a new value for the
changedsubtree time stamp to efficiently find changed objects
in the tree. Figure 8 shows an example of the insertion of a new
node. At time 2 the node H is inserted into the classification hierar-
chy. It can also be seen that a new edge DH to the parent node D is
created.

When deleting a node it is marked as inactive and gets the current
time stamp. The same holds for the edge connecting this node to its
parent. If the deleted node is not a leaf node then the subtree with
the deleted node as root is also marked as deleted. Again the path to
the deleted node is marked with time stamps. In figure 9 node G is
removed which means the node and its connecting edge is set inac-
tive and gets the current time stamp 3.

If a node should be connected to a new parent node the old edge is
set inactive and the time stamp is updated as well as a new edge to
the new parent node is created which is set active with the current
time stamp. The paths to the two modified edges have to be time
stamped to be recognizable as modified. This process is illustrated
in figure 10 where node H is reconnected from parent node D to the

Before closing this section it is annotated that the performance of
the algorithms is linear to the height of the tree, because in the worst
case starting from a leaf node all parent nodes and edges up to the
root node have to be processed and the tags and time stamps have
to be updated.

3.2 Processing the Update
This section explains the computation of a replicate for a client
whereby the replicate only consists of the changes being relevant to
the client. For that an algorithm is presented which can detect the
changes inside the classification tree by using the annotations of
edges and nodes discussed in the previous section. An alternative
could be a historical list of all changes on the server database. How-
ever, as we intend to transfer as little data as possible from the
server to the client such a list could contain more information than
necessary: Firstly, the client is only interested in a part of the clas-
sification tree; the root of the subtrees being not interesting are
members of the negative-list. Therefore, a full list contains informa-
tions of changes of subtrees being of no interest. Secondly, between
two synchronizations of the client an edge or node could be
changed (i.e. inserted, deleted and modified) several times. But only
the last change which reflects the current valid classification tree
must be transferred to the server. For these reasons an algorithm for
detecting changes and the data structure for describing and transfer-
ring the changes to the client is explained in the following.

Figure 11 shows the algorithms. At first ComputeReplicate is
called with the identification c of the client as parameter. The func-
tion initializes and returns a list of changes whereby an XML nota-
tion is used (s. below in this section). Obviously if the current time
stamp and the last synchronization time stamp are equal, nothing
has to be done. Otherwise the function createReplicate is
called with the root of the classification tree as first parameter, c and
the 1 is t as the other parameters.

Figure 9: Deleting a classification node

Final edited form was published in "CIKM01: International Conference on Information and Knowledge Management. Atlanta 2001", S. 69–76,
ISBN 978-1-58113-437-7

https://doi.org/10.1145/512236.512246

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Figure 10: Reconnecting a classification node

The function CreateReplicate has to check the current node
at first: If it is a member of the negative-list nothing else has to be
done. If the node is changed since the last synchronization point of
time the current node is added to the list of changes. The foreach-
loop checks for each edge starting from the current node to a child
whether the edge is changed. In this case the edge is also added to
the list of changes. If the time stamp of the last synchronization of
the client is equal to the last change time of the current edge and to
the time stamp, which marks the changes in the subtree, this subtree
need not to be investigated, because no further changes are done in
the subtree. Otherwise the function createReplicate is recur-
sively called with the end node of the current edge, the identifica-
tion of the client and the return list.

For a better illustration of the algorithms we refer to the trees shown
in figure 13. Figures (a) and (b) show current valid classification
tree at two points of time while figure (c) illustrates the full classi-

Input: ident i f icat ion of cl ient c
output: list of edges and nodes in XML

XML computeReplicate (c) (

XML I is tOfChanges = 0; //l ist of changes in XML

if (clientSyncTime[c] = curTime) / /cl ient is uptodate
break;

else //due to changes compute replicate
I istOfChanges = createReplicate (roo t , , c) ;

return I is tOfChanges;

)

Input: curNode: current node
c: identif ication of client
l ist: XML-l ist

output: list of edges and nodes in XML

XML CreateReplicate (curNode, c. list) (

if (curNode E negativeList)
return;

if (curNodel,,tChange > clientSyncTime[c])
addRep/icateht (curNode, list);

foreach curEdge in successorEdges (node) (

if (curEdget,,tChange > clientSyncTime[c])
addRep/icafeL/st(curEdge, list);

if (CU’Ed!Gl%,,tct,ange ==
CUrEdge,hangedsubtree ==
clientSyncTime[c])
continue;

CreateReplicate (curEdge,hildnode, c, list);

return l i s t :

Figure 11: Algorithms for computing the replicate

fication tree on the server which contains all nodes and edges
including the time stamps explained in section 3.1: It is assumed
that a specific client has synchronized at point of time 1, which
reflects the initial state. Up to the next synchronization at point of
time 2 several changes are done: At first, the nodes D, H and I are
removed, why the nodes and the edges to the nodes are marked as
invalid and the time stamp lastchange and changesubtree
are set to 2. Secondly, the nodes N and 0 are added to the tree.
Finally, the parent of node F is reconnected from B to C. For the
synchronization a replicate of changes is produced for the client. It
is assumed, that the negative-list of the client contains the node E.
Then the replicate-list produced by the algorithm computeRep-
licate (figure 11) contains the following edges and nodes, which
are ordered as a result from traversing the tree from the left to the
right:

l edges : DB, DH, DI, BF, CF, CN, NO
l nodes: D, H, I, N, 0

For transferring these
information in a stan-
dard format an XML
representation is used.
Figure 12 shows the
corresponding XML-
DTD; appendix A pre-
sents the appropriate
XML-Schema. The
two main parts of the
specification are edge
and node each with a
few attributes. As the
XML-Document for
the example above is
obvious it is left out.

The last step to be done
on the server-side is to
update the array hold-
ing the last synchroni-
zation time of the cli-
ent. The value is set to
the current time stamp.

<?xml version=“1 .O” encoding=“UTF-S”?>

<!ELEMENT ReplicateList (edge I node)‘>

<!ELEMENT edge (#PCDATA)>

<!ATTLIST edge

parentnode CDATA #REQUIRED

childnode CDATA #REQUIRED

validTag (valid I invalid) #REQUIRED

lastchange C D A T A # R E Q U I R E D

changedsubtree C D A T A # R E Q U I R E D

>

c!ELEMENT node (#PCDATA)>

<!ATTLIST node

node-name CDATA #REQUIRED

validTag (valid I invalid) #REQUIRED

lastchange C D A T A # R E Q U I R E D

>

Figure 12: XML-DTD for transferring
the replicate

4 SUMMARY AND FUTURE WORK
This paper deals with the efficient synchronization of multidimen-
sional schema data in a client server environment. Inspired by the
increasing power of personal computers and the raising bandwidth
of networks, transferring parts of the data warehouse to the client,
storing the data and computing queries at the client seems to be pos-
sible. If additionally the data and structures at the server are
changed, then the problem of efficiently detecting and transferring
the modifications to the server comes up. The focus and main con-

Final edited form was published in "CIKM01: International Conference on Information and Knowledge Management. Atlanta 2001", S. 69–76,
ISBN 978-1-58113-437-7

https://doi.org/10.1145/512236.512246

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

(c) Full clussificution tree on the server at point of time 2

Figure 13: Classification tree at two points of time

tribution of this paper is the presentation of an algorithm for detec-
ting modifications in the classification tree by not having a histori-
cal list containing all changes.

After an introduction in section I including an overview of the syn-
chronization process several possible architectures are presented
(section 2). In section 3 data structures, modification operations
and an algorithm for detecting the changes are presented. Although
this paper addresses some problems and presents first solutions,
many other issues are open, which are part of our future work. At
first we think about improving the proposed synchronization tech-
nique. The introduced technique provides an image of the current
valid and interesting classification tree of the server database. How-
ever, we might envison a scenario where the client holds a full rep-
licate of the interesting tree including all changes on the server. This
means that all historical informations are stored and transferred to
the client. Such a historical list is not necessary for our approach. If
it is introduced, then the classical star- or snowflake-schema ([131)
have to be extended. For instance from a relational point of view
nested tables ([16]) could be used to store the historical informa-
tions for each node. Another point of our future work is the follow-
ing: It is imaginable, that the classification structure of the client is
changed and propagated to the server. If the server structure is not
changed then the proposed algorithm can be used. Otherwise trans-
action management with locks of nodes and subtrees has to be intro-
duced according to [7]. Finally in future the performance of the pro-
posed algorithms should be evaluated in practice.

Summarizing the paper we think that the concept of having parts of
the data warehouse stored on a personal computer becomes an sig-
nificant fact in future, because the subject ‘information’ becomes
more and more important even for people being not permanent con-
nected to the central data warehouse.

REFERENCES
I Agrawal, R.; Gupta, A.; Sarawagi, S.: Modeling

Multidimensional Databases, in: Proceedings of the 13th
International Conference on Data Engineering (lCDE’97,
Birmingham, GroBbritannien, April 7-l l), 1997, pp. 232-243

2

3

4

5

6

7

8

9

1 0

Baralis, E.; Paraboschi, S.; Teniente, E.: Materialized View
Selection in a Multidimensional Database, in: Proceedings of
the 23rd International Conference on Very Large Data Bases
(VLDB’97, Athen, Griechenland, August 25-29), 1997,
pp. 156-165

Castro de, C.; Grandi, F.; Scalas, M.: Schema Versioning For
Multitemporal Relational Databases. In: Information Systems
22(5), 1997, pp . 249-290

Chaudhuri, S.; Dayal, U.: An Overview of Data Warehousing
and OLAP Technology, in: ACM SIGMOD Record 26(1997)1,
pp. 65-74

Cohen, N.H.: The MVCRS Java Framework for Mobile Data
Synchronization, IBM Research Report RC 21774 (98049),
August lb,2000

Gadia, S.; Nair, S.: Temporal databases: a prelude to
parametric data. In: Temporal Databases: Theory, Design, and
Implementation. Benjamin/Cummings, 1993, pp. 28-66

Gray, J.; Reuter, A.: Transaction Processing: Concepts and
Techniques. San Mateo (CA): Morgan Kaufman Publishers,
1993

Gyssens, M.; Lakshmanan, L.V.S.: A Foundation for Multi-
Dimensional Databases,
International Conference ‘Zn p~Z~edLC~~e ‘;,I,“’ BZZ
(VLDB’97, Athen, Griechenland, August 25-29) 1997,
pp. 106-I 15

Harinarayan, V.; Rajaraman, A.; Ullman, J.D.: Implementing
Data Cubes Efficiently, in: Proceedings of the International
Conference on Management of Data (SlGMOD’96, Montreal,
Quebec, Canada, June 4-6), 1996, pp. 205-216

Hurtado, C. A.; Mendelzon, A. 0.; Vaisman, A. A.:
Maintaining Data Cubes under Dimension Updates. In:
Proceedings of the 15th International Conference on Data
Engineering (lCDE’99, Sydney, Australien, March 23-26)
1999, pp. 346-355

Final edited form was published in "CIKM01: International Conference on Information and Knowledge Management. Atlanta 2001", S. 69–76,
ISBN 978-1-58113-437-7

https://doi.org/10.1145/512236.512246

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

I1

1 2

1 3

14

15

Hurtado, C. A.; Mendelzon, A. 0.; Vaisman, A. A.: Updating
OLAP Dimensions. In: Proceedings of the 2nd International
Workshop on Data Warehousing and OLAP (DOLAP’99,
Kansas City, Missouri, USA, November 6), 1999, pp. 60-66

Inmon, W.H.: Building the Data Warehouse. John Wiley &
Sons, New York et.al., 1996

1 6

17

Kimball, R.: The Data Warehouse Toolkit. John Wiley & Sons,
New York et.al., 1996

1 8

Kimball, R.: Slowly changing dimensions. Unlike OLTP
systems, data warehouses can track historical data. In: DBMS
Online 9 (4), 1996 19

Lamport, L.: Time, Clocks and the Ordering of Events in a
Distributed System. In: Communications of the ACM, 21(7),
1978, pp. 558-565

Oracle, http://www.oracle.com/, 2001

Roddick, J. F.; Craske, N. G.; Richards, T. .I.: A Taxonomy for
Schema Versioning Based on the Relational and Entity
Relationship Models. In: Proceedings of the 2th International
Conference on the Entity-Relationship Approach (ER’93,
Arlington, Texas, USA, Dezember 15-17), 1993, pp. 137-148

Roddick, J. F.: A Model for Schema Versioning in Temporal
Database Systems. In: Proceedings of the 19th ACSC
Conference (ACSC’96, Melbourne, Australien, January 3 1 -
February 2) 1996, pp. 446-452

Sapia, C.; Blaschka, M.; Hofling, G.: An Overview of
Multidimensional Data Models for OLAP. FORWISS Report
FR-1999-001, 1999
(electronic version: http://www.forwiss.de/public/
reports.html)

APPENDIX A: XML-SCHEMA FOR TRANSFERRING THE REPLICATE
<?xml version=“1 .O” encoding=“UTF-8”?>
e!--VJSC Schom;~ yonerntscl by XML Spy v:>,5 NT !I~ttp:/~~~w~~~.xr~lspy.curi~!-->
<xsd:schema xmir~s:xr~d=“http:Nwww.w3.org/2000/1 O/XMLSchema” ali!n~clntForril~ofaiiIt=“qualified”>

<xsd:element namo=“ReplicateList”>
<xsd:complexType>

<xsd:choice n~rrlOcctr:~~~=“O” rnaxOccl.rrs=“unbounded”>
<xsd:element ref=“edge”/>
cxsd:element ret=“node%

</xsd:choice>
</xsd:complexType>

</xsd:elementz
<xsd:element name=“edge”>

<xsd:complexType>
<xsd:simpleContentz

<xsd:restriction base=“xsd:string”>
<xsd:attribute name=“parentnode” type=“xsd:string” use=“required”/>
<xsd:attribute rwnt?=“chiIdnode” type=“xsd:string” use=“required”/>
cxsd:attribute name=“validTag” use=“required”>

<xsd:simpleTyper
<xsd:restriction base=“xsd:NMTOKEN”>

<xsd:enumeration vniue=“valid”l>
<xsd:enumeration ve;ue=“invalid%

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute ri~trre=“lastChange” type=“xsd:string” use=“required%
<xsd:attribute nrurio=“changeSubtree” type=“xsd:string” us&required”/>

</xsd:restriction>
</xsd:simpleContentz

</xsd:complexType>
</xsd:element>
<xsd:element nsnre=“node”>

cxsd:complexType>
<xsd:simpleContent>

cxsd:restriction base=“xsd:string”>
<xsd:attribute rlflrrle=“node-name” fype=“xsd:string” usr!=“required”/>
<xsd:attribute nam~~=“validTag” u:;e=“required”>

<xsd:simpleType>
<xsd:restriction base=“xsd:NMTOKEN”>

<xsd:enumeration value=“valid”/>
<xsd:enumeration vaiue=“invalid”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute nrtsrir=“lastChange” typ”s=“xsd:string” us&required”/>

</xsd:restriction>
c/xsd:simpleContent>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Final edited form was published in "CIKM01: International Conference on Information and Knowledge Management. Atlanta 2001", S. 69–76,
ISBN 978-1-58113-437-7

https://doi.org/10.1145/512236.512246

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	ADP252.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	L. Schlesinger, A. Bauer, W. Lehner, G. Ediberidze, M. Gutzmann
	Efficiently synchronizing multidimensional schema data

