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Abstract

English:
Vehicle velocity distributions are of utmost relevance for the efficiency, safety, and sustainabil-
ity of road traffic. Yet, due to technical limitations, they are often empirically analyzed using
spatiotemporal averages. Here, we instead study a novel set of microscopic traffic data from
Dresden comprising 346 million data points with a resolution of one vehicle from 145 detector
sites with a particular focus on extreme events and distribution tails. By fitting q-exponential
and Generalized Extreme Value distributions to the right flank of the empirical velocity dis-
tributions, we establish that their tails universally exhibit a power-law behavior with similar
decay exponents. We also find that q-exponentials are best suitable to model the vast extent
to which speed limit violations in the data occur. Furthermore, combining velocity and time
headway distributions, we obtain estimates for free flow velocities that always exceed average
velocities and sometimes even significantly exceed speed limits. Likewise, congestion effects
are found to play a very minor, almost negligible role in traffic flow at the detector sites. These
results provide insights into the current state of traffic in Dresden, hinting toward potentially
necessary policy amendments regarding road design, speed limits, and speeding prosecution.
They also reveal the potentials and limitations of the data set at hand and thereby lay the
groundwork for further, more detailed traffic analyses.
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Abstract

German:
Geschwindigkeitsverteilungen von Fahrzeugen sind von größter Bedeutung für die Effizienz,
Sicherheit und Nachhaltigkeit des Straßenverkehrs. Aufgrund technischer Beschränkungen
werden sie jedoch häufig empirisch anhand von raum-zeitlichen Mittelwerten analysiert. Hier
untersuchen wir stattdessen einen neuartigen Satz mikroskopischer Verkehrsdaten aus Dres-
den, der 346 Millionen Datenpunkte mit einer Auflösung von einem Fahrzeug von 145 De-
tektorstandorten umfasst. Ein besonders Augenmerk legen wir auf Extremereignisse und
Tails von Verteilungen. Durch den Fit von q-Exponential- und verallgemeinerten Extremw-
ertverteilungen an die rechte Flanke der empirischen Geschwindigkeitsverteilungen stellen wir
fest, dass ihre Tails universell ein Potenzgesetzverhalten mit ähnlichen Exponenten aufweisen.
Wir stellen außerdem fest, dass q-Exponentiale am geeignetsten sind, um das Ausmaß der
Geschwindigkeitsüberschreitungen in den Daten zu modellieren. Darüber hinaus erhalten wir
durch die Kombination von Geschwindigkeits- und Bruttozeitlückenverteilungen Schätzungen
für Freiflussgeschwindigkeiten, die stets über den Durchschnittsgeschwindigkeiten liegen und
teilweise sogar die Geschwindigkeitsbegrenzungen deutlich überschreiten. Ebenso wird fest-
gestellt, dass Staueffekte eine sehr geringe, fast vernachlässigbare Rolle im Verkehrsfluss an den
Detektorstandorten spielen. Die Ergebnisse geben einen Einblick in die aktuelle Verkehrssitua-
tion in Dresden und weisen auf möglicherweise notwendige politische Änderungen in Verkehrs-
planung hinsichtlich der Straßengestaltung, der Geschwindigkeitsbegrenzung und der Verfol-
gung von Geschwindigkeitsüberschreitungen hin. Sie zeigen aber auch die Möglichkeiten und
Grenzen des vorliegenden Datensatzes auf und legen damit den Grundstein für weitere, detail-
liertere Verkehrsanalysen.
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1 Introduction

Extreme-Value Statistics can be
regarded as the art of extrapolation.

Axel Bücher and Chen Zhou [BZ21]

For years, traffic volumes in Germany have kept increasing. In 2019, the number of kilometers
driven in road passenger traffic was 29% higher than in 1991 [Umw22]. Most of this can be
attributed to cars [Ver22]. Until 2030, mobility demand is projected to keep growing [Kri16].
This, along with the increasing controversies about the allocation of urban space and the need
for a sustainable transformation of the traffic system brought about by climate change, poses
a huge challenge for urban and in particular traffic planning [Ver22].

In order to inform inclusive, sustainable, and efficient political decisions but also to improve
traffic control, traffic data availability is key. Usually, this data is recorded in the form of
spatiotemporal averages. In 2020, the traffic detector system in Dresden was upgraded to
be able to resolve individual vehicles and store this microscopic traffic data for scientific use.
Since then, 346 million vehicle movements have been recorded which will be analyzed in this
thesis for the first time.

A main advantage of the microscopic data is that it paints a realistic picture of the traffic
system whereas in mesoscopic or macroscopic data particularly extreme events are suppressed
due to averaging. Meanwhile, extreme events are of high relevance for important applications
such as road safety analyses, traffic stability, and accident avoidance. Thus, this novel data
set allows us to explore the potential of extreme value theory that is well established e.g. in
finance [Roc10] but has rarely found applications in traffic science.

This thesis serves to provide an overview of the data set at hand, examing multiple aspects
with connections to mathematics, physics, and traffic science. It builds on the work by Paul
Rathke, who first analyzed a fraction of the data and examined the potential of extreme value
theory in [Rat20].
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Chapter 2 lays down the mathematical and statistical groundwork necessary for the following
analyses. After introducing and defining basic terms, it motivates the limit distributions
of partial maxima and peaks over threshold and compares the two approaches. Furthermore,
aspects from the field of traffic science like the hydrodynamic relation, the quantities measured
by traffic detectors, and the fundamental diagram or flow–density diagram are discussed.

Chapter 3 then outlines how the data is recorded, processed, and saved. It describes the
specifications of the measured quantities and the database structure. It also sets out the
measurement period, data gaps, the total traffic volume, and its distribution across different
detectors, the modal share, detector locations, average velocities per detector and traffic vol-
ume, and average velocities per time of day, day of the week, and week of the year, serving
as a basis for i.i.d. assumptions that will later become necessary for extreme value theory
analyses.

In Chapter 4, we examine car velocity distributions. This is split into two parts: Firstly, we
consider the full distributions and divide them into four distinct sections. Using exponential
and q-exponential distributions, we characterize the right flanks of these distributions. We
also employ dimensionality reduction algorithms to determine principal components of the
distributions and identify clusters. Secondly, we turn towards extreme value theory to describe
the right tails of the distributions. After establishing criteria restricting the data to subsets
that can be assumed as independent and identically distributed, we verify the fit methodology
and determine the necessary parameters, namely the block size and quantile. Lastly, we classify
the distributions found in the traffic data according to the extreme value distribution types.

Chapter 5 focuses on traffic science-related questions and presents empirical probability distri-
butions for detector occupation times and time gaps. Based on that, we discuss distributions
of traffic flows and traffic densities. Combining flow and density distributions, we construct
characteristic flow–density, velocity–flow, and velocity–density diagrams, allowing us to draw
conclusions about the state of traffic in Dresden and the role of congestion effects. In addition,
we simulate the prior averaging conducted by many detectors and discuss its influence on
the distributions and characteristic diagrams, thereby comparing the potential of microscopic
versus mesoscopic or macroscopic traffic data. We also develop and put to use a method to
estimate free-flow velocities.

Applying the previously established probabilistic models, Chapter 6 compares real speed limit
violations to those predicted by the different velocity probability distributions. Furthermore,
building on the work of the previous chapter, we use average and free-flow velocities and the
corresponding speed limits to identify potential mismatches between road design and the speed
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limits.

Finally, in Chapter 7 we summarize our results and discuss their implications and limitations
before providing an outlook for potential future works and open questions in Chapter 8.

At this point, I would also like to thank Marc Timme for allowing me to write this thesis with
his group in spite of this tight schedule and Alexander Keimer for agreeing to support and
review this thesis when we approached him out of the blue. Without the constant support
and supervision of Malte Schröder who answered my questions regarding math and physics
and Angelika Hirrle who brought in her expertise in traffic science, this work would not have
been the same. I am also thankful to Lina Tölle, Christoph Röllig, Infinity Rage Cage, Henrik
Wolf, and my parents for the advice, support, and motivation they gave me.



2 Theoretical Background

2.1 Mathematics and Statistics

2.1.1 Elements of Statistics and Limit Distributions of Partial Sums

A random variable X is a function X : Ω → E, where Ω is the set of possible outcomes
(the sample space) of a random experiment and E is a measurable space which for the pur-
pose of this thesis can be assumed as the real numbers R [Col01, p. 20]. If the image of X,
X(Ω) ⊂ E, is countable, we call the random variable discrete, otherwise, we call it continuous.
The distribution of discrete random variables are described with probability mass func-
tions (PMF) whereas continuous random variables are described with probability density
functions (PDF). Cumulative distribution functions (CDF) on the other hand apply
to both cases and return the probability that the outcome is less than or equal to the given
value.

A set of random variables is independent and identically distributed (i.i.d. ) if each of
the random variables has the same cumulative distribution function (that is P (Xi ≤ x) =

P (Xj ≤ x) for all i, j and x) and all random variables are mutually independent, e.g. random
variable Xi does not influence random variable Xj [Geo15, p. 71]. Independence is equivalent
to P (Xi ≤ xi ∧Xj ≤ xj) = P (Xi ≤ xi) · P (Xj ≤ xj).

Let (Xn)n∈N be a sequence of i.i.d. random variables where each of the random variables has
a well-defined first moment µ and a well-defined second central moment σ2 (such a sequence
is called a random process [cf. Col01, p. 25]). The central limit theorem is then concerned
with the behavior of the partial sums of this sequence, Σn

i=1Xi = n · X̄n [HF10, p. 3], ,
where X̄n indicates the mean of all Xn. It can be proven [cf. Geo15, pp. 152 sqq.] [cf. Düm16,
pp. 219–220] that a linear normalization1 of these partial sums weakly converges to the normal

1It is immediately apparent that the partial sums can diverge unless normalized.
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distribution2:

Σn
i=1Xi − n · µ√

n
=

√
n
(
X̄n − µ

)
=: Yn

d→ N
(
0, σ2

)
for n → ∞ (2.1)

This has to be understood in the following sense: In the limit n → ∞ (or, in practice, for
sufficiently high n), assume we repeatedly draw the random variable Yn. Then, the realizations
of Yn, yn, will be distributed according to the normal distribution with mean 0 and variance
σ2. Note that we did not make any assumptions about the distributions of the individual Xi

apart from them being i.i.d.

In this sense, the normal distribution is the asymptotic distribution of the (normalized) partial
sums. For a finite number of random variables, the normal distribution is a good approximation
for the distribution close to its peak – however, for extreme values corresponding to the tails
of the distribution, this does not necessarily hold.

2.1.2 Limit Distributions of Partial Maxima

As opposed to classical statistics, which is mainly concerned with central moments of distri-
butions, extreme value theory tries to describe the so-called tails of distributions. For many
distributions with thin tails, this does not yield meaningful insights as extreme events are
very rare – e.g. for the normal distribution, 99% of values fall into the 3-σ-interval – but for
distributions with a relatively high probability for extreme events, this is a different story.

Now, we are thus interested in the behavior of the partial maxima of a sequence of random
variables, that is max(X1, X2, . . . , Xn). How are these partial maxima3 distributed for n →
∞?

Thus, a normalization is necessary in order to stabilize location and scale of distribution when
n → ∞ [Col01, p. 46]. In analogy to how we normalized the partial sums in Equation 2.1, we
choose a linear ansatz using two real sequences, (an)n∈N and (bn)n∈N (whose structure and val-
ues are not relevant at this point; we only assume that they exist): 1

an
(max(X1, X2, . . . , Xn)−

2Weak convergence or convergence in distribution Xn
d→ X is equivalent to limn→∞ Fn(x) = F (x) for all

x with F continuous at x [Col01, p. 26].
3It is sufficient to develop a theory for partial maxima as min(X1, X2, . . . , Xn) =

−max(−X1,−X2, . . . ,−Xn), such that a theory dealing with maxima can also be applied to minima
[Col01, p. 53].
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bn). We can thus rewrite the cumulative distribution function [cf. HF10, p. 4]:

P

(
max(X1, X2, . . . , Xn)− bn

an
< x

)
=P (X1 < anx+ bn ∧X2 < anx+ bn ∧ . . . ∧Xn < anx+ bn)

=F (anx+ bn)
n

(2.2)

The Khintchine theorem provides that in the limit n → ∞, the sequences (an)n∈N and (bn)n∈N

can be replaced with constants a and b. Now, we have reason to assume that this normalization
could yield a non-degenerate limit distribution function G(x), if the limit exists:

lim
n→∞

P

(
max(X1, X2, . . . , Xn)− bn

an
< x

)
= lim

n→∞
F (anx+ bn)

n = G(x) (2.3)

This is essentially the extreme value analog to the central limit theorem [Col01, p. 46]. In
theory, this would already be a sufficient basis for an in-depth analysis. However, in practice,
this result is not very helpful yet as the underlying cumulative distribution function F (x) is not
known. Obviously, it could be estimated using standard statistical methods, but this would
not be very useful as small deviations in F (x) would lead to huge deviations in F (x)n for a
large n [cf. Col01, pp. 45 sq.].

We now want to discuss the limiting forms of Equation 2.3 – this is what Fisher and Tippett
first did in 1928 in [FT28], when they formulated their Fisher–Tippett theorem4. It states
that if G(x) (as in Equation 2.3) exists, that is if limn→∞ F (anx+bn)

n converges weakly (which
might very well not be the case), it belongs to one of exactly three types – Gumbel, Fréchet
and Weibull – which can be expressed using the the cumulative distribution function of the
Generalized Extreme Value (GEV) Distribution [cf. HF10, p. 6]:

G(x) = exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0, γ ∈ R ∪ {−∞,+∞} (2.4)

It should be noted that this result holds irrespective of the underlying distribution function
F (x) – as is the case for the central limit theorem. It is merely the type of the GEV distribution
that depends on the underlying distribution function F (x). Distribution functions which give
rise to one particular type of GEV distribution are said to lay in that GEV distributions

4In literature, it is also referred to as the Fisher–Tippett–Gnedenko theorem to acknowledge Boris
Vladimirovich Gnedenkos contributions in 1943.
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domain of attraction [LR83, pp. 15 sq.]. However, it should be noted that there are some
non-degenerate and degenerate examples of distributions that do not fall into any of the GEV
distributions’ domains of attraction, e.g. outlined in [Löe08, pp. 25 sq.] and [exercises 1.13
and 1.18 in HF10, pp. 35 sq.].

How can we draw any meaningful insights when the sequences (an)n∈N and (bn)n∈N are un-
known? Well, if Equation 2.3 holds, we can rewrite it using x = (x∗ − bn)/an, where G∗ has
different parameters but also clearly belongs to one of the GEV distribution types which can
be thought of as equivalence classes [Col01, p. 48]:

P ((max(X1, X2, . . . , Xn)− bn)/an < (x∗ − bn)/an)

=P (max(X1, X2, . . . , Xn) < x∗)

=G((x∗ − bn)/an) = G∗(x∗) for n → ∞

(2.5)

As the parameters are not known a priori and result from an estimation based on the data,
this is not an issue. Thus, the sequences are irrelevant for further analysis.

The GEV distributions have the property of max-stability [cf. Haa84]:

max(X1, X2, . . . , Xn)− bn
an

d→ X for n → ∞ (2.6)

Here, all X follow a GEV distribution. In essence, max-stability describes distributions for
which the process of taking maxima generates the same distribution (up to normalization). It
is intuitively understandable (and easy to show) that GEV distributions fulfil Equation 2.6 –
in fact, the class of max-stable distributions and the class of GEV distributions are equivalent
[cf. Col01, p. 50]. This is what the proof of the Fisher–Tippet theorem, outlined in [LR83,
pp. 8 sqq.], relies on.

From now on, we write Gγ(x) instead of G(x) to indicate that the behavior of the limit
distribution qualitatively depends on the parameter γ, called the extreme value index [cf.
HF10, p. 6].

As in the case of the central limit theorem, we would also obtain a location parameter µ and a
scale parameter σ – however, these can be neglected as they do not fundamentally change the
distributions which can easily be transformed using x′ = x−µ

σ
(with −∞ < µ < ∞ and σ > 0).

Distributions which satisfy F1(x) = F2(ax+ b) are said to be of the same type. Distributions
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belonging to the same type exhibit the same qualitative behavior [LR83, p. 9].

When dealing with real-world data, it is generally preferable to fit the GEV distribution
compared to fitting a Gumbel, Fréchet, or Weibull distribution as this would constitute an a
priori choice of the extreme value index. Thus, its uncertainty could not be described by the
model [cf. Col01, pp. 63 sq.].

Equation 2.4 leaves three cases that qualitatively differ for further analysis: γ = 0, γ > 0 and
γ < 0.

The Gumbel Distribution (Type I): γ = 0

The case of γ = 0 has to be understood in the sense of taking the limit γ → 0 (as limn→∞
(
1 + −x

n

)n
=

exp(−x) with n = − 1
γ
).

The Gumbel distributions cumulative probability and probability density functions are then
given as:

G0(x) = exp(− exp(−x)), −∞ < x < ∞ (2.7)

g0(x) = exp(−(x+ exp(−x))), −∞ < x < ∞ (2.8)

As exp(− exp(−x)) → 1 for large x, the decay behavior is dominated by exp(−x) which is
exponential, decaying faster than power-law – this is called a thin, sometimes also light, tail.
The domain of attraction of the Gumbel distribution includes the normal, lognormal, gamma,

−3 −2 −1 0 1 2 3 4 5 6
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Figure 2.1: Cumulative distribution functions of the Gumbel, Fréchet and Weibull distri-
butions.
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and exponential distributions among others [LR83, pp. 19 sqq.]. Usually, their moments
exist.

The Fréchet Distribution (Type II): γ > 0

The Fréchet distributions cumulative probability and probability density functions are given
as5:

G′
γ(x) = Gγ

(
x− 1

γ

)
=

0, x ≤ 0

exp
(
−x−1/γ

)
, x > 0

(2.9)

g′γ(x) =

0, x ≤ 0

1
γ
· x−(1+1/γ) · exp

(
−x−1/γ

)
, x > 0

(2.10)

Often, the distribution is expressed using 1
γ
= α > 0 as G′

γ(x) = exp(−x−α).

As exp
(
−x−1/γ

)
→ 1 for large x, the decay behavior is dominated by x−(1+1/γ) which is

polynomial – this is called a fat, sometimes also heavy or power-law, tail. The domain of
attraction of the Fréchet distribution includes the Pareto and Cauchy distributions among
others [LR83, pp. 19 sqq.]. The higher the extreme value index is, the more probability mass
is centered in the tail, and thus the heavier the tail is.

Both the Fréchet distribution and the distributions in its domain of attraction are characterized
by the fact that not all of their moments exist, that is E[Xj] = ∞ for j ≥ 1/γ [Woe10, p. 21].

The Fréchet distribution Gγ(x) has a lower endpoint at x = −1/γ. It also has a positive
skew.

The Weibull Distribution (Type III): γ < 0

The Weibull distribution’s6 cumulative probability and probability density functions are given
as:

5G′
γ(x) is only introduced to increase readability and highlight the qualitative behavior of the distribution.

6As the Weibull distribution also appears in other applications, this is technically the reverse-Weibull
distribution – however, as we are only interested in the distribution with an upper bound we will simply refer
to it as the Weibull distribution.
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Figure 2.2: Probability density functions of the Gumbel, Fréchet and Weibull distributions.

G′
γ(x) = Gγ

(
−x+ 1

γ

)
=

exp
(
−(−x)−1/γ

)
, x < 0

1, x ≥ 0
(2.11)

g′γ(x) =

− 1
γ
· (−x)−(1+1/γ) · exp

(
−(−x)−1/γ

)
, x < 0

0, x ≥ 0
(2.12)

Often, the distribution is expressed using − 1
γ
= α > 0 as G′

γ(x) = exp(−(−x)α).

The Weibull distribution Gγ(x) has an upper endpoint at x = −1/γ – essentially, it does not
have a tail, often also referred to as a short (or finite) tail. The domain of attraction of the
Weibull distribution includes distributions that have an upper endpoint like the uniform, beta
or truncated exponential distribution [LR83, pp. 19 sqq.]. For short-tailed distribution, all
moments exist [Woe10, p. 21]. It also has negative skew.

2.1.3 Block Maxima (BM)

In order to apply the GEV distribution to real-world data, it is necessary to identify maxima.
This is done using the so-called block maxima method.

Let us look again at Equation 2.3 and identify max(X1, X2, . . . , Xn) =: Mn. When given a
dataset of size n, it is clearly not very useful to take the maximum of the dataset as this would
only yield one value – not enough to construct a distribution. Thus, the dataset is divided up
into blocks of size k. This gives m = dN/ke block maxima Mk to which the distribution can
then be fitted.

Choosing a value for the block size k is rather complicated. On the one hand, the GEV
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distribution is the limit distribution for k → ∞. A too low value of k would thus introduce
bias – in the extreme case of k = 1 it would simply reproduce the original distribution which
is certainly not a GEV distribution. On the other hand, choosing a too high value of k would
drastically reduce the number of block maxima to which the GEV distribution can be fitted,
increasing variance. There is no general rule on how this tradeoff should be done – the block
size can only cautiously be chosen on a per-case basis when dealing with real-world data [cf.
Col01, p. 54].

The block maxima do depend on the order of the data. Thus, they will be different when
shuffling the data before drawing block maxima. This can be advantageous when the data
follows some weak time-dependent, e.g. seasonal trend: Then, the individual blocks might
not follow the same distribution which can be mitigated by shuffling the data before drawing
block maxima, removing the influence of the trend. When the data does not follow such a
trend but an observation depends on the previous n observations, it is preferable not to shuffle
before drawing block maxima as the dependence can be ignored as long as the block size k

is larger than n as only the maximum value is selected, leaving aside all other (dependent or
independent) values.

However, according to [Col01, p. 74], the block maxima method is not necessarily the most
desirable option when the entire time series of the data is available. In the next section, we
will discuss one of the alternatives.

2.1.4 Limit Distributions of Peaks over Threshold (POT)

Apart from the block maxima method, there is a more natural, intuitive way to define extreme
values – that is by defining a threshold over which a value is then considered extreme. How
could a distribution of these values be described statistically?

A = {Xi : Xi > u, i ∈ (1, . . . , n)} (2.13)

Again, F : R →, x 7→ F (x) is the cumulative distribution function of the Xi. The probability
of Xi to exceed the threshold u by y = x− u is then F ′(x) = 1− F (x) = 1− F (u + y) (with
y ≥ 0). In order to obtain the cumulative distribution function this needs to be normalized
by the overall probability of x exceeding u, F ′(u) = 1 − F (u). Thus, the probability of Xi

exceeding u (given that Xi > u as denoted by the subscript) is:
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PXi>u(Xi > x) =
1− F (x)

1− F (u)
for x ≥ u (2.14)

But, as with the GEV distribution, F is usually not known in real-world scenarios. Thus,
we try to obtain it as the limiting distribution when the threshold u → ∞, given (or on the
condition) that X > u. As an ansatz, we choose the GEV distribution as we would only
expect to see the block maxima for a large enough threshold u. We start with Equation 2.3
and Equation 2.4 [cf. Col01, pp. 75 sqq.], assuming sufficiently large n and using the Taylor
expansion − log x ≈ 1− x in the last step:

F (x)n = G(x) = exp
(
−(1 + γx)−1/γ

)
⇔ n logF (x) = −(1 + γx)−1/γ

⇔ (1− F (x)) =
1

n
(1 + γx)−1/γ

(2.15)

Using this, we can solve Equation 2.14, renaming γ to the shape parameter ξ in order to avoid
ambiguity:

PXi>u(Xi > u+ y) =
1− F (u+ y)

1− F (u)
=

(1 + ξ(u+ y))−1/ξ

(1 + ξu)−1/ξ
=

(
1 +

ξy

1 + ξu

)− 1
ξ

(2.16)

Again understanding ξ = 0 as taking the limit ξ → 0, this yields the Generalized Pareto
Distribution (GPD) (absorbing 1/(1+ ξu) into ξ). Its cumulative distribution function and
probability density function are:

Gξ(y) = 1− (1 + ξy)−
1
ξ for 0 ≤ y (and y < −1/ξ for ξ < 0) (2.17)

gξ(y) = (1 + ξy)−
ξ+1
ξ for 0 ≤ y (and y < −1/ξ for ξ < 0) (2.18)

This finding is called the Pickands–Balkema–De Haan theorem [Pic75], [Mak07, p. 116],
[BH74].

As in the case of the GEV distribution, y can be substituted with x−µ
σ

to include a location
and scale parameter.

The most notable difference for the different cases of the shape parameter ξ is that for negative
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Figure 2.3: Cumulative distribution function of the Generalized Pareto Distribution for
different cases of ξ.
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Figure 2.4: Probability density function of the Generalized Pareto Distribution for different
cases of ξ.
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values of ξ the distribution has a right endpoint at x+ = −1/ξ. For ξ = 0, the GPD distribution
is identical to the exponential distribution. Otherwise, the decay follows a power-law and the
higher ξ is, the heavier the tail of the distribution is and the mass of the probability density
function is centered towards higher values. Furthermore, for ξ ≥ 1, the mean is infinite,
otherwise, it is finite.

When the generalized Pareto distribution is a valid model for a given threshold u, it is also a
reasonable model for every u′ > u [Col01, p. 83]. This can easily be shown analytically and is
also intuitively understandable as a power-law distribution is scale-free.

2.1.5 BM vs. POT: Comparing the Two Approaches

The approach of block maxima and peaks over threshold share many similarities. This is to be
expected as for many data sets, the block maxima and peaks over threshold have significant
overlap, as can be seen in Figure 2.5. Additionally, for block maxima and peaks over threshold
drawn from the same data set, their empirical cumulative distribution functions are identical
in the asymptotical limit of large values. Conversely, the shape parameters of GEV and GPD
distributions are identical if the block maxima and peaks over threshold were drawn from the
same data set [HF10, pp. 89 sq.] [Rod17] – and due to max-stability, the shape parameters are
independent of the threshold or the block size as long as they are large enough.

Another sense in which the approaches are similar is the tradeoff between bias and variance
[cf. Col01, pp. 54, 78]. Choosing a low value for the threshold or block size respectively might
violate the assumption of a GPD or a GEV model as the limiting distribution; choosing a high
value leaves fewer values for the analysis variance and uncertainty of the fit.

−2 0 2 4 6 8 10 12 14 16 18 20

0

2

4

6
Block Maxima

Peaks over Threshold

Figure 2.5: Block maxima (BM) and peaks over threshold (POT) for 20 random real
numbers between zero and five with a block size of five and a threshold of 3.5.
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In many data sets, extreme events are quite rare. Then, it is important to make efficient
use of the available extreme events. In these cases, it is often preferable to employ the peaks
over threshold approach as it selects all events considered extreme whereas the block maxima
approach per definition disregards all events smaller than the maximum, even if they are only
marginally smaller.

This can, however, also be an advantage. If the data is dependent, extreme events tend
to cluster. These clusters then violate the i.i.d. assumption at the heart of extreme value
theory. This is an issue, particularly for the peaks over threshold approach. The block maxima
approach on the other hand circumvents this issue by only selecting one value from each cluster
as long as the clusters are small enough compared to the block size. Thus, the independence
criterion is less strict for the GEV distribution.

A way by which the two approaches can be synthesized is by considering not only the maximum
from each block but selecting the r largest values. This is a generalization of the GEV model
to r largest order statistics, allowing to extract more information from one block than just
the maximum. [Col01, p. 66], albeit at the expense of complexity. This is particularly useful
when the data is very limited. However, due to the amount of data available for the following
analyses, this is not relevant here.

2.1.6 Maximum Likelihood Estimation

Often, it is desirable to describe real-world data with a statistical model. These statistical
models are usually characterized by their parameters. How can this description be conducted
in a rigorous manner?

The parameters, in this case, are known as the estimands – the quantities that need to be
estimated. The rule or function defining the estimation process is called the estimator. The
result, the concrete values for the different parameters or estimands, are the estimates [cf.
Düm16, pp. 25 sqq.].

The approach that the maximum likelihood estimation (MLE) uses is simple – it basically
answers the question: Given the observed data, which parameter configuration has the high-
est probability of reproducing this measurement [cf. Geo15, pp. 219 sqq.]? This parameter
configuration is then taken as the estimate.

For this, the likelihood function for observed data x1, . . . , xn with sample size n and prob-
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Figure 2.6: Histogram of block maxima and peaks over threshold drawn from the same
data set (with arbitrary scaling of the x-axis).

ability density function f(x) with parameter θ (which can generally be thought of as a vector
of multiple scalar parameters) is introduced:

L(θ) =
n∏

i=1

fθ (xi) . (2.19)

Then, the likelihood function has to be maximized with respect to the parameter θ, yielding
the MLE estimator θ̂. Often, it is easier to maximize the log-likelihood function – as the
logarithm is strictly increasing, this yields the same maximum with respect to the parameter
as the likelihood function.

ℓ(θ) = logL(θ) =
n∑

i=1

log fθ (xi) . (2.20)

Maximum likelihood estimation will become relevant in Chapter 4 where it is used to fit
statistical models to observed velocity distributions. An advantage of the MSE model is
that (under certain regularity conditions outlined in [Geo15, p. 229]) the estimator follows a
(multivariate) normal distribution for sufficiently large sample size n [cf. Col01, pp. 31 sqq.],
allowing us to learn about the uncertainties of the estimates. In the following, all uncertainties
will be provided as standard errors, corresponding to a statistical significance of 68.3%. A
comparison of different estimators for extreme value distributions can be found in [YKÖ21].
The likelihood functions for the GEV distribution can be found in [Woe10, p. 26].
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2.2 Traffic Science

2.2.1 Hydrodynamic Relation and Continuity Equation

From a physics perspective, the number of vehicles in a particular volume is a conserved
quantity – at least on short timescales, when accidents and the production and disposal of
vehicles can be ignored. Certainly, this is true for an isolated system.

Let us consider a road section of length L with N vehicles traveling at velocity v. Then, one
vehicle will take T = L/v for this road section. Given that there are N vehicles on this road
section, this allows for multiple configurations: Either the vehicles are packed very densely
and travel quite slowly, or vice versa, or in an intermediary state. If we introduce a traffic
density ρ (that is being integrated over a volume V ) and a traffic flux density Φ (through a
detector area A perpendicular to the direction of travel), this can be expressed as follows:

N =

∫
V

dV ρ =

∫
T

dt

∫
A

dA⃗ · Φ⃗

= L · ρ =
L

v
· Φ

⇔ Φ = v · ρ

(2.21)

This if often referred to as the hydrodynamic relation [TK10, p. 17].

A change in the number of vehicles on a given road section can be written as a closed surface
integral of the traffic flux density Φ⃗7 – if the number of vehicles in a given volume changes,
vehicles must either be flowing in or out of that volume. Using the divergence theorem, this
yields the continuity equation:

dN

dt
= −

∮
∂V

dS⃗ · Φ⃗ = −
∫
V

dV ∇⃗ · Φ⃗ =

∫
V

dV
∂ρ

∂t

⇒ ∂ρ

∂t
+ ∇⃗ · Φ⃗ = 0

(2.22)

As we can usually assume streets as one-dimensional systems, the traffic flow density is identical
to the traffic flux (or, equivalently, traffic flow) and the continuity equation simplifies to ∂ρ

∂t
+

∂Φ
∂x

= 0. Clearly, this is only true when no other sinks or sources like ramps are present.

7This is using the sign convention of positive flux density flowing from inside to outside.



2.2 Traffic Science 18

Here, the traffic flow and traffic density are extensive properties that scale with the system
(when the system size is the number of vehicles) that is being considered while the velocity is
an intensive property that is independent of system size.

2.2.2 Traffic Quantities and Detector Data

Real-world detectors usually have no means of directly measuring the traffic flow or the traffic
density. Particularly the traffic density is difficult to measure since most detectors are fixed
in place and thus only allow for an indirect estimate of the traffic density which is a spatial
quantity. Many detectors instead record the occupation time tocc, the net time gap between
two vehicles tgap and the individual vehicle velocity v [TK10, pp. 14 sq.]. In this context, the
traffic flow can intuitively be understood as the rate of vehicles passing the detector:

Φ =
n

Σn
i=0(tocc, i + tgap, i)

, [Φ] = h−1 (2.23)

From this, using Equation 2.21 and the average velocity v = Σn
i=0vi/n, we can calculate the

traffic density [cf. Sch04, pp. 6 sq.]:

ρ =
Φ

v
=

n

Σn
i=0(tocc, i + tgap, i)

· n

Σn
i=0vi

, [ρ] = km−1 (2.24)

Qua definitionem, the slope of the secant in a flow–density diagram, Φ/ρ, is the average traffic
velocity (analogous to the phase velocity vp = ω/k). The slope of a curve in the flow–density
diagram, dΦ/dρ, on the other hand, corresponds to the propagation velocity of perturbations
and jam fronts [TK10, p. 79] (analogous to the group velocity vg = dω/dk). As some models
describe traffic using partial differential equations that are effectively wave equations, this
propagation velocity can also be understood as the velocity of density waves traveling through
traffic [Sch04, pp. 75, 104]. In the following, in order to distinguish the two, we will refer to
Φ/ρ = v as the traffic velocity and to dΦ/dρ = u as the propagation velocity.
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Figure 2.7: Schematic fundamental diagram (with a triangular shape from the Lighthill-
Whitham-Richards (LWR) model class) [cf. TK10, pp. 82 sqq.].

2.2.3 The Fundamental Diagram

There are various models predicting the shape of the flow–density diagram. This predicted,
theoretical shape is then called the fundamental diagram [cf. TK10, p. 32]. An example of an
often used, simple, and easy-to-implement class of models are the Lighthill-Whitham-Richards
(LWR) models, depicted in Figure 2.7. There are a few characteristic properties that most
fundamental diagrams share and that can also often be observed in real-world flow–density
diagrams: For a low traffic density and a low traffic flow, they follow a linear relation. This is
the free-flowing, stable regime or region in which vehicles barely influence each other. Thus,
the traffic velocity and the propagation velocity are nearly identical. A change in density, e.g.
induced by a vehicle accelerating or decelerating, is only experienced locally by an observer
moving with traffic. This is, however, only true up to a critical density ρcrit when interactions
between vehicles begin to dominate. As random perturbations like a breaking car set off chain
reactions that often grow in amplitude and are no longer only experienced locally, increasing
the traffic density even further will decrease the traffic flow. Thus, the critical density ρcrit

corresponds to a maximum traffic flow Φmax (which represents the capacity of the road section).
Then, traffic velocity and propagation velocity are no longer identical, in fact, the propagation
velocity is even negative, indicating that perturbations propagate opposite to the direction
of traffic flow. This reflects the fact that drivers are usually only reacting to events and
perturbations in front of them, not behind them. This is the congested, unstable regime
or region. Some models also predict a meta-stable region that allows for free-flowing traffic
beyond the critical density, but once perturbations become too large, the traffic breaks down
and becomes congested8. In this case, the fundamental diagram is no longer a function but
rather a curve in flow–density space. Eventually, when vehicles are packed so densely that
they cannot move anymore (with a density ρmax), the traffic stops flowing altogether and the

8These models then allow for hysteretical effects, where the state of the system depends on its history or
path, leading to loops in the flow–density diagram.
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traffic flow vanishes.

In addition to the flow–density diagram, depending on the situation, it is sometimes also useful
to consider the velocity–flow or the velocity–density diagrams shown in Figure 2.8.

The so-called free speed v0 is the traffic velocity in the limit ρ → 0 – this is the speed that
drivers would choose if no other vehicles or obstacles were present on the street given physical
limitations [TK10, p. 28]. Sometimes, the speed limit is also considered as an upper bound
for the free-flow velocity, however, as we will see, the free-flow velocity often exceeds the speed
limit.

Numerous different models are predicting the shape of fundamental diagrams and, more gen-
erally, traffic flow dynamics, some of which are discussed in [Sch04] and [TK10].
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Figure 2.8: Velocity–density and velocity–flow diagrams for the fundamental diagram
shown in Figure 2.7. Mathematically, the velocity–flow relation is no longer a function (as
it is not right-unique) since there are two different configurations for each traffic flow: a
high–velocity, low–density, and a low–velocity, high–density configuration.



3 Microscopic Traffic Data from Dresden

3.1 Data Source and Structure

All the data analyzed in this thesis is taken from the traffic management system VAMOS21

in which the TU Dresden is involved through its Chair of Process Traffic Automation.

The VAMOS2 system comprises data from 145 detectors in 42 distinct locations all over
Dresden. When there are multiple detectors in one location, each of them monitors one of the
traffic lanes. It creates a data point for each vehicle that is recorded. The data spans roughly
two years, from July 27, 2020, to April 26, 2022, totaling 501 days of data recordings. Due to
technical issues, no data was recorded in October and November 2021 and from January 11
to February 24, 2022. During that time, about 346 million vehicle movements were recorded
in total.

The data from the VAMOS2 system is accessed through a redundant copy of the actual traffic
data which is stored in an SQL database containing two tables, quelle_pzs and pzs_archiv2.
According to the operator, the data is classified according to the TLS standard described
in [Str12].

Column name Type Description
s_idz int4 Unique identifier for each detector.

pzs_id varchar Unique identifier for each detector location.
spur int2 Lane that is being monitored by a given detector at a given

location.
standort varchar Location of a given detector.

Table 3.1: Colums of quelle_pzs.

1Further information about VAMOS2 can be found here: https://tu-dresden.de/bu/verkehr/vis/vpa
/forschung/Individualverkehr/verkehrsmanagementsystem-vamos-dresden.

2PZS is a German abbreviation and refers to ”Pegelzählstelle”.

https://tu-dresden.de/bu/verkehr/vis/vpa/forschung/Individualverkehr/verkehrsmanagementsystem-vamos-dresden
https://tu-dresden.de/bu/verkehr/vis/vpa/forschung/Individualverkehr/verkehrsmanagementsystem-vamos-dresden
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Column name Type Description
zeit timestamp Time when the vehicle is entered into the VAMOS2

database.
id varchar(50) Corresponds to pzs_id in quelle_pzs and specifies

the detector.
gap int4 Time between the detection of the back of the last

vehicle and the front of the current vehicle in ms.
lane int2 Number of the detector lane (numbered from one to

four).
class varchar Vehicle class according to Table 3.3.

length float4 Length of the vehicle in m (rounded to one decimal
place).

class_id int2 Identifier of the vehicle class according to Table 3.3.
velocity int4 Velocity of the vehicle in m/s (rounded to zero dec-

imal places).
timestamp timestamp(0) Time when the vehicle is recorded by the detector in

s (rounded to zero decimal places).
occupation int4 Occupation of the detector in ms.

Table 3.2: Colums of pzs_data; specification according to [Str12, pp. 312 sqq.].

The detectors use pairs of induction loops and measure the velocity and length of the vehicles
[for induction loops cf. TK10, pp. 13 sq.]. The detectors themselves are specified according to
[Str12, pp. 51, 137]. Whenever a metal vehicle moves over the induction loops, the inductance
changes which can be measured by evaluation electronics. Depending on the vehicle, the
magnitude of the inductance change and the inductance profile over time is different and can
be used to deduct the type of vehicle on the induction loop. By measuring the time gap
between the actuation of the first and the second induction loop (not to be confused with the
time gap between vehicles), the velocity of the vehicle is calculated. Then, using the velocity
and the occupation time of one of the loops, the vehicle length is calculated.

There are two types of relevant induction loop setups according to [Str12]. The first one
uses loops of length 2.5m which are spaced 1.5m apart (Type I) while the other ones uses
loops of length 1.0m which are spaced 1.5m apart (Type II). Thus, the effective length of
the setup used to measure the velocity is 4m for type I and 2.5m for type II. In Dresden,
both detector types are found and the specific type for one detector can be deducted from
consistency checks.

Due to technical limitations, it is impossible to increase the accuracy of the velocity beyond
the resolution of the data of 1 km/h [cf. Str12, p. 313]. When the velocity cannot be measured,
the detectors report a speed of 255 km/h. The occupation is then calculated from the velocity
and the length. When the occupation cannot be calculated, the detectors report an occupation
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of 65 535ms. When the time gap between two vehicles cannot be measured (e.g. because it is
the first vehicle being measured), the detectors report a gap of 65 535ms. The time headway
(essentially the gross time gap) between two vehicles is the sum of the (net) time gap and the
occupation. When the measured value exceeds the datatype range, the detectors report the
value for the error code minus one.

Vehicle Class Class ID Description
nk Kfz 6 Classification not possible (nicht klassifizierbare

Fahrzeuge)
Krad 10 Motorcycles (Motorräder)
Pkw 7 Car (Pkw)
Lfw 11 Delivery vans up to 3.5 t (Lieferwagen bis 3.5 t)

PkwA 2 Car with trailer (Pkw mit Anhänger)
Lkw 3 Truck (Lkw)

LkwA 8 Truck with trailer (Lkw mit Anhänger)
Sattel-Kfz 9 Articulated vehicle (Sattelkraftfahrzeuge)

Bus 5 Bus

Table 3.3: 8+1 classification of different vehicle types according to [Str12, p. 152].
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3.2 Traffic Parameters and Traffic Changes over Time

Even though the vehicle volume per detector spans over an entire order of magnitude as seen
in Figure 3.1, the detectors with the lowest vehicle volume still detected vehicles well into
the million range over the entire time of data collection. This allows us to conduct statistical
analysis even of the detectors with a comparatively low vehicle volume, and it also confirms the
fact that all detectors are placed on roads with a lot of traffic. As the detectors are primarily
used for traffic control, covering those roads with the most demand is crucial.

Since cars make up almost the entire traffic volume as seen in Figure 3.2, we will focus on
analyzing car traffic for the rest of this thesis. The second largest group are vans and delivery
trucks, while all other categories can basically be neglected.

Figure 3.3 clearly shows that – as one would expect in a city – most detectors are placed on
streets with a speed limit of either 30 km/h or 50 km/h, with detectors 0831 and 0841 being
the only exceptions. Yet, it is already apparent that the individual standard deviation is
rather high, allowing for velocities above the speed limit, and the 95% quantile corresponds to
a velocity well exceeding the speed limit.

As time-dependencies vanish when averaging over a lot of data, the dependency of the volume
and average velocities on time need to be known a priori in order to exclude data that does
not fulfill necessary requirements. Figure 3.4 and Figure 3.5 display total traffic volume and
average velocity per hour of the day, day of the week, and week of the year.

Traditionally, in traffic science, one distinguishes between Monday, Tuesday through Thursday,
Friday, Saturday and Sunday [cf. TK10, p. 25]. However, here, it seems like both traffic volume
and average velocity are fairly constant from Monday through Friday with only Saturday and
Sunday being exceptions. The same can be said about traffic from 7.00 am to 6.00 pm. When
studying the change of traffic over the course of the year, the school holidays (e. g. in calendar
weeks 40 and 52, 53) immediately stand out. Additionally, total traffic volume reduces towards
the end of the year, most likely due to pandemic restrictions and work-from-home orders.3

3Germany saw a so-called ”lockdown light” starting from November 2, 2020. A full lockdown was then
imposed on December 16, 2020. It went out of effect on June 11, 2021. Even though there was no full lockdown
the following winter, a work-from-home order was passed on November 18, 2021, lasting until April 3, 2022. It
should be noted, however, that many employers and employees proceeded with extra caution, often exceeding
the legal requirements. Source: https://de.wikipedia.org/wiki/COVID-19-Pandemie_in_Deutschland.

https://de.wikipedia.org/wiki/COVID-19-Pandemie_in_Deutschland
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Figure 3.1: Share of the total traffic volume for each detector (from July 2020 to January
2021; different lanes have been combined).
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Figure 3.3: Average velocities (including standard deviations) and 95% quantile for all
detectors (different lanes have been combined). As the detectors 3207 and 0312 report faulty
data (with velocities up to 1000 km/h), the data for these two detectors is not plotted.

0:
00

h
1:
00

h
2:
00

h
3:
00

h
4:
00

h
5:
00

h
6:
00

h
7:
00

h
8:
00

h
9:
00

h
10

:0
0
h

11
:0
0
h

12
:0
0
h

13
:0
0
h

14
:0
0
h

15
:0
0
h

16
:0
0
h

17
:0
0
h

18
:0
0
h

19
:0
0
h

20
:0
0
h

21
:0
0
h

22
:0
0
h

23
:0
0
h

Time of Day

0

50000

100000

150000

R
ec
or
de
d
Ve

hi
cl
es

Traffic Volume and Average Velocity for Sensor 0104

Recorded Vehicles
10

20

30

40

50

Av
er
ag

e
Ve

lo
ci
ty

/
k
m
h
−
1

Average Velocity
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Figure 3.5: Traffic volume and average velocity per day of the week and per week of the
year. From Monday through Friday, both traffic volume and average velocity are approxi-
mately constant. Throughout the year, traffic volume and average velocity do change, but
the relative changes are much less than throughout individual days.
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Figure 3.6: Detector locations indicated by brown dots (screenshot from [Ope17]).



4 Analysis of Vehicle Velocities

4.1 Car Velocity Distributions

4.1.1 Empirical Velocity Distributions

Usually, traffic detectors record traffic over a fixed time interval and average the measurements.
In Dresden, for example, these time intervals used for traffic control span 60 s, 112 s, 5min

or 15min.1 When the quantity of concern is the velocity, these averaged velocities fulfill the
conditions of the central limit theorem (CLT) and follow a normal distribution, e.g. as seen in
Figure 4.1. Thus, in traffic science, vehicles velocities, e.g. for simulation purposes, are often
assumed to follow a normal distribution, e.g as discussed in [AA14] or [Sch10]. However, the
fact that the average velocities follow a normal distribution does not imply that the individual
velocities are normally distributed and the empirical findings show that this is in fact not true
in Dresden.
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Figure 4.1: The velocities recorded at detector 1251.1 approximately follow a normal
distribution (left: prior to averaging; right: after averaging over k = 10 vehicles). (Averaging
over a number of vehicles rather than a time interval is preferable according to [TK10,
p. 15].)

1These numbers were given to the author by employees of the Chair of Traffic Process Automation who
regularly work with the traffic control system, they could not be independently confirmed as they are not
published.
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Generally speaking, the empirical velocity distributions can be split into four sections:

• left flank: Low velocities do not follow a clear trend. Rather, they heavily depend
on detector placement. For some detectors, the velocities follow a uniform distribution.
For others, the distribution shows a secondary maximum, possibly corresponding to a
detector placement following a traffic light, thus not leaving cars enough time to fully
accelerate after the traffic light has turned green. We also find detectors where very low
velocities are not recorded whatsoever, for example when the detector is on a high-speed
road without obstacles that never sees congestion effects.

• peak: Close to the peak, typically plus or minus one standard deviation, the distribution
approximately follows a normal distribution, indicated by the parabolic shape in the
logarithmic plot.

• right flank: The right flank typically follows a distribution with an exponential-like
behavior, corresponding to a linear decline in a logarithmic plot. With an exponential
decay, high velocities are much more pronounced compared to a normal distribution as
visible in Figure 4.2. This will be further analyzed in the next section, Subsection 4.1.2.

• extreme values: However, for extreme velocities, even the exponential distribution
underestimates the probabilities. Distributions that can describe these velocities will be
further discussed in Section 4.2.

4.1.2 Right Flank Velocity Model Estimation

Now, we want to establish a simple model for velocities corresponding to the right flanks of
the empirical velocity distributions, that is velocities exceeding µ + σ (where µ and σ have
been calculated from the data directly). Figure 4.2 shows the relative frequency of different
exponential decay parameters λ that have been fitted to the values exceeding v̄ + σv using
maximum likelihood estimation. As the full velocity distributions are not very skewed and
display a Gaussian behavior towards their peaks, it is reasonable to assume that 50% of the
total probability belongs to the interval [0, µ] and 68.3% to the interval [µ− σ, µ+ σ], leaving
1− (0.5+0.683/2) = 0.1585 = 15.85% to the values exceeding v̄+σv. This is confirmed by the
actual velocity distributions which have (16.452±0.019)% of the probability mass concentrated
in this interval.

The spread of the exponential decay parameter is fairly small as shown in Figure 4.3 and it
does not correlate with any other detector characteristics like total traffic volume, car volume,
average velocity, velocity standard deviation, lane, etc. pp. This suggests that it is a some-
what universal property across all detectors studied here. On average, the exponential decay
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Figure 4.2: The right side decay of the velocities recorded at detector 1108.3 approximately
follows an exponential distribution.

parameter is λ̄ = (0.240± 0.065) kmh−1.

Albeit that given its simplicity the model explains the behavior of the velocities quite well,
it underestimates higher velocities as previously mentioned and as one would need to expect.
Closer analysis reveals that the exponential decay parameter is indeed time-dependent, as can
be seen in Figure 4.4. It fluctuates on rather long time scales compared to the local traffic
equilibrium, influenced e.g. by the time of day and seasonal events. In fact, for any given point
in time (or, rather, time interval) the exponential distribution seems to be a better model than
for the entire, cumulated, and time-independent velocity distribution. The fact that the right
flank velocity distributions seem to originate from exponential distributions in superposition
points towards superstatistics as an alternative approach.

Superstatistics have been used in various context; the most relevant here being train [BB07]
and airplane delays [Mit+21]. It predicts the emergence of so-called q-exponentials when
individual exponential distributions are in superposition:
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Figure 4.3: Histograms of exponential decay parameters λ (left) and q-exponential shape
parameter q (right).
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Figure 4.4: The exponential decay parameter is time-dependent (left: October 1–7, 2021,
right: April 1–7, 2022).

expq(x) = (1 + (1− q)x)1/(1−q), q ∈ R, 0 < q < 2 (4.1)

Here, q is a parameter that describes the deviation from a usual exponential distribution,
where q = 1 corresponds to the exponential distribution. As outlined before, the deviations
from an exponential decay arise from the fluctuating exponential decay parameter. q can then
be determined from the distribution that the exponential decay parameter follows over time;
a simple model for which along with more mathematical details can be found in [BB07]. The
methodology used here to perform the fits is inspired by [Mit+21] and relies on maximum
likelihood estimation. Figure 4.5 shows that the q-exponential clearly provides a much better
fit than a normal exponential distribution, e.g. displayed in Figure 4.2. Yet, even though
the effect is real, the deviations from the exponential distribution are rather small over all
detectors, indicated by q being strictly greater but close to 1, visible in Figure 4.3. Again, as
the spread of the q-parameters is fairly small, it is reasonable to make a universality assumption
with q̄ = (1.0498± 0.0233). As Equation 4.1 asymptotically behaves like x(1/(1−q)) for x → ∞,
this corresponds to a tail behavior of x−20.08.

4.1.3 Principal Component Analysis and Histogram Clusters

Now, we want to attempt to cluster the total velocity distributions for cars (leaving aside
restrictions for i.i.d. assumptions which will be introduced in Section 4.2), characterized by
their normalized histograms which can be expressed as 254-dimensional vectors where each
component corresponds to the probability of one bin of 1 km/h. First, we conduct a principal
component analysis, seen in Figure 4.6. This is done using scikit-learn [Ped+11]. As only
two principal components explain the vast majority of the total variance, we attempt a visual
representation of all histograms using dimensionality reduction. Principal component analysis
itself does not yield visually useful results, thus we resort to UMAP [MHM18] as a nonlinear
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Figure 4.5: q-Exponential distribution fit to the right flank of the empirical velocity dis-
tribution for detector 1510.2.

1 2 3 4 5 6 7 8 9 10

Principal Components

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rc
en
ta
ge

of
To

ta
lV

ar
ia
nc
e

PCA of Velocity Histograms
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dimensionality reduction algorithm, visualized in Figure 4.7.

As can be seen in Figure 4.7 (left), the clusters in the UMAP plot are highly correlated
with average velocities for that detector. Interestingly, this does not translate to speed limits:
While 100 km/h– and 70 km/h–zones cluster nicely in the two-dimensional representation, the
positioning of detectors in 50 km/h– and 60 km/h–zones cannot really be distinguished; they
mix seemingly randomly, cf. Figure 4.8. This hints at the fact that there is a lot of variance
among these detectors, with ”slow” detectors where vehicles barely reach the speed limit and
”fast” detectors where vehicles regularly exceed the speed limit.

The number of four clusters in Figure 4.7 (right) has been arbitrarily chosen to obtain clusters
that are visually separable and equisized. Similarly, clusters 1 and 4 and clusters 2 and 3
merge when only two clusters are chosen. This is necessary as KMeans does not establish
the number of clusters but rather assigns each vector to one of a predetermined number of
clusters. While the 2d-UMAP projection is clearly highly correlated with the average velocity
and so are the clusters, this cannot explain the stark divide between clusters 1/4 and 2/3.
The color scale is linear, i.e. vectors with almost identical average velocities are found both in
clusters 1/4 and 2/3. As it seems unlikely that the strong separation of the clusters is merely
a statistical artifact, this should be studied further.

When the histograms are normalized to the same velocity expectation value, the clusters are
explained by the width of the distributions with high and low-velocity standard deviations
appearing together respectively. This has to be expected: When the first moment of the dis-
tribution is eliminated and cannot explain the remaining total variance, only higher moments
can contribute with the second central moment contributing most. Once the variance is taken
into account by normalizing the distributions to the same standard deviation, the histograms
appear uniformly distributed in the 2d-plain and clusters disappear. This is a behavior that
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Figure 4.7: UMAP projection of all histograms. On the left, the color indicates the
average velocity for that detector where black is the lowest and yellow is the highest. On
the right, the histograms have been assigned to four total clusters using the KMeans
algorithm [Llo82].
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Figure 4.8: UMAP projection of all histograms. The color indicates the speed limit which
clearly does not coincide with clusters.

one would expect to see from probability distributions, yet it establishes that there is no other
underlying structure that differentiates the detectors.

4.2 Properties of Extreme Velocities

4.2.1 Statistical Assumptions

When applying statistical analysis tools to real-world data, it is often – e. g. for extreme value
theory – important that the data is i.i.d. Thus, based on our prior findings, we establish
selection criteria that try to ensure that the data is i.i.d. Subsequently, only the data fulfilling
these i.i.d. criteria are analyzed. As examining the full velocity distributions conditional on
variables like time, type of vehicle, etc. would not be feasible, we use the total traffic volume
and the mean velocity as proxies for the distribution.

• Vehicle type: Clearly, different vehicle types will see different velocity distributions.
For example, trucks might not actually be capable of reaching high velocities in an in-city
context; busses are usually driven by specially trained personnel that might be less prone
to exceed speed limits; motorcycles might be encouraged to drive fast as they are less
likely to be detected by speed cameras. Thus, for the rest of this thesis, unless explicitly
mentioned, we will focus on cars only.

• Time of day: As the driving behavior of one driver is limited by how many vehicles
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are on the road and how fast they are driving which depends on the time of the day,
the velocity distribution for one car also depends on the time of the day. Even though
a finer resolution would be possible, the most obvious choice is to differentiate between
day and night traffic. As a high vehicle volume is desirable for a meaningful statistical
analysis, we restrict the data we consider to 7.00 am to 6.00 pm. During this time, as
established in Section 3.2, both traffic volume and average velocity are approximately
constant.

• Day of week: Since the traffic volume drops significantly on weekends and the aver-
age velocity adjusts accordingly (cf. Section 3.2), we only assume traffic from Monday
through Friday as i.i.d. This deviates from traffic science literature [cf. TK10, p. 25],
which usually considers Monday, Tuesday through Thursday, and Friday separately.

• Week of year: Over the year, total traffic volume per week varies by more than a
factor of two, both through seasonal and pandemic-induced effects. Yet, the traffic
volume, even over e.g. the Christmas season stays so high that the average velocity is
only barely affected. Thus, we do not make any restrictions based on the week of the
year.

• Lane: Under many circumstances, traffic on two lanes going into the same direction
can be assumed as approximately i.i.d. However, as we study an in-city scenario where
many of the detectors are placed close to intersections and traffic lights in order to be
able to control traffic flow and thus turning lanes play a role, we choose not to consider
separate lanes as i.i.d. and analyze each lane individually.

• Velocity: The detectors report faulty measurements as a velocity of 255 km/h and
velocities over or equal to 254 km/h as 254 km/h. Thus, for the following statistical
analyses, we only include velocities less than 254 km/h as these correspond to actual
velocity measurements.

It quickly becomes apparent that these criteria are by no means strict. Yet, they are necessary
to proceed further with statistical analysis. This is supported by another argument, applying
to extreme value theory: Imagine a set of random numbers that are i.i.d. Now, we add random
numbers drawn from different probability distributions which all have a compact support whose
upper bound is lower than the upper bound of the distribution of the i.i.d. random numbers
or which have tails that drop off so quickly that in a finite set of random numbers drawn from
those non-i.i.d. distributions one will find virtually none exceeding a certain threshold. Then,
the set of i.i.d. and non-i.i.d. random variables is no longer i.i.d. Yet, when extracting extreme
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values, either through the block maxima or the peaks over threshold method, they will be the
same as if they had been drawn from the i.i.d. set – given that the block size or the threshold
respectively are high enough.

This is helpful as in traffic, the velocity distributions of individual vehicles become dependent
when traffic densities are high. In those situations, however, velocities are low, meaning they
will ”automatically” be excluded from the analysis when studying high velocities through the
block maxima or peaks over threshold method. The same applies to other perturbations like
traffic lights, public transport, and bikes or pedestrians. In essence: High velocities require
free-flowing traffic which suggests that the velocities of different vehicles are independent.

When high velocities are dependent and thus cluster, e.g. because of road racing, the block
maxima method is preferable over the peaks over threshold method. This is because the block
maxima method is blind towards clusters in the sense that it still only selects the maximum
value of the cluster whereas the peaks over threshold method would select the entire cluster.
This is particularly relevant in high-flow situations where clusters occur.

It should also be noted that velocity distributions of different vehicles are certainly not identical
but instead depend on the driver. Still, it is reasonable to assume that there is a typical
velocity distribution compared to which deviations based on individual driving behavior are
small so that under the previously established criteria the individual velocity distributions can
approximately be assumed as identical.

4.2.2 Fit Method Verification

We use SciPy’s stats.rv_continuous.fit for genextreme and genpareto [Vir20] to analyze
the extreme velocities. As outlined in Subsection 2.1.6, the fitting should ideally be conducted
using maximum likelihood estimation, which has been implemented in the relevant SciPy
modules. In order to validate our results, we first have to verify the fit method.

Thus, we generate random numbers following GPD and GEV distributions with a fixed shape
parameter and then fit the corresponding distribution in order to confirm that we can recover
the shape parameter from the data. Then, we draw block maxima and peaks over threshold
from the data and refit the distributions. This also yields the same shape parameter as
predicated by the mathematical theory. Even when drawing block maxima from the GPD data
and peaks over threshold from the GEV data and then fitting GEV and GPD distributions, we
obtain the shape parameter used to generate the GEV and GPD data in the first place with
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sufficient precision. Here, it should be noted that SciPy uses an opposite sign convention for
the GEV shape parameter γ compared to this thesis.

Then, we draw block maxima and peaks over threshold from sets of random numbers drawn
from a standard Gaussian distribution and a standard exponential distribution. In both cases,
this yields, as expected, γ ≈ ξ ≈ 0. However, both for the GEV and the GPD distribution,
the shape parameter is always negative, slowly converging towards zero for k → ∞ and q → 1

respectively.

Finally, we apply our fit method to real-world traffic data. Both fit methods are consistent in
the sense that they reproduce the same fit parameters for identical data. As the block maxima
depend on the order of the data, the GEV shape parameter γ varies slightly when shuffling
the data prior to drawing block maxima.

It should be noted that the GEV fit method runs in local minima occasionally, thus aborting the
fit algorithm and missing the global minimum that corresponds to the actual shape parameter.
This behavior becomes less apparent when increasing the block size. However, even for lower
block sizes, it can be avoided by repeating the fitting process multiple times and then removing
outliers. The GPD fit method does not display this kind of behavior.

In theory, maximum likelihood estimation would allow to extract precise values for the uncer-
tainties of the obtained parameters. However, this is not implemented in SciPy’s stats.-
rv_continuous.fit. As the data sets we are dealing with are fairly large, it would be nec-
essary to implement a custom, runtime-efficient MLE algorithm in order to obtain analytical
uncertainties, which is outside the scope of this thesis.

Thus, alternatively, we resort to a bootstrapping approach in order to obtain uncertainties on
the 1-σ-level, corresponding to approximately 68% certainty. The fit method then works as
follows:

1. Split up the data into five data subsets, each containing 40% of the data (and thus
overlap).

2. Select five block sizes (80%, 90%, 100%, 125%, and 150% of the initially chosen block
size plus corresponding quantiles).2

2In theory, the shape parameters for different block sizes should be identical as long as all block sizes are
large enough. Yet, in finite data sets, the shape parameter will vary as the block maxima that are selected
naturally fluctuate. These fluctuations allow us to obtain a better estimate of the actual shape parameter and
its uncertainty.
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3. Shuffle the subsets of the data and draw block maxima and peaks over threshold accord-
ing to the different block sizes and quantiles.

4. Fit the corresponding distribution five times for each subset and each block size or
quantile and remove potential outliers that correspond to unphysical local minima in
the fit algorithm.

5. Calculate the average and standard deviation of the results. Obviously, for the location
and scale parameter, only the initial block size or quantile is considered.

4.2.3 Block Size and Quantile Selection

Even though in traffic science, averages and other quantities are usually taken over a time
interval, we choose the blocks from which we extract the maxima to consist of a fixed number
of vehicles. As outlined in [TK10, p. 15], this is statistically preferable. The usual convention
in the traffic sciences merely stems from technical limitations and data availability.

In order to maintain comparability, we ensure that we fit the GEV and GPD distributions to
the same number of data points by fixing the block size k and then choosing the threshold
corresponding to the quantile 1 − 1/k. Thus, for a block size of e.g. 100, we obtain exactly
one percent of the data, both for the GEV and the GPD distribution.

Figure 4.9 shows how the shape parameter changes depending on the block size and the quantile
respectively. It is immediately apparent that particularly for the GEV distribution, the shape
parameter quickly converges to a fixed value, and it does so for a block size well below 100.
Thus, we (somewhat arbitrarily) select 100 as the block size, supported by the fact that a), as
previously explained, multiple block sizes are considered for the fitting and b) a much higher
block size would induce variance caused by a reduced number of available data points.

The traffic data used here is discretized as only integer velocities are recorded. Meanwhile,
the peak over threshold velocities usually fall into a fairly small interval. Thus, the number of
peaks over a given threshold determined by a certain quantile as a function of the quantile is a
discontinuous function of the quantile when q → 1.3 Consequently, the GPD shape parameter
oscillates as a function of the quantile as compared to a slow and steady converging behavior
of the GEV shape parameter.

3Effectively, the threshold can only be x or x + 1 and as the peaks follow a power-law type decay, the
relative abundance of x compared to x+ 1 is much higher (and so on). As we are then fitting the distribution
to significantly less data, we obtain a different shape parameter.
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Figure 4.9: Shape parameter as a function of the block size k and corresponding quantile
q = 1 − 1/k (for detector 0465.1). While ξ is distorted by rounding effects, γ shows a
converging behavior with variance and block size increasing together.

4.2.4 Classification of Extreme Value Distribution Types

As Figure 4.10 clearly shows, the shape parameters for all detectors cluster around the shape
parameter mean, meaning that their extreme values approximately (qualitatively, apart from
scale and location) follow the same distributions.

One thing to note is that all GPD shape parameters are significantly higher than the GEV
shape parameters, even though theory predicts that they should be identical. This cannot be
fully explained. Yet, it seems reasonable that this is due to the discrete nature of the velocities
caused by the rounding to integer values. This is in contrast to the results in Subsection 4.2.2,
where the fit methods would reliably reproduce the same shape parameters. However, here
we are dealing with discrete as opposed to continuous random variables. Even for Gaussian,
GEV, or GPD data, when rounded to integer values, the GPD shape parameters obtained
through maximum likelihood estimation are systematically shifted to higher values. This
effect does not occur for the GEV distribution, most likely because block maxima span over
a larger interval than peaks over threshold, i.e. the GEV distributions support is larger, cf.
e.g. Figure 2.6. This might reduce the relative influence of rounding. The shape parameters
for the GEV distribution are also generally speaking more plausible as the right tail of the
velocity log-histograms is almost linear for most detectors, corresponding to an exponential
decay and thus a shape parameter of zero or close to zero.

This essentially invalidates the estimates for the GPD distribution, even though visually they
seem to provide a reasonable fit. This is unfortunate as the peaks over threshold approach
would in principle allow to ’stitch’ together a full probability distribution for all velocities,
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Figure 4.10: Histogram of GEV and GPD shape parameters for all detectors.
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Figure 4.11: GEV and GPD shape parameters including uncertainty for all detectors.
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where a Gaussian or exponential distribution would describe the part of the distribution closer
to the mean and the GEV distribution would describe the extreme events exceeding some
threshold.

This alone leaves the GEV distribution as the more suitable option to model extreme velocities.
As a side benefit, this comes with the increased ability of the block maxima method to be
applied to dependent data.

The GEV shape parameter is uncorrelated to the average velocity, the 0.95-quantile velocity,
the velocity standard deviation, the total traffic volume, or the total car traffic volume. This
suggests that the extreme values for all detectors do qualitatively behave similarly and that
the tail behavior is a somewhat universal property of car velocity distributions.

Including the 1-σ-uncertainty of the GEV shape parameter, 88.7% of all detectors belong to
the Fréchet class of distributions. 2.8% belong to the Weibull class of distributions. The
rest cannot clearly be assigned to one of the Gumbel, Fréchet, or Weibull classes given their
uncertainties. Thus, the extreme velocities of most detectors follow a power-law type decay
behavior implied by the Fréchet class. However, this behavior is not very pronounced as the
shape parameter is relatively close to zero. Averaged over all detectors, the shape parameter
with one standard error is γ̄ = (0.0612 ± 0.0014). As established in Subsubsection 2.1.2, the
tails asymptotically behave like x−(1+1/γ̄) ≈ x−17.34 for x → ∞.

As 1/γ̄ > 16, the first sixteen moments exist (as outlined in Subsubsection 2.1.2) – this is
clearly always true for finite data sets but not necessarily for the underlying distributions.
Thus, even for the theoretical distributions, calculations of the mean, variance, etc. yield
meaningful results.

All Fréchet distributions have no right endpoint, ”though it is unreasonable on physical grounds
to believe that [extreme events] are truly without limit” [Col01, p. 66], which is certainly also
true for car velocities. This is, however, not an issue as the probability distributions fall off
so quickly that in any real-world finite set of random variables there will basically never be
a velocity that is truly unphysical, but points to the fact that the model needs to be applied
diligently to incredibly high velocities.
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depend on the underlying distribution of the velocities.



5 Traffic Analysis

5.1 Flow and Density Distributions

We compute traffic flows and densities as outlined in Subsection 2.2.2. For that, we need the
time headways or gross time gaps between vehicles, the sum of the net time gaps displayed in
Figure 5.2 and the occupation times displayed in Figure 5.1.

It is immediately apparent that the histograms for both quantities are discretized, albeit on
different scales. This hints at the fact that the data resolution might not be as high as
suggested by the data type used to store the data in the database. The discretization of
the time gaps could be caused by instruments with insufficient precision within the detectors.
The discretization of the occupation time could be both the cause or the consequence of the
discretization of the velocity measurements, however, we cannot say as this is not discussed
in [Str12] and we do not have any further knowledge of the inner workings of the detectors.

As the detectors are of fixed length l, the velocity is the inverse occupation time (modulo
detector length). Thus, their probability distributions are related by g(tocc) = l/t2occ · f(l/tocc),
where f is the corresponding velocity probability density function.

If the time gap between two vehicles is sufficiently large, they should be effectively independent
of each other and pass the detector at a constant rate. Then, the number of vehicles per
time interval should follow a Poisson distribution. Consequently, the time gap between two
vehicles1 should follow an exponential distribution. This corresponds to a linear behavior in the
logarithmic plot which can be observed for sufficiently high time gaps, e.g. in Figure 5.2. This
behavior does not extend to low time gaps, because then vehicles are no longer independent
of each other, for example, due to safety distance requirements (and physical limitations).

1Here, differentiating between gross and net time gaps does not make a big difference as occupation times
are constant for a given velocity and one order of magnitude smaller than net time gaps, thus effectively shifting
the distribution of gross time gaps compared to the distribution of net time gaps.
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Figure 5.1: Histogram of detectors occupation times vehicles for detector 1156.1.
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Figure 5.2: Histogram of time gaps between vehicles: linear scale for detector 0104.1 (left)
and logarithmic scale for detector 0320.2 (right).
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Traffic flow and traffic density are macroscopic properties that can only really be assigned
meaning after averaging over a time interval or a number of vehicles. As outlined in Sub-
section 4.2.3, it is preferable to average over a fixed number of vehicles rather than over a
time interval. Yet, in the process of averaging, a lot of information over the system state is
lost. Thus, depending on the intended application, it can be beneficial to average over fewer
vehicles. In the limit, this would only be one vehicle, where its time gap to the preceding
vehicle and its velocity would determine its microscopic traffic flow and density.

Figure 5.3 shows the effect of averaging over k = 1 vs. k = 10 vehicles on the traffic flow.
When averaging over more vehicles, the distribution becomes more and more concentrated,
converging towards one value for k → ∞.

Figure 5.4 presents two types of traffic flow histograms. All detectors fall into one of the groups
or a combination of both. However, most detectors follow a type-II-like behavior, with flow
peaking well below 1000 h−1 and then decreasing monotonously.

It should be noted that the traffic flow never actually reaches zero. Due to technical limitations,
the maximum time gap that the detector system records is 65 534ms, about one minute,
corresponding to a (minimum) microscopic traffic flow of 55 h−1 reported by the system, while
actual traffic flows can be arbitrarily close to zero.

Traffic densities, shown in Figure 5.5, then exhibit a similar behavior as they are obtained
from traffic flows by dividing by the corresponding velocities.
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Figure 5.3: Influence of averaging on the distribution of traffic flows (k = 1 on the left;
k = 10 on the right).
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Figure 5.4: Histograms of traffic flow (k = 1): type I (left) and type II (right).
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Figure 5.5: Histogram of traffic densities (k = 1): type I (left) and type II (right).

5.2 Characteristic Diagrams and Classification

Characteristic diagrams are then obtained from the data by creating a 2-dimensional histogram
of the relevant quantities. In particular, the flow–density diagram is of interest here as it allows
us to easily differentiate between congested and free-flowing states of traffic.

Figure 5.6 shows such a flow–density diagram. The average flow is obtained by averaging over
all flows corresponding to a certain density. Towards higher densities, one finds regions for
which flow–density combinations have not been recorded. These correspond to linear functions
whose slope, representing the velocity, are non-integer – values that cannot be recorded by
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Figure 5.6: Flow–density diagrams for detector 0342.1: without prior averaging (k = 1,
left) and with averaging (k = 25, right).
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the system in use in Dresden. As one would expect, the average velocity v = Φ/ρ, decreases
with increasing density. The (theoretical) propagation velocity u = dΦ/dρ, however, decreases
faster, almost reaching zero. Yet, it does not become negative which would correspond to
backward propagation, indicating a traffic jam. Even though the propagation velocity does
almost reach zero, the vast majority of all traffic measurements are far from that, showing
that the road system usually operates far from its peak capacity.

In fact, this finding can be generalized to all detectors found in Dresden – congestion virtually
never occurs at the detector sites. For most detectors, mean velocities stay more or less
constant over the typical density ranges, and (theoretical) propagation velocities stay well
above zero. This is unfortunate as it does not allow for analyzing congestion effects, but is
clearly good news for everybody driving on Dresden roads.

Usually, traffic detectors are set up to average over several vehicles or a certain time interval
before computing traffic quantities. This reduces complexity and allows to draw real-time
conclusions about the state of the system. Though, a lot of information is lost in the process.
Thus, here, we have opted to forego the averaging over consecutive vehicles and only average
in the end to infer the flow–density relationship. Figure 5.6 illustrates the difference that this
makes: While the density–flow diagram with averaging does not show any congestion effects
whatsoever and suggests an almost constant traffic velocity, the other, ’microscopic’ one shows
clear signs of these effects.

Even though the velocity–flow diagram is most intuitive in some sense and is most suited for
identifying congested states of traffic, it is not necessarily the most natural way to present the
data. That would be the velocity–flow diagram that is shown in Figure 5.7. This representation
only relies on the velocity and time headways which can be directly measured as opposed to
the density. Depending on the context and application, this can be preferable as the density
estimates are biased as can also be seen in Figure 5.7 – low densities and low velocities do
not occur in conjunction as the density is calculated as ρ = Φ/v while the flow has a lower
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Figure 5.7: Velocity–flow (left) and velocity–density diagrams (right) for detector 0342.1.



5.2 Characteristic Diagrams and Classification 50

bound.

The velocity–flow diagram can be broken down even further: Figure 5.8 shows the velocity
distributions conditional on a given traffic flow. Essentially, these are cross-sections of the
velocity–flow diagram in Figure 5.7 parallel to the flow axis. As one would expect, they ex-
hibit similar behavior as the entire empirical velocity distributions studied in Subsection 4.1.1.
Qualitatively, the distributions for different traffic flows do not differ significantly, apart from
the fact that the mean tends to increase with decreasing traffic flow (even though here, for de-
tector 0342.1, the average velocity is relatively constant with a small dip towards intermediate
traffic flows as can be seen in Figure 5.7).
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Figure 5.8: Velocity distribution for detector 0342.1 conditional on the traffic flow. It
should be noted that these empirical distributions are in fact histograms with bin size
1 km/h which are only plotted as continuous functions for visual representation purposes.

5.3 Estimation of Free-Flow Velocity

For traffic planning and road design, it is highly relevant to know the free-flow velocity v0.
This is the velocity that drivers would choose in absence of obstacles or perturbations like
other cars [TK10, pp. 28 sqq.]. E. g., if one were to design a road like a highway but with a
speed limit of 30 km/h, drivers would likely drive faster than that – this constitutes a mismatch
between the speed limit and road design.

A good proxy for the free-flow velocity is the velocity that drivers choose in the limit of
a vanishing traffic density, that is ρ → 0 [Str12, pp. 28 sqq.]. This leaves two at least in
principle equivalent options: Firstly, one can determine the point where the velocity axis is
being intercepted in the velocity–density diagram. Secondly, one can determine the slope of
the flow–density diagram in the limit ρ → 0.2

In reality, however, both approaches are flawed. The detectors employed in Dresden are
stationary and cannot resolve traffic spatially. Thus, traffic densities can only be deduced from
traffic flows and velocities. Then, however, densities and velocities are no longer independent:
As the time gap has an upper bound, the traffic flow has a lower bound. As ρ = Φ/v, low
densities do per definitionem correspond to high velocities. Clearly, this cannot be used for
proper free-flow velocity estimation.

The same issue arises when trying to determine the free-flow velocity from the flow–density

2As the flow–density relation is linear in the origin, we have limρ→0 v = limρ→0 Φ/ρ = limρ→0 dΦ/dρ.
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diagram, restricting both densities and flows to low values.

This motivates an approach relying only on measured velocities and time gaps. When time
gaps are long, drivers are also approximately free to choose their velocity. In principle, ceteris
paribus, we could thus find the average velocity for tgap → ∞ (which also implies Φ → 0).
Figure 5.9 (left) illustrates this behavior: The longer the time gaps between vehicles, the faster
vehicles drive, converging towards the free-flow velocity. This is, however, an idealized image
that would likely apply to a highway but in cities, the assumption of all other things being
equal does not necessarily hold – in fact, for extreme gaps for some detectors under certain
conditions, the average velocity even decreases again as the condition tgap → ∞ introduces bias
(right part of Figure 5.9). This can be explained by the fact that only very few vehicles actually
experience these time gaps, for example, because they only occur at night when drivers might
be inclined to drive more carefully or because they correspond to vehicles that were previously
stopped by traffic lights.

For some detectors, the average velocity even shows sharp peaks or troughs for specific time
gaps. These can be attributed to traffic control measures like traffic lights with a fixed period,
where vehicles with a fixed time gap are e.g. those that just accelerated in order to avoid a
red light or those that had to come to a full stop and wait for a full light cycle.

In order to mitigate this effect, we do not simply select the highest rolling average velocity
over all time gaps or the average velocity for the maximum time gap. Rather, we compute
the rolling average velocities for all time gaps and then select the highest quintile of these
velocities. Selecting the highest quintile is clearly a somewhat arbitrary choice, yet it is a
reasonable trade-off between considering too many velocities which do not all correspond to
free-flow traffic states and considering too few velocities and thus introducing bias. This is
supported by the fact that selecting the highest quartile or the highest decile yields the same
free-flow velocity. Often, the highest quintile of average velocities corresponds to the highest
quintile of time gaps, yet for some detectors, it corresponds to time gaps as low as 10 s. Even
though this is a fairly small time gap, it is reasonable to assume that these vehicles have chosen
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Figure 5.9: Average velocity as a function of the time gap to the previous vehicle.
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their velocity freely if the average velocity does not significantly increase for higher time gaps.
In order to obtain the free-flow velocity, we then average over all velocities corresponding to a
time gap whose average velocity lies in the highest quintile of the average velocities. Usually,
this incorporates 5%–20% of all recorded velocities.

Using this approach, we obtain the free-flow velocities found in Figure 5.10 as a function of
the average velocity. Clearly, the free-flow velocities are higher than the average velocities.
This is per construction but also per definitionem. If, as a thought experiment, we think of a
driver driving at its free-flow velocity and then add other vehicles, the presence of these other
cars can only really force the driver to slow down, not accelerate.

Figure 5.10 also shows that the free-flow velocity and average velocity converge towards each
other for higher average velocities. We have no means to establish a causal relationship, but
two hypotheses could explain this type of behavior:

1. Drivers prefer to exceed the average velocities that are usually driven on that road by
a fixed amount, e.g. deeming an increased velocity in the range from 5–10 km/h to be
acceptable, regardless of the speed limit. Then, in a 30 km/h-zone the relative difference
will be much greater than in a 70 km/h–zone.

2. Drivers have a free-flow velocity that is higher than the speed limit by a fixed amount.
When the average velocity is higher, they are already closer to their desired free-flow
velocity, leaving less room to drive faster even with low time gaps.
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Figure 5.10: Correlation of free-flow velocity and average velocity.



6 Applications

6.1 Speed Limit Violations

Now, we want to use the previously established statistical models in order to model speed
limits violations and compare them to actual speed limits violations founds in the data. The
speed limits were extracted from OpenStreetMap [Ope17]. The penalties in form of fines,
demerit point and months of driving bans that we use here are according to the German
penalty catalogue regulation1. In theory, even exceeding the speed limit by 1 km/h can lead
to a fine. In practive, however, a tolerance of 3% of the driven velocity or at least 3 km/h

is subtracted in favor of the driver.2 Here, we take an even more conservative approach: As
the exponential and q-exponential distributions are only valid models for velocities exceeding
µv + σv, we disregard any speed limits violations that are below µv + σv. This is justified
as for many detectors, the mean velocity surpasses the speed limit – in these cases, a strict
enforcement of speed limit violations would lead to more than half of all drivers receiving a
ticket which seems unreasonable.

According to local newspapers, the city of Dresden raised 2.7 million Euros in 122.800 speed

Potential... Fines / e Demerit Points Driving Bans / Months
Obs. Violations 876× 106 1340× 103 522× 103

Normal Dist. 780× 106 633× 103 151× 103

Exponential Dist. 814× 106 1038× 103 348× 103

q-Exponential Dist. 840× 106 1425× 103 543× 103

Table 6.1: Annual speed limit violations for all detectors and predictions using normal,
exponential, and q-exponential distributions. All penalties are potential in the sense that
they are not actually issued but rather correspond to the speed limit violations found in
the data.

1Anlage 1 zu §1 Abs. 1 Verordnung über die Erteilung einer Verwarnung, Regelsätze für Geldbußen und
die Anordnung eines Fahrverbotes wegen Ordnungswidrigkeiten im Straßenverkehr (BKatV), retrieved on July
20, 2022 from https://www.gesetze-im-internet.de/bkatv_2013/.

2cf. https://www.bussgeld-info.de/ab-wann-blitzt-ein-blitzer/, retrieved on July 20, 2022.

https://www.gesetze-im-internet.de/bkatv_2013/
https://www.bussgeld-info.de/ab-wann-blitzt-ein-blitzer/
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limit violations in 20213, 2.2 million Euros in 79.233 speed limit violations in 20204 and 3.67
million Euros in 143.285 speed limit violations in 20195.

Table 6.1 shows the potential penalties for the speed limit violations found in the data. Most
strikingly, the actual potential fines exceed those actually collected by a factor of more than
300. Clearly, this figure needs to be taken with a grain of salt: If these penalties were issued,
drivers would quickly adapt their behavior. Given that there are only 27 speed cameras in
Dresden6, it is not surprising that there are more speed limit violations in the data than those
that are sanctioned. Yet, the factor of 300 suggests that drivers only momentarily reduce
their speeds at speed camera sites and engage in excessive speeding that does not have any
consequences elsewhere.

While fines already apply to minor speed limit violations, demerit points and driving bans only
apply to significant exceedances of more than 20 km/h. As the vast majority of all vehicles
are centered around the velocity mean where the normal distribution is a decent model, the
normal distribution is capable of describing the total fines reasonably well. However, this is
not true for demerit points or driving bans which are dramatically underestimated by the
normal distribution. While the exponential distribution is more capable for all penalties, its
performance is exceeded by the q-expoential distribution which has the lowest relative deviation
from the observed speed limit violations while slightly overestimating high velocities and thus
potential demerit points and potential driving bans.

This finding is not only true for the total penalties per year found in Table 6.1, but also extends
to the predictions for the individual detectors and their respective velocity distributions as can
be seen in Figure 6.1. However, deviations between observed and precited penalties are much
greater than for the total penalties as fluctuations do not average out over all detectors. While
most detectors see potential fines per day in the range of 10000e – 30000e, one detector
even records car velocities that would amount to 50000e in fines per day. Figure 6.2 shows
the results for demerit points and months of driving bans. The potential demerit points for
each detector are also best modeled by the q-exponential distribution, albeit the tendency
of the q-exponential to overestimate high velocities is clearly visible here. The deviations
between model and observations can be significantly reduced by fine-tuning the fit to each
distribution which would, however, be much more work than an umbrella-type fit method

3cf. https://www.zeit.de/news/2022-02/15/blitzer-bussgelder-spuelen-millionen-in-kassen
-der-grossstaedte, retrieved on August 22, 2022.

4https://www.tag24.de/dresden/politik-wirtschaft/dresden-verliert-million-bei-blitzer-e
innahmen-hier-kommt-der-naechste-hin-1795531, retrieved on August 22, 2022.

5cf. https://www.tag24.de/dresden/crime/rekordeinnahmen-hier-stehen-die-fiesesten-blitz
er-in-dresden-rathaus-kasse-gefuellt-falschparker-1400661, retrieved on August 22, 2022.

6cf. https://www.blitzer.de/ort/blitzer-in-Dresden-Sachsen, retrieved on September 6, 2022.

https://www.zeit.de/news/2022-02/15/blitzer-bussgelder-spuelen-millionen-in-kassen-der-grossstaedte
https://www.zeit.de/news/2022-02/15/blitzer-bussgelder-spuelen-millionen-in-kassen-der-grossstaedte
https://www.tag24.de/dresden/politik-wirtschaft/dresden-verliert-million-bei-blitzer-einnahmen-hier-kommt-der-naechste-hin-1795531
https://www.tag24.de/dresden/politik-wirtschaft/dresden-verliert-million-bei-blitzer-einnahmen-hier-kommt-der-naechste-hin-1795531
https://www.tag24.de/dresden/crime/rekordeinnahmen-hier-stehen-die-fiesesten-blitzer-in-dresden-rathaus-kasse-gefuellt-falschparker-1400661
https://www.tag24.de/dresden/crime/rekordeinnahmen-hier-stehen-die-fiesesten-blitzer-in-dresden-rathaus-kasse-gefuellt-falschparker-1400661
https://www.blitzer.de/ort/blitzer-in-Dresden-Sachsen


6.1 Speed Limit Violations 57

01
04

.1
01

04
.3

01
04

.4
01

24
.1

01
24

.2
01

24
.3

01
24

.4
01

32
.1

01
32

.2
01

32
.3

01
32

.4
02

93
.1

02
93

.2
02

93
.3

02
93

.4
03

20
.1

03
20

.2
03

42
.1

03
42

.2
03

43
.1

03
43

.2
03

43
.3

03
43

.4
03

46
.1

03
46

.2
03

46
.3

03
46

.4
03

62
.1

03
62

.2
03

62
.3

03
62

.4
04

04
.1

04
04

.2
04

04
.3

04
04

.4
04

11
.1

04
11

.2
04

11
.3

04
11

.4
04

15
.1

04
15

.2
04

15
.4

04
15

.5
04

35
.1

04
35

.2
04

65
.1

04
65

.2
05

06
.1

05
06

.2
05

06
.3

05
06

.4
05

07
.1

05
07

.2
05

07
.3

05
07

.4
05

11
.1

05
11

.2
05

11
.3

05
11

.4
05

52
.1

05
52

.2
05

52
.3

05
52

.4
05

74
.1

05
74

.2
05

74
.3

05
74

.4
08

08
.1

08
08

.2
08

22
.1

08
22

.2
08

22
.3

08
22

.4
08

31
.1

08
31

.2
08

31
.3

08
31

.4
08

31
.5

08
41

.1
08

41
.2

08
41

.3
08

41
.4

09
06

.1
09

06
.2

09
06

.3
09

06
.4

09
09

.1
09

09
.2

09
09

.3
09

09
.4

09
57

.1
09

57
.2

09
57

.3
09

57
.4

10
02

.1
10

02
.2

10
43

.1
10

43
.2

10
43

.3
10

43
.4

10
43

.5
10

43
.6

10
45

/1
04

6.
1

10
45

/1
04

6.
2

10
45

/1
04

6.
3

10
45

/1
04

6.
4

10
45

/1
04

6.
5

10
45

/1
04

6.
6

10
94

.1
10

94
.2

11
08

.1
11

08
.2

11
08

.3
11

08
.4

11
56

.1
11

56
.2

11
56

.3
11

56
.4

11
57

.1
11

57
.2

11
57

.3
11

57
.4

12
14

.1
12

14
.2

12
57

.1
12

57
.2

12
57

.3
12

57
.4

13
03

.1
13

03
.2

14
19

.1
14

19
.2

14
19

.3
15

10
.1

15
10

.2
15

10
.3

15
10

.4

Sensor

0

10000

20000

30000

40000

50000

Po
te
nt
ia
lF

in
es

/
e

·D
ay

Speed Limit Violation Penalties per Day
Observed Speed Limit Violations
Prediction Using Normal Distribution
Prediction Using Exponential Distribution
Prediction Using q-Exponential Distribution

Figure 6.1: Potential fines per day per detector found in the data and predicted by the
respective normal, exponential, and q-exponential distributions.

employed here. The months of driving bans estimation exhibits the same behavior, even
though the overestimation by the q-exponential is even more pronounced.

The potential amount of driving bans underlines the remarkable extent to which speeding
occurs: For some detectors, more than 330 potential months of driving bans are accrued per
10000 vehicles. If these were enforced, this would lead to a new traffic equilibrium as all drivers
would end up being banned from driving after some time, assuming that it is not always the
same drivers who are speeding.
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Figure 6.2: Left: Estimated demerit points relative to observed potential demerit points.
The red shaded area are the observed demerit points ±10 percentage points. Right: Poten-
tial months of driving bans per 10000 vehicles.
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6.2 Speed Limit and Road Design Mismatches

From a traffic planning perspective, it is intuitive that good traffic design comprises two
elements:

• an average velocity that (approximately) matches the free-flow velocity and
• a free-flow velocity that (approximately) matches (or at least does not surpass) the speed

limit.

If the first condition does not hold, it indicates that vehicles are facing constraints caused by
the traffic volume – because otherwise, they would choose to increase their velocity. This can
be an early indication that road capacities are being stretched.

If the second condition does not hold, this constitutes a mismatch between the speed limit and
the road design. This can mean two things: Either, the speed limit should be changed, because
currently drivers are not allowed to go as fast as the road design would suggest or because the
road design does not allow them to go as fast as would be legal. Or, the road design should
be changed, incentivizing drivers to drive faster or slower to match the speed limit. E.g., on a
highway, even if the speed limit was only 30 km/h, drivers would be inclined to go faster, and,
vice versa, in a crowded suburban area with winding roads and a lot of street parking, even
without a speed limit, drivers would not be able to go much faster than 30 km/h.

Figure 6.3 shows that traffic is in a good situation on most detectors sites, generally speaking.
Yet, there are some clear outliers in both directions: For detector 0293.1, the average velocity
sits at about 75% of the speed limit while the free-flow velocity sits at about 85%. For detector
0511.1, the average velocity is approximately 115% while the free-flow velocity is roughly 125%
of the speed limit.

In all of these cases, a closer analysis from a traffic science perspective, taking into account
the specific context of each detector, could reveal further insights and room for improvement.
Furthermore, the speed limits obtained from OpenStreetMap are static and reflect the
status quo on August 1, 2022. Thus, temporary effects like construction sites or changes in
the speed limit could not be taken into account.

Even though there are some outliers, Figure 6.4 exhibits that most free-flow velocities fall
under the speed limit which is also true for the average free-flow velocities, except for the
70 km/h–limit. It should be taken into account, however, that as there are only a few detectors
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Figure 6.3: Free-flow and average velocities normed to the speed limit. The red shaded
area is the speed limit ±10 percentage points that are deemed to be acceptable. As the
speed limit for detector 1251 is time-dependent, it is not shown here.
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in 70 km/h–zones the average free-flow velocity for these detectors does not carry a lot of
significance.



7 Results and Discussion

In this thesis, we have analyzed an extensive set of microscopic traffic data from Dresden.
First, we focused on the properties of velocity distributions. Then, we turned our attention to
various aspects of traffic science like flow and density distributions, characteristic diagrams,
and free-flow velocities.

Analyzing all traffic detectors, we have found that car velocity distributions can be split into
four distinct parts: the peak, left and right flanks, and extreme values. The left flank is highly
dependent on the detector location while the peak behaves approximately Gaussian. For fixed,
short-time intervals, the right flank is best described by an exponential distribution. The
exponential distributions decay parameter is a fairly universal property across all detectors
with λ̄ = (0.240 ± 0.065) kmh−1. Integrating over all times, these individual exponential
distributions overlap and their superpositions lead to the emergence of q-exponentials with
power-law tails. Again, the q-exponential distributions shape parameter is similar across all
detectors with q̄ = (1.0498 ± 0.0233). The fluctuations of the exponential decay parameters
are relatively small, being reflected in q being close to 1 which is consistent as q = 1 would
imply a normal exponential distribution without fluctuations in the decay parameter.

In order to introduce a model for extreme values, we first had to make assumptions regarding
the vehicle type, the hours of the day, the days of the week, the weeks of the year, lanes,
and velocities that restricted the data to a subset that can be assumed as independent and
identically distributed. Notably, deviating from the usual hypothesis in traffic science that
differentiates between Mondays, Tuesdays to Thursdays, and Fridays, we found no relevant
differences between different weekdays. We have also developed a methodology that can consis-
tently and accurately fit the Generalized Extreme Value distribution parameters and that has
been verified using mock and real data. To conduct the fits, a block size of k = 100 has turned
out to provide a good trade-off between bias and variance. Subsequently, we determined that
the distributions for extreme car velocities of 88.7% of all detectors belong to the Fréchet class
of the extreme value distribution types with a shape parameter of γ̄ = (0.0612±0.0014). Thus,
we have concluded that the tails of the distributions do in fact exhibit a power-law behavior
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that asymptotically scales like x−(1+1/γ̄) ≈ x−17.34. Given the relatively large uncertainty of q̄,
this is indeed compatible with the results for the q-exponentials and increases the significance
of the result. It should be noted, however, that q-exponentials underestimate the tails of the
distributions, likely because they are fitted to much more data, most of which is not considered
to be extreme. q-exponentials are also of interest as they provide a possible explanation for the
emergence o power-law tails. Considering the rather high power-law exponent, we have also
shown that on average the first 16 moments of the underlying theoretical distributions exist.
Furthermore, we have found that the GEV location parameter (for block size k = 100) is very
well described as a linear function of the average velocity, while the GEV scale parameter and
the velocity standard deviation are only loosely, albeit positively correlated. We have not been
able to properly fit the Generalized Pareto Distribution, most likely due to the discrete nature
of the data.

This thesis starts with the quote ”Extreme-Value Statistics can be regarded as the art of
extrapolation” [BZ21]. In conclusion, we can say that the data suggests that there is actually
no need to extrapolate. Given the high power-law exponent of −17.34, even an observation
period that is 20 times as long would on average only result in the maximum velocity being
observed increase by 1 km/h. This underlines the value of the data set at hand: Essentially
all the information about the underlying velocity distributions is already engraved in the data
and more data would not necessarily enable more insights, albeit that non-integer velocities
would be useful, e.g. for better fitting results.

All these findings hinge on the fact that the data is microscopic. As we have demonstrated,
prior averaging and thus simulating mesoscopic or macroscopic traffic data yields Gaussian
distributions for the velocities.

Applying our learnings about velocity distributions, we have determined that q-exponentials
are best suitable to model speed limit violation fines, demerit points, and driving bans. As-
tonishingly, the amount of annual potential fines found in the data exceeds those collected
by the city of Dresden by a factor of more than 300. We have also illustrated that for some
detectors, immediately issuing and enforcing driving bans would lead to the road being empty
after less than a month as all drivers would have been banned, exemplifying the extent to
which speeding occurs.

Employing principal component analysis as well as non-linear dimensionality reduction, we
have confirmed that average velocities are in fact the factor explaining most of the variance
between detector velocity distributions and explain the distributions projection onto the 2d-
plain best. The 2d-projection has been found to be comprised of two clusters whose origins
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remain unclear. Lastly, the 2d-projection indicates that speed limits are only very loosely
correlated with the actual velocity distributions. In particular, is it not possible to differentiate
between 50 km/h and 60 km/h limits based merely on the empirical velocity distributions.

One caveat, however, that all these results entail is that we have not been able to verify
the detector measurements independently and cannot conclude about statistical fluctuations,
systematic distortions, or potential measurement errors producing truly unphysical velocity
measurements.

Shifting towards aspects from traffic science, we have confirmed that for large enough time
headways, the time headways follow an exponential distribution whereas the number of vehicles
per time interval follows a Poisson distribution. Additionally, we have provided empirical
velocity distributions for occupation times, time headways, traffic flows, and traffic densities.

We have also found that congestion has virtually no effect on traffic in Dresden. When aver-
aging over a fixed number of vehicles before constructing the flow–density diagrams (i.e. sim-
ulating mesoscopic or macroscopic data), the traffic velocity as indicated by the flow–density
diagram essentially becomes constant and independent from the traffic density. Directly plot-
ting the microscopic traffic data, however, has revealed that the propagation velocity does in
fact decrease with increasing traffic density, albeit that the propagation velocity does not dip
below zero and that this only occurs at a small fraction of all points in time analyzed here.
These findings suggest that the Dresden road system operates far from its capacity.

Using time headways as a proxy to identify free-flow traffic states, we have established a
methodology to estimate free-flow velocities. The free-flow velocities we have obtained are
consistently higher than average velocities as one would expect, but free-flow and average
velocities converge towards each other for higher velocities. Adding speed limits to the picture,
we have identified roads where we suspect a mismatch between road design and speed limit,
indicated by large deviations between free-flow velocities and speed limits. Even though this
effect is suppressed by the traffic volume decreasing average velocities such that they are in line
with speed limits, here, traffic planning officials should consider changing either speed limits
or the road design. Again, as already discussed on the basis of the velocity distributions, real
traffic behavior is barely different between 50 km/h– and 60 km/h–zones.

In general, it should be noted that these findings can only be generalized to some extent: While
the number of detectors and their locations suggest some universality, the detector locations
have been chosen to support traffic control and not for representative scientific studies.



8 Outlook

In this thesis, we have explored the potential of the extensive microscopic traffic data set from
Dresden. Our results illustrate the value of the data set. Yet, due to time constraints, this
thesis was only able to scratch the surface of the data set and its potential is much greater.
Thus, here, we provide an overview of open questions and potential starting points for future
analyses.

Vehicle Velocity Distributions:
In the previous chapter, most distribution fits were based on prior assumptions which were
then visually validated. To improve the results, hypothesis testing and statistical fits could be
employed. Furthermore, most uncertainties were obtained through bootstrapping approaches.
This could be refined by analytical uncertainties which would require a new implementation
of maximum likelihood estimation supporting uncertainties that is capable of processing the
required amounts of data in a reasonable amount of time.

So far, we did not have access to individual vehicle velocity distributions. If these were
available, they could be assigned to the domains of attraction of the GEV distribution types
in order to validate or correct our results [cf. LR83, p. 16]. As mean velocity fluctuations over
time are relatively small, we have implicitly assumed the stochastic process to be stationary.
If these fluctuations were taken into account, methods for extreme value theory describing
non-stationary processes could be used, potentially improving the results [Col01, p. 93].

Moreover, we have so far restricted our analyses to cars as these constitute the majority of all
vehicles. It might be of interest, however, to also analyze other vehicle types, e.g. delivery
trucks, to determine how their velocity distributions differ. If it was possible to gather more
data, emphasis should be placed on roads with higher speed limits as these are naturally
underrepresented in the city data set. The origin of the two velocity histogram clusters found
in the 2d-projection could be investigated further. Lastly, the correlations of consecutive
vehicles could be considered.
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Detector Location:
So far, detector location has more or less been neglected. Still, correlations with traffic lights,
intersections, road type, city center versus outskirts, arterial roads versus smaller roads, and
road direction (into or out of the city) seem probable. Future work could look at how these
factors influence velocity distributions and in particular the tails of the distributions.

Time:
The time dependency of the data has also not been considered yet. Taking this data into
account would allow us to compare morning commute, evening commute, and night velocity
distributions. On top of that, the data also encompasses time-dependent speed limits. This
would allow us to investigate if and how drivers react to speed limits that are not constant.
Coincidentally, the entire Covid pandemic and the various stay-at-home orders and other
countermeasures fall into the data measurement time frame, allowing us to explore their effect
on motorized mobility in Dresden. The same is true for gas price spikes that occurred in
the aftermath of the Russian invasion of Ukraine, almost doubling the cost of gasoline and
diesel.

Network Structure:
If the detector locations were to be modeled as a network structure, this would allow us to
model the flow of traffic not only at one detector site but rather through the entire network.
For example, flow-splitting at individual nodes could be statistically described, allowing for
predictions of the flow of traffic through the entire network and identifying potential bottle-
necks or other inefficiencies and improvements to routing. Furthermore, this could help to
establish temporal correlations between events at different nodes. Potentially, the statistical
routing could then be crosschecked with commuting data or real-time traffic data from Google
Maps or other traffic data providers.

Traffic Models:
As touched on in Subsection 2.2.3, there is a large number of macroscopic models in traffic sci-
ence predicting the shape of the fundamental diagram based on a fixed number of parameters.
These parameters are usually not known a priori. However, as the flow and density profiles
at the detector sites have been observed, the parameters of these macroscopic models could
be fitted to match the density at the detector given appropriate time-dependent boundary
conditions. In particular, the detector sites 1303, 1241, 0841, and 0831 could be of interest
as they are located quite far away from perturbation-inducing obstacles like traffic lights, in-
tersections, etc. Here, 0831 might be the best candidate as its flow–density diagram exhibits
congestion effects and not only the free-flow regime.
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In addition to the macroscopic models, there are also microscopic car-following models describ-
ing the behavior of individual vehicles, e.g. the Intelligent Driver Model (IDM) [Alb+22] or
the BandoTFL model [GK22]. These require two detectors without many obstacles between
them to fit a model. If it was possible to identify individual car trajectories in the traffic
data of detectors 1043 and 1045/1046 (Fetscherstraße) or 0362 and 0343 (Washingtonstraße),
a microscopic model could be calibrated to the first detector to compare its predictions with
the observations at the second detector.

The microscopic car following model parameters or the data itself could also help answer the
question: Do drivers going faster keep less safety distance?
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A Appendix

All programming necessary for this thesis were done in Python 3.10 [VD09]. Additionally,
calculations were aided by NumPy [Har+20]; all statistical analysis was done through SciPy
[Vir20]. The plots were created using Matplotlib [Hun07].

Due to the complexity and extend of the data set analyzed in this thesis, only a very small
fraction of all diagrams and plots created during research did find their way into this thesis.
The entire set of more than 6000 plots as well as the Python code and the full size plots can
be requested from the author at: moritz.piepel@gmail.com.

All map material was obtained from OpenStreetMap [Ope17] on August 1, 2022. The map
data also contains the speed limits used in the previous sections.

The microscopic traffic data was provided by Straßen- und Tiefbauamt (STA) of Landeshaupt-
stadt Dresden. The author thanks them for their support.

mailto:moritz.piepel@gmail.com


List of Figures

2.1 Cumulative distribution functions of the Gumbel, Fréchet and Weibull distributions. 8
2.2 Probability density functions of the Gumbel, Fréchet and Weibull distributions. . 10
2.3 Cumulative distribution function of the Generalized Pareto Distribution for differ-

ent cases of ξ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Probability density function of the Generalized Pareto Distribution for different

cases of ξ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Block maxima (BM) and peaks over threshold (POT) for 20 random real numbers

between zero and five with a block size of five and a threshold of 3.5. . . . . . . . 14
2.6 Histogram of block maxima and peaks over threshold drawn from the same data

set (with arbitrary scaling of the x-axis). . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Schematic fundamental diagram (with a triangular shape from the Lighthill-Whitham-

Richards (LWR) model class) [cf. TK10, pp. 82 sqq.]. . . . . . . . . . . . . . . . . 19
2.8 Velocity–density and velocity–flow diagrams for the fundamental diagram shown in

Figure 2.7. Mathematically, the velocity–flow relation is no longer a function (as it
is not right-unique) since there are two different configurations for each traffic flow:
a high–velocity, low–density, and a low–velocity, high–density configuration. . . . 21

3.1 Share of the total traffic volume for each detector (from July 2020 to January 2021;
different lanes have been combined). . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Share of the total traffic volume for all detectors by vehicle type (for Oct–05–2020
to Oct–11–2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Average velocities (including standard deviations) and 95% quantile for all detectors
(different lanes have been combined). As the detectors 3207 and 0312 report faulty
data (with velocities up to 1000 km/h), the data for these two detectors is not plotted. 27

3.4 Traffic volume and average velocity per hour of the day. Between 07.00 am and
06.00 pm, both traffic volume and average velocity are approximately constant. . . 27

3.5 Traffic volume and average velocity per day of the week and per week of the year.
From Monday through Friday, both traffic volume and average velocity are ap-
proximately constant. Throughout the year, traffic volume and average velocity do
change, but the relative changes are much less than throughout individual days. . 27



List of Figures 74

3.6 Detector locations indicated by brown dots (screenshot from [Ope17]). . . . . . . 28

4.1 The velocities recorded at detector 1251.1 approximately follow a normal distribu-
tion (left: prior to averaging; right: after averaging over k = 10 vehicles). (Aver-
aging over a number of vehicles rather than a time interval is preferable according
to [TK10, p. 15].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 The right side decay of the velocities recorded at detector 1108.3 approximately
follows an exponential distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Histograms of exponential decay parameters λ (left) and q-exponential shape pa-
rameter q (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 The exponential decay parameter is time-dependent (left: October 1–7, 2021, right:
April 1–7, 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 q-Exponential distribution fit to the right flank of the empirical velocity distribution
for detector 1510.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Percentage of explained total variance by the number of principal components. . . 33
4.7 UMAP projection of all histograms. On the left, the color indicates the average

velocity for that detector where black is the lowest and yellow is the highest. On the
right, the histograms have been assigned to four total clusters using the KMeans
algorithm [Llo82]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.8 UMAP projection of all histograms. The color indicates the speed limit which
clearly does not coincide with clusters. . . . . . . . . . . . . . . . . . . . . . . . . 35

4.9 Shape parameter as a function of the block size k and corresponding quantile q =

1 − 1/k (for detector 0465.1). While ξ is distorted by rounding effects, γ shows a
converging behavior with variance and block size increasing together. . . . . . . . 40

4.10 Histogram of GEV and GPD shape parameters for all detectors. . . . . . . . . . . 41
4.11 GEV and GPD shape parameters including uncertainty for all detectors. . . . . . 41
4.12 Correlation of GEV shape parameter γ and GPD shape parameter ξ. The linear

trend line indicates a systematic shift of ξ to higher values, most likely caused by
rounding. Other than that, the correlation is very loose, underlining that the fit
method for the GPD shape parameter is invalid. . . . . . . . . . . . . . . . . . . . 43

4.13 Characteristic GEV distribution for car velocities for k = 100 and γ = (0.0612 ±
0.0014). The uncertainty of the shape parameter is so small that it can only barely
be seen in the plot. (The location and shape parameters have been arbitrarily
chosen for this representation.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



List of Figures 75

4.14 Relation between velocity mean and standard deviation and GEV parameters.
While the GEV location parameter is essentially a linear function of the average
velocity and can thus be estimated from the average velocity, the same statement
cannot be made about the GEV scale parameter and the velocity standard de-
viation, which seems to sensitively depend on the underlying distribution of the
velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Histogram of detectors occupation times vehicles for detector 1156.1. . . . . . . . 46
5.2 Histogram of time gaps between vehicles: linear scale for detector 0104.1 (left) and

logarithmic scale for detector 0320.2 (right). . . . . . . . . . . . . . . . . . . . . . 46
5.3 Influence of averaging on the distribution of traffic flows (k = 1 on the left; k = 10

on the right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Histograms of traffic flow (k = 1): type I (left) and type II (right). . . . . . . . . . 48
5.5 Histogram of traffic densities (k = 1): type I (left) and type II (right). . . . . . . . 48
5.6 Flow–density diagrams for detector 0342.1: without prior averaging (k = 1, left)

and with averaging (k = 25, right). . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 Velocity–flow (left) and velocity–density diagrams (right) for detector 0342.1. . . . 49
5.8 Velocity distribution for detector 0342.1 conditional on the traffic flow. It should be

noted that these empirical distributions are in fact histograms with bin size 1 km/h

which are only plotted as continuous functions for visual representation purposes. 51
5.9 Average velocity as a function of the time gap to the previous vehicle. . . . . . . . 52
5.10 Correlation of free-flow velocity and average velocity. . . . . . . . . . . . . . . . . 54

6.1 Potential fines per day per detector found in the data and predicted by the respec-
tive normal, exponential, and q-exponential distributions. . . . . . . . . . . . . . . 57

6.2 Left: Estimated demerit points relative to observed potential demerit points. The
red shaded area are the observed demerit points ±10 percentage points. Right:
Potential months of driving bans per 10000 vehicles. . . . . . . . . . . . . . . . . . 57

6.3 Free-flow and average velocities normed to the speed limit. The red shaded area is
the speed limit ±10 percentage points that are deemed to be acceptable. As the
speed limit for detector 1251 is time-dependent, it is not shown here. . . . . . . . 59

6.4 Free-flow velocity and average free-flow velocity per speed limit. . . . . . . . . . . 59



List of Tables

3.1 Colums of quelle_pzs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Colums of pzs_data; specification according to [Str12, pp. 312 sqq.]. . . . . . . . . 23
3.3 8+1 classification of different vehicle types according to [Str12, p. 152]. . . . . . . 24

6.1 Annual speed limit violations for all detectors and predictions using normal, expo-
nential, and q-exponential distributions. All penalties are potential in the sense that
they are not actually issued but rather correspond to the speed limit violations found
in the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55


	Introduction
	Theoretical Background
	Mathematics and Statistics
	Elements of Statistics and Limit Distributions of Partial Sums
	Limit Distributions of Partial Maxima
	Block Maxima (BM)
	Limit Distributions of Peaks over Threshold (POT)
	BM vs. POT: Comparing the Two Approaches
	Maximum Likelihood Estimation

	Traffic Science
	Hydrodynamic Relation and Continuity Equation
	Traffic Quantities and Detector Data
	The Fundamental Diagram


	Microscopic Traffic Data from Dresden
	Data Source and Structure
	Traffic Parameters and Traffic Changes over Time

	Analysis of Vehicle Velocities
	Car Velocity Distributions
	Empirical Velocity Distributions
	Right Flank Velocity Model Estimation
	Principal Component Analysis and Histogram Clusters

	Properties of Extreme Velocities
	Statistical Assumptions
	Fit Method Verification
	Block Size and Quantile Selection
	Classification of Extreme Value Distribution Types


	Traffic Analysis
	Flow and Density Distributions
	Characteristic Diagrams and Classification
	Estimation of Free-Flow Velocity

	Applications
	Speed Limit Violations
	Speed Limit and Road Design Mismatches

	Results and Discussion
	Outlook
	List of References
	Appendix
	List of Figures
	List of Tables

