
Faculty of Civil Engineering Institute for Structural Analysis

Diploma Thesis
FUZZY-ANALYSIS IN A GENERICPOLYMORPHIC UNCERTAINTYQUANTIFICATION FRAMEWORK
Bertram Richter

Diploma Thesis

Fuzzy-Analysis in a Generic Polymorphic Uncertainty
Quantification Framework

Fuzzy-Analyse als Teil generischer polymorpher
Unschärfe-Analyse
Bertram Richter

Supervised by:
Prof. Dr.-Ing. Wolfgang Graf, Univ.-Prof. Dr.-Ing. habil. Michael Kaliske

and
Dipl.-Ing. F. Niklas Schietzold

Submitted on 2021-05-12

Fakultät Bauingenieurwesen Institut für Statik und Dynamik der Tragwerke, Univ.-Prof. Dr.-Ing. habil. Michael Kaliske
Aufgabenstellung für die Diplomarbeit DA04/20

Name: Bertram RichterVertiefung: Konstruktiver Ingenieurbau (KI)

Thema: Fuzzy-Analyse als Teil generischer polymorpher Unschärfe-Analyse(Fuzzy-Analysis in a Generic Polymorphic Uncertainty Quantification Framework)
Hintergrund und Zielsetzung:
Fuzzy-Größen sind Unschärfemodellierungen zur Beschreibung insbesondere epistemischer Un-schärfecharakteristika, wie Unvollständigkeit und Ungewissheit. Die Entwicklung effizienter Metho-den zur numerischen Unschärfe-Analyse von Fuzzy-Größen ist Teil aktueller Forschung. Dabei wer-den neben der Methode der α-Level Optimierung auch andere Strategien verfolgt.
Polymorphe Unschärfemodelle ermöglichen die Berücksichtigung sowohl epistemischer als auchaleatorischer Unschärfecharakteristika. Die zur numerischen Auswertung notwendige polymorpheUnschärfeanalyse ist eine Kombination aus stochastischen und fuzzy-basierten Analyse-Methoden.
Ziel dieser Arbeit ist es, aktuelle Methoden der Fuzzy-Analyse zu untersuchen und zu vergleichen.Dabeiwerdendie Fuzzy-Analyse Algorithmenals Teil eines generisch geordneten Software-Rahmensimplementiert, welcher für die Anwendung auf polymorphe Unschärfe-Analysen im Kontext vonStrukturanalysen angelegt ist. Der Entwurf und die Implementation der Basis einer Datenstrukturfür die polymorphe Unschärfe-Analyse erfolgt in enger Abstimmung und Zusammenarbeit mit derDiplomarbeit DA03/20 „Stochastische-Analyse als Teil generischer polymorpherUnschärfe-Analyse“
Die Ansätze der state-of-the-artMethoden zur Fuzzy-Analyse werden gegenübergestellt und darauskombinierte Strategien werden entwickelt. Besonderer Fokus der Arbeit liegt auf der Stukturierungder Daten und der Analyse von Zusammenhängen zwischen Fuzzy-Ergebnisgrößen.
Arbeitsschritte:
1. Literaturrecherche zu den Themen: Polymorphe Unschärfeanalyse, Fuzzy-Analyse Methoden
2. Entwurf Datenstruktur und Rahmen für generische polymorphe Unschärfe-Analyse
3. Implementation und Vergleich der Ansätze zur numerischen Fuzzy-Analyse
4. Kombination der Ansätze zur Verbesserung der Effizienz von Fuzzy-Analysen
5. Implementation vonMethoden zur Analyse vonAbhängigkeiten zwischen Fuzzy-Ergebnisgrößen
6. Implementation von Darstellungsmöglichkeiten für die Präsentation von Analyse-Ergebnissenunter Einsatz geeigneter Benchmark-Beispiele.

Wiss. BetreuerInnen TU Dresden: Dipl.-Ing. F. Niklas Schietzold
ausgehändigt am:einzureichen am:

Prof. Dr.-Ing. Wolfgang Graf Prof. Dr.-Ing. habil. Michael Kaliske
Institut für Statik und Dynamik der Tragwerke Institut für Statik und Dynamik der Tragwerke
Verantwortlicher Hochschullehrer Verantwortlicher Hochschullehrer

Die besonderen Hinweise des Instituts für die Anfertigung der Diplomarbeit sind zu beachten.

Fakultät Bauingenieurwesen Institut für Statik und Dynamik der Tragwerke, Univ.-Prof. Dr.-Ing. habil. Michael Kaliske
Aufgabenstellung für die Diplomarbeit DA04/20

Name: Bertram RichterVertiefung: Konstruktiver Ingenieurbau (KI)

Thema: Fuzzy-Analyse als Teil generischer polymorpher Unschärfe-Analyse(Fuzzy-Analysis in a Generic Polymorphic Uncertainty Quantification Framework)
Hintergrund und Zielsetzung:
Fuzzy-Größen sind Unschärfemodellierungen zur Beschreibung insbesondere epistemischer Un-schärfecharakteristika, wie Unvollständigkeit und Ungewissheit. Die Entwicklung effizienter Metho-den zur numerischen Unschärfe-Analyse von Fuzzy-Größen ist Teil aktueller Forschung. Dabei wer-den neben der Methode der α-Level Optimierung auch andere Strategien verfolgt.
Polymorphe Unschärfemodelle ermöglichen die Berücksichtigung sowohl epistemischer als auchaleatorischer Unschärfecharakteristika. Die zur numerischen Auswertung notwendige polymorpheUnschärfeanalyse ist eine Kombination aus stochastischen und fuzzy-basierten Analyse-Methoden.
Ziel dieser Arbeit ist es, aktuelle Methoden der Fuzzy-Analyse zu untersuchen und zu vergleichen.Dabeiwerdendie Fuzzy-Analyse Algorithmenals Teil eines generisch geordneten Software-Rahmensimplementiert, welcher für die Anwendung auf polymorphe Unschärfe-Analysen im Kontext vonStrukturanalysen angelegt ist. Der Entwurf und die Implementation der Basis einer Datenstrukturfür die polymorphe Unschärfe-Analyse erfolgt in enger Abstimmung und Zusammenarbeit mit derDiplomarbeit DA03/20 „Stochastische-Analyse als Teil generischer polymorpherUnschärfe-Analyse“
Die Ansätze der state-of-the-artMethoden zur Fuzzy-Analyse werden gegenübergestellt und darauskombinierte Strategien werden entwickelt. Besonderer Fokus der Arbeit liegt auf der Stukturierungder Daten und der Analyse von Zusammenhängen zwischen Fuzzy-Ergebnisgrößen.
Arbeitsschritte:
1. Literaturrecherche zu den Themen: Polymorphe Unschärfeanalyse, Fuzzy-Analyse Methoden
2. Entwurf Datenstruktur und Rahmen für generische polymorphe Unschärfe-Analyse
3. Implementation und Vergleich der Ansätze zur numerischen Fuzzy-Analyse
4. Kombination der Ansätze zur Verbesserung der Effizienz von Fuzzy-Analysen
5. Implementation vonMethoden zur Analyse vonAbhängigkeiten zwischen Fuzzy-Ergebnisgrößen
6. Implementation von Darstellungsmöglichkeiten für die Präsentation von Analyse-Ergebnissenunter Einsatz geeigneter Benchmark-Beispiele.

Wiss. BetreuerInnen TU Dresden: Dipl.-Ing. F. Niklas Schietzold
ausgehändigt am:einzureichen am:

Prof. Dr.-Ing. Wolfgang Graf Prof. Dr.-Ing. habil. Michael Kaliske
Institut für Statik und Dynamik der Tragwerke Institut für Statik und Dynamik der Tragwerke
Verantwortlicher Hochschullehrer Verantwortlicher Hochschullehrer

Die besonderen Hinweise des Instituts für die Anfertigung der Diplomarbeit sind zu beachten.

Fakultät Bauingenieurwesen Institut für Statik und Dynamik der Tragwerke, Univ.-Prof. Dr.-Ing. habil. Michael Kaliske
Aufgabenstellung für die Diplomarbeit DA04/20

Name: Bertram RichterVertiefung: Konstruktiver Ingenieurbau (KI)

Thema: Fuzzy-Analyse als Teil generischer polymorpher Unschärfe-Analyse(Fuzzy-Analysis in a Generic Polymorphic Uncertainty Quantification Framework)
Hintergrund und Zielsetzung:
Fuzzy-Größen sind Unschärfemodellierungen zur Beschreibung insbesondere epistemischer Un-schärfecharakteristika, wie Unvollständigkeit und Ungewissheit. Die Entwicklung effizienter Metho-den zur numerischen Unschärfe-Analyse von Fuzzy-Größen ist Teil aktueller Forschung. Dabei wer-den neben der Methode der α-Level Optimierung auch andere Strategien verfolgt.
Polymorphe Unschärfemodelle ermöglichen die Berücksichtigung sowohl epistemischer als auchaleatorischer Unschärfecharakteristika. Die zur numerischen Auswertung notwendige polymorpheUnschärfeanalyse ist eine Kombination aus stochastischen und fuzzy-basierten Analyse-Methoden.
Ziel dieser Arbeit ist es, aktuelle Methoden der Fuzzy-Analyse zu untersuchen und zu vergleichen.Dabeiwerdendie Fuzzy-Analyse Algorithmenals Teil eines generisch geordneten Software-Rahmensimplementiert, welcher für die Anwendung auf polymorphe Unschärfe-Analysen im Kontext vonStrukturanalysen angelegt ist. Der Entwurf und die Implementation der Basis einer Datenstrukturfür die polymorphe Unschärfe-Analyse erfolgt in enger Abstimmung und Zusammenarbeit mit derDiplomarbeit DA03/20 „Stochastische-Analyse als Teil generischer polymorpherUnschärfe-Analyse“
Die Ansätze der state-of-the-artMethoden zur Fuzzy-Analyse werden gegenübergestellt und darauskombinierte Strategien werden entwickelt. Besonderer Fokus der Arbeit liegt auf der Stukturierungder Daten und der Analyse von Zusammenhängen zwischen Fuzzy-Ergebnisgrößen.
Arbeitsschritte:
1. Literaturrecherche zu den Themen: Polymorphe Unschärfeanalyse, Fuzzy-Analyse Methoden
2. Entwurf Datenstruktur und Rahmen für generische polymorphe Unschärfe-Analyse
3. Implementation und Vergleich der Ansätze zur numerischen Fuzzy-Analyse
4. Kombination der Ansätze zur Verbesserung der Effizienz von Fuzzy-Analysen
5. Implementation vonMethoden zur Analyse vonAbhängigkeiten zwischen Fuzzy-Ergebnisgrößen
6. Implementation von Darstellungsmöglichkeiten für die Präsentation von Analyse-Ergebnissenunter Einsatz geeigneter Benchmark-Beispiele.

Wiss. BetreuerInnen TU Dresden: Dipl.-Ing. F. Niklas Schietzold
ausgehändigt am:einzureichen am:

Prof. Dr.-Ing. Wolfgang Graf Prof. Dr.-Ing. habil. Michael Kaliske
Institut für Statik und Dynamik der Tragwerke Institut für Statik und Dynamik der Tragwerke
Verantwortlicher Hochschullehrer Verantwortlicher Hochschullehrer

Die besonderen Hinweise des Instituts für die Anfertigung der Diplomarbeit sind zu beachten.

Fakultät Bauingenieurwesen Institut für Statik und Dynamik der Tragwerke, Univ.-Prof. Dr.-Ing. habil. Michael Kaliske
Aufgabenstellung für die Diplomarbeit DA04/20

Name: Bertram RichterVertiefung: Konstruktiver Ingenieurbau (KI)

Thema: Fuzzy-Analyse als Teil generischer polymorpher Unschärfe-Analyse(Fuzzy-Analysis in a Generic Polymorphic Uncertainty Quantification Framework)
Hintergrund und Zielsetzung:
Fuzzy-Größen sind Unschärfemodellierungen zur Beschreibung insbesondere epistemischer Un-schärfecharakteristika, wie Unvollständigkeit und Ungewissheit. Die Entwicklung effizienter Metho-den zur numerischen Unschärfe-Analyse von Fuzzy-Größen ist Teil aktueller Forschung. Dabei wer-den neben der Methode der α-Level Optimierung auch andere Strategien verfolgt.
Polymorphe Unschärfemodelle ermöglichen die Berücksichtigung sowohl epistemischer als auchaleatorischer Unschärfecharakteristika. Die zur numerischen Auswertung notwendige polymorpheUnschärfeanalyse ist eine Kombination aus stochastischen und fuzzy-basierten Analyse-Methoden.
Ziel dieser Arbeit ist es, aktuelle Methoden der Fuzzy-Analyse zu untersuchen und zu vergleichen.Dabeiwerdendie Fuzzy-Analyse Algorithmenals Teil eines generisch geordneten Software-Rahmensimplementiert, welcher für die Anwendung auf polymorphe Unschärfe-Analysen im Kontext vonStrukturanalysen angelegt ist. Der Entwurf und die Implementation der Basis einer Datenstrukturfür die polymorphe Unschärfe-Analyse erfolgt in enger Abstimmung und Zusammenarbeit mit derDiplomarbeit DA03/20 „Stochastische-Analyse als Teil generischer polymorpherUnschärfe-Analyse“
Die Ansätze der state-of-the-artMethoden zur Fuzzy-Analyse werden gegenübergestellt und darauskombinierte Strategien werden entwickelt. Besonderer Fokus der Arbeit liegt auf der Stukturierungder Daten und der Analyse von Zusammenhängen zwischen Fuzzy-Ergebnisgrößen.
Arbeitsschritte:
1. Literaturrecherche zu den Themen: Polymorphe Unschärfeanalyse, Fuzzy-Analyse Methoden
2. Entwurf Datenstruktur und Rahmen für generische polymorphe Unschärfe-Analyse
3. Implementation und Vergleich der Ansätze zur numerischen Fuzzy-Analyse
4. Kombination der Ansätze zur Verbesserung der Effizienz von Fuzzy-Analysen
5. Implementation vonMethoden zur Analyse vonAbhängigkeiten zwischen Fuzzy-Ergebnisgrößen
6. Implementation von Darstellungsmöglichkeiten für die Präsentation von Analyse-Ergebnissenunter Einsatz geeigneter Benchmark-Beispiele.

Wiss. BetreuerInnen TU Dresden: Dipl.-Ing. F. Niklas Schietzold
ausgehändigt am:einzureichen am:

Prof. Dr.-Ing. Wolfgang Graf Prof. Dr.-Ing. habil. Michael Kaliske
Institut für Statik und Dynamik der Tragwerke Institut für Statik und Dynamik der Tragwerke
Verantwortlicher Hochschullehrer Verantwortlicher Hochschullehrer

Die besonderen Hinweise des Instituts für die Anfertigung der Diplomarbeit sind zu beachten.

Declaration of originality

I confirm that this assignment is my own work and that I have not sought or used inadmissible
help of third parties to produce this work and that I have clearly referenced all sources
used in the work. I have fully referenced and used inverted commas for all text directly or
indirectly quoted from a source.

This work has not yet been submitted to another examination institution – neither in
Germany nor outside Germany – neither in the same nor in a similar way and has not yet
been published.

Dresden, 2021-05-12

VII

Abstract

In this thesis, a framework for generic uncertainty analysis is developed. The two basic
uncertainty characteristics aleatoric and epistemic uncertainty are differentiated. Poly-
morphic uncertainty as the combination of these two characteristics is discussed. The
main focus is on epistemic uncertainty, with fuzziness as an uncertainty model. Properties
and classes of fuzzy quantities are discussed. Some information reduction measures to
reduce a fuzzy quantity to a characteristic value, are briefly debated. Analysis approaches
for aleatoric, epistemic and polymorphic uncertainty are discussed. For fuzzy analysis
α-level-based and α-level-free methods are described. As a hybridization of both methods,
non-flat α-level-optimization is proposed.

For numerical uncertainty analysis, the framework PUQpy, which stands for “Polymorphic
Uncertainty Quantification in Python” is introduced. The conception, structure, data
structure, modules and design principles of PUQpy are documented. Sequential Weighted
Sampling (SWS) is presented as an optimization algorithm for general purpose optimization,
as well as for fuzzy analysis. Slice Sampling as a component of SWS is shown. Routines to
update Pareto-fronts, which are required for optimization are benchmarked.

Finally, PUQpy is used to analyze example problems as a proof of concept. In those
problems analytical functions with uncertain parameters, characterized by fuzzy and
polymorphic uncertainty, are examined.

IX

Acknowledgments

Firstly, I would like to thank my parents for their support and the assuredness, that this
support is never-ending. I am glad and grateful for the comfortable study, that they made
possible for me. I highly appreciate the caring interest and reassurance in me and the
sometimes necessary push, which I have gotten from them.

Secondly, I want to thank Marcus Seidowski, my mate in this project, as he wrote the
sibling to this work, thus being tightly involved in the matter. He endured sheer endless
discussions with me regarding nearly every little aspect of the project, even and especially
when it was way out of the scope of his work. I apologize for the harsh critique, that he had
received sometimes, and thankful for the critique given back. Without him, this project
would have never gotten off the ground.

I want to thank my supervisors F. Niklas Schietzold and Ferenc Leichsenring
for helping me solving problems I could not wrap my head around by myself. Sometimes
those problems existed in my head only. For every question I asked, an answer was found
eventually, no matter, how difficult or stupid it has been, but all of them have been tiring
for sure.

I want to thank my professors Wolfgang Graf and Michael Kaliske for the introduc-
tion to uncertainty, which I got in the lectures. It lighted the spark for my enthusiasm for
uncertainty, leading directly to this diploma thesis, close to the current state of research. It
is a high honor to me, to be able to contribute to the institutes work.

I would like to thank the staff of the Institute for Structural Analysis for the general support,
tips and tricks I have gotten and the opportunity to write my diploma here.

XI

Contents

1 Introduction 1

2 Theory 3
2.1 Uncertainty Models . 3

2.1.1 Aleatoric Uncertainty . 3
2.1.2 Epistemic Uncertainty . 4
2.1.3 Polymorphic Uncertainty . 5

2.2 Fuzzy Quantities . 6
2.2.1 Membership function, α-Cut and α-Level 6
2.2.2 Extension Principle, Multi-Dimensional Fuzzy Quantities 7
2.2.3 Generic Representation of α-Levels 8
2.2.4 Analytical Fuzzy Quantities . 9
2.2.5 Empirical Fuzzy Quantities . 13
2.2.6 Information Reduction Measures . 15

2.3 Fuzzy Analysis . 18
2.3.1 α-Level-based Methods . 18
2.3.2 α-Level-free Methods . 19
2.3.3 Non-Flat α-Level-Optimization . 20
2.3.4 Comparison of Approaches . 21

2.4 Optimization . 22
2.4.1 Components of an Optimization Algorithm 22
2.4.2 Run-Time Performance Indicators 23
2.4.3 Pareto-Fronts . 23

2.5 Algorithms . 27
2.5.1 Slice Sampling . 27
2.5.2 Evolu . 29
2.5.3 Sequential Weighted Sampling (SWS) 29
2.5.4 Comparison of Evolu and SWS . 31

3 PUQpy – Structure and Uncertainty Analysis 33
3.1 Requirements and Objective . 33
3.2 Structure . 34
3.3 Module: Analysis . 34

3.3.1 Class: UncertaintyAnalysis . 35
3.3.2 Class: Layer . 37
3.3.3 Class: FundamentalSolution . 39

3.4 Module: Interdependencies . 39
3.5 Modules: Optimization and OptimizationPareto 39
3.6 Modules: Quantity, QuantityEpistemic, QuantityAleatoric 40
3.7 Modules: Sampling and Distributions . 40
3.8 Distributed Computing . 40
3.9 Uncertainty Analysis in PUQpy . 41

XIII

4 Numerical Examples 47
4.1 Fuzzy Analysis with a Bivariate Fuzzy Input Quantity 47
4.2 Single Span Girder with Fuzzy Load Positions 49
4.3 Safety Assessment of a Wide Flange Steel Column 51

4.3.1 Basic Problem . 51
4.3.2 Assumptions . 52
4.3.3 Approach Shown by the Research Group 53
4.3.4 Approach – Modifications and Algorithmic Parameters 54
4.3.5 Results . 55

5 Discussion 57
5.1 Results . 57
5.2 Limitation and Perspective . 57

Acronyms and Glossary 59

References 61

Appendix 69

XIV

1 Introduction

In engineering tasks, consideration of uncertainty is required for a realistic behavior as-
sessment of the designed structures. Both safety, as well as efficiency of structures can be
increased by accounting for uncertainties using appropriate uncertainty analysis approaches.
By realistic modeling of uncertain quantities in the design process, risks to the safety of
the designed structure can be estimated more exact, resulting is a safer design. Based on
those more detailed risk assessments, potential overdimensioning by constructing on the
conservative side can be avoided, reducing costs. Therefore the importance of epistemic
uncertainty in engineering models and its incorporation into computations is rising. With
fuzzy quantities, introduced by [100], uncertainty is modeled on a gradual scale of truth and
belongingness. For dealing with aleatoric uncertainty, there is a wide variety of stochastical
and statistical software. In comparison, available software, with which epistemic uncertainty
can be dealt with, is rare. The combination of both uncertainty characteristics, polymorphic
uncertainty, is lacking available software. Hence, in this work, the software PUQpy, which
stands for “Polymorphic Uncertainty Quantification in Python” is introduced.

Theoretical aspects of this thesis are discussed in Chapter 2. In Section 2.1, uncertainty
characteristics are differentiated. Aleatoric and epistemic uncertainty are explained as
basic uncertainty models, polymorphic uncertainty is presented as the combination of
aleatoric and epistemic uncertainty. Definitions of fuzzy quantities are given in Section 2.2.
The basics of fuzziness are discussed, secondly several types of fuzzy quantities with their
properties are presented. Methods for defuzzification are given in Section 2.2.6. These
are used to reduce fuzzy quantities to characteristic values. In Section 2.3, approaches to
analysis of fuzziness are discussed. As the two approaches to fuzzy uncertainty analysis,
α-level-based, see Section 2.3.1, and α-level-free methods, see Section 2.3.2, are discussed.
In Section 2.4, qualities of optimization are discussed. Pareto-fronts are explained and
the performance of update methods for Pareto-fronts is measured and compared. The
numerical algorithms used in this thesis are explained in detail in Section 2.5.

In Chapter 3, the objective and general structure of PUQpy is presented. The purpose
of the implemented classes Analysis and sub-classes, FundamentalSolution, Layer, and
UncertaintyAnalysis for uncertainty analysis explained in-depth. As a central design
element of PUQpy, the connection of Analysis objects by using Layer objects is elaborated.

In Chapter 4, numerical examples with fuzzy input quantities and polymorphic input
quantities are given as a proof of concept and usability of PUQpy. Finally, the results of
the work are discussed in Chapter 5 and questions to be answered in further research are
pointed out.

1

2 Theory

2.1 Uncertainty Models

As summarized in [71], there are two basic uncertainty models, aleatoric and epistemic
uncertainty. Aleatoric uncertainty describes variability, that is caused by true random or
uncontrollable processes, and features probabilistic, that is random, properties. Since this
variability is inherent to the quantity, aleatoric uncertainty is irreducible [71].

Epistemic uncertainty is present, when dealing with limited data, vague knowledge, incerti-
tudes, and impreciseness of the model, or data. According to [71] epistemic uncertainty can
be reduced at least in theoretically by gathering more data, or less imprecise data, or by
using less simplified models. In practice however, this may be difficult to impossible.

A quantity, which has either aleatoric or epistemic properties is called a monomorphic
quantity [19; 35, p. 3]. Polymorphic quantities feature properties of both aleatoric and
epistemic uncertainty [35, p. 3; 68, p. 1; 77, p. 9]. Thus, they can be used to account for
both randomness and fuzziness at the same time. Every polymorphic quantity can be
decomposed into a set of monomorphic quantities and their dependencies. Therefore, it is
possible to assemble arbitrarily complex quantities, and the appropriate analysis methods
from monomorphic ones.

The uncertainty model and the analysis approach is to be chosen depending on the available
quantity and quality data [87]. If only low quantity or low quality data is available, an
epistemic or polymorphic analysis approach may be better suited. According to [32; 33;
47; 51], a purely stochastic analysis approach to uncertainty may not be appropriate, since
non-probabilistic uncertainty may occur in stochastic quantities due to

• uncertain distribution type,
• uncertain parameters of the distribution, due to statistical uncertainty,
• bias in the recorded data due to survey design,
• uncertain limit-state function.

Therefore, in the following discussion of different models, appropriateness in regard to
the data situation is given to help choosing the right one for the use case. Firstly, in
Section 2.1.2 and Section 2.1.1, analyses for monomorphic uncertainty are explained. Then,
in Section 2.1.3 different types of polymorphic uncertainty are discussed.

2.1.1 Aleatoric Uncertainty

Aleatoric uncertainty can be modeled with stochastic quantities [34, p. 1; 86, p. 13]. For
modeling and analysis of aleatoric uncertainty, software is available. Some examples of
available software packages are:

• scipy, see [38; 99],
• UQpy, see [83],
• openturns, see [7] and
• OpenCOSSAN, see [71].

3

Stochastic Analysis Aleatoric or probabilistic uncertainty, shows random properties
and is modeled with stochastic quantities [34, p. 1]. In case, that an event as the result
of a random trial is almost always a crisp value, under an unlimited number of occasions,
with constant boundary conditions, it is a pure stochastic quantity. Stochastic quantities
follow the law of large numbers, according to which the relative frequency of an event
approaches its probability [23, pp. 290 sqq.]. For this prerequisite to hold true, samples must
be pairwise independent, identically distributed (iid) [98, p. 63]. If the boundary conditions
are not constant, the iid -criterion is violated, or only a limited amount of events is available,
the law of large numbers is violated, or the outcome is not crisp, it features additional
uncertainty. Thus, the quantity is not a pure stochastic, but a polymorphic quantity. It is
bad practice to ignore that fact and model it as a stochastic quantity nevertheless. In this
case, it is advisable to use another uncertainty analysis, such as fuzziness or polymorphic
uncertainty. [84, p. 379]

Bayesian Uncertainty The Bayesian approach, as introduced in [8], is used, when
modeling the properties of a stochastic quantity as stochastic quantities. A realization of
the stochastic quantity is a stochastic quantity again. In statistical hypothesis testing, the
validity of a stochastic model is determined by means of probability, since the population of
experimentees is a subset of the statistical universe shows random variation [23, pp. 369 sqq.].

2.1.2 Epistemic Uncertainty

Epistemic uncertainty can be modeled using the uncertainty model fuzziness [34, p. 1; 31,
p. 1]. According to [34; 50] epistemic uncertainty may originate in

• linguistic uncertainty,
• missing data due to unknown data or data loss,
• imprecise and inaccurate data, for example due to tolerances or measure errors,
• imprecise or inaccurate functional models,
• expertise or
• if reasons for variance are unknown.

Fuzziness

Classes in the real world do not have precisely, and sharply defined parameters, as postulated
in [100]. Thus, most objects are not binarily assigned to classes in “does belong” and “does
not belong” to the class, but rather belong to a point in a continuum between these
two extremes. Human thinking often is based on vague properties, especially, in pattern
recognition to account for possible deviation from the anticipation, communication to give
room for interpretation, and unforeseeable events, and abstraction [100]. The purpose
of fuzzy quantities is to describe and quantify vagueness. An introduction to the theory
of fuzziness is given in [37]. In [98], general, including non-convex, fuzzy numbers are
discussed, and it is focused on the incorporation of fuzzy and stochastic analyses. Fuzzy
quantities are discussed in Section 2.2.

Fuzzy-based Fuzziness (ff)

Fuzzy-based fuzzy quantities have two possible use cases. Firstly, if the assessment of
uncertainty itself is doubtful. The properties of a fuzzy quantity are modeled as fuzzy

4 Chapter 2 Theory

quantities, thus a realization of the outer fuzzy quantity is a fuzzy quantity again. This is
the case when reading a membership function off a plot or if limits of the quantity are only
vaguely available.

Second use case is the examination of epistemic uncertainty, when different uncertainty
sources are considered [68]. The resulting membership function of a single, even multivariate
fuzzy analysis describes the combined uncertainty sensitivity of all fuzzy input quantities.
On the basis of α-levels, it can be understood how the uncertainty of the result is reduced
by reducing the uncertainty of all uncertain input quantities to this specific α-level. An
insight on the influence of the individual quantities is not easily possible. By dividing the
design space in sub-spaces, the objective space is divided too, as shown in [68]. Mapping
the components from input to output spaces, makes it possible to isolate the uncertainty
influence of several input quantities on the result quantity from each other. Therefore it is
possible to see the uncertainty sensitivity for each of the quantities separately. The user is
enabled to identify the quantity, that imposes the highest uncertainty onto the result. This
insight can be harnessed to reduce the result’s overall uncertainty by conducting further
targeted surveys. In this approach the quantities are put into individual analyses, but are
independent of each other.

2.1.3 Polymorphic Uncertainty

Fuzzy Probability Based Randomness (fp-r) Fuzzy probability based randomness
(fp-r) is used, if data is sparse and the estimates for the stochastic parameters cannot
be considered to be accurate, see [30, p. 39]. The properties of a stochastic quantity are
modeled as fuzzy quantities. A realization of the fuzzy quantity is a stochastic quantity
again, thus a certain trajectory in the bunch of distribution functions. This is the case for
experiments, where only a few samples can be taken. Modeling as pure stochastic is not
permissible, since the law of large numbers cannot be considered fulfilled.

Fuzzy Randomness (fr) Fuzzy randomness (fr) is used, if data base is sufficient, but
each sample shows impreciseness in itself. Thus, the data cannot be trusted, see [30, p. 39].
The properties of a fuzzy quantity are modeled as stochastic quantities. A realization of
the stochastic quantity is a fuzzy quantity again. This may be the case, in experiments,
where a lot of data has been measured hastily.

Fuzzy Probability Based Fuzzy Randomness (fp-fr) Fuzzy probability based
fuzzy randomness (fp-fr) is to be used, if data is scarce, yet imprecise and involvement of
randomness is assumed, see [30, p. 39]. Therefore, the properties of the stochastic quantity
are doubtful, thus modeled as fuzzy quantities. The outcome of a single trial itself is yet
uncertain again, thus a fuzzy quantity. Three quantities are necessary. The most inner
fuzzy quantity models the uncertainty of a single trial. Its properties are determined by
the means of a stochastic quantity. The properties of the stochastic quantity are yet again
uncertain and modeled with a fuzzy quantity. All previous cases are covered as special
cases in fp-fr .

2.1 Uncertainty Models 5

2.2 Fuzzy Quantities

2.2.1 Membership function, α-Cut and α-Level

A fuzzy quantity X f is a set whose members x are assessed by their possibility, or membership
value µ(x) [34, p. 1; 98]. The membership indicates, how much an item belongs to a group
or set, see Example 2.1.

Example 2.1: The perception of temperature is highly subjective. Depending on
a lot of factors, a person may rate temperatures by their comfort. The comfort of
a person at a given temperature is somewhere on the gradual spectrum between
perfectly fine, and life-threatening unbearable. The assessment process, of comfort
for specific temperatures is the evaluation of the membership function.

The term possibility is a measure to express the degree of truth of a statement or the degree
to which an event may occur [20, p. 2]. Possibility theory is the epistemic counterpart to
probability theory [22; 39; 50]. Since in this thesis fuzzy quantities are understood as a
generalization of the classical set theory, the term membership is used rather than the term
possibility.

Let be X a space and F(X) the class of fuzzy sets in X, then X f ∈ F(X) is a fuzzy quantity
[88]. The function µXf : X→ [0, 1] maps the degree of membership of the element x ∈ X
to the unity interval [0, 1], see [66, p. 1]. Therefore, µXf is referred to as the membership
function of a fuzzy quantity X f . The short notation µ(x) the quantities name X f is omitted.

An α-level is defined as the set for whose members the membership is at least the specified
value α [30, p. 31; 89, p. 5].

Example 2.2: For the assessment of comfort, see Example 2.1, some zones based on
the level of comfort may be defined, like the livable zone, bearable zone, workable
zone, comfort zone, and the perfect temperature zone. The ranges of those comfort
zones can be comprehended as α-levels.

An α-level is obtained by the inverse function to µ, the α-cut or α-level-cut. In literature
α-cut and α-level are sometimes used synonymously. In this thesis α-cut denotes the
method of discretization, yielding a set of intervals, the α-levels. The weak α-cut is defined
as

Cα = {x ∈ X | µ(x) ≥ α} : α ∈]0, 1] . (2.1)

If the membership is strictly greater than the specified α,

Cα = {x ∈ X | µ(x) > α} : α ∈]0, 1] (2.2)

is called the strong α-cut [46; 37, p. 19]. In this work, the weak α-cut is used, if not stated
otherwise.

In this thesis, only convex, normalized, and bounded quantities are discussed. For convex
fuzzy quantities, each α-level-set fulfills the inclusion property

Cαk
⊆ Cαi ∀ αi ≤ αk : αi, αk ∈]0, 1] , (2.3)

which means, that every α-level is contained in all lower α-levels [89, p. 5]. The set
C0(X

f) = {x ∈ X f | µ(x) > 0} is referred to as support. For the numerical representation in
this thesis, the support is a closed interval, thus the very limits, for which limµ(x) = 0,

6 Chapter 2 Theory

are considered members of the support. According to [46], the set of members with the
highest membership in a quantity is referred to as kernel. In [73, p. 11], a normalized fuzzy
quantity X f

norm is defined by the restriction

supµXf
norm

(x) = 1⇔ C1(X
f
norm) 6= ∅ ∧ @ x ∈ X f

norm : µ(x) > 1. (2.4)

The closed set C1(X
f) = {x ∈ X f | µ(x) = 1} is called core of a fuzzy quantity. For

normalized fuzzy quantities kernel, and core are identical, and the latter term will be used
in this thesis. Which means, that the core must not be empty, thus at least one x for
which µ(x) = 1 holds, and the maximum membership is limited to 1. For bounded fuzzy
quantities, the support C0 is bounded. Thus, all α-levels of such a fuzzy quantity are
compact, closed, and bounded sets, see [89, p. 1].

Fuzzy quantities can be subclassified into analytical and empirical fuzzy quantities. Analyt-
ical fuzzy quantities are represented by their analytical membership function [37, p. 15],
see Section 2.2.4. Among these, they can be defined in different ways. The membership
can be given by a piece wise defined function [49] or by a single closed function over the
complete space. For a family of functions, characteristic values, for example support, core,
or a moment can be used for parameterization of the membership function [27; 49]. In [21,
p. 618] L-R fuzzy numbers are introduced as a representation by a parameterized function
family for the left and right slope of the fuzzy quantity. Another possible representation
of a fuzzy quantity is a set of stacked, assessed intervals, which are α-levels and therefore
referred to as α-level-based fuzzy quantities.

Empirical fuzzy quantities consist of a set of elements and their respective membership
values [37, p. 15]. Those elements can live in any space, also in non-continuous spaces, but
Rn is focus of this thesis. Empirical fuzzy are discussed in Section 2.2.5.

2.2.2 Extension Principle, Multi-Dimensional Fuzzy Quantities

The extension principle is defined by [21, p. 615; 100, p. 346] for two fuzzy quantities,
but can be expanded to arbitrarily many input quantities. Let Z f = f(X f

1, . . . , X
f
n) be

a fuzzy result quantity of an operation on the n ∈ N+ fuzzy quantities X f
1 to X f

n. Each
of these quantities can be of any dimension. Deterministic samples, or members of those
quantities are noted as x1 to xn, and z and have the same dimension as their respective
fuzzy quantity. The deterministic solution of a set of samples is noted as z = f(x1, . . . , xn).
The membership of Z f can be obtained by means of the extension principle

µ(z) = sup
z=f(x1, ..., xn)

min (µ(x1), . . . , µ(xn)) . (2.5)

The whole procedure is an optimization problem [54, p. 2]. For continuous quantities,
optimization for the most extreme values of z, while maximizing the membership µ(z),
is done. For discrete quantities the combinations of all xi, which yield the maximum
membership for z, are to be found.

Using the Cartesian product X1×. . .×Xn, a single higher-dimensional compound quantity
XCartes can be constructed from n ∈ N+ sub-quantities. The dimension of the compound
is equal to the sum of all its sub-quantities dimensions dim(XCartes) =

∑n
i=1 dim(Xi).

The joint membership function of the compound quantity may be either given explicitly
or constructed from the self-contained sub-quantities by means of the extension principle
[84, p. 381], using the functional operation f(x1, . . . , xn) = (x1, . . . , xn). For compound
quantities, additional interactions may be imposed upon pairwise combinations of xi and xj ,

2.2 Fuzzy Quantities 7

which limit the joint membership function. Inherent relations between the sub-quantities
are described with these interactions. Interactions between fuzzy quantities interpretable
as counterpart to correlation in stochastic quantities [31]. In α-level-based analyses, those
interactions are translated on each α-level to constraints for the design space of the
α-level-optimization, restricting the possible combinations of component values [78]. For α-
level-free methods this translation is required only on the level of support to exclude sample
combinations of the support’s bounding box, which are not members of the support. The
smallest possible hyperrectangle, containing the entirety of its contents, is called bounding
box. Only axis aligned bounding boxes considered in this thesis, that is hyperrectangles,
whose edges are parallel to the axes of a Cartesian coordinate system. Therefore it is
possible to describe the bounding box as the Cartesian product of the intervals of minimum
to maximum for each component. In Figure 2.1 examples for Cartesian products between
an fuzzy triangular number and a fuzzy trapezoidal number are shown. Figure 2.1(a)
shows a Cartesian product without interactions, Figure 2.1(b) with two interactions. The
support of the respective Cartesian product is filled in light gray.

x1

x2

µ

µ(x1) µ(x2)

µ(x1, x2)

(a) Cartesian product of two fuzzy
quantities.

x1

x2

µ

µ(x1) µ(x2)

µ(x1, x2)

(b) Cartesian product of two fuzzy
quantities with interactions.

Figure 2.1: Cartesian product of two one-dimensional quantities.

2.2.3 Generic Representation of α-Levels

For one-dimensional, convex fuzzy quantities, an α-level is defined as the compact interval
between two crisp limits. It can be obtained by an α-cut as given in Equation (2.1).
α-level of a Cartesian product of one-dimensional quantities without interactions are
hyperrectangles, but depart from it under consideration of interactions [57]. The postulation
of convexity set is not necessarily fulfilled anymore with non-convex interaction functions.
An example of a non-convex α-level in R2 is given in Figure 2.2.

In PUQpy, by default, an α-level is represented by the lower and upper diagonal corner of
its bounding box, thus as a hyperrectangle. Alternatively, the α-level can be represented
by its outline or hull. In PUQpy, the outline consists of discrete data points and is found
using Pareto-fronts. Due to the usage of Pareto-fronts, see Section 2.4.3, voids in the
α-level can not be respected. Thus, a one-dimensional slice of the α-level parallel to one
of the axes is e a compact straight-line segment. Therefore the spaces outlined by the
α-level’s hull is coherent. For one-dimensional or non-interacting convex fuzzy quantities,
the representation of an α-level as a hyperrectangle and the outline are equal. The entirety
of members with membership values greater than the given value will be called α-cap.

8 Chapter 2 Theory

x1

x2

Figure 2.2: Example for an α-level in R2.

2.2.4 Analytical Fuzzy Quantities

An analytical fuzzy quantity is given by an analytical membership function. To be a valid
membership function it needs to fulfill the assumptions made in Section 2.2.1 to be convexity,
normalization, and boundedness. In R, a fuzzy quantity is normalized, if the membership
µ(x) is a continuous mapping to the closed interval [0, 1] and ∃ x : µ(x) = 1, see [93, p. 2].
A fuzzy quantity in R is bounded, if the support is given by two real numbers C0, l ≤ C0, u

and µ(x) = 0 ∀x /∈ C0, see [93, p. 2]. The fuzzy quantity is convex, if the inclusion property
is fulfilled, see Equation (2.3). This is the case, if the membership function is monotonically
increasing from C0, l to C1, l, and likewise monotonically decreasing on the other side from
C1, u to C0, u, see [93, p. 2]. Some types of analytical fuzzy quantities, are given in this
section.

x

µ

1

0
a b c

(a) Example for a fuzzy triangular
quantity.

x

µ

1

0
a b c d

(b) Example for a fuzzy trapezoidal
quantity.

Figure 2.3: Fuzzy triangular and trapezoidal quantity.

2.2 Fuzzy Quantities 9

Fuzzy Singleton, Crisp Sets and Interval Quantities

Crisp numbers, which feature no uncertainty, are special cases of fuzzy quantities, so called
fuzzy singletons [37, p. 50; 21, p. 614]. The support of a fuzzy singleton is a crisp number.
Ordinary sets, which are a special case of fuzzy quantities. According to [41, p. 35], the
membership function of an ordinary set is the indicator function

µ(x) =

{
1 x ∈ X,
0 x /∈ X.

(2.6)

Thus, the support and the core of an ordinary set are equal, see Section 2.2.1. Being an
ordinary set in R, interval quantities are a special case to fuzzy trapezoidal numbers.

Fuzzy Triangular Number

A fuzzy number has a triangular shaped membership function and is notated in this thesis
as X f

tri = 〈a, b, c〉. There are several different conflicting notations proposed in [21; 37, p. 46;
34, p. 198; 76]. In this thesis, the membership function, in conformity with [34, p. 198], is
defined as

µ(x) =

x−a
b−a a < x < b,

1 x = b,
c−x
c−b b < x < c,

0 otherwise.

(2.7)

The support of a fuzzy triangular number is a crisp interval C0(X
f
tri) = {[a, c] | a ≤ b ≤

c | a, b, c ∈ R}. The core of a fuzzy triangular number consists of exactly one element
C1(X

f
tri) = {b ∈ R | µ(b) = 1}. A schematic of the membership function is shown in

Figure 2.3(a). The α-cut Cα = {x | µ(x) ≥ α} for the given membership α : α ∈ [0, 1] is

xl, α = a+ α · (b− a),
xu, α = c− α · (c− b),
Cα = [xl, α, xu, α].

(2.8)

Fuzzy Trapezoidal Number

A fuzzy trapezoidal number X f
tra = 〈a, b, c, d〉 with the membership function, analogously

to Section 2.2.4, see [1, p. 19; 62, p. 412; 76, p. 260],

µ(x) =

x−a
b−a a < x < b,

1 b ≤ x ≤ c,
d−x
d−c c < x < d,

0 otherwise.

(2.9)

A schematic of the membership function is shown in Figure 2.3(b). If b = c, the fuzzy
trapezoidal number reduces to a fuzzy triangular quantity. The inverse, yielding the α-cut
Cα = {x | µ(x) ≥ α} for the given membership α : α ∈ [0, 1] is

xl, α = a+ α · (b− a),
xu, α = d− α · (d− c),
Cα = [xl, α, xu, α].

(2.10)

10 Chapter 2 Theory

Piecewise Linear Fuzzy Quantities

A piecewise linear fuzzy quantity X f
pwl is a special case of a fuzzy quantity with a piecewise

defined membership function. It is constructed by a set of data points P containing
the x-value and the according membership. The membership is calculated as shown in
Algorithm 1. Firstly the two data points, that are closest to the sample x to the left, and

Algorithm 1 Membership function for a piecewise linear fuzzy quantity
procedure membership(x)

for P ∈ X f
pwl do

if Px = x then
return Pµ

dl ← −∞
du ←∞
µl ← None
µu ← None
for P ∈ X do

d← Px − x
if d < 0. 0 ∧ d > dl then

dl ← d
µl ← Pµ

else if d > 0. 0 ∧ d < du then
du ← d
µu ← Pµ

if µl = None ∨ µu = None then . is outside of the support
return 0. 0

return µl · du
dl+du

+ µu · dl
dl+du

right are to be identified. If the sample has the same value as one of the data points, the
data point’s membership is returned. If for any of those two no point is found, the sample
is considered outside the support, thus the membership of zero is returned. Secondly, after
successfully finding the containing interval [a, b], the membership can be calculated via
linear interpolation to

µ(x) = µ(a) · b− x
b− a

+ µ(b) · x− a
b− a

. (2.11)

The calculation steps for the α-cut for this quantity type are shown in Algorithm 2. Firstly,
the data points on the inner side, which is on the side with the higher membership are
found using the α-cut-method. Those have equal or higher membership than the specified
α. If the membership of a data point is equal to α, then the respective bound of the α-level
is already found. Otherwise, the next outer data point has to be found as the closest data
point to the inner one with a lower membership. Since the membership function can have
discontinuities, the x-value of the inner and outer point can be equal. If none is found, the
inner data point is considered to be already the outermost data point in that direction,
that is the border of the support. Given an outer data point is found, the x-value for the
lower boundary of the α-level is interpolated with the equation

x = xo ·
µi − α
µi − µo

+ xi ·
α− µo

µi − µo
. (2.12)

For the upper α-level boundary the formula is analogue.

2.2 Fuzzy Quantities 11

Algorithm 2 α-cut for a piecewise linear fuzzy quantity
1: procedure get_alphacut(α)
2: Pl, Pu ← α-cut . α-cut with data points
3: µi ← Pl, µ

4: if µi = α then . lower α-level bound
5: xl ← Pl, x . bound found
6: else
7: xi ← Pl, x

8: xo ← −∞
9: for all P ∈ X do . find data point to the left of xu

10: if xo < Px ≤ xi ∧ Pµ < µi then
11: xo ← Px
12: µo ← Pµ

13: if no outer point is found then
14: xl ← Pl, x

15: else
16: xl ← Equation (2.12)
17: if µi = α then . upper α-level bound
18: xu ← Pu, x . bound found
19: else
20: xi ← Pu, x

21: xo ←∞
22: for all P ∈ X do . find data point to the right of xu
23: if xo > Px ≥ xi ∧ Pµ < µi then
24: xo ← Px
25: µo ← Pµ

26: if no outer point is found then
27: xu ← Pu, x

28: else
29: calculate α-level bound using Equation (2.12)
30: return [xl, xu]

12 Chapter 2 Theory

α-Level-based Fuzzy Quantities

α-level-based fuzzy quantities are defined by a set of intervals. For each interval a member-
ship level is specified. The membership for a point is determined by the highest nominal
value of all intervals, in which the point is contained. The α-cut is given by the biggest
interval, which has at least the specified membership. A schematic of the membership
function is shown in Figure 2.4.

x

µ

1

0

Figure 2.4: Example for an α-level-based quantity.

2.2.5 Empirical Fuzzy Quantities

Empirical fuzzy quantities are not defined by an analytical continuous membership functions,
but by discrete data points with their respective membership values. Result quantities of
fuzzy analysis, obtained by means of optimization are empirical fuzzy quantities.

Interpolation of Membership

To sample from an empiric quantity continuously, an interpolation technique is required.
Piecewise linear fuzzy quantities, as shown in Section 2.2.4, employ linear interpolation
between the data points. A one-dimensional empiric fuzzy quantity can be converted to a
piecewise linear one. As empiric fuzzy quantities can be of any dimension, interpolation
methods are required to sample continuously. Since multidimensional interpolation is a
research topic on its own, only the simplest method, the nearest neighbor interpolation is
implemented in PUQpy. The available methods are set up to be easily extensible. The
methods must be able to interpolate on arbitrary point clouds, without relying on any form
of grid.

In nearest neighbor interpolation the nearest data point is found, and its properties, except
the coordinates in design space are copied to the new data point. In Voronoi-diagrams
this can be visualized by filling cells with solid colors [11, p. 5].

An approach to natural neighbor interpolation is given in [45]. It is based on Voronoi-
diagrams and Delauney-triangulation. The point to be sampled x will introduce a new
cell into the diagram, which takes parts from all n neighboring cells. The value to the
sampling point µ(x) is calculated as summation over the weighted values of the neighboring
cells

µ(x) =

n∑
i=1

wi(x) · µ(xi). (2.13)

2.2 Fuzzy Quantities 13

The Sibson-weights of a neighboring cells are assigned in proportion to how much hyper-
volume V the neighboring cell loses to the new cell [42; 45]

wi(x) =
V (xi)

V (x)
. (2.14)

According to [11, p. 5; 42, p. 5], the Laplace-weights, or non-Sibsonian weights are
assigned in proportion to the shared interface l(xi), which is a hyperarea shared by the
neighboring cell and the new cell. The distance d(xi) from the new point to the neighboring
cell as

wi =

l(xi)
d(xi)∑n
k=1

l(xk)
d(xk)

. (2.15)

Calculation of α-Cuts of Empiric Quantities

For empiric fuzzy quantities two α-cut methods are available in PUQpy. The first, and
default method for empiric quantities, shown in Algorithm 3, returns the bounding box of
the α-level. For all components of the objective space, that is the dimension of the quantity,

Algorithm 3 α-cut yielding a hyperrectangular α-level
1: procedure α-cut(α)
2: xl ←∞ . all elements
3: xu ← −∞ . all elements
4: for P ∈ X f do . compare all data points
5: xl ← min(xl, Px) . element wise
6: xu ← max(xu, Px) . element wise
7: return xl, xu

the minimum, and maximum is found across all data points. The second method shown in
Algorithm 4 returns the actual outline of the α-level, consisting of data points. Firstly, 2n

Pareto-front objects are set up, one for each combination of minimum and maximum for
all n dimensions of the quantity. After that, the Pareto-fronts are queried for all data
points, thus finding the data points contributing to the respective outline segment. The
procedure is described in Section 2.4.3. Finally, the data points of all Pareto-fronts are
united, yielding the complete outline.

Algorithm 4 α-cut yielding the α-levels outline
1: procedure α-cut-outline(α)
2: set up Pareto-objects
3: for P ∈ X f do . compare all data points
4: if Pµ ≥ α then
5: update all Pareto-objects with P
6: outline ←

⋃
P ∈ Pareto-objects

Projection of Multi-Dimensional Empirical Fuzzy Quantities

There are two different approaches available in PUQpy for reducing dimensionality of
empiric fuzzy quantities through projection. In both approaches, inter-dependencies are

14 Chapter 2 Theory

dismissed, thus the fuzziness of the quantity is overestimated, see [31]. The data points
stay unchanged, the data of the data point is not reduced in dimensionality.

For the first approach, Pareto sorting is done while the chosen axis is not considered as
an optimization target, and thus ignored. Additionally the range of values along the chosen
axis can be restricted. This can be used to extract slices with a certain thickness from
the quantity. A quantity of one dimension less is obtained if the component of the chosen
axis is ignored or deleted afterwards. The other technique is to use a Pareto sorting to
only optimize for the given axis and the membership. All other components are ignored,
thus finding only the hull along this axis. An one-dimensional quantity is obtained, if the
components of all other axes are ignored, or deleted afterwards. For two dimensions the
result is the same, if the first technique is applied to one axis, and the second technique to
the other axis.

2.2.6 Information Reduction Measures

Information reduction measures, for fuzzy quantities called defuzzification, can be applied
to reduce a fuzzy quantity to a crisp, real valued representation [37, pp. 139 sqq.]. There are
two types of defuzzification measures. Performance oriented measures, such as characteristic
values are in defined in Section 2.2.6. The second ones are robustness oriented measures,
which quantify the uncertainty in a fuzzy quantity. Those are discussed in Section 2.2.6.
For a holistic evaluation of the uncertain results of an uncertainty analysis, both types are
required [31, p. 4]. According to [74], continuity is an important feature of a defuzzification
measure, thus small changes to the fuzzy quantity result in small changes in the result of
defuzzification.

In the PUQpy, defuzzification is done after the completion of a fuzzy analysis. The
necessary methods are provided by the returned quantity.

Performance-oriented Defuzzification Methods

Performance oriented defuzzification methods reduce a fuzzy quantity to a characteristic
value [46]. This characteristic value gives information about the approximate location of
the fuzzy quantity in the space, but not on its uncertainty.

Example 2.3: Coming back to the subjective perception of temperature illustrated in
Example 2.1. This defuzzification task may be worded as “Give me the temperature,
you consider comfortable.”

Lower and upper bounds of an arbitrary α-levels bounding box are retrieved by the
α-cut-method

Cα(X
f) = [xα, l, xα, u]. (2.16)

Those can be used directly as a measure or further calculation can be done. The most
prominent may be using the core as a basis. If the core of the fuzzy quantity is a singular
point, its value can be referred to as modal value xmod [37]. In other cases, the modal value
may be obtained for example by the mean of the core, random of maxima, first of maxima
or last of maxima [46].

Bounding box center of a certain α-level, which is computed element-wise as

xα, bbc =
xα, l + xα, u

2
. (2.17)

2.2 Fuzzy Quantities 15

Especially interesting are x0,mean as mean of the support and x1,mean as the mean of the
core, also called mean of maximum [26].

The expected value of a fuzzy quantity is an interval [E∗, E∗]. In accordance to [22, p. 292;
49, p. 2; 66, p. 3; 82] the lower expected value E∗ and the upper expected value E∗ can be
calculated by

E∗ =

∫ 1

0
inf Cα(X

f) dα = x1, l −
∫ x1, l

x0, l

µ(x) dx (2.18)

E∗ =

∫ 1

0
supCα(X

f) dα = x1, u +

∫ x0, u

x1, u

µ(x) dx . (2.19)

The first version measures the area between x = 0 and the lower, respective upper, slope
of the quantity by integrating along the vertical axis α, using α-cuts. The second version
measures the area under the lower, respective upper, slope between the support and core
of the quantity, using the membership function. In both versions, the measured area is
implicitly converted to rectangle with the same area. Explicit division of the area by the
height of the rectangle is omitted due to it being 1. This can be assumed, because of the
premise of normalized fuzzy quantity.

The defuzzified value according to [37, pp. 140 sq.], based on bounding boxes of m + 1
equidistant distributed α-levels with αj = j

m is given as

x� =
1

2n(m+ 1)

m∑
j=0

2n∑
k=1

xj, k. (2.20)

Here k is a counter for all 2n hyperrectangle corners and j is a counter for the α-level.
This is the mean over all components of all α-level corners and yields a scalar value. For
one-dimensional fuzzy quantities, this is equal to the mean of centroids and can be written
by using xα, bbc from Equation (2.17) as

x� =
1

(m+ 1)

m∑
j=0

xαj , bbc. (2.21)

The centroid method according [26; 53] calculates the center of gravity of the membership
function as

xcog =

∫
µ(x)x dx∫
µ(x) dx

=

∑
i µ(xi)xi∑
i µ(xi)

. (2.22)

This can be done element-wise for multidimensional quantities. For empiric quantities the
second part may be employed, but it must be kept in mind that density concentrations
are likely to drift it from the real value. If that is to be considered, the density must be
factored in, such that clustered members get a smaller weight.

The center of area xcoa given by∫ ∞
xcoa

µ(x) dx =

∫ xcoa

−∞
µ(x) dx (2.23)

is the point, where the areas of both sides are equal [53]. Generalization to multidimensional
and empiric quantities is not as easy as for the ones shown above.

16 Chapter 2 Theory

Robustness-oriented Defuzzification Methods

Robustness oriented defuzzification methods give insight on how uncertain, that is how
inaccurate, the quantity is. Information about the absolute location of the quantity in
space is not gained with these approaches.

Example 2.4: Coming back to the subjective perception of temperature illustrated
in Example 2.1. This defuzzification task may be worded as “Give me the temperature
span, your tolerance width, you consider comfortable.”

Absolute spread is defined as element-wise difference of the upper and the lower bound of
the supports hyperrectangle

sα, abs = xα, u − xα, l. (2.24)

Thus, absolute spread is the width of the fuzzy quantities bounding box [37, p. 90]. Relative
spread is defined as the ratio of absolute spread sα, abs to the characteristic modal value
x1.0, bbc 6= 0 as

srel =
sabs

x1.0, bbc
. (2.25)

The absolute imprecision of a fuzzy quantity is the approximation of the cardinality of the
set defined by the quantity card(X f). Its geometric interpretation is the volume enclosed
by the membership function [37, pp. 141 sq.]. It can be calculated by

impabs(X
f) = card(X f) =

∫
µ(x) dx . (2.26)

For a bounding box based discretization of m+ 1 α-levels, this can be written as

impabs(X
f) =

1

2m

m−1∑
j=0

(
sαj , abs + sαj+1, abs

)
. (2.27)

Where j is a counter for the α-level with the value αj = j
m . The spread sα, abs, as calculated

in Equation (2.24).

The relative imprecision of a fuzzy quantity is analogously to relative spread calculated for
x1.0, bbc 6= 0 by [37, p. 142]

imprel(X
f) =

impabs(X
f)

x1.0, bbc
. (2.28)

The eccentricity ecc = x�−x1.0, bbc is defined as the signed difference between the defuzzified
value x� and the modal value x1.0, bbc [37, p. 143]. The specific eccentricity is calculated by
dividing the eccentricity by the imperfection.

2.2 Fuzzy Quantities 17

2.3 Fuzzy Analysis

Fuzzy analysis is used to examine possibilistic and epistemic uncertainty. As defined in
[31, p. 2], a fuzzy analysis is a computation of fuzzy result quantities Z f from input fuzzy
quantities X f using the mapping ξf : X f 7→ Z f . The result membership function µZf and
therefore the result fuzzy quantity can be found by optimization. There are two numerical
approaches to the optimization task of fuzzy analysis, α-level-based methods and α-level-free
methods.

2.3.1 α-Level-based Methods

In α-level-based methods, the fuzzy input quantities are discretized vertically into a set of
α-levels in preparation to the actual analysis [57]. Therefore, the quantity is sliced using
α-cuts, as described in Equation (2.1) and depicted in Figure 2.5. The general procedure is
shown in Algorithm 5. The analysis itself will be carried out based on those α-levels.

µ

x

µ

z

Figure 2.5: Discretization in α-level-based methods. Left: input quantity with
α-levels; Right: result quantity; Dashed: the exact result.

Such an α-level-based analysis technique is α-level-optimization. A single α-level serves as
the design space to a search for the global minima and maxima, which replaces the min-max-
operator of the extension principle [84]. The most extreme outcomes of the fundamental
solution will be searched on these individual α-levels. For multidimensional fuzzy result
quantities, the outline of the α-level can be found by multi-objective optimization, see [31].
In total, 2n Pareto-fronts are required for a n-dimensional fuzzy result quantity. The
n-dimensional objective vector of a single Pareto-front is populated a by the objective,
whether this component is to be of minimized ↓ (z) or maximized ↑ (z). This is one
combination of the 2n combinations {↑ , ↓}× (zi, . . . , zn).

After all α-level are calculated, the output quantity is reassembled by stacking the α-levels.
In this step, the convexity will be ensured, by checking, that a higher valued interval is
fully part of all lower valued intervals. In case of a violation, the calculation needs to be
restarted [57, p. 558].

The preferred calculation order of the α-levels depends on the optimization and data re-
usage strategy employed. If no data is reused, the α-levels can be calculated independently,
thus in arbitrary order or in parallel.

In [37, p. 105], it is suggested to move top-down in membership due to the assumption, that
extremes in already calculated higher α-levels may approximate extremes in the current
one. For lower α-levels the space to search may be larger in comparison to higher ones by

18 Chapter 2 Theory

Algorithm 5 α-level-optimization
1: procedure α-level-optimization
2: Discretize all quantities into α-levels
3: for all α-levels do
4: find maximum and minimum
5: if not convex then . Check for convexity
6: Restart optimization
7: Reconstruct output quantity

order of magnitudes. Thus, it must be assumed, that the optimization algorithms knows
little to nothing about the new design space and has to explore it completely again for
each α-level. Surrogate models may be extremely inaccurate by extrapolating far from the
trained data, thus unreliable to gain inference over the bigger space. The global optimum of
a sub-space may be a local optimum in the containing space Thus, the search direction of
this approach is local to global. Convexity of the fuzzy result quantity is implicitly ensured
by using the result value of the next higher α-level as reference value to be improved on
by the optimization in the current one. The result of higher α-level is guarantied to be
included in all lower α-levels. Thus, each α-level needs to be calculated only once and
post-computation can be skipped. The search for an optimum in a new α-level is started
in a local optimum and the global optimum is to be found. If the fundamental solution
is non-linear, it is not guaranteed to be found using neighborhood search with arbitrary
big neighborhood. Vicinity based optimization techniques may fail by getting stuck at the
local optimum. Thus, non-small steps need to be taken, essentially the design space needs
to be fully discovered for each α-level. If fundamental solution is smooth and monotonous,
it is guaranteed to be successful.

By treating the α-levels bottom-up, the widest α-level is treated first. Since higher α-
levels are sub-spaces of lower ones, the search space is shrinking with increasing nominal
membership value and its space is at least sparsely covered by the optimization on previous
level. Discovering the design space on every α-level may be unnecessary. In the worst case,
repeated rediscovery of the design space for every α-level is required, but in the best case
only a single discovery is sufficient. The search direction of this approach is from global to
local, since the global optimum may not be part of the sub-space. If the α-level space is
sufficiently covered by data from previous α-levels, further optimization may be skipped
completely. In this case, the current α-level’s result can be found among the already known
data points from previous α-levels. With the assumption of coverage, it is less likely, that
neighborhood based optimization routines will converge to a local optimum, instead of to
the global optimum. Surrogate models can be used to infer the behavior of the fundamental
solution since data is over the space is available. If in post-computation, the result value in
a higher α-level is found better than the result value of a lower one, all lower α-levels need
to be reevaluated. This can be done by updating to the found better value or restarting
optimization.

2.3.2 α-Level-free Methods

In α-level-free methods, the fuzzy quantity is not discretized into α-levels. Discretization
happens by sampling and the sample’s membership and the fundamental solution will
be evaluated for every sample individually. This approach can be seen as a direct multi-
objective optimization approach to the extension principle. In total, 2n Pareto-fronts

2.3 Fuzzy Analysis 19

are required for a n-dimensional fuzzy result quantity. The first component of the (n+ 1)-
dimensional objective vector of a single Pareto-front is set to maximize the membership
↑ (µ(z)). The rest of the n components are populated by the objective, whether this
component is to be of minimized ↓ (z) or maximized ↑ (z). This is one combination of the
2n combinations {↑ , ↓}× (zi, . . . , zn).

A visual representation is given in Figure 2.6. Note, that in Figure 2.6, the resulting

µ

x

µ

z

Figure 2.6: Discretization in α-level-free methods. Left: input quantity with samples;
Right: result quantity; Dashed: the exact result.

quantity consists of fewer points than originally sampled. This loss is due to sub-optimal
realizations being ejected from Pareto-fronts. A brute point mesh would be numerically
extremely expensive [84, p. 382]. This issue can be overcome with appropriate sampling
algorithms. One of those is SWS , see Section 2.5.3.

Algorithm 6 Naive α-level-free fuzzy analysis approach
1: procedure α-level-free method
2: Generate samples s
3: for all s do
4: Evaluate µ(s)
5: Evaluate z(s)
6: Reconstruct output quantity

2.3.3 Non-Flat α-Level-Optimization

Non-flat α-level-optimization is a hybrid of the classical α-level-optimization approach,
described in Section 2.3.1 and the α-level-free method in Section 2.3.2. It combines both
techniques by carrying out the optimization based on α-levels as in the classical α-level-op-
timization. The input quantities’ α-levels are used as design space and are searched for
minima and maxima in objective spaces. But for each sample, the membership is evaluated
individually, instead assigning the level’s nominal value, which may hold some advantages.

Consideration of constraints for the optimization due to interactions is built-in by requiring
the individual samples membership to be at least the nominal value of the α-level. Therefore,
an explicit translation to a constraint prior to the optimization is unnecessary.

In post-processing a higher information content is suspected. After the first calculation
of an α-level, some net points of the result quantities’ membership function on higher
memberships are known. Thus, not only the performance function over the design space
is know, but also the behavior of its membership function. Obviously, this can only be

20 Chapter 2 Theory

taken advantage of, if α-levels are evaluated in ascending order and data points are held in
memory until the end of the analysis.

2.3.4 Comparison of Approaches

Both approaches aim to find the most extreme outcomes, with the highest membership
value at the same time, thus fulfilling the extension principle as in Equation (2.5). In both
approaches, Pareto-optimal solutions are found, as described in Section 2.4.

α-level-optimization is a multi-criteria optimization with an a predefined chosen value for the
membership. This reduces the dimension of the objectives by one, similar to the ε-constraint
method in [16, pp. 420 sqq.]. There, an objective is a priori converted to an equality or
inequality constraint, thus reducing the dimensionality of objective space to be optimized
by one dimension. The membership of an α-level becomes a constraint to be greater or
equal the current α. The last step of an α-level-optimization is a post-computation to
ensure the convexity of the result. This is an ordered Pareto-check. If a higher level
dominates a lower one, the search for the lower one is restarted.

α-level-optimization is well suited, if coarse output quantities with predefined α-levels are
wanted. That is the case, if only a few levels are needed to adequately reconstruct the
resulting membership function with. A densely sampled membership function may not
be of use in a nested analysis project, where performance oriented information reduction
measures are used in-between the staged analyses. Drawbacks of α-level-optimization are
the discretization of the objective space and the resulting membership function. It is less
capable of representing dependencies of quantities in design space, as well as in objective
space.

α-level-free techniques are able to deal with almost all design space dependencies and are
able to represent the dependencies of multivariate result quantities in the objective space.
On the other hand, sampling may loose efficiency due to the curse of dimensionality [49,
p. 3]. α-level-free methods may yield a denser output membership function. How equally
distributed the mesh points of the results membership function are, is entirely depended on
the optimizer. For multidimensional α-level-free methods are to be preferred fuzzy output
and implicit problems [36, pp. 51 sq.]. It is better suited, when high density, high resolution
output quantities are wanted. Retrieval of exact α-levels is not guaranteed and may be
done in post-computation. Distributive information reduction measures may yield a better
result due to the denser result membership function.

2.3 Fuzzy Analysis 21

2.4 Optimization

Optimization is the process of finding the best possible solution among available solutions
[14, p. 6]. Search algorithms are used to maximize or minimize the outcome of a fundamental
solution, the objective function [6, p. 23; 14, p. 6]. If the properties of the fundamental
solution are not exploited, a problem is treated as a blackbox, [4, p. 425; 5]. Choosing the
best suited optimization algorithm is an optimization problem in itself [10, p. 4]. How well
an algorithm performs on a given problem is measured by benchmarking.

A plenitude of optimization algorithms exist. Introduction to the topic is given for example
in [14; 40; 70]. In [10], a variety of algorithms and frameworks is given. Problem classes
according to [17; 18] are

• single-objective, uni-global with a single global optimum,
• single-objective, multi-global optimization problems with multiple global optima,
• multi-objective, uni-global optimization problems with a single Pareto-front,
• multi-objective, multi-global optimization problems with multiple Pareto-fronts.

In [75] parallelization, hybridization, time continuation, evaluation relaxation, and surrogate
models are identified as possible strategies to enhance the efficiency. As shown in [4, p. 425;
5], parallelization for blackbox problems can be done by

• evaluating several blackboxes in parallel,
• evaluating parallelized blackboxes sequentially,
• using mixed parallelism, thus running several parallelized blackboxes in parallel.

2.4.1 Components of an Optimization Algorithm

An optimization algorithm consists of a combination of several components:

1. Search method: Sample generation and heuristic,
2. Feasibility measure,
3. Fundamental solution evaluation,
4. Performance measure and domination trial,
5. Data management.

Sampling can be interleaved with the heuristic techniques, to increase the general usefulness
of samples. A heuristic technique is used to find patterns in the models response, thus
focusing on promising regions in design space [14, p. 8]. In a surrogate model the fundamental
solution is abstracted into a function whose evaluation is less expensive [5]. Samples are
either evaluated alternating on the real model and on the surrogate model or entirely on
the surrogate model, as done in [12].

Although it is preferable to focus on the best regions, the whole input space needs to be
explored. Thus, diversity of samples against focus on performant samples is a difficult
balance in optimization algorithms [16, p. 433; 44, p. 2], since for both enhancement is
only achievable by increasing the number of evaluations. The precision of the result can be
improved by more evaluations close to the optimum. On the other hand, reliability can
be improved by more diverse samples and a more general coverage of the design space,
increasing the number of sub-optimal solutions. Generally, it is wanted to keep the number
of unprofitable evaluation as low, as possible.

The feasibility of samples is measured with constraints. There are hard constraints, that
have to be satisfied and soft constraints, that are wanted to be satisfied, but are not essential

22 Chapter 2 Theory

[14, p. 5]. Infeasible solution can be rejected, thus not passed to the fundamental solution
or attempted to be repaired [80, p. 204]. Checking feasibility of sample before evaluation of
the fundamental solution prevents impossible or implausible combinations to be evaluated.
Vicinity constraints can be applied to ensure higher diversity among the samples and avoid
reevaluation of nearly identical samples.

The performance of the samples is measured based on the result of the fundamental solution.
Whether a solution is an improvement or a miscarriage over previous attempts regarding
to the objective, is assessed in a domination trial [16, pp. 410 sqq.]. Samples, that are
winners of this trial are considered contributing to the solution and can be used to draw
new generations of samples.

Required data is stored, which can be used in heuristic techniques, vicinity checks or
generation of the samples. Finally, the result of the optimization is constructed from the
storage.

2.4.2 Run-Time Performance Indicators

Depending on the fundamental solution and its expense, different heuristics may yield
the best run-times. For easy fundamental solutions, the time spent in the heuristic may
exceed the time spent for the evaluation of the fundamental solution, making the heuristic
ineffective. In this case, a less expensive heuristic or a brute force approach may yield better
performance. For long running fundamental solutions, the run-time scales approximately
linear with ntot. Thus, the proportion of evaluations contributing to the final result in
comparison to the total evaluation count is

peff =
ncontrib

ntot
. (2.29)

To be able to tell, when a fundamental solution is long running, an indicator for the spent
time is required to evaluate the efficiency. In the simplest case, the cumulative time spend
in parts over the course of a complete optimization run could is interesting. The cumulative
time spend in routines can be measured with profiling tools. Python comes with a handful
of very powerful profiling libraries. With the time spend in the heuristic theu and tfund in
the fundamental solution respectively, the ratios are calculated to

ttot = theu + tfund, (2.30a)

rheu =
theu

theu + tfund
, (2.30b)

rfund =
tfund

theu + tfund
. (2.30c)

Based on this indicator, it is possible to decide, how complex the heuristic can be. By
combining of both indicators, it is possible to deduce, how many fundamental solutions the
heuristic is worth.

2.4.3 Pareto-Fronts

In multi-objective optimization, Pareto-fronts and Pareto-sets play an important role
[25]. A Pareto-front is a set of non-dominated solutions in the objective space. A
Pareto-set denotes the set of corresponding points in the design space. On a Pareto-
front improving one feature is not possible without worsening another. All members of the

2.4 Optimization 23

front are equally optimal, but trade one aspect against the others [16, p. 405]. A solution is
non-dominated when there is no other known solution, that dominates it. Domination is
defined as follows. A solution x dominates another solution y if and only if

x ≺ y ⇐⇒ ∀ xi � yi ∧ ∃ xi ≺ yi. (2.31)

Here ≺ denotes “better”, the tip is pointing towards the better solution. That means x is
in all components not worse, that is better or equal, than y and at least one component of
x is actually better than y [16, p. 412]. Each component can have its own objective, and
either be minimization, maximization or even disregarded. To update a front, it is required
to compare the candidate solution to all members of the front. Early abortion is possible,
if any member dominates the candidate by rejecting the candidate. If the candidate is
non-dominated, each member needs to be removed, that is dominated by the candidate.

As test runs early in development showed, most time was spend in updating the Pareto-
fronts, the number of domination checks as the most important factor. To cut these calls,
the following algorithms are compared. In Algorithm 7, the first stage is to check whether
the candidate is inferior to any member. If so, the algorithm is aborted and the front stays
unaltered. The second stage is only reached, if the candidate is not dominated by any
member, thus will become a member itself. All members, that are inferior to the candidate
are removed.

Algorithm 7 Approach 1 to updating a Pareto-front
1: for all members do . first stage
2: if dominates(member, candidate) then
3: abort
4: for all members do . second stage
5: if dominates(candidate, member) then kick member
6: add candidate

In Algorithm 8, a different approach is taken. The front is iterated over just once. But
for each member a bilateral domination check is done. If the candidate is inferior, the
procedure is aborted again. If however, the candidate dominates a member, thus is a
qualified member itself, all remaining checks, to rule out the candidate are skipped.

Algorithm 8 Approach 2 to updating a Pareto-front
1: approved ← False
2: for all members do
3: if approved == False then
4: if dominates(member, candidate) then
5: abort
6: else if dominates(candidate, member) then
7: kick member
8: approved ← True . skip all remaining checks in Line 4
9: add candidate

Algorithm 7 is more efficient in rejecting candidates, especially, when the candidate is
loosing against a later member. On the other hand, Algorithm 8 could be faster, if the
candidate is accepted as soon as possible. For adding a non-dominated candidate, both

24 Chapter 2 Theory

algorithms evaluate domination equally often. Best and worst call frequencies for a single
candidate check against a front with n member is broken down in Table 2.1.

Table 2.1: Number of domination check calls.

Rejecting Accepting

Approach 1 Approach 2 Approach 1 Approach 2

Best case 1 1 2n n+ 1
Worst case n 2n− 1 2n 2n

To test, which of those is more performant, the example given in Section 4.1 is used as a
benchmark. In total, 2 200 data points are queried against two fronts to be sorted into,
resulting in the call frequencies shown in Table 2.2. The approach described in Algorithm 7
is the more effective one for this use case.

Table 2.2: Number of domination check calls.

Approach 1 Approach 2

Run 1 179 501 199 245
Run 2 177 988 233 628
Run 3 180 600 214 699
Run 4 165 423 220 008

Further investigations showed, that the initial implementation showed in Algorithm 9
is ineffective, due to comparing repeatedly entire arrays. All operations are carried out
element-wise with numpy-routines on the entire arrays [38]. Whereas a is the array, whose
domination over b is evaluated, o is an array of truth values, whether the component should
be minimized (False) or maximized (True). Finally i is an array, which specifies, whether
the component is to be ignored or taken into comparison.

Algorithm 9 Initial dominates()
1: procedure dominates(a, b, o, i)
2: mask components of a, b, that are specified in i
3: l← a < b
4: g ← a > b
5: q ← a == b
6: where o == True: rbetter ← g; where o == False: rbetter ← l
7: rnotworse ← q ∨ rbetter

8: return whether (∃(rbetter) ∧ ∀(rnotworse))

In benchmarks, Algorithm 10 outperformed Algorithm 9 by give or take 100 times. The
elements of the objective array o are −1 for minimization, 1 for maximization and 0 for
ignoring the component. The actual value of a component of r is not of interest, but only
its sign is important. Here numpy-routines operate element-wise on entire arrays again.

2.4 Optimization 25

Algorithm 10 More efficient dominates()
1: procedure dominates(a, b, o)
2: r ← o · (a− b)
3: return whether (∃(ri > 0) ∧ ∀(ri ≮ 0))

With Algorithm 11, the performance can be increased further by using static data types and
pre-compilation with Cython. For documentation on Cython, see [9]. This performance
increase may be more noticeable with many objectives, due to the early abortion. It is
iterated over the elements of the arrays explicitly. The variables are as in Algorithm 10.
The variable d holds the domination status and becomes only True, if Equation (2.31) is
fulfilled. The length of the compared arrays is noted as n.

Algorithm 11 Cython – fast dominates()
1: procedure dominates(a, b, o)
2: d← False
3: for i in range(n) do
4: r ← oi · (ai − bi)
5: if r < 0 then
6: return False . early abortion
7: else if r > 0 then
8: d← True
9: return d

26 Chapter 2 Theory

2.5 Algorithms

2.5.1 Slice Sampling

Slice sampling is a Markov-Chain Monte-Carlo (MCMC) based sampling method,
introduced in [64; 65] and able to sample from arbitrary distributions. Recommendations
regarding sampling using MCMC are given in [28]. For more details on MCMC , see [13;
24; 29; 43; 63].

Slice sampling is able to sample directly from a weight function w, which is proportional to
the probability density function (pdf) of the desired distribution. An auxiliary variable is
used, the inverse cumulated density funtion (icdf) is not necessary. Therefore, it is possible
to sample from arbitrary distributions, for which the icdf is not easily available or not
available at all. The general procedure is as follows and shown in Algorithm 12.

Algorithm 12 Slice sampling
1: procedure SliceSampling(nmax , xp, s)
2: pick initial point x0 . generate or use the latest found point
3: y ← U(0, w(x0)) . draw slice level
4: hl ← x0 − U(0, s) . place hyperrectangle h randomly around x0

5: hu ← hl + s
6: inbound← True
7: while (nxp ≤ nmax , xp) ∧ inbound do . expand until the slice is covered
8: if w(xi) < y then
9: inbound← False

10: else
11: expand h

12: outside← True . hyperrectangle found
13: while outside do . until a point inside the slice is found
14: xi ← U(hl, hu) . pick a random point from the hyperrectangle
15: if w(xi) ≥ y ∧ acceptable then . evaluate weight function and acceptability
16: outside← False
17: x0 ← xi . set the newly found point as the next initial point
18: return xi . stop the algorithm for this iteration
19: else
20: shrink h

As it being a MCMC method, it needs a starting state, which is the point x0. The starting
state may be given by the user or picked arbitrarily from the design space. Then, the
weight of the current state is evaluated. After that, a weight level y is drawn uniformly
between zero and the just calculated weight of the current state. Similar to an α-cut, see
Equation (2.1), the set of points, whose weight is at least y, is called slice. The next task is
to find a fitting hyperrectangle h, which preferably covers the whole slice. After a finding
such a hyperrectangle is found, points are drawn uniformly from it, until a satisfactory point
is found. For each point, the weight function is evaluated and compared to the slice level y.
If the candidate is found outside the slice, shrinking might be applied to the hyperrectangle.
A candidate is found inside the slice is accepted, if no further necessary checks are violated
and becomes the new state of the MCMC .

2.5 Algorithms 27

The stepping-out procedure takes the initial step size and expands this first into one direction,
for example to the left, until the boundary is found outside slice. Then, it expands to
the other side analogously. It needs to be pointed out, that the proportion, how many
expansion to either side can be taken is randomly assigned beforehand. Thus, if the slice is
wider than nmax, xp · s, the final interval is still placed randomly.

The doubling procedure expands the interval by its own length in a random direction, until
both boundary points are outside the slice. Since it is possible, that the slice is concave,
another part of the slice could be found, from which the initial point can not be reached.
Thus, an additional test must be carried out before excepting the new point.

If the drawn candidate is not acceptable, a new one needs to be tried. Shrinking the searching
hyperrectangle enhances the efficiency by increasing the chance, finding an acceptable one.
Although it is not compulsorily, it is highly recommended to use. The simplest approach is
to shrink all components to the rejected candidate. Thus, making it a corner of the search
hyperrectangle, that contains the initial point x0. Advanced algorithms may abuse the
gradient or other know attributes of the weight function to enhance the efficiency further
by suppressing small steps. Since the search hyperrectangle always contains and shrinks
towards x0, it is guaranteed to terminate with a valid new state point xi.

Multiple approaches to multivariate slice sampling are possible:

• omitting the expansion and immediately start shrinking from a sufficiently large initial
hyperrectangle,

• breaking the n-dimensional space into n one-dimensional axes, originating at the
initial point and expand along these individually, recombine them after finding an
interval on each axis,

• creating random walk, as only updating one component at any given step [91, p. 3],
• expanding in all directions at the same time,
• advanced direct multivariate expansion techniques, expanding a hyperrectangle in
various directions.

In [64; 65] the previously explained algorithm is described for only one dimension in
detail. But as pointed out, for multidimensional design spaces the procedure may be more
costly. It is emphasized, that the randomness is crucial for the methods correctness. In
R1 the proportion of expansions to either side are assigned randomly in-before the actual
expansion. In [65, p. 722] is pointed out, that even though it is desirable to find the smallest
interval (hyperrectangle), that contains the whole slice, one could also be contend with a
hyperrectangle, that contains a part of the slice. Taking a sufficiently big initial interval,
omitting the expansion and directly start shrinking will keep the procedure valid. For a more
sophisticated, than this naive approach, more actions need to be taken. Early experiments
showed, that when using too small initial hyperrectangles the method tend to get stuck
in a particular region of the design space, which is not desirable for obvious reasons. In
case, that not all corners are required to be outside the slice, the initial hyperrectangle
must not be too small [65, p. 722]. Picking a bigger initial size is general on the safe side.
For bounded design spaces it could be the whole design space, but exceeding the design
space is not worthwhile. Cropping the hyperrectangle at the border of the design space is
valid, since possibly drawn points outside the design space would be rejected in any case
and shrinking would be applied. Approaches to multivariate Slice Sampling are given in
[48; 61; 64; 65; 67; 90; 91; 92].

28 Chapter 2 Theory

2.5.2 Evolu

According to [55; 56; 57; 58; 59; 60], Evolu is a modified genetic algorithm. It is
described as hybrid of random-walk, hill-climb and Monte-Carlo-Sampling (MCS), in
a phase of lacking improvement. The procedure of a single optimization chain is shown
in Algorithm 13. The search region is a hyperrectangle around the parent point. In

Algorithm 13 evolu

1: procedure evolu(noff , nref)
2: set search region
3: nref ← 0
4: xP ← x0 . draw starting point from design space
5: while j < nref do
6: while i < noff do
7: xi: draw offspring . from a region around the parent-point
8: Bring back to the feasible region, if ended up outside
9: check vicinity . prevents computing of nearly identical points

10: if is_valid(xi) then . Checking constraints
11: zi ← z(xi) . evaluate fundamental solution
12: if zi ≺ zP then . improvement achieved
13: xP ← xi . offspring becomes new parent-point
14: i← 0 . reset offspring counter
15: else
16: i← i+ 1

17: refine search region
18: nref ← nref + 1

19: post-computation to ensure convexity

refinement stages, the algorithm shows recursive behavior by reducing the search region’s
size. Efficiency enhancements can be achieved, if the starting point is picked according
to knowledge about already computed points. The individual chains are embarrassingly
parallelizable.

2.5.3 Sequential Weighted Sampling (SWS)

Sequential Weighted Sampling (SWS) as described in [49] is an advanced MCMC based
genetic sampling algorithm. The aim is denser sampling in promising areas than in less
promising ones. This is achieved by assigning a pdf given in Equation (2.32) to the sampling
space, that is rating regions closer to contributing points higher. For a sample x and the
contributing data points Pj and its location in design space Px, j in all Pareto-fronts P,
the weighting function is given as

w = max
Pj∈P

exp
(
−δ(x− Px, j)

2
)
1A(x) (2.32a)

with the characteristic function

1A(x) =

{
1, if x ∈ A
0, else

(2.32b)

2.5 Algorithms 29

to restrict the sampling space to the hyperrectangle of the design space A. The parameter
δ scales the falloff of the weight function. Since this pdf may become a difficult distribution,
for which an analytical cumulated density function (cdf) and icdf might be nonexistent,
a sampling technique able to sample from pdf is necessary. Slice sampling, described in
Section 2.5.1, is such a technique and will be used in this thesis.

The algorithm is as shown in Algorithm 14. The data structure Pi are data points, holding
the coordinates in design space xi, objective space zi and its membership µi. The index i
indexes the list of data points, samples and solutions, not the sample’s components. Samples
from the design space are denoted as xi. They are of the same dimension as A, which can
be of any dimension. A data point P is considered contributing, if it is a member of one of
the Pareto-fronts P. The fundamental solution is denoted as z(), and the membership
function as µ().

Algorithm 14 Sequential weighted Sampling
1: procedure SWS(ninit, ngenerations, niter, δ)
2: xi: draw ninit initial points . distribute over design space
3: Pi ← (xi, z(xi), µ(xi)) . evaluate fundamental solution and membership
4: sort Pi into Pareto-fronts
5: store Pi
6: for ngenerations do
7: update w . implicitly done in the implementation
8: xi: draw niter new samples using Slice Sampling . see Section 2.5.1
9: Pi ← (z(xi, xi), µ(xi)) . evaluate fundamental solution and membership

10: sort Pi into Pareto-fronts
11: store Pi
12: return an empiric fuzzy quantity

The initial population is drawn by traditional Monte-Carlo (MC)-Sampling from an
uniform distribution over the design space. Other space-filling techniques, such as Latin
Hypercube Sampling, see [52] or Sobol-patterns, see [85] may be implemented as well. By
passing a set of points to be the initial generation, the initial MC -Sampling can be skipped.
Those data points can be obtained in a previous run, thus being located in a promising
area.

After evaluating the ninit initial points’ fundamental solution and membership, they are
stored and sorted into the set of Pareto-fronts, see Section 2.4.3. For each ngenerations

generations niter points are drawn according to the distribution function w, given in
Equation (2.32). Since it is iterated over all points in the set of Pareto-fronts, the
function is not updated explicitly, but with each update to a Pareto-front implicitly.
After the sampling of new points, all of those are evaluated, stored and queried against all
Pareto-fronts again. In the process, w evolves in each generation.

To inspect the convergence behaviour of SWS , a Shekel-equation according to [70, p. 8] is
used as a benchmark function. The function is defined as

f(x) = − 0. 1

0. 14 + 20 ((x1 − 0. 45)2 + (x2 − 0. 55)2)
. (2.33)

A global minimum is found at f (0. 101 714 22, 0. 101 003 89) = −1. 015 106 55 by SWS with
a total of 1× 106 samples. A local minimum is present at (0. 45, 0. 55). The convergence
with ninit = 1, ngenerations = 1 000, niter = 1 on this function is shown in Figure 2.7. Plotted

30 Chapter 2 Theory

are the minimum (green), mean (black) and maximum (red) relative error across 100
independent optimization chains and behavior of a single chain (blue) over the course
of 1 000 generations. The relative error is calculated to

∣∣∣mincurrent−minabs
minabs

∣∣∣. Due to the
undirected sampling, the improvement does not have a steady rate but happens in separate
events. The algorithm may not yield an improvement for an unforeseeable number of
generations an the improvements gains itself are not predictable. Thus, a conversion
criterion is not easily determinable, although for this example function convergence is
achieved consistently at roughly 500 fundamental solution evaluations.

0 200 400 600 800 1000
Total number of evaluations

0.0

0.2

0.4

0.6

0.8

R
el
at
iv
e
er
ro
r

max
mean
min
single run

Figure 2.7: Convergence of SWS .

2.5.4 Comparison of Evolu and SWS

Evolu finds points also directly on the border of the design space. SWS usually does not
find a point directly on the design space border due to the non-directed MC nature around
a contributing single point. As pointed out in [49, p. 8], other optimization strategies may
be more efficient, if the problem is monotone or gradients are known. While Evolu can
only find as many members of a point, as chains are run, the member count after a run of
SWS is not easily predictable and may depend on the problem.

Across various runs of SWS on the example given in Section 4.1, of 2 200 total evaluations,
consistently roughly 400, give or take a few dozen, ended up in final solution. This makes
the efficiency measure, given in Equation (2.29) approximately peff ≈ 0. 2. In comparison,
a crude MC , without evolutionary procedure achieved barely peff ≈ 0. 1. This can be
considered a doubling in efficiency.

2.5 Algorithms 31

3 PUQpy – Structure and Uncertainty
Analysis

In this chapter, the general objective and structure of PUQpy, which stands for “Polymor-
phic Uncertainty Quantification in Python” is laid out. After that, analysis of uncertainty
problems with PUQpy is discussed.

3.1 Requirements and Objective

PUQpy is a framework for monomorphic and polymorphic uncertainty analysis. First
demand is a flexible structure, that makes it possible to combine arbitrary analyses, as
the problem requires. Thus, a modular approach is being taken. The need of generic
data types and interfaces to analyses and objects arises, analyses are to be nested in every
possible combination. As assumed by experience, the examined problems are computational
expensive, efficient strategies need to be applied in order to give the best result with the least
fundamental solution evaluations possible. The flexibility, which the framework is aiming
for, is suggesting a script based workflow. Thus a project is built by writing a Python
script. This script defines the procedures and subjects of investigation. Incorporation with
other packages is possible.

The software framework PUQpy accompanying this work is implemented in Python3 due
to its user friendliness and flexibility. Python3 is a high level general purpose programming
language. It supports object oriented programming as well as functional programming. It
comes with a wide variety of well developed, maintained and documented libraries, such as
numpy, see [38] and scipy, see [99]. Therefore, it is used widely, from system administration
tools to computational intense programming, also in scientific computation, from small
scripts to complex end-user software. Python code is easy to develop and to read, thus
beginner friendly, as well as powerful. Pure Python code is platform independent, thus
usable on all operating systems [95; 96; 97].

Due to its highly dynamic nature and the associated overhead, Python is slow in low-level
numerical calculation. With the programming language Cython, it is possible to use
both the flexibility of Python, as well as the speed of C code [9]. This is made possible
by compiling Python code into plain C code, Cython takes care of the conversion. It
is possible to gradually transform Python code by using Cython syntax, eventually
obtaining native C code. Significant speedup is gained in numerical loops by statically
typing variables, as done in C.

The documentation of the project is generated using doxygen [94]. The automatic
generation of documentation from source code eases the burden of writing and keeping the
reference up to date, even in a rapidly changing code base structure. doxygen supports a
wide range of programming languages.

33

3.2 Structure

Modeling of uncertainty can be done in three ways. The first models uncertain quantities
and the necessary analyses are implicitly derived from the given quantities. Shortcoming is
the lack of control in the applied analysis methods. As well as the procedural structure
cannot be easily deduced from the script.

The second is to define a set of stacked analyses and quantities are derived implicitly
through the analyses’ structure. Drawback is the obscure data structure, which is not
evident to the reader of a script.

The third is a combination of the previous ways. Quantities and analyses are explicitly
defined. Quantities are assigned to analyses as their matter. The explicitness makes it easy
to follow the structure of a projects workflow and data structure. Quantities and analyses
are tightly coupled and depend on each other. Quantities are defined as generic as possible
to serve as input quantities and output quantities. It is possible to use output quantities as
input quantities to compatible analyses.

The framework is organized into the following modules.

• Analysis, see Section 3.3,
• Distributions, see Section 3.7,
• Interdependencies, see Section 3.4,
• Library_miscellaneous
• Optimization, see Section 3.5,
• Quantity, see Section 3.6,
• QuantityEpistemic, see Section 3.6,
• QuantityAleatoric, see Section 3.6,
• Sampling, see Section 3.7.

Each of those is explained subsequently. To differentiate between the general terms and a
class or an instance of the class, the latter ones are set in teletype, Classes are capitalized,
attributes and methods() are lowercase, with methods having parentheses.

3.3 Module: Analysis

To analyze uncertainty, the following three major classes are necessary:

1. UncertaintyAnalysis, see Section 3.3.1,
2. Layer, see Section 3.3.2,
3. FundamentalSolution, see Section 3.3.3.

The uncertainty analyses are divided into two separate modules for fuzzy (AnalysisFuzzy)
and stochastic (AnalysisStochastic) analyses. For fuzzy analysis, ALO for α-level-opti-
mization and SWSForFuzzy as α-level-free method are implemented in PUQpy. Inheritance
of sub-classes of Analysis is shown in Figure 3. In this framework only monomorphic
analyses are implemented. By using Layer objects, polymorphic analyses are assembled
by nesting monomorphic ones. This modular structure is especially useful, because the
highly specialized uncertainty analyses can be put together arbitrarily. Therefore, it is
possible for the user to customize the whole structure to fit perfectly for the project. A
given analysis has exactly a single child and a single parent. Layer and Analysis interlock
by the exposed interfaces. An Analysis must be embedded in a Layer and must call a

34 Chapter 3 PUQpy – Structure and Uncertainty Analysis

Layer. Project scripts and FundamentalSolution fulfill the role of a Layer. In Figure 3.1
the structure of an uncertain analysis project is shown, Layer frames are drawn in red. In
Figure 3.1(a), the project structure of a monomorphic analysis is shown. In Figure 3.1(b),
the project structure of a polymorphic analysis with three analysis layers is shown.

Project script

Analysis

Quantity

Fundamental Solution

Result

(a) Scheme of a monomorphic analysis.

Project script

Fundamental Solution

Layer 2

Quantity

Analysis 3

Quantity

Analysis 2

Layer 1

Quantity

Analysis 1

Result

(b) Scheme of a polymorphic analysis.

Figure 3.1: Schemes of a monomorphic and a polymorphic analysis.

3.3.1 Class: UncertaintyAnalysis

An analysis has the following major components:

• uncertain quantity,
• sampling method,
• fundamental solution,
• heuristic technique.

In Figure 3.2 a schematic of the Analysis class is shown. The uncertain quantity is
the subject-matter of the analysis. An UncertaintyAnalysis object holds exactly one
quantityobject. If the quantityobject changes or is replaced, the UncertraintyAnalysis
must be reinitialized, that is reset. Otherwise stored data, that is derived from the previous
quantity would contaminate the run with the next quantity.

3.3 Module: Analysis 35

child.run()

returntoparent

Analysis

storage
ru

n(
)

childsamplingobject

getfromchild

quantityobject

Figure 3.2: Data flow and management inside UncertaintyAnalysis object.

Various sampling methods are implemented in PUQpy to generate samples. These de-
terministic samples are evaluated by the fundamental solution or processed further by a
subordinated Layer. The heuristic is used to aid and guide the sampling algorithm to
draw points more efficiently. Evolutionary algorithms combine heuristics and sampling.
These may be implemented in separate modules and communicating with each other via
interfaces or merged into a single routine. This modular approach makes high scalability
and flexibility possible.

Instances of UncertaintyAnalysis and Layer are aimed to be nested alternating. The
child is the matter of its parent UncertaintyAnalysis and will be called repeatedly by
the run() method of the UncertaintyAnalysis. The parent Layer object provides its
UncertaintyAnalysis object with a quantityobject and a child and gathers the result
of the analysis. A child must be either a FundamentalSolution or a Layer. The run()
method exposed by UncertaintyAnalysis, expects no arguments. Since analyses generate
much data, non-vital results may be either discarded or saved for later use, after the analysis
terminated. Data required for the operation of the analysis are held in memory. After the
analysis loop of sampling an evaluation is finished, a Quantity object of the same nature
as the Analysis is instantiated and returned. Instances of UncertaintyAnalysis expose
interfaces with data types as shown in Table 3.1. UncertaintyAnalysis objects are always
defined inside a Layer. Since the project script serves as a Layer, the outermost Analysis
object, can be defined directly in the main project script.

Table 3.1: Interface data types of Analysis.

Receive from Pass to

Child Layer deterministic array deterministic array
Parent Layer Quantity object Quantity object

Example 3.1: To illustrate the concept, consider an example. A research project
investigates the behavior of concrete. They are especially interested in the mixtures
impact on the strength. The uncertain design quantity is therefore the mixture ratio
of aggregate, cement, water and additives. Manufacturing a set of probes can be seen
as sampling. Measuring the strength of the probes in experiments is the fundamental
solution, which yields a set of data. Heuristics are used to readjust the procedure, if
new knowledge becomes available. The conclusion is done after the experiment, such
as establishing design rules.

36 Chapter 3 PUQpy – Structure and Uncertainty Analysis

3.3.2 Class: Layer

The Layer class is used for

• quantity construction,
• analysis management,
• uncertainty reduction and
• data storage.

Layer objects manage the subordinated Analysis objects with their Quantity objects.
Thus, they are the connecting pieces between analyses, see Figure 3.1(b). The next
subordinated Layer is known to the current Layer as child. In Figure 3.3 a schematic of
the Layer class is shown.

Quantity

Quantity

child.run()

Analysis

getfromparentLayer

returntoparent

pr
ep

ar
e_

qu
an

ti
ty

ob
je

ct
()

getfromparentAnalysis

prepare_analysisobject()

pr
ep

ar
e_

re
tu

rn
to

pa
re

nt
()

run()pa
ss

_d
et

sa
mp

le
()

storage

result_quantity
child

child

Figure 3.3: Data flow and management of Layer.run().

The run() method exposed by Layer and FundamentalSolution objects expects and
returns a deterministic array. In Algorithm 15 the succession of Layer.run() is shown,
which is always the same. The individual methods are to be implemented by the user for
the specific use case. They cannot be given universally due to the wide variety of possible
use cases. It is highly recommended to re-implement the necessary methods in a sub-class
of Layer inside the project script.

Algorithm 15 Succession of the calls inside the .run() method
1: procedure run(getfromparentAnalysis)
2: self.getfromparentAnalysis = getfromparentAnalysis
3: self.prepare_quantityobject()
4: self.prepare_analysisobject()
5: self.pass_detsample()
6: self.result_quantity = self.analysisobject.run()
7: self.returntoparent = self.prepare_returntoparent()
8: self.store_result()
9: return self.returntoparent

Firstly, the argument passed to the run method is made available object-wide to the other

3.3 Module: Analysis 37

methods through writing it to the attribute getfromparentAnalysis. Then a Quantity
object is constructed in the method prepare_quantityobject() and stored into the
attribute quantityobject. The modules QuantityEpistemic and QuantityAleatoric
provide some classes for such quantities (see Section 3.6). It is preferable to implement
modifications in sub-classes inside the project script.

After that, the method prepare_analysisobject() is used to define an analysis. Already
implemented classes can be found in the modules AnalysisFuzzy and AnalysisStochastic
(see Section 3.3). If the analysis depends on drawing samples from the quantity, a sampling
object is needed, as provided by the module Sampling (see Section 3.7). The previously
initialized objects for sampling and the quantityobject are passed to the constructor.
The associated Analysis instance is initialized and put into the attribute analysisobject
of the Layer object. As the Layer and therefore the subordinated Analysis, is called
repeatedly, the Analysis object is reset or overwritten repeatedly.

Since analyses can only work on a single monomorphic quantity, deterministic samples
cannot be tunneled through Analysis objects. Hence, those deterministic samples can be
branched off to be bypassed until being used further down the stack. This is useful for a
component from a superior analysis, that is not being used in the current analysis, but in
the fundamental solution or in a subordinated Layer. Deterministic samples are passed to
the subordinated Layer object by the method pass_detsample(). The data is stored in
the getfromparentLayer attribute, before invoking the run() method.

Running the analysis is done by invoking analysisobject.run(). The result of the analysis
is assigned to attribute result_quantity. Since the calling analysis expects a deterministic
array to be returned, the post-processing of the result quantity is to be implemented in
prepare_returntoparent(). Thus the result quantity of the analysis needs to be reduced
to a deterministic array. For stochastic quantities, this may be quantile, a moment of
the distribution or any other characteristic value, for fuzzy quantities some defuzzification
methods are discussed in Section 2.2.6.

Finally, the prepared deterministic result is returned to the calling analysis. If enabled, all
relevant data is being stored for possible later use.

To be able to run consecutive analyses with different settings for the Analysis object,
post-processing or other settings, a Layer provides the argument additionalsettings to
pass those as a list.

Types of data passed through exposed interfaces of the Layer module are shown in Table 3.2.
The main project script and the fundamental solution serve as a Layer object. Both share

Table 3.2: Interface data types of a Layer object.

Receive from Pass to

Child Analysis Quantity object Quantity object
Parent Analysis deterministic array deterministic array
Subordinated Layer None deterministic array
Superior Layer deterministic array None

the same interfaces, with the exception, that the former does not need to report to a superior
Analysis object and the latter has no subordinated one. All Layer are defined toplevel in
the project script and are connected, that is stacked, by setting the child attribute of their
Analysis. The initializing order of Layer and Analysis objects is innermost to outermost.

38 Chapter 3 PUQpy – Structure and Uncertainty Analysis

3.3.3 Class: FundamentalSolution

The class FundamentalSolution defines a wrapper around the model for the basic deter-
ministic problem. In Figure 3.4 a schematic of the FundamentalSolution class is shown.
Fundamental solutions mark the innermost Layer in the analysis stack. The basic model

getfromparentLayer

getfromparentAnalysis

.run()
returntoparent

Figure 3.4: Data flow scheme inside a FundamentalSolution object.

itself can be arbitrarily complex. It can range from a simple analytic equation to a complex
Finite-Element-Method (FEM). A FundamentalSolution object is called by an Analysis
object as its child, but has no child itself. As a FundamentalSolution object serves as
a Layer object, its run() method expects and returns a deterministic array. Types of
data passed through exposed interfaces of the FundamentalSolution module are shown in
Table 3.3.

Table 3.3: Interface data types of a FundamentalSolution object.

Receive from Pass to

Parent deterministic array deterministic array
Superior Layer deterministic array None

3.4 Module: Interdependencies

In the module Interdependencies, classes for interaction, constraints and correlation
between input quantities are implemented. Correlation of stochastic quantities is not in the
scope of this work.

A constraint may be used to define whether areas in design space are permissible or invalid
combinations. In essence, a constraint holds information, on how one or more quantities
interact. It consists of references to the involved quantities and an admissibility function.
This function states, whether a combination of design space coordinates is legal or illegal.
Only data points within the permissible areas are allowed to be generated and passed to
the child.

Interactions are used to limit the membership of a combinations between fuzzy quantities
realizations. On a specific α-level, including the support, an interaction becomes a constraint
for the optimization. Inheritance for classes in Interdependencies is shown in Figure 2.

3.5 Modules: Optimization and OptimizationPareto

In this module, the class definitions of optimization algorithms, such as SWS , see Sec-
tion 2.5.3, are located. Class definitions for Pareto-fronts, on which the optimization
routines are dependent, are implemented in the module OptimizationPareto. Section 2.4
is dedicated to discuss this topic in detail.

3.4 Module: Interdependencies 39

3.6 Modules: Quantity, QuantityEpistemic, QuantityAleatoric

Ih these modules, classed for deterministic and uncertain quantities are implemented. In the
module Quantity, the base class Quantity and deterministic quantities are implemented.
QuantityEpistemic serves as the base class for fuzzy quantities. Fuzzy quantities and
their properties are described in detail in Section 2.2. QuantityAleatoric serves as the
base class for stochastic quantities. Most of them are built to estimate a failure probability.
The implementation and conception of stochastic quantities is not scope of this work, but
its sibling work [81]. Inheritance graphs of classes implemented in PUQpy are shown in
Figure 4.

3.7 Modules: Sampling and Distributions

Sampling algorithm are found here. Sampling is the procedure of drawing a number of
deterministic samples from a distribution. Slice Sampling is described in Section 2.5.1
and implemented in SliceSampling. The weight function of SWS is implemented in the
sub-class SliceSamplingForSWS. More sampling algorithms implemented in PUQpy are
documented in [81]. Inheritance of sub-classes of Sampling is shown in Figure 1.

In the module Distributions, stochastic distributions are defined. These are wrapper
classes around scipy classes and documented in [81].

3.8 Distributed Computing

As the tasks to be done scale horrendously, computing on a single machine, even with
parallel usage of all available cores may not be sufficient. Thus, distributed computing is
necessary. This is to utilize many cores on many machines across a network. Distributed
software becomes complex easily and the requirements for it are heavy. There are quite
a lot of frameworks available to be used with Python. To be considered usable for this
project, the framework for distributing the work has to provide

• easy set up (user friendly),
• support for any number of machines with each any number of processors and cores,

heterogeneous architecture,
• plugging in and unplugging machines at any time,
• cross platform (Linux, Windows, Mac),
• load scheduling/balancing,
• monitoring,
• low bandwidth usage,
• low management overhead,
• secure network traffic,
• low to moderate effort to integrate with PUQpy.

Since it fulfills all termed requirements, dask is used [15; 72].

To parallelize the computation on Layer level, subordinated Layer objects can be run in
concurrency by calling the individual Layer object’s run method in parallel. On the other
hand some part of an analysis’ body can be run concurrently. Combination of both are
possible.

40 Chapter 3 PUQpy – Structure and Uncertainty Analysis

3.9 Uncertainty Analysis in PUQpy

Fuzzy Analysis Fuzzy analysis is used to examine possibilistic and epistemic uncertainty.
This is one of the two most simple use cases, due to its monomorphic nature. No Layer object
is needed, since the project script serves as the Layer, but the general sequence is the same
as described in Section 3.3.2. The first step is to define a fundamental solution. Best practice
is to implement the actual model of the problem as a sub-class of FundamentalSolution
(see Section 3.3.3). Then, a fuzzy quantity is to be constructed, using either classes from the
module QuantityEpistemic (see Section 3.6) or sub-classing one. Some analyses depend
on sampling methods, as SWS depends on SliceSamplingForSWS, which are provided by the
module Sampling, see Section 3.7. To modify a method, sub-classing is preferable. After
that, a fuzzy analysis is to be defined. Already implemented analyses can be found in the
module AnalysisFuzzy. The initialization happens according to the dependencies. First a
FundamentalSolution object, then the fuzzy Quantity object and if needed the Sampling
object are initialized, before they are passed to the constructor of the fuzzy Analysis
object. Then the run() method of Analysis object is invoked. After termination, the
resulting quantity may be post-processed, according to the goals of the study. The general
structure of a fuzzy analysis is shown in Figure 3.5.

Fuzzy Analysis
Fundamental Solution

Figure 3.5: Structure of a fuzzy analysis.

Stochastic Analysis Stochastic analysis is used to examine probabilistic and aleatoric
uncertainty. This is one of the two most simple use cases, due to its monomorphic nature.
No Layer object is needed, since the project script serves as the Layer, but the general
sequence is the same as described in Section 3.3.2. The first step is to define a fundamental
solution. Best practice is to implement the actual model of the problem as a sub-class of
FundamentalSolution, see Section 3.3.3. Then a stochastic quantity is to be constructed,
using either classes from the module QuantityAleatoric, see Section 3.6, or sub-classing
one. Sampling methods to draw from a stochastic quantity are provided by the module
Sampling, see Section 3.7. To modify a method, sub-classing is preferable. After that, a
stochastic analysis is to be defined. Already implemented classes can be found in the module
AnalysisStochastic. The initialization happens according to the dependencies. First,
a FundamentalSolution object, then the stochastic Quantity object and the Sampling
object are initialized, before they are passed to the constructor of the stochastic Analysis
object. Then the run() method of Analysis object is invoked. After termination, the
resulting quantity may be post-processed, according to the goals of the study. The general
structure of a stochastic analysis is shown in Figure 3.6.

Stochastic Analysis
Fundamental Solution

Figure 3.6: Structure of a stacked fuzzy analysis.

3.9 Uncertainty Analysis in PUQpy 41

Fuzzy-based Fuzziness (ff) Fuzzy-based fuzziness (ff) analysis is used, when modeling
the properties of a fuzzy quantity as fuzzy quantities. In PUQpy, this type is composed by
using a fuzzy analysis as the fundamental solution to a fuzzy analysis. At least one Layer
object is necessary, if the project script acts as Layer around the outer fuzzy analysis. For
clarity, each uncertainty analysis is embedded in its own Layer, using two Layer objects.
The first step is to define a fundamental solution. Best practice is to implement the actual
model of the problem as a sub-class of FundamentalSolution, see Section 3.3.3. Then,
a Layer for each analysis is defined by sub-classing Layer, as provided by the module
Analysis, see Section 3.3.2. For each of the two Layer objects, the general sequence
as described in Section 3.3.2 is used. Since each Layer performs a full fuzzy analysis,
Section 2.1.2 may be helpful for understanding. Post-processing is necessary in the inner
Layer to return a deterministic array back to the superior analysis loop, while it is optional
in the outer Layer. The fuzzy result quantity of the inner fuzzy analysis needs to be reduced
to a deterministic value. Some methods for defuzzification can be found in Section 2.2.6.

After both Layer classes are set up, the initialization of objects happens according to
the dependencies. In general, the Layer objects are initialized from the innermost to the
outermost one. Therefore initialization order is

1. FundamentalSolution object,
2. Layer object for inner fuzzy analysis,
3. Layer object for outer fuzzy analysis.

Then, the run() method of the outer Layer object is invoked. After termination, the
resulting quantity may be post-processed, according to the goals of the study. The general
structure of a stacked fuzzy analysis is shown in Figure 3.7.

Fuzzy Analysis
Fundamental Solution

Fuzzy Analysis

Figure 3.7: Structure of a stacked fuzzy analysis.

42 Chapter 3 PUQpy – Structure and Uncertainty Analysis

Bayesian Uncertainty Bayesian analysis is used, when modeling the properties of a
stochastic quantity as stochastic quantities. In PUQpy, this type is composed by using a
stochastic analysis as the fundamental solution to a stochastic analysis. At least one Layer
object is necessary, if the project script acts as Layer around the outer stochastic analysis.
For clarity, each uncertainty analysis is embedded in its own Layer, using two Layer objects.
The first step is to define a fundamental solution. Best practice is to implement the actual
model of the problem as a sub-class of FundamentalSolution, see Section 3.3.3. Then,
a Layer for each analysis is defined by sub-classing Layer, as provided by the module
Analysis, see Section 3.3.2. For each of the two Layer objects the general sequence as
described in Section 3.3.2 is used. Since each Layer performs a full stochastic analysis,
Section 2.1.1 may be helpful for understanding. Post-processing is necessary in the inner
Layer to return a deterministic array back to the superior analysis loop, while it is optional
in the outer Layer. The stochastic result quantity of the inner stochastic analysis needs to
be reduced to a deterministic value. This may be a quantile, a moment of the distribution
or any other characteristic value.

After both Layer classes are set up, the initialization of objects happens according to the
dependencies. In general, Layer objects are initialized from the innermost to the outermost
one. Therefore initialization order is

1. FundamentalSolution object,
2. Layer object for inner stochastic analysis,
3. Layer object for outer stochastic analysis.

Then, the run() method of the outer Layer object is invoked. After termination, the
resulting quantity object may be post-processed, according to the goals of the study. The
general structure of Bayesian analysis is shown in Figure 3.8.

Stochastic Analysis
Fundamental Solution

Stochastic Analysis

Figure 3.8: Structure of a Bayesian analysis.

3.9 Uncertainty Analysis in PUQpy 43

Fuzzy Probability Based Randomness (fp-r) Fuzzy probability based randomness
(fp-r) analysis is used, when modeling the properties of a stochastic quantity as fuzzy
quantities. In PUQpy, this type is composed by using a stochastic analysis as the
fundamental solution to a fuzzy analysis. At least one Layer object is necessary, if the
project script acts as Layer around the outer fuzzy analysis. For clarity, each uncertainty
analysis is embedded in its own Layer, using two Layer objects. The first step is to define
a fundamental solution. Best practice is to implement the actual model of the problem as a
sub-class of FundamentalSolution, see Section 3.3.3. Then, a Layer for each analysis is
defined by sub-classing Layer, as provided by the module Analysis, see Section 3.3.2. For
each of the two Layer objects the general sequence as described in Section 3.3.2 is used.
Since the inner Layer performs a full stochastic analysis and the outer Layer performs a
full fuzzy analysis, both Section 2.1.2 and Section 2.1.1 may be helpful for understanding.
Post-processing is necessary in the inner Layer to return a deterministic array back to
the superior analysis loop, while it is optional in the outer Layer. The stochastic result
quantity of the inner stochastic analysis needs to be reduced to a deterministic value. This
may be a quantile, a moment of the distribution or any other characteristic value.

After both Layer classes are set up, the initialization of objects happens according to
the dependencies. In general, the Layer objects are initialized from the innermost to the
outermost one. Therefore initialization order is

1. FundamentalSolution object,
2. Layer object for inner stochastic analysis,
3. Layer object for outer fuzzy analysis.

Then, the run() method of the outer Layer object is invoked. After termination, the
resulting quantity may be post-processed, according to the goals of the study. The general
structure of fp-r -analysis is shown in Figure 3.9 [84, p. 382].

Stochastic Analysis
Fundamental Solution

Fuzzy Analysis

Figure 3.9: Structure of a fp-r analysis.

44 Chapter 3 PUQpy – Structure and Uncertainty Analysis

Fuzzy Randomness (fr) Fuzzy randomness (fr) analysis is used, when modeling the
properties of a fuzzy quantity as stochastic quantities. In PUQpy, this type is composed
by using a fuzzy analysis as the fundamental solution to a stochastic analysis. At least one
Layer object is necessary, if the project script acts as Layer around the outer stochastic
analysis. For clarity, each uncertainty analysis is embedded in its own Layer, using two
Layer objects. The first step is to define a fundamental solution. Best practice is to
implement the actual model of the problem as a sub-class of FundamentalSolution, see
Section 3.3.3. Then, a Layer for each analysis is defined by sub-classing Layer, as provided
by the module Analysis, see Section 3.3.2. For each of the two Layer objects the general
sequence as described in Section 3.3.2 is used. Since the inner Layer performs a full fuzzy
analysis and the outer Layer performs a full stochastic analysis, both Section 2.1.2 and
Section 2.1.1 may be helpful for understanding. Post-processing is necessary in the inner
Layer to return a deterministic array back to the superior analysis loop, while it is optional
in the outer Layer. The fuzzy result quantity of the inner fuzzy analysis needs to be reduced
to a deterministic value. Some methods for defuzzification can be found in Section 2.2.6.

After both Layer classes are set up, the initialization of objects happens according to
the dependencies. In general, the Layer objects are initialized from the innermost to the
outermost one. Therefore initialization order is

1. FundamentalSolution object,
2. Layer object for inner fuzzy analysis,
3. Layer object for outer stochastic analysis.

Then, the run() method of the outer Layer object is invoked. After termination, the
resulting quantity may be post-processed, according to the goals of the study. The general
structure of fr -analysis is shown in Figure 3.10.

Fuzzy Analysis
Fundamental Solution

Stochastic Analysis

Figure 3.10: Structure of a fr analysis.

3.9 Uncertainty Analysis in PUQpy 45

Fuzzy Probability Based Fuzzy Randomness (fp-fr) fp-fr analysis is the most
complicated of all the shown polymorphic uncertainty analyses, as it encapsulates all of
them as special cases. In PUQpy, this type is composed by stacking a fuzzy, a stochastic
and a fuzzy analysis, which can be seen as a merge of fp-r and fr . At least two Layer
object are necessary, if the project script acts as Layer around the outer fuzzy analysis. For
clarity, each uncertainty analysis is embedded in its own Layer, using three Layer objects.
The first step is to define a fundamental solution. Best practice is to implement the actual
model of the problem as a sub-class of FundamentalSolution, see Section 3.3.3.

Then, classes for the Layer objects around the inner fuzzy analysis, the stochastic analysis
in the middle and the outer fuzzy analysis are to be implemented. For each of those
three Layer objects, the general sequence as described in Section 3.3.2 is used. Since the
inner and outer Layer performs a full fuzzy analysis and the outer Layer performs a full
stochastic analysis, both Section 2.1.2 and Section 2.1.1 may be helpful for understanding.
Post-processing is necessary in the inner and middle Layer to return a deterministic array
back to the superior analysis loop, while it is optional in the outer Layer. The fuzzy result
quantity of the inner fuzzy analysis needs to be reduced to a deterministic value. Some
methods for defuzzification can be found in Section 2.2.6. The stochastic result quantity of
the stochastic analysis in the middle needs to be reduced to a deterministic value. This
may be a quantile, a moment of the distribution or any other characteristic value.

After all three Layer classes are set up, the initialization of objects happens according to
the dependencies. In general, the Layer objects are initialized from the innermost to the
outermost one. Therefore initialization order is

1. FundamentalSolution object,
2. Layer object for inner fuzzy analysis,
3. Layer object for middle stochastic analysis,
4. Layer object for outer fuzzy analysis.

Then, the run() method of the outer Layer object is invoked. After termination, the
resulting quantity may be post-processed, according to the goals of the study. The general
structure of fp-fr -analysis is shown in Figure 3.11.

Fuzzy Analysis
Fundamental Solution

Stochastic Analysis
Fuzzy Analysis

Figure 3.11: Structure of a fp-fr analysis.

46 Chapter 3 PUQpy – Structure and Uncertainty Analysis

4 Numerical Examples

4.1 Fuzzy Analysis with a Bivariate Fuzzy Input Quantity

In this section, flat α-level-optimization, non-flat α-level-optimization and α-level-free fuzzy
analysis methods in PUQpy are compared based on the example given in [49]. As a
fundamental solution serves

z = φ(x1, x2) = (x1 − 0. 5)2 + x2. (4.1)

The two-dimensional joint membership function is given by

µ(x1, x2) = min
i=1, 2

max

(
4 ·
(
1

2
−
∣∣∣∣xi − 1

2

∣∣∣∣)2

, 0

)
. (4.2)

Both functions are defined on the union square [0, 1]2 design space. No further assumptions
are made.

Three approaches are taken. SWS , as described in Section 2.5.3, with slice sampling,
see Section 2.5.1, is used in all approaches. Slice sampling uses naive shrinking, but no
expansion with the initial hyperrectangle size of w = (1. 0, 1. 0). As weight function the one
given in Equation (2.32) is used with falloff factor δ = 300. The results are compared based
on the two α-levels 0. 0 and 0. 5. Since the core consists of a single data point, comparison
on the core is not useful.

The first approach is flat α-level-optimization, each data point is assigned the nominal
membership value of the α-level. On α-level 0. 0 SWS with in 200 initial points and 2 000
generations with a single point is used. For α-level 0. 5, data is imported and another
2 000 generations are carried out. For both α-level, in total 4 200 data points are evaluated.
Objectives for the optimization are maximization and minimization of the fundamental
solution. The α-levels are calculated in ascending order. After α-level 0. 0, already calculated
data points are imported to the optimizer object for the α-level 0. 5.

The second approach is non-flat α-level-optimization. As in the first approach, it is optimized
for both maximization and minimization objectives with the same settings. For better
comparability, the exact same data points, as evaluated by the first approach are used.
Therefore, the results based on the α-levels are identical and the difference is in-between the
calculated α-levels. An actual run is emulated by reevaluating each data points’ membership
individually afterwards again.

In the third approach, α-level-free fuzzy analysis method is used. SWSForFuzzy, is initiated
with 200 initial points, that are uniformly distributed over the union rectangle [0,1]2. In each
of the 100 generations carried out, 20 points are drawn. In total, the fundamental solution
is evaluated 2 200 times. It is optimized for maximization of µ(z) and both maximization
and minimization for z.

The results of the α-level-free method are shown in Figure 4.1. In Figure 4.1(a), the
analytical solution is drawn as a black solid line. Intervals yielded by the flat α-level-opti-
mization are drawn in blue, for comparison the result of non-flat α-level-optimization, are

47

plotted as green pluses. The result of the α-level-free approach is shown as red dots in both
Figure 4.1(b) and Figure 4.1(a). In the design spcace, a vertical branch is visible which is
related to the left side slope of the result membership. The two diagonal branches in the
design space are accountable for the right membership slope.

0.0 0.2 0.4 0.6 0.8 1.0
x1

x
2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Input space as explored by SWS.
Black: evaluated points
Red: points, which are part of the
α-level-free solution’s result.

0.0

0.2

0.4

0.6

0.8

1.0

0.0
z

µ
(z
)

0.2 0.4 0.6 0.8 1.0 1.2

(b) Fuzzy result quantity.
Black: analytical solution
Red: α-level-free
Blue: flat α-level-optimization
Green: non-flat α-level-optimization

Figure 4.1: Data points in the design space and objective space, calculated by the
different approaches: α-level-free, flat α-level-optimization and non-flat
α-level-optimization.

In Table 4.1 the calculated values for the α-levels 0. 0 and 0. 5 are listed and compared to
the analytical solution. Due to the more samples, α-level-optimization yields the better
results in the α-level 0. 5.

SWSForFuzzy includes all hyperrectangle corners of support and core of the input quantity.
Since maximum z is yielded by two data points φ(0. 0, 1) = 1. 25 and φ(1, 1) = 1. 25 located
in the corners, it is found by SWSForFuzzy. With about 400 contributing data points, the
result is densely resolved. Thus, the proportion of evaluations contributing to the final
result in comparison to the total evaluation count as defined in Equation (2.29), is roughly
peff ≈ 18%. For flat α-level-optimization, the result consists of four data points, for which
peff ≈ 0. 9%. The result of non-flat α-level-optimization consists of roughly 1 250 data
points, peff ≈ 30%.

Table 4.1: α-levels of the results.

Method ntot zl zu

α-level 0. 0 0. 5 0. 5 0. 0

analytical 0. 0 0. 353 553 0. 667 893 1. 25
α-level-optimization 4 200 0. 000 174 0. 353 573 0. 657 337 1. 213 280
α-level-free 2 200 0. 000 593 0. 356 696 0. 661 409 1. 25

48 Chapter 4 Numerical Examples

4.2 Single Span Girder with Fuzzy Load Positions

A crane is used to drop off two crates of equipment on an already build beam. These crates
cannot be stacked, so they are put down individually somewhere on the beam. The first is
placed “somewhere in the left half”, the other “to its right, but in the right half”. A single
span girder with two loads is given. Despite the deterministic weights, the exact position
of both those loads is not known. The fuzzy maximum momentum load of the girder due
to the loading is wanted. The system with applied loads and resulting partial moments is
shown in Figure 4.3.

The girders length is set to
l = 5m. (4.3)

The deterministic loads are assumed as point loads with the respective values of

F1 = 5kN

F2 = 3kN.
(4.4)

Their x-coordinate measured from the left bearing on the girder is given with the following
fuzzy triangular quantities:

X f
1 = 〈0. 1, 0. 4, 0. 6〉 · l, (4.5a)

X f
2 = 〈0. 45, 0. 75, 1〉 · l (4.5b)

with the joint possibility according to the extension principle, see Section 2.2.2,

µ(x1,x2) = min(µ(x1), µ(x2)). (4.5c)

In Figure 4.2(a) membership functions of X f
1 and X f

2 are depicted. Due to the crates’

l = 5m

X f
1 X f

2

µ
1

0

(a) Membership functions of loads.

0 2 4 51 3

0

1

2

3

4

5

x
2
[m

]

x1 [m]
(b) Design space of the problem.

Figure 4.2: Design space of the girder problem.

spacial dimensions, they cannot be closer than 0. 5m to each other and x2 > x1, yielding
the constraint

x2 ≥ x1 + 0. 5m. (4.6)

In Figure 4.2(b) the design space is plotted. The impermissible area is grayed out, while
the rectangle shows the bounding box of the compound fuzzy input quantities support,
that is object of study. The grayed out area is not part of the support. For a single moving

4.2 Single Span Girder with Fuzzy Load Positions 49

load F on a single span girder the location of maximum bending momentum M is identical
to the loads location x, see [2, p. 4.2]. The maximum bending moment is M = αβF l with
α = x

l and β = l−x
l . The maximum bending moments due to two loads is obtained by

super-position of the bending moments caused by the individual loads and is located at one
of the loads position. Moments are depicted in Figure 4.3.

α1

M

0

β1

α2 β2

M21 M12

M11

M22

F1 F2

Figure 4.3: Moments on the girder.

The partial moments Mij , where i denotes the reason and j the location of the partial
moment, are

M11 = α1β1F1l

M22 = α2β2F2l

M12 = α1β2F1l

M21 = α1β2F2l

(4.7)

and the fundamental solution becomes

M = max(M11 +M21, M22 +M12). (4.8)

Since all moments are proportional to the girders length, α is used as the basis of computation.
This avoids scaling back and forth between relative and absolute positions, thus saving a few
operations. As uncertainty analysis SWS with Slice Sampling analogously to Section 4.1 is
used.

Results of the analysis are shown in Figure 4.4. As visible in Figure 4.4(a), two linear parts
are evident, with a knuckle at (0. 4, 0. 75), which is the modal value of the input quantities.
The left-hand side slope of the result quantity is caused by data point part of the branch
left to the knuckle, as both loads move towards the middle of the girder. The set belonging
to the right-hand side slope of the result quantity spans perpendicular from the modal
value to the clearly evident constraint. When both loads are located as close as possible
to each other and to the middle of the girder, the maximum momentum is yielded. The
constraint’s impact on the result is evident in the abrupt cut on the right hand side of the
results membership. Interpretation of the result is, that under the postulated assumptions,
maximum bending moments between 2. 25 kNm and 9. 25 kNm are to be anticipated. The
upper bound is more plausible that the lower bound, with the most plausible value of
7. 5 kNm.

50 Chapter 4 Numerical Examples

0.1 0.2 0.3 0.4 0.5 0.6
α1

0.5

0.6

0.7

0.8

0.9

1.0
α

2

(a) Design space, points in red are
contributing to the final result seen on
the right.

2 3 4 5 6 7 8 9
M [kNm]

0.0

0.2

0.4

0.6

0.8

1.0

µ

(b) Result consisting of contributing
samples.

Figure 4.4: Design space and result for the girder example.

4.3 Safety Assessment of a Wide Flange Steel Column under
Consideration of Polymorphic Uncertain Parameters

In [68] different approaches are shown by five research groups, how an engineering problem,
that exhibits polymorphic uncertainty can be tackled. First, the problem is described,
afterwards the used assumptions, that are derived from the information given in [68] are
presented. Finally, the result is discussed, with regards to an approach in [68].

4.3.1 Basic Problem

The engineering problem consists of a wide flange steel column. It is loaded with the
permanent load Pp and the environmental load Pe, which models the snow load. The limit
state function is given by

g(x) = 1−
(

P

fyAs
+

Pδ0

fyWs
· Pb

Pb − P

)
(4.9)

with the Euler buckling load

Pb =
π2EIs

L2
(4.10a)

and cross section characteristic values area, section modulus and moment of inertia around
the weak axis

As = 2btb + hth (4.10b)

Ws =
ht2h
6b

+
tbb

2

3
(4.10c)

Is =
ht2h
12

+
tbb

3

6
. (4.10d)

The material’s Youngs modulus is denoted as E and the strength as fy.

4.3 Safety Assessment of a Wide Flange Steel Column 51

P

δ0

7.
5
m

(a) Static loading of the column.

t h
=

1
0
m
m

b = 300mm

h
=

30
0
m
m

tb = 15mm

(b) Cross-section of the column.

Figure 4.5: Dimensions of the column.

4.3.2 Assumptions

The assumptions made in [68, pp. 14 sqq.] are reflected in the following. Pp is modeled as a
fuzzy triangular number P f

p = 〈100 kN, 150 kN, 200 kN〉. δf
0 is modeled as a fuzzy triangular

number δf
0 = 〈0mm, 0mm, 60mm〉. The steels strength f s

y is modeled as a lognormal
distribution with a mean value of 400MPa and a standard deviation of 32MPa. Youngs
modulus Es is modeled as a lognormal distribution with a mean value of 210 000MPa
and a standard deviation of 8 400MPa. P fp-r

e is considered a fp-r quantity. Its Gumbel-
distribution has the fuzzy parameters µf

Pe
and βf

Pe
. The fuzzy cdf of P fp-r

e is plotted in
Figure 4.7. Grid points for the piece-wise linear membership functions for both fuzzy
parameters are listed in Table 4.2. Plots of the membership functions are shown in
Figure 4.6(b), and Figure 4.6(a). The values are read off the given plot in [68, p. 15]. The
uncertainty from inaccurate reading off is assumed to be small and is neglected. Geometric
design parameters of the column are considered deterministic are listed in Table 4.3.

Table 4.2: Data points for µf
Pe

and βf
Pe
.

Membership 0 0. 5 1 0. 5 0

µPe in [kN] 189. 245 193. 320 211. 066 234. 010 238. 320
βPe in [kN] 32. 902 35. 093 55. 581 70. 603 75. 052

Table 4.3: Geometric design parameters of the column.

Dimension b tb h th L

Value 300mm 15mm 300mm 10mm 7. 5m

52 Chapter 4 Numerical Examples

190 200 210 220 230 240
µe [kN]

0.0

0.2

0.4

0.6

0.8

1.0
µ

(a) Membership of µf
Pe
.

40 50 60 70
βe [kN]

0.0

0.2

0.4

0.6

0.8

1.0

µ

(b) Membership of βf
Pe
.

Figure 4.6: Membership functions for µf
Pe

and βf
Pe
.

200

F
(P

fp
-r

e

)

P fp-r
e [kN]

1000 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

α = 0. 0
α = 0. 5
α = 1. 0

Figure 4.7: α-levels of the cdf for Pe.

4.3.3 Approach Shown by the Research Group

In [68, pp. 14 sqq.] a fp-fr -analysis is chosen, despite the fact, that no real fp-fr -quantity is
present. The distribution uncertainty from scarce data, which cannot be reduced easily,
is modeled by the fuzzy parameters µf

Pe
and βf

Pe
. The uncertainty stemming from expert

knowledge, which could be rather easily reduced by measuring is modeled with the fuzzy
quantities δf

0 and P f
p. The influences of different uncertainty sources can be isolated from

each others by splitting the input space, which will result in a split up result space too.
Thereby it is possible to assess the uncertainty influence separately. To be able to do so,
two distinct fuzzy analyses are employed. A structure of the analysis is shown in Figure 4.8

4.3 Safety Assessment of a Wide Flange Steel Column 53

Input side

FA: µf
Pe
, βf

Pe

SA: P fp-r
e , Er, f r

y

FA: δf
0, P

f
p

Fundamental Solution
performance

failure probability of α-level-boundary

α-level-boundary of performance

membership of failure probability on α-level

Output side

Figure 4.8: Structure of the analysis according to [68, pp. 14 sqq.].

4.3.4 Approach – Modifications and Algorithmic Parameters

To cut the computational effort, the fp-fr analysis is reduced to a fp-r one by omitting the
inner fuzzy analysis. For this, Pp and δf

0 are assumed to be deterministic. Therefore the
respective values are chosen to be the worst possible ones according to the α-level, thus
leading to the highest failure probabilities. It can be interpreted as to only evaluate the
most critical point on the border of the support of the compound quantity is evaluated. This
is done for two runs. In the first run, the upper borders of C0(Pp) and C0(δ

f
0) are chosen.

In the second run, the upper borders of C0.5(Pp) and C0.5(δ
f
0) are chosen. The values are

shown in Table 4.4. All other assumptions are adopted as declared in Section 4.3.2.

Table 4.4: Deterministic values chosen for the two runs.

Run α-level δf
0 Pp

1 0. 0 0. 06m 200 kNm
2 0. 5 0. 03m 175 kNm

As the initialization of Layer objects in PUQpy, the analysis stages are described from
innermost to the outermost. The inner analysis is the stochastic one. According to [69],
crude MC -analysis requires an amount of n = 10k+2 samples in total to approximate a
failure probability of Pf = 10−k with a statistical accuracy of 10%. In [68], the permissible
failure probability is set to 1. 36× 10−6. This would require roughly 1× 108 fundamental
solution evaluations. Since this is far too expensive as the inner analysis loop, Subset
Simulation is used for the intermediate stochastic analysis. For each subset level 5 000
samples are drawn, the conditional probability of the next level is set to 10%. At most,
15 levels are carried out. The samples in the initial level are drawn by crude MC , in all
further levels a MCMC sampling is used. The used algorithm is described in [3; 81].

The outer fuzzy analysis on µf
Pe

and βf
Pe

is done by SWS as α-level-free method. Settings
are as shown in Table 4.5. Result is the membership function for a single α-level-boundary
for the failure probability. The analysis’ structure is shown in Figure 4.9, Layers are omitted
in the graphic.

54 Chapter 4 Numerical Examples

Table 4.5: Optimization parameters for the outer fuzzy analysis.

Parameter ninit ngenerations niter δ

Value 200 100 20 300

Input side

FA: µf
Pe
, βf

Pe

SA: P fp−r
e , Er, f r

y

Fundamental Solution
performance

failure probability

membership of failure probability

Output side

Figure 4.9: Procedure structure for the fp-r -procedure, Layers are not shown.

4.3.5 Results

In the following, the results are shown and discussed. The resulting data points of the two
runs are plotted in Figure 4.10, the respective α-level for C0(Pf), C0.5(Pf) and C1(Pf) are
listed in Table 4.6. As expected, the failure probabilities are lower in the second run, due
to the smaller initial deflection and permanent load.

1× 10−16

Pf

1× 10−14 1× 10−12 1× 10−10 1× 10−8 1× 10−6 1× 10−40
0.0

0.2

0.4

0.6

0.8

1.0

µ
(P

f
)

Run 2
Run 1

Figure 4.10: Result of the two runs. Red: permissible failure probability.

The structure can be considered safe for Run 2, as 3. 914× 10−9 is found as the highest
failure probability on this level, which is lower than the set permissible failure probability
1. 36× 10−6. Run 1, however, must be considered at least partially unsafe. The maximum
failure probability found in this runs is 3. 770× 10−4, which is significantly larger than the
permissible failure probability. The core of the fuzzy result quantity consists of a single
point at 1. 584× 10−12. The permissible failure probabilities membership to the fuzzy result

4.3 Safety Assessment of a Wide Flange Steel Column 55

Table 4.6: α-levels of the result for both runs.

Run 1 Run 2

Ci(Pf) xl xu xl xu

1.0 1. 584× 10−12 1. 584× 10−12 0. 0 0. 0
0.5 0. 0 2. 152× 10−4 0. 0 1. 174× 10−10

0.0 0. 0 3. 770× 10−4 0. 0 3. 914× 10−9

quantity is 0. 9, using linear interpolation. Thus, it is highly plausible, that the failure
probability exceeds the permissible one.

In comparison to the other numerical examples, the result quantity consists of considerably
less data points and shows stepped result data points. This is a sign of bad optimization
results, caused by SWS having difficulties to find the Pareto-set. It can be suspected,
that result points, that are really close to each other, have nearly identical values for µf

Pe

and βf
Pe
, since SWS does not have a restriction, how far points need to be from each other.

To confirm the guess, that inconsistent return values may be the reason, subset simulation
is carried out 100 times on two points. The core of the fuzzy quantities µf

Pe
and βf

Pe
are

chosen as the first point. As the second point, the upper support boundaries of the same
quantities are chosen. The mean E(Pf), the standard deviation

√
Var(Pf) and coefficient

of variation ν(Pf) =
√

Var(Pf)

E(Pf) of the results are shown in Table 4.7. With decreasing target

Table 4.7: α-levels of the result for both runs.

δ0 [m] Pp [kN] µf
Pe

[kN] βf
Pe

[kN] E(Pf)
√
Var(Pf) ν(Pf)

0. 06 200. 0 211. 066 55. 581 1. 036× 10−8 6. 188× 10−8 5. 974
0. 06 200. 0 238. 320 75. 052 3. 834× 10−4 3. 895× 10−5 0. 102

failure probability the variation coefficient of the reported results increases. These findings
could explain the wide spread of high membership from 1× 10−15 to 1× 10−6. The 5 000
generated samples per level in a trivariate input space may be too few. A parameter study
to postulate recommendations for parameters depending on the target failure probability
and input dimensionality is proposed. However, this is not in the scope of this thesis.

Notable differences to the results presented in [68, p. 16] are present. These are:

• Run 1
– With 3. 770× 10−4, the found maximum failure probability is twice as high as

the respective value in [68].
– The modal value is 5 magnitudes lower than in [68].
– Lowest failure probability is 0. 0 with a membership of 0. 74, in [68] the support

is bounded at roughly 1× 10−11 on the lower side.
• Run 2

– With 3. 914× 10−9 the found maximum failure probability is three magnitudes
lower as the respective value in [68].

– As modal value of 0. 0 is found. Thus no left slope is found as in [68].

56 Chapter 4 Numerical Examples

5 Discussion

5.1 Results

In this thesis, uncertainty modeling and analysis methods are discussed. Monomorphic
uncertainty is differentiated in aleatoric and epistemic uncertainty. Modeling of polymorphic
uncertainty by combination of monomorphic uncertainty is explained. For epistemic
uncertainty, fuzzy quantities, interactions of fuzzy quantities, and fuzzy analysis are shown.
Fuzzy-based fuzziness (ff) is proposed as an advanced epistemic uncertainty model. α-level-
based and α-level-free methods are shown in contrast and the hybrid non-flat α-level-op-
timization is presented. The order of α-level for α-level-based fuzzy analysis is discussed.
Implementation approaches to updating algorithms for Pareto-fronts are benchmarked.

In cooperation with [81], PUQpy, a framework for generic modeling and analysis of aleatoric,
epistemic and polymorphic uncertainty is conceptualized and implemented. Flexibility
and extensibility are achieved by the modular architecture and standardized interfaces
of analyses and quantities. Monomorphic uncertain quantities can be constructed from
predefined classes or modified in a sub-class. Analysis methods for aleatoric and epistemic
uncertainty are provided. Polymorphic uncertain quantities are modeled by staging several
analyses, using Layer objects to connect and manage the analyses. With the use of Layer
objects, analysis are arbitrarily nestable. SWS with slice sampling is implemented as
optimization algorithm and fuzzy analysis algorithm. In PUQpy, parallelization by using
dask and pre-compilation with Cython are approached as performance enhancements.

In the numerical examples, the usability is demonstrated for monomorphic and polymorphic
analyses. Flat α-level-optimization is compared to non-flat α-level-optimization and the
α-level-free method in a benchmark example.

5.2 Limitation and Perspective

The implementation of PUQpy has considerable improvement potential, both in perfor-
mance and features. The integration with dask, see [15; 72], is to be extended for a broad
support of distributed computing. Measures need to be taken, to limit memory usage,
especially in staged analyses in combination with brute MC -analysis. Automatic dividing
of data into manageable chunks is yet to be implemented. The distributed character is
to be adopted from the parallel invocation of the subordinated analysis to parts of the
body on analyses. Scalability is to be improved by better work load distribution. For small
tasks, the scheduling and communication overhead becomes the bottleneck, see [15], but for
long running task, the cluster may wait on a single, slow worker to finish. Further speedup
may be gained, by transitioning more parts from plain Python to Cython. While pre-
compilation alone will not yield noticeable improvements, breaking down algorithms, may
speed up the computation by orders of magnitude. The combination of both parallelization
and pre-compilation is not accomplished yet.

At the moment, SWS is the only implemented optimization algorithm. It is planned to
extend the module of optimization algorithms. Therefore, a wrapper to integrate pymoo

57

is planned, since it offers a wide range of proven powerful optimization routines, such as
NSGA2 based algorithms, see [10; 17; 18; 79]. When analyzing a computationally cheap
fundamental solution, by far the most run-time is spent in the weight function of SWS . The
performance hit, most observable with many contributing data points, could be remedied
by employing parallelization and pre-compilation. As implemented in the context of this
thesis, SWS does not find points located directly on the border of the design space. This
is a significant drawback for the optimization accuracy of fundamental solutions, whose
optimium is located on the design space border. It is proposed to investigate the possible
advantage of multiple Markov-chains for sample generation. The use of low discrepancy
sampling methods, such as the Sobol sequence, see [85], or latin hypercube sampling, see
[52] in the initial generation of SWS is yet to be implemented. In-depth parameter studies
on SWS are not done in this thesis. It is proposed to investigate the parameters’ influence
to improve default parameters and to develop recommendations for the user documentation
The development of an adaptive termination criterion for SWS is suggested.

As implemented in the scope of this thesis, slice sampling supports sampling from multi-
variate quantities, but expansion of the hyperrectangle is not implemented. Approaches to
multivariate Slice Sampling steps are proposed in [48; 90; 91; 92]. Additional improvement
is possible, since procedures for random walk suppression and adaptive shrinkage using
intelligent sensitivity analysis are proposed in [64; 65].

The algorithms available in PUQpy for stochastic analysis have shown high inaccuracies
for small failure probabilities. Further development work is necessary, to rule out imple-
mentation errors and improve the algorithms themselves. Parameter studies are proposed
to develop recommendation for default parameters in accordance to the dimensionality of
stochastic input quantities and target probability.

The order of α-levels are discussed, but no in-depth study is made in this thesis. It is
proposed to investigate the benefits of either calculation order by extensive benchmarking,
in which cases the one or the other proves more effective.

Field quantities are not implemented in the scope of this work. Implementation of an unified
class in PUQpy for interval, fuzzy, stochastic and polymorphic uncertain field quantities is
proposed as another research task.

The concept of fuzzy valued fuzzy quantities is not yet dealt with in depth-in research.
A step towards this goal is taken in [68]. Yet, the taken approach is still dependent on
information reduction measures in-between the analyses. Therefore, further investigation
of the isolation of input and output spaces is suggested. Direct analysis approaches to ff ,
that are independent from information reduction measures are still to be developed.

58 Chapter 5 Discussion

Acronyms and Glossary

Acronyms

cdf cumulated density function . 30

icdf inverse cumulated density funtion . 27

iid independent, identically distributed . 4

FEM Finite-Element-Method . 39

ff fuzzy-based fuzziness . 42

fr fuzzy randomness . 5

fp-r fuzzy probability based randomness . 5

fp-fr fuzzy probability based fuzzy randomness 5

MC Monte-Carlo . 30

MCMC Markov-Chain Monte-Carlo . 27

MCS Monte-Carlo-Sampling . 29

pdf probability density function . 27

SWS Sequential Weighted Sampling . IX

59

Glossary

↑ maximize the following expression

↓ minimize the following expression

�f fuzzy quantity

�s stochastic quantity

v = (a, b) vector

0 zero vector

1 ones vector

U(a, b) uniformly distributed quantity between a and b

U(a, b) uniformly distributed quantity element wise between a and b

N set of natural numbers

N+ set of positive natural numbers (N \ {0})

R set of real numbers

60

References

[1] Akther, T.; Ahmad, S. U.: A computantional method for fuzzy arithmetic opera-
tions. Daffodil international University Journal of science and technology 4 (1 2009).
doi: 10.3329/diujst.v4i1.4350.

[2] Albert, A., (ed.): Bautabellen für Ingenieure. mit Berechnungshinweisen und
Beispielen. 22nd ed. Bundesanzeiger Verlag, Köln, 2016.

[3] Au, S.-K.; Beck, J. L.: Estimation of small failure probabilities in high dimensions
by subset simulation. Probabilistic Engineering Mechanics 16 (2001) 263–277. doi:
10.1016/S0266-8920(01)00019-4.

[4] Audet, C.; Dang, C.-K.; Orban, D.: Efficient use of parallelism in algorithmic
parameter optimization applications. Optimization Letters 7 (2011) 421–433. doi:
10.1007/s11590-011-0428-6.

[5] Audet, C.; Dang, K.-C.; Orban, D.: Optimization of algorithms with OPAL.
Mathematical Programming Computation 6 (2014) 233–254. doi: 10.1007/s12532-
014-0067-x.

[6] Baldick, R.: Applied Optimization. Formulation and Algorithms for Engineer-
ing Systems. Cambridge University Press, Cambridge, 2006. doi: 10 . 1017 /
cbo9780511610868.

[7] Baudin, M.; Dutfoy, A.; Iooss, B.; Popelin, A.-L.: Open TURNS: An industrial
software for uncertainty quantification in simulation (2015). doi: 10.1007/978-3-
319-11259-6_64-1.

[8] Bayes, T.; Price, R.: LII. An essay towards solving a problem in the doctrine of
chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter
to John Canton, A. M. F. R. S. Philosophical Transactions of the Royal Society of
London 53 (1763) 370–418. doi: 10.1098/rstl.1763.0053.

[9] Behnel, S.; Bradshaw, R.; Citro, C.; Dalcin, L.; Seljebotn, D. S.; Smith,
K.: Cython: The Best of Both Worlds. Computing in Science Engineering 13 (2011)
31–39. doi: 10.1109/MCSE.2010.118.

[10] Blank, J.; Deb, K.: pymoo: Multi-objective Optimization in Python. IEEE Access
(2020). doi: 10.1109/access.2020.2990567.

[11] Bobach, T.; Umlauf, G.: Natural Neighbor Interpolation and Order of Continuity.
Research rep. Computer Science Department, University of Kaiserslautern, 2006.

[12] Böttcher, M.; Leichsenring, F.; Fuchs, A.; Graf, W.; Kaliske, M.: Efficient
Utilization of Surrogate Models for Uncertainty Quantification. Proceedings in
Applied Mathematics and Mechanics (2020). doi: 10.1002/pamm.202000210.

[13] Brooks, S.; Gelman, A.; Jones, G.; Meng, X.-L., (eds.): Handbook of Markov
Chain Monte Carlo. Chapman and Hall/CRC, 2011. doi: 10.1201/b10905.

[14] Burke, E. K.; Kendall, G., (eds.): Search Methodologies. 2nd ed. Springer, New
York, 2014. doi: 10.1007/978-1-4614-6940-7.

[15] Dask Development Team: Dask: Library for dynamic task scheduling. 2016. url:
https://dask.org.

61

https://doi.org/10.3329/diujst.v4i1.4350
https://doi.org/10.1016/S0266-8920(01)00019-4
https://doi.org/10.1007/s11590-011-0428-6
https://doi.org/10.1007/s12532-014-0067-x
https://doi.org/10.1007/s12532-014-0067-x
https://doi.org/10.1017/cbo9780511610868
https://doi.org/10.1017/cbo9780511610868
https://doi.org/10.1007/978-3-319-11259-6_64-1
https://doi.org/10.1007/978-3-319-11259-6_64-1
https://doi.org/10.1098/rstl.1763.0053
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/access.2020.2990567
https://doi.org/10.1002/pamm.202000210
https://doi.org/10.1201/b10905
https://doi.org/10.1007/978-1-4614-6940-7
https://dask.org

[16] Deb, K.: In: Multi-objective Optimization : Search Methodologies. Ed. by Burke,
E. K.; Kendall, G. 2nd ed. Springer, New York, 2014. 15, 403–449. doi: 10.1007/
978-1-4614-6940-7_15.

[17] Deb, K.; Tiwari, S.: Omni-optimizer: A generic evolutionary algorithm for single
and multi-objective optimization. European Journal of Operational Research 185
(2008) 1062–1087. doi: 10.1016/j.ejor.2006.06.042.

[18] Deb, K.; Tiwari, S.: Omni-optimizer: A Procedure for Single and Multi-objective
Optimization. In: Evolutionary Multi-Criterion Optimization 3410, Springer, Berlin,
Heidelberg, (2005). doi: 10.1007/978-3-540-31880-4_4.

[19] Drieschner, M.; Petryna, Y.; Gruhlke, R.; Eigel, M.; Hömberg, D.: Com-
parison of various uncertainty models with experimental investigations regarding
the failure of plates with holes. Reliability Engineering & System Safety 203 (2020).
doi: 10.1016/j.ress.2020.107106.

[20] Du, L.; Choi, K.; Youn, B. D.: A New Fuzzy Analysis Method for Possibility-
Based Design Optimization. Collection of Technical Papers – 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference 5 (2004). doi: 10.2514/6.
2004-4585.

[21] Dubois, D.; Prade, H.: Operations on fuzzy numbers. International Journal of
Systems Science 9 (1978) 613–626. doi: 10.1080/00207727808941724.

[22] Dubois, D.; Prade, H.: The mean value of a fuzzy number. Fuzzy Sets and Systems
24 (1987) 279–300. doi: 10.1016/0165-0114(87)90028-5.

[23] Fahrmeir, L.; Heumann, C.; Künstler, R.; Pigeot, I.; Tutz, G.: Statistik.
Der Weg zur Datenanalyse. 2016. doi: 10.1007/978-3-662-50372-0.

[24] Fan, Y.; Sisson, S. A.: In: Reversible Jump MCMC : Handbook of Markov Chain
Monte Carlo. Ed. by Brooks, S.; Gelman, A.; Jones, G.; Meng, X.-L. Chapman
and Hall/CRC, 2011. 3, 67–91. doi: 10.1201/b10905-5.

[25] Fernandes, C.; Pontes, A.; Viana, J.; Gaspar-Cunha, A.: In: Using Multi-
Objective Evolutionary Algorithms in the Optimization of Polymer Injection Molding :
Applications of Soft Computing. Vol. 58, Springer, Berlin, Heidelberg, 2009, 357–365.
doi: 10.1007/978-3-540-89619-7_35.

[26] Filev, D.; Yager, R.: A Generalized Defuzzification Method via Bad Distributions.
International Journal of Intelligent Systems 6 (1991) 687–697. doi: 10.1002/int.
4550060702.

[27] Gagolewski, M.: A Guide to the FuzzyNumbers Package for R (FuzzyNumbers
version 0.4-6). Comp. software. Systems Research Institute, Polish Academy of
Sciences, Warsaw, Poland; Institute of Geoinformatics, VŠB – Technical University
of Ostrava, 2019.

[28] Gelman, A.; Shirley, K.: In: Inference from Simulations and Monitoring Con-
vergence: Handbook of Markov Chain Monte Carlo. Ed. by Brooks, S.; Gelman,
A.; Jones, G.; Meng, X.-L. Chapman and Hall/CRC, 2011. 6, 163–174. doi:
10.1201/b10905-8.

[29] Geyer, C.: In: Introduction to Markov Chain Monte Carlo: Handbook of Markov
Chain Monte Carlo. Ed. by Brooks, S.; Gelman, A.; Jones, G.; Meng, X.-L.
Chapman and Hall/CRC, 2011. 1, 3–48. doi: 10.1201/b10905-3.

62

https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1016/j.ejor.2006.06.042
https://doi.org/10.1007/978-3-540-31880-4_4
https://doi.org/10.1016/j.ress.2020.107106
https://doi.org/10.2514/6.2004-4585
https://doi.org/10.2514/6.2004-4585
https://doi.org/10.1080/00207727808941724
https://doi.org/10.1016/0165-0114(87)90028-5
https://doi.org/10.1007/978-3-662-50372-0
https://doi.org/10.1201/b10905-5
https://doi.org/10.1007/978-3-540-89619-7_35
https://doi.org/10.1002/int.4550060702
https://doi.org/10.1002/int.4550060702
https://doi.org/10.1201/b10905-8
https://doi.org/10.1201/b10905-3

[30] Götz, M.: Numerische Entwurfsmethoden unter Berücksichtigung polymorpher
Unschärfe. Dissertationsschrift, Institut für Statik und Dynamik der Tragwerke,
Fakultät Bauingenieurwesen der Technischen Universität Dresden, 2017.

[31] Götz, M.; Leichsenring, F.; Graf, W.; Kaliske, M.: Four Types of Dependen-
cies for the Fuzzy Analysis. 6th European Conference on Computational Mechanics
(ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7)
(2018).

[32] Graf, W.; Götz, M.; Kaliske, M.: In: Structural design with polymorphic uncer-
tainty model : Proceedings of the 6th International Workshop on Reliable Engineering
Computing. Reliability and Computations of Infrastructures. Ed. by Modares, M.
Illinois Institute of Technology, Chicago, 2014, 64–76.

[33] Graf, W.; Götz, M.; Kaliske, M.: Structural design with polymorphic uncertainty
model. International Journal of Reliability and Safety (IJRS) 9 (2015) 112–131. doi:
10.1504.ijrs.2015.072715.

[34] Graf, W.; Götz, M.; Kaliske, M.: Analysis of dynamical processes under con-
sideration of polymorphic uncertainty. Structural Safety 52, Part B (2015) 194–201.
doi: 10.1016/j.strusafe.2014.09.003.

[35] Gruhlke, R.; Drieschner, M.; Eigel, M.; Hömberg, D.; Petryna, Y.: Artificial
Neural Network forecasting for monomorphic and polymorphic uncertainty models
and comparison with experimental investigations. PAMM 19 (2019) e201900359.
doi: https://doi.org/10.1002/pamm.201900359.

[36] Hanss, M.; Mäck, M.: Certainly uncertain – the charm of fuzzy predictions.
Procedia Engineering (2017). doi: 10.1016/j.proeng.2017.09.149.

[37] Hanss, M.: Applied Fuzzy Arithmetic. An Introduction with Engineering Applications.
Springer, Stuttgart, 2010. doi: 10.1007/b138914.

[38] Harris, C. R.; Millman, K. J.; Walt, S. J. van der, et al.: Array programming
with NumPy. Nature 585 (2020) 357–362. doi: 10.1038/s41586-020-2649-2.

[39] Hose, D.; Mäck, M.; Hanss, M.: On probability-possibility consistency in high-
dimensional propagation problems. In: 3rd ECCOMAS Thematic Conference on
Uncertainty Quantification in Computational Sciences and Engineering, Crete, Greece,
2019. doi: 10.7712/120219.6330.18439.

[40] Jarre, F.; Stoer, J.: Optimierung. Einführung in mathematische Theorie und
Methoden. 2nd ed. Berlin, 2019. doi: 10.1007/978-3-662-58855-0.

[41] Kaufmann, M. A.: Inductive Fuzzy Classification in Marketing Analytics. PhD
thesis, Faculty of Science of the University of Fribourg, Switzerland, 2012. doi:
10.1007/978-3-319-05861-0.

[42] Kotulak, K.; Froń, A.; Krankowski, A.; Pulido, G. O.; Henrandez-Pajares,
M.: Sibsonian and non-Sibsonian natural neighbour interpolation of the total electron
content value. Acta Geophysica (2017) 1895–7455. doi: 10.1007/s11600-017-0003-
3.

[43] Kroese, D.; Taimre, T.; Botev, Z.: Handbook of Monte Carlo Methods. Wiley,
2011. doi: 10.1002/9781118014967.

[44] Laguna, M.; Molina, J.; Pérez, F.; Caballero, R.; Hernández-Díaz, A.:
The Challenge of Optimizing Expensive Black Boxes: A Scatter Search/Rough Set
Theory Approach. Journal of the Operational Research Society 61 (2010) 53–67. doi:
10.1057/jors.2009.124.

63

https://doi.org/10.1504.ijrs.2015.072715
https://doi.org/10.1016/j.strusafe.2014.09.003
https://doi.org/https://doi.org/10.1002/pamm.201900359
https://doi.org/10.1016/j.proeng.2017.09.149
https://doi.org/10.1007/b138914
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.7712/120219.6330.18439
https://doi.org/10.1007/978-3-662-58855-0
https://doi.org/10.1007/978-3-319-05861-0
https://doi.org/10.1007/s11600-017-0003-3
https://doi.org/10.1007/s11600-017-0003-3
https://doi.org/10.1002/9781118014967
https://doi.org/10.1057/jors.2009.124

[45] Ledoux, H.; Gold, C.: In: An Efficient Natural Neighbour Interpolation Algorithm
for Geoscientific Modelling : Developments in Spatial Data Handling. Springer, Berlin,
Heidelberg, 2005. doi: 10.1007/3-540-26772-7_8.

[46] Leekwijck, W. V.; Kerre, E. E.: Defuzzification: criteria and classification. Fuzzy
Sets and Systems 108 (1999) 159–178. doi: 10.1016/S0165-0114(97)00337-0.

[47] Leichsenring, F.; Jenkel, C.; Graf, W.; Kaliske, M.: Numerical simulation of
wooden structures with polymorphic uncertainty in material properties. International
Journal of Reliability and Safety 12 (2018) 24–45. doi: 10.1504/ijrs.2018.092499.

[48] Liechty, M. W.; Lu, J.: Multivariate Normal Slice Sampling. Journal of Computa-
tional and Graphical Statistics 19 (2010) 281–294. doi: 10.1198/jcgs.2009.07138.

[49] Mäck, M.; Hanss, M.: An advanced sampling technique for possibilistic uncertainty
propagation. Mechanical Systems and Signal Processing 147 (2021). doi: 10.1016/
j.ymssp.2020.107064.

[50] Mäck, M.; Hose, D.; Hanss, M.: On Using Fuzzy Arithmetic in Optimization
Problems with Uncertain Constraints. Special Issue:88th Annual Meeting of the
International Association of Applied Mathematics and Mechanics (GAMM) 17 (1
2017). doi: 10.1002/pamm.201710017.

[51] Marano, G. C.; Morrone, E.; Quaranta, G.; Trentadue, F.: Fuzzy Structural
Analysis of a Tuned Mass Damper Subject to Random Vibration. Advances in
Acoustics and Vibration 2008 (2008). doi: 10.1155/2008/207254.

[52] McKay, M. D.; Beckman, R. J.; Conover, W. J.: A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code. Technometrics 21 (1979) 239–245.

[53] Mogharreban, N.; Dilalla, L.: Comparison of Defuzzification Techniques for
Analysis of Non-interval Data. In: 2006. doi: 10.1109/NAFIPS.2006.365418.

[54] Möller, B.; Beer, M.: Safety Assessment using Fuzzy Theory. Research rep.
Dresden University of Technology, Department of Civil Engineering, 1998.

[55] Möller, B.; Beer, M.; Graf, W.; Sickert, J.-U.: Fuzzy finite element Method
and its application. Trends in computational structural mechanics (2001).

[56] Möller, B.; Beer, M.; Liebscher, M.: Fuzzy analysis as alternative to stochastic
methods – theoretical aspects. 4th German LS-DYNA Forum, Bamberg (2005).

[57] Möller, B.; Graf, W.; Beer, M.: Fuzzy structural analysis using α-level optimiza-
tion. Computational Mechanics 26 (2000) 547–565. doi: 10.1007/s004660000204.

[58] Möller, B.; Graf, W.; Beer, M.; Sickert, J.-U.: Fuzzy probabilistic method
and its application for the safety assessment of structures. European Conference on
Computational Mechanics, Cracow (2001).

[59] Möller, B.; Graf, W.; Beer, M.; Sickert, J.-U.: Fuzzy Randomness - Towards
a new Modeling of Uncertainty. Fifth World Congress on Computational Mechanics
(2002).

[60] Möller, B.; Hoffmann, A.; Liebscher, M.: Modeling of blasting processes in
view of fuzzy randomness. 9th ASCE Specialty Conference on Probabilistic Mechanics
and Structural Reliability (PMC2004) (2004).

[61] Murray, I.; Adams, R. P.; MacKay, D. J.: Elliptical slice sampling. Proceedings of
the 13th International Conference on Artificial Intelligence and Statistics (AISTATS)
(2010).

64

https://doi.org/10.1007/3-540-26772-7_8
https://doi.org/10.1016/S0165-0114(97)00337-0
https://doi.org/10.1504/ijrs.2018.092499
https://doi.org/10.1198/jcgs.2009.07138
https://doi.org/10.1016/j.ymssp.2020.107064
https://doi.org/10.1016/j.ymssp.2020.107064
https://doi.org/10.1002/pamm.201710017
https://doi.org/10.1155/2008/207254
https://doi.org/10.1109/NAFIPS.2006.365418
https://doi.org/10.1007/s004660000204

[62] Navara, M.; Žabokrtský, Z.: How to make constrained fuzzy arithmetic efficient.
Soft Computing 5 (2001) 412–417. doi: 10.1007/s005000100089.

[63] Neal, R.: In: MCMC Using Hamiltonian Dynamics : Handbook of Markov Chain
Monte Carlo. Ed. by Brooks, S.; Gelman, A.; Jones, G.; Meng, X.-L. Chapman
and Hall/CRC, 2011. 5, 113–162. doi: 10.1201/b10905-7.

[64] Neal, R. M.: Slice sampling. Tech. rep. Department of Statistics and Department
oc Vomputer Science, University of Toronto, Ontario, Canada, 2000.

[65] Neal, R. M.: Slice sampling. The Annals of Statistics 31 (2003) 705–767. doi:
10.1214/aos/1056562461.

[66] Nehi, H.; Malek, H.: Intuitionistic Fuzzy Numbers and It’s Applications in
Fuzzy Optimization Problem. Research rep. Department of Mathematics, Sistan
and Baluchestan University, Zahedan, IRAN; College of Basic Sciences, Shiraz
University of Technology, Shiraz, IRAN, 2005.

[67] Papadopoulos, V.; Giovanis, D. G.; Lagaros, N.; Papadrakakis, M.: Ac-
celerated subset simulation with neural networks for reliability analysis. Com-
puter Methods in Applied Mechanics and Engineering 223-224 (2012) 70–80. doi:
10.1016/j.cma.2012.02.013.

[68] Papaioannou, I.; Daub, M.; Drieschner, M., et al.: Assessment and design
of an engineering structure with polymorphic uncertainty quantification. GAMM-
Mitteilungen 42 (2019). doi: 10.1002/gamm.201900009.

[69] Papaioannou, I.; Papadimitriou, C.; Straub, D.: Sequential importance sam-
pling for structural reliability analysis. Structural Safety 62 (2016) 66–75. doi:
10.1016/j.strusafe.2016.06.002.

[70] Pardalos, P. M.; Žilinskas, A.; Žilinskas, J.: Non-Convex Multi-Objective
Optimization. Ed. by Pardalos, P. M. Springer, Gainesville (Florida), Vilnius,
2017. doi: 10.1007/978-3-319-61007-8.

[71] Patelli, E.: In: COSSAN: A Multidisciplinary Software Suite for Uncertainty
Quantification and Risk Management : Handbook of Uncertainty Quantification. Ed.
by Ghanem, R.; Higdon, D.; Owhadi, H. Springer International Publishing, 2016,
1–69. doi: 10.1007/978-3-319-11259-6_59-1.

[72] Rocklin, M.: Dask: Parallel Computation with Blocked algorithms and Task
Scheduling. In: Proceedings of the 14th Python in Science Conference 2015.

[73] Rommelfanger, H.: Fuzzy Decision Support-Systeme. Entscheiden bei Unschärfe.
2nd ed. Springer-Verlag Berlin Heidelberg, 1994. doi: 10.1007/978-3-642-57929-5.

[74] Saletic, D. Z.; Velasevic, D. M.; Mastorakis, N. E.: Analysis of Basic
Defuzzification Techniques. In: 6th WSEAS International Multiconference on Circuits,
Systems, Communications and Computers (CSCC 2002) 2002.

[75] Sastry, K.; Goldberg, D.; Kendall, G.: In: Genetic Algorithms : Search Method-
ologies. Ed. by Burke, E. K.; Kendall, G. 2nd ed. Springer, New York, 2014. 4,
93–117. doi: 10.1007/978-1-4614-6940-7_4.

[76] Saxena, B.; Pal, S.: Some new concepts in fuzzy arithmetic. Journal of Discrete
Mathematical Sciences and Cryptography 13 (2010) 257–270. doi: 10.1080/09720529.
2010.10698291.

[77] Schietzold, F. N.: Numerische Analyse von Holzstrukturen unter Beachtung von
Unschärfe. Diploma thesis, Institut für Statik und Dynamik der Tragwerke, Fakultät
Bauingenieurwesen der Technischen Universität Dresden, 2017.

65

https://doi.org/10.1007/s005000100089
https://doi.org/10.1201/b10905-7
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1016/j.cma.2012.02.013
https://doi.org/10.1002/gamm.201900009
https://doi.org/10.1016/j.strusafe.2016.06.002
https://doi.org/10.1007/978-3-319-61007-8
https://doi.org/10.1007/978-3-319-11259-6_59-1
https://doi.org/10.1007/978-3-642-57929-5
https://doi.org/10.1007/978-1-4614-6940-7_4
https://doi.org/10.1080/09720529.2010.10698291
https://doi.org/10.1080/09720529.2010.10698291

[78] Schietzold, F. N.; Graf, W.; Kaliske, M.: Polymorphic uncertainty modeling
for optimization of timber structures. Computing with Confidence (2018).

[79] Seada, H.; Deb, K.: U-NSGA-III: A Unified Evolutionary Algorithm for Single,
Multiple, and Many-Objective Optimization. Research rep. Computational Opti-
mization, Innovation Laboratory (COIN), Department of Computer Science, and
Engineering, Michigan State University, 2014.

[80] Segura, C.; Coello, C. A. C.; Miranda, G.; León, C.: Using multi-objective
evolutionary algorithms for single-objective optimization. 4OR 11 (2013) 201–228.
doi: 10.1007/s10288-013-0248-x.

[81] Seidowski, M.: Stochastische Analyse als Teil generischer polymorpher Unschärfe-
Analyse. Diploma thesis, Institut für Statik und Dynamik der Tragwerke, Fakultät
Bauingenieurwesen der Technischen Universität Dresden, 2022.

[82] Shenify, M.; Mazarbhuiya, F. A.: The Expected Value of a Fuzzy Number.
International Journal of Intelligence Science 5 (2015) 1–5. doi: 10.4236/ijis.2015.
51001.

[83] Shields, M. D.; Giovanis, D.: UQPy – Uncertainty Quantification with Python.
Version 2.0.0. 2018.

[84] Sickert, J.-U.; Beer, M.; Graf, W.; Möller, B.: In: Fuzzy probabilistic structural
analysis considering fuzzy random functions. der Kiureghian, A.: Applications of
Statistics and Probability in Civil Engineering. 2003.

[85] Sobol, I. M.: On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics 7 (1967)
86–112. doi: 10.1016/0041-5553(67)90144-9.

[86] Spaethe, G.: Die Sicherheit tragender Baukonstruktionen. Springer Vienna, 1992.

[87] Steinigen, F.; Sickert, J.-U.; Graf, W.; Kaliske, M.: In: Fuzzy and Fuzzy
Stochastic Methods for the Numerical Analysis of Reinforced Concrete Structures
Under Dynamical Loading : Computational Methods in Stochastic Dynamics: Vol-
ume 2. Ed. by Papadrakakis, M.; Stefanou, G.; Papadopoulos, V. Springer
Netherlands, Dordrecht, 2013, 113–130. doi: 10.1007/978-94-007-5134-7_7.

[88] Štěpnička, M.; Baets, B. D.; Nosková, L.: Arithmetic Fuzzy Models. IEEE
TRANSACTIONS ON FUZZY SYSTEMS 18 (2010). doi: 10.1109/tfuzz.2010.
2062522.

[89] Thiele, M.; Liebscher, M.; Graf, W.: Fuzzy analysis as alternative to stochastic
methods – a comparison by means of a crash analysis. 4th German LS-DYNA Forum,
Bamberg (2005).

[90] Thompson, M.; Neal, R. M.: Covariance-Adaptive Slice Sampling. Tech. rep.
Department of Statistics, University of Toronto, 2010.

[91] Thompson, M.: Slice Sampling with Multivariate Steps. PhD thesis, Graduate
Department of Statistics, University of Toronto, 2011.

[92] Tibbits, M. M.; Haran, M.; Liechty, J. C.: Parallel multivariate slice sampling.
Statistics and Computing 21 (3 2011) 415–430. doi: 10.1007/s11222-010-9178-z.

[93] Vahidi, J.; S.Rezvani: Arithmetic Operations on Trapezoidal Fuzzy Numbers.
Journal Nonlinear Analysis and Application 2013 (2013) 1–8. doi: 10.5899/2013/
jnaa-00111.

66

https://doi.org/10.1007/s10288-013-0248-x
https://doi.org/10.4236/ijis.2015.51001
https://doi.org/10.4236/ijis.2015.51001
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1007/978-94-007-5134-7_7
https://doi.org/10.1109/tfuzz.2010.2062522
https://doi.org/10.1109/tfuzz.2010.2062522
https://doi.org/10.1007/s11222-010-9178-z
https://doi.org/10.5899/2013/jnaa-00111
https://doi.org/10.5899/2013/jnaa-00111

[94] van Heesch, D.: doxygen. Manual for version 1.9.1. 2021. url: www.doxygen.nl/
download.html (visited on 02/08/2021).

[95] van Rossum, G.; Drake, Jr., F., (eds.): Python Reference Manual. Release 2.1.1.
Python Software Foundation, 2001.

[96] van Rossum, G.; Drake, Jr., F., (eds.): Python Reference Manual. Release 3.2.3.
Python Software Foundation, 2012.

[97] van Rossum, G.: Python tutorial. Tech. rep. Centrum voor Wiskunde en Informatica,
Computer Science/Department of Algorithmics and Architecture, 1995.

[98] Viertl, R.: Statistical Methods for Fuzzy Data. John Wiley & Sons, Vienna Univer-
sity of Technology, Austria, 2011. doi: 10.1002/9780470974414.

[99] Virtanen, P.; Gommers, R.; Oliphant, T. E., et al.: SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods 17 (2020) 261–272.
doi: 10.1038/s41592-019-0686-2.

[100] Zadeh, L. A.: Fuzzy Sets. Information and control 8 (1965). doi: 10.1016/S0019-
9958(65)90241-X.

67

www.doxygen.nl/download.html
www.doxygen.nl/download.html
https://doi.org/10.1002/9780470974414
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X

Appendix

In the following, inheritance graphs of the classes implemented in PUQpy are shown. Each
of the graphs is based on the output of doxygen and is present in the documentation.
Abstract classes are grayed out, that is classes not meant to be used to actually instantiate
an object of.

Sampling.Sampling

Sampling.LineSampling Sampling.MonteCarloSampling Sampling.SliceSampling

Sampling.SliceSamplingForSWS

Figure 1: Hierarchy of sampling algorithms

Interdependencies.Interdependency

Interdependencies.Constraint Interdependencies.Correlation

Interdependencies.AlphaConstraint

Figure 2: Hierarchy of Interdependencies

69

A
n
al

y
si

s.
A

n
al

y
si

s

A
n
al

y
si

s.
F
u
n
d
am

en
ta

lS
ol

u
ti

on

A
n
al

y
si

s.
L
ay

er

A
n
al

y
si

s.
U

n
ce

rt
ai

n
ty

A
n
al

y
si

s

O
p
ti

m
iz

at
io

n
.O

p
ti

m
iz

er

A
n
al

y
si

sF
u
zz

y.
F
u
zz

y
A

n
al

y
si

s

A
n
al

y
si

sS
to

ch
as

ti
c.

S
to

ch
as

ti
cA

n
al

y
si

s

A
n
al

y
si

sF
u
zz

y.
A

L
O

A
n
al

y
si

sF
u
zz

y.
S
W

S
F
or

F
u
zz

y

A
n
al

y
si

sS
to

ch
as

ti
c.

H
y
p
er

sp
ac

eD
iv

is
io

n

A
n
al

y
si

sS
to

ch
as

ti
c.

L
in

eS
am

p
li
n
g

A
n
al

y
si

sS
to

ch
as

ti
c.

M
on

te
C

ar
lo

A
n
al

y
si

sS
to

ch
as

ti
c.

S
eq

u
en

ti
al

Im
p
or

ta
n
ce

A
d
ap

ti
ve

C
on

d
it

io
n
al

O
p
ti

m
iz

at
io

n
.N

S
G

A
2

O
p
ti

m
iz

at
io

n
.S

W
S

Figure 3: Hierarchy of analyses

70

Q
u
an

ti
ty

.Q
u
an

ti
ty

Q
u
an

ti
ty

.A
n
al

y
ti

c

Q
u
an

ti
ty

.D
at

aP
oi

n
t

Q
u
an

ti
ty

.E
m

p
ir
ic

Q
u
an

ti
ty

.F
ie

ld
Q

u
an

ti
ty

.U
n
ce

rt
ai

n

Q
u
an

ti
ty

A
le

at
or

ic
.A

n
al

y
ti

c
Q

u
an

ti
ty

E
p
is

te
m

ic
.F

u
zz

y
A

n
al

y
ti

c

Q
u
an

ti
ty

E
p
is

te
m

ic
.F

u
zz

y
P
ie

ce
w

is
eL

in
ea

r

Q
u
an

ti
ty

E
p
is

te
m

ic
.F

u
zz

y
T
ra

p
ez

oi
d
al

Q
u
an

ti
ty

E
p
is

te
m

ic
.F

u
zz

y
T
ri

an
gu

la
r

Q
u
an

ti
ty

A
le

at
or

ic
.E

m
p
ir

ic
Q

u
an

ti
ty

E
p
is

te
m

ic
.F

u
zz

y
E
m

p
ir

ic
Q

u
an

ti
ty

A
le

at
or

ic
.S

to
ch

as
ti

cF
ie

ld

Q
u
an

ti
ty

A
le

at
or

ic
.S

to
ch

as
ti

c
Q

u
an

ti
ty

E
p
is

te
m

ic
.F

u
zz

y
Q

u
an

ti
ty

E
p
is

te
m

ic
.I
n
te

rv
al

Q
u
an

ti
ty

A
le

at
or

ic
.L

ev
el

fo
rS

U
S

Q
u
an

ti
ty

E
p
is

te
m

ic
.F

u
zz

y
C

ar
te

si
an

P
ro

d
u
ct

Figure 4: Hierarchy of quantities

71

	Abstract
	Acknowledgments
	Contents
	Introduction
	Theory
	Uncertainty Models
	Aleatoric Uncertainty
	Epistemic Uncertainty
	Polymorphic Uncertainty

	Fuzzy Quantities
	Membership function, a-Cut and a-Level
	Extension Principle, Multi-Dimensional Fuzzy Quantities
	Generic Representation of a-Levels
	Analytical Fuzzy Quantities
	Empirical Fuzzy Quantities
	Information Reduction Measures

	Fuzzy Analysis
	a-Level-based Methods
	a-Level-free Methods
	Non-Flat a-Level-Optimization
	Comparison of Approaches

	Optimization
	Components of an Optimization Algorithm
	Run-Time Performance Indicators
	Pareto-Fronts

	Algorithms
	Slice Sampling
	Evolu
	Sequential Weighted Sampling (SWS)
	Comparison of Evolu and SWS

	PUQpy – Structure and Uncertainty Analysis
	Requirements and Objective
	Structure
	Module: Analysis
	Class: UncertaintyAnalysis
	Class: Layer
	Class: FundamentalSolution

	Module: Interdependencies
	Modules: Optimization and OptimizationPareto
	Modules: Quantity, QuantityEpistemic, QuantityAleatoric
	Modules: Sampling and Distributions
	Distributed Computing
	Uncertainty Analysis in PUQpy

	Numerical Examples
	Fuzzy Analysis with a Bivariate Fuzzy Input Quantity
	Single Span Girder with Fuzzy Load Positions
	Safety Assessment of a Wide Flange Steel Column
	Basic Problem
	Assumptions
	Approach Shown by the Research Group
	Approach – Modifications and Algorithmic Parameters
	Results

	Discussion
	Results
	Limitation and Perspective

	Acronyms and Glossary
	References
	Appendix

