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Comparing greedy constructive
heuristic subtour elimination
methods for the traveling

salesman problem
Petar Jackovich, Bruce Cox and Raymond R. Hill

Department of Operational Sciences, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, USA

Abstract
Purpose – This paper aims to define the class of fragment constructive heuristics used to compute feasible
solutions for the traveling salesman problem (TSP) into edge-greedy and vertex-greedy subclasses. As these
subclasses of heuristics can create subtours, two known methodologies for subtour elimination on symmetric
instances are reviewed and are expanded to cover asymmetric problem instances. This paper introduces a
third novel subtour elimination methodology, the greedy tracker (GT), and compares it to both known
methodologies.
Design/methodology/approach – Computational results for all three subtour elimination
methodologies are generated across 17 symmetric instances ranging in size from 29 vertices to 5,934 vertices,
as well as 9 asymmetric instances ranging in size from 17 to 443 vertices.
Findings – The results demonstrate the GT is the fastest method for preventing subtours for instances
below 400 vertices. Additionally, a distinction between fragment constructive heuristics and the subtour
elimination methodology used to ensure the feasibility of resulting solutions enables the introduction of a new
vertex-greedy fragment heuristic called ordered greedy.
Originality/value – This research has two main contributions: first, it introduces a novel subtour
elimination methodology. Second, the research introduces the concept of ordered lists which remaps the TSP
into a new space with promising initial computational results.

Keywords Traveling salesman problem, Constructive heuristic, Edge greedy,
Multiple fragment heuristic, Subtour elimination, Vertex greedy, Heuristic,
Fragment constructive heuristic, Exhaustive loop, Greedy tracker, Ordered greedy

Paper type Research paper

1. Introduction
Applegate et al. (2006) describe the traveling salesman problem (TSP) as:

Given a set of cites along with the cost of travel between each pair of them, the traveling salesman
problem, or TSP for short, is the problem of finding the cheapest way of visiting all the cities and
returning to the starting point.
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It can also be mathematically defined as, given a complete graph G = (V, E), cities are
represented via the graph vertices � [ V, and edges e [ E represent the paths between the
cities where the edge weights are the distances between each city: What is the shortest tour
that visits all vertices once and returns to the starting vertex? When traditional linear
programming methods were applied to the TSP, intractability issues arose (Applegate et al.,
2006). It has since been shown that this is because the TSP falls into a class of known
computationally “hard” problems called NP-hard (Rego et al., 2011). No one has yet
developed an efficient method for universally solving large instances of NP-hard problems
to optimality (Khan et al., 2012). The inclusion of the TSP in the set of NP-hard problems
motivates the usage of other solving techniques such as heuristics.

One class of heuristics uses a greedy methodology, where the best immediate choice,
according to a predefined parameter, is selected at each step of the method. An example of a
greedy heuristic for the TSP is the multiple-fragment (MF) heuristic (Bentley, 1992), where
the shortest available edge is iteratively added to form a tour. However, this greedy heuristic
runs the risk of generating subtours, or disconnected tours of less than size N (where N =
jVj), which prevent a single continuous tour from being formed. Some research has been
completed to develop methodologies that avoid subtours when using the edge-greedy
heuristic (Bentley, 1992; Wang et al., 2018).

This paper makes the following contributions:
� First, this research further defines the class of fragment heuristics by clarifying

vertex-greedy vs edge-greedy methods.
� Second, this research bifurcates the choice of greedy methodology from the subtour

elimination method, thus highlighting the importance of subtour elimination
methodologies within this class of fragment heuristics.

� Third, the research proposes a novel subtour elimination methodology, dubbed the
greedy tracker (GT), for the edge-greedy heuristic and compares it to two known
subtour elimination methodologies.

� Fourth, extensions to all three subtour elimination methodologies are introduced to
allow them to handle asymmetric instances.

� Finally, motivated by the GT subtour elimination method, the research introduces
the concept of ordered lists which remaps the TSP problem into a new space with
promising initial computational results.

2. Literature review
2.1 Types of traveling salesman problem construction heuristics
Bentley’s (1992) paper, in addition to many other contributions, established classifications
for TSP constructive heuristics. Bentley breaks TSP construction heuristics into three
general categories: heuristics that grow fragments, heuristics that grow tours and heuristics
based on trees. The latter two classes each ensure viable TSP tours using internally
consistent methodologies. For example, the class “heuristics that grow tours” contains
heuristics that follow the insertion or addition expansion rules. These heuristics each start
with a partial tour consisting of a single vertex which is then gradually grown by adding
new vertices. This is accomplished by deleting an edge and adding two new edges,
according to a specified rule-set, to connect the new vertex to the current tour, ensuring a
valid TSP tour is constructed. However, the “heuristics that grow fragments” class does not
have a consistent methodology to avoid premature partial circuits or subtours.
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2.2 Heuristics that grow fragments
In this section, we briefly introduce the heuristics described in the “Heuristics that Grow
Fragments” section of Bentley’s (1992) paper.

2.2.1 Nearest neighbor. The nearest neighbor (NN) heuristic was first applied to the TSP
in a 1954 paper by Flood (1956) as the “next closest city method.” The process was later
refined by Dacey (1960) who coined its current name. The NN starts at an arbitrary city, and
successively visits the closest unvisited city. Note that the NN heuristic maintains a single
path fragment that originates at the predetermined starting city, and cannot be closed into a
cycle until every vertex has been visited. Therefore the decision of “which edge to add” is
limited to only those edges that leave the current tail of the fragment, yielding an algorithm
run time of O(N2). Future work by Bentley (1992) allowed this heuristic to perform in O(N
log N). This methodology allows NN to quickly create an initial tour which avoids subtours.
However, NN is extremely sensitive to the choice of starting vertex especially in larger
instances. Bentley also introduces a second variant of NN called the double-ended NN which
allows the fragment to grow from both ends.

2.2.2 Multiple-fragment. The MF heuristic was first introduced by Papadimitriou and
Steiglitz (1982) as a modification of a process first seen in a 1968 paper by Steiglitz and
Weiner (Steiglitz, 1968). The heuristic is a more complex greedy TSP heuristic where all
edges of the graph are sorted from shortest to longest. Edges are then added to the tour
starting with the shortest edge as long as the addition of this edge will not make it
impossible to complete a tour. Specifically, this means avoiding adding edges that make
early cycles, and also avoiding creation of vertices of degree three. This process, as
originally proposed, required O(N2 log N) time. However, Bentley was able to speed up this
process to O(N log N) (Bentley, 1992) in a paper introducing his MF version. This yields a
similar run time to NN while maintaining a similar worst-case solution quality. MF’s tour
construction methodology causes the heuristic to only produce a single solution for each
instance where NN can arrive at different solutions based on a different starting point. When
compared to the average NN solution over all starting points, MF tends to outperform NN on
an instance-to-instance basis (Bentley, 1992; Okano et al., 1999).

3. Clarifying the “greedy heuristic”
At present, it is entirely unclear when referencing the “Greedy Heuristic” for the TSP if
the heuristic under discussion is NN or MF. This is acknowledged in Aarts et al. (2003).
Much of this confusion seems to draw from the poor naming conventions used with
respect to how a greedy methodology works. Our first contribution is creating a
framework for greedy heuristics which aligns with the framework established by Talbi
(2009). Talbi notes that constructive heuristics involve two choices: First, determine a set
of elements, Sj = {e1,j, e2,j, . . ., ep,j}, which comprise the neighborhood of the current
solution (i.e. the set of possible choices at each iteration j). Second, define a methodology
to choose an element ei,j from this set Sj. Thus, the framework of how this set Sj is defined
is crucial to how the heuristic constructs the solution. In the case of TSP fragment
heuristics, we propose a more comprehensive classification that splits this class into two
greedy-type methodologies: vertex-greedy and edge-greedy heuristics based on how the
set Sj is defined.

3.1 Vertex-greedy
In the vertex-greedy TSP fragment heuristic sub-class, the set of edges available at each
iteration is defined by a given vertex. The key defining characteristic of this sub-class is that
the set Sj is limited to the edges incident to a given vertex. Depending on the measure of
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merit being greedily optimized, this sub-class results in different heuristics. NN is one such
example of this vertex-greedy sub-class, wherein the starting vertex is user defined. The
elements of Sj are subsequently defined as the edges incident to the vertex at the head of the
fragment. For NN the measure of merit driving the choice of element from Sj is the shortest
edge.

3.2 Edge-greedy
The edge-greedy TSP fragment heuristic considers the set of all available edges at each
iteration which will not make it impossible to complete a tour. The first criterion to narrow
the scope of this set is to identify all edges that will not cause a vertex to have a degree of
more than 2 when added. The second criterion, which is much more difficult, is to identify
which edges will cause a tour of less than size N (i.e. a subtour) to form. An edge is then
chosen from this reduced set based on the measure of merit being greedily optimized. As
with the vertex-greedy sub-class, this sub-class can produce multiple different heuristics
depending on the measure of merit.

Part of the confusion in the literature when referencing the “Greedy Heuristic” revolves
around Bentley’s MF being viewed as what we describe as the edge-greedy heuristic.
However, we argue the true significance of Bentley’s MF is not the edge-greedy
methodology he proposes but rather the development of a subtour tracking and elimination
methodology, which could be applied to any member of the edge-greedy class of TSP
constructive heuristics.

4. Subtour tracking and elimination methodologies
In addition to Bentley’s MFmethodology (Bentley, 1992), a well-known, though to the best of
our knowledge, previously undocumented methodology we dub exhaustive loop (EL) can
also be used to track and eliminate subtours for edge-greedy TSP constructive heuristics.
This paper introduces a third novel method we call the GT.

4.1 Symmetric versus asymmetric instances
TSP instances can be either symmetric or asymmetric; similarly subtour tracking
methodologies can be either directional or non-directional. Non-directional subtour tracking
methodologies construct a tour with no regard to the direction of travel for each edge while
ensuring no vertex has a degree of more than 2. This methodology can only be used with
symmetric TSP instances. This allows some computational advantages as only N*(Nþ 1)/2
edges need to be initially sorted. Directional subtour tracking methodologies can be used on
either symmetric or asymmetric instances when the direction of edge travel is either of
importance to the final solution and/or takes different costs to travel based on direction. In a
directional scenario, all edges of each direction N2 – N, are sorted from shortest to longest
and rather than tracking the total degree of each vertex, each vertex can only be entered and
left once, ensuring a continuous direction throughout the tour.

4.2 Multiple-fragment
The non-directional variant of MF is well documented throughout TSP literature (Bentley,
1992; Wang et al., 2018; Okano et al., 1999). However, a formalization of the directional
variant, required for asymmetric instances, is missing from this literature. This process
appears to have been used in a 1999 paper by Glover et al. (2001). However, neither
pseudocode nor an explicit description of altering the methodology for directional instances
is available. The primary alterations are to consider all edges of each direction and splitting
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the degree array into “To” and “From” arrays. The process then continues as described by
Bentley (1992), where after each edge is added, the tails of the associated fragment are
updated to ensure no subtours are formed. Pseudocode for this modified methodology is
included as Algorithm 1.

Algorithm 1Multi-Fragment (Directional) Pseudocode
1:Sort edges(i,j): Shortest to Longest
2: while Number of visited vertices<N�1 do
3: if next shortest edge(i,j) is not in tour and no edges leave i or j

then
4: add edge(i,j) to tour
5: if no other edges in tour enter or leave vertices i or j then
6: Set vertex j as the tail of vertex i
7: Set vertex i as the head of vertex j
8: else if Another edge enters vertex i and no edges leave vertex j

then
9: Set the vertex on the end of the fragment entering vertex i as

head of vertex j
10: Set vertex j as the tail of the vertex on the end of the fragment

entering vertex i
11: else if No edge enters vertex i and an edge leave vertex j then
12: Set the vertex at the end of the fragment leaving vertex j as

the tail of vertex i
13: Set vertex i as thehead ofthe vertex at the endof the fragment

leaving vertex j
14: else if Another edge enters vertex i and an edge leave vertex j

then
15: Edge(i,j) is connecting two fragments. (i.e. Set the vertex

at the end of the fragment entering vertex i as the head of
the end of the fragment leaving vertex j, and vice versa.)

16: end if
17: end if
18: Increment number of visited vertices
19: end while

4.3 Exhaustive loop
The EL is not well documented in academic literature, often simply referenced as “the
standard way.” To the best of our knowledge, no formal coverage of this method currently
exists in literature. EL cycles through every edge in the fragment containing the most
recently added edge. Once an edge eij is added to the partial tour, vertex i is identified as the
“start vertex” and vertex j will be set as “current vertex.” A trace along the current partial
tour then begins. At each step of the trace, the “current vertex,” vertex j, is checked to see if it
is connected to another vertex k via edge ejk in the partial tour. If it is, then vertex k becomes
the new “current vertex.” If the trace returns back to the “start vertex” in under N steps,
whereN = –V– (the number of vertices in the instance), then the added edge eij has created a
subtour and is an illegal edge. If no edge leaves the “current vertex,” the addition of edge eij
is valid and the current portion of the tour is still a fragment. Each time an edge is added, a
count is incremented and the process continues until N �1 edges have been added upon
which the last two endpoints are connected.
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The EL can also be modified to handle a directional methodology by splitting the
“Degree” array into a “To” and “From” array, and rather than checking if current vertex has
a degree of 2, check if the current vertex has a value of 1 in “From” array.

4.4 Greedy tracker
We introduce a novel way to track the progress of the edge-greedy construction heuristic,
and ensure subtours are not created. This new method is called the “greedy tracker.” The
GT tracks a vertices’ connection with other vertices when constructing a TSP tour. While we
define both non-directional and directional GT variants, it is conceptually easier to visualize
the GT using its directional variant on a symmetric instance and then generalize the process
for use on asymmetric instances or to the non-directional variant. Thus, the following
introduction to the GT uses the directional variant on a symmetric matrix and is
accomplished using the following structures:

� X = binary n by nmatrix of xij;
� F = binary n by 1 array of fi;
� T = binary n by 1 array of ti;
� xij = 0 if edge from i to j is eligible, greater than 0 if not eligible;
� fi = binary for whether vertex i has been left; and
� ti = binary for whether vertex i has been entered.

These structures track each move to prevent subtours. Given our prior example, the initial
condition of GT, and associated structures, can be seen in Figure 1.

The X (identity), F (from) and T (to) structures can be seen above on the left and, for ease
of reference, the associated distance matrix from the TSP instance can be seen on the right.
The 1s loaded on the diagonal of the X matrix (where i = j) signal ineligible moves. Note that
the diagonal on the distance matrix has been colored grey, and set to zero, to
correspondingly show these ineligible edges. The distance matrix indicates that the shortest
edge is either fromA to B or vice versa, thus edge A to B is selected. The X, F and Tmatrices
are updated with 1s to indicate this move, as shown in Figure 2.

Next, the column of the X matrix associated with the new edge is processed. Every
row where a 1 appears is combined with the “From” row of the created edge. Figure 3
illustrates this operation. As seen in Figure 3, as row 2 has a 1 in the same column as our
new edge, the two rows were combined so that any 1s that were in row 1 are now also in
row 2. Note that for the example we only show values of 1 so as to not detract from their

Figure 1.
GT example –
initialization
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purpose of referring to an ineligible move. However, in the code, the values in each row
are added and values of greater than 1 appear.

For ease of reference, in this example, ineligible values in the distance matrix are turned
grey. As can be seen in Figure 4, distances that correspond with a 1 in the X matrix are
ineligible moves. Note that any row or column that has a 1 in the T or F array is also marked
as an ineligible move. This information is used in the first step of the next iteration where
the shortest available edge is identified.

As seen in Figure 5, the shortest available edge is B–C and once again the X matrix, from
and to arrays are updated with 1s to indicate the move.

Figure 2.
GT example –

iteration 1, step A

Figure 3.
GT example –

iteration 1, step B

Figure 4.
GT example –

iteration 1, step B
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The column of X associated with the “To” vertex of the new edge is processed and every row
where a 1 appears is combined with the “From” row of the created edge which can be seen in
Figure 6.

All the distances that correspond with a 1 in the X matrix are marked as ineligible moves
in the distance matrix, as well as any distances associated with a 1 in the T and F arrays.
The resulting step can be seen in Figure 7.

The grey numbers in the distance matrix indicates that adding edge A–C is no longer
possible because vertex C already has an edge entering it. This process prevents the
formation of the subtour. The process shown above continues until all vertices have been
visited which creates a Hamiltonian path. The final connection to complete the tour is made
using the to and from arrays as each has an index that is still empty.

Figure 5.
GT example –
iteration 2, step A

Figure 6.
GT example –
iteration 2, step B

Figure 7.
GT example –
iteration 2, step B
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Real-world implementation of GT requires adjustments to achieve slower computational
growth by reducing the total number of operations that occur within each iteration. This is
achieved by removing the addition of values with respect to vertices that have been exited
and entered. This decreases the dimensionality of the GT as the tour is constructed and is
possible because once a vertex has been entered (respectively, exited) no more edges may
enter (respectively, exit) that vertex. Therefore, it is unnecessary to track what edges could
produce a subtour by entering (respectively, exiting) that vertex. Consider for example the
same five-by-five instance. After completing the row additions after adding edge A–B,
column B can be deleted. Figure 8 shows the resulting GT and distance matrix.

This process can also be applied to rows to further reduce problem dimensionality. When
working with a non-directional instance, a column and rowwould be deleted after the vertex
had a degree of 2.

These row and column deletions are a key feature. Fundamentally, as a new edge is
added to the tour, the GT is identifying which edge(s) would form a subtour for the fragment
including that new edge. Bentleys MF on the other hand tracks the tails of every fragment
and prevents the head and tail of a fragment from connecting. There appears to be some
advantage in GTs approach as only one number is added to the X matrix at each step.
However, the per step computational burden to find that one number may be higher as GT
must search for and identify the shortest eligible edge, whereas while MF references more
vertices (tails), there is no searching necessary.

5. Results and analysis
To compare the run times for the MF, EL and GT subtour elimination methods, all three
methods were run across 17 symmetric and 9 asymmetric TSP instances.

5.1 Traveling salesman problem instances
TSP instances are available in an online library, TSPLIB, maintained by Ruprecht-Karls-
Universitat Heidelberg located in Baden-Wurttemberg, Germany (TSPLIB, 2018). For the
purposes of this research, testing was performed on the instances seen in Table 1, where the
alpha prefix is an identifier and the numerical suffix indicates the instance size (in number of
vertices).

5.2 Testing
Initial tests verified that each subtour method (MF, EL and GT) resulted in the same tour for
all TSP instances. These tests were conducted with both directional and non-directional
versions of codes on symmetric TSP instances. In addition, the directional code versions
were run on the asymmetric TSP instances.

Figure 8.
GT revised iteration

1, step B

Traveling
salesman
problem

175



Once testing verified each subtour elimination method produced identical greedy tours,
remaining testing focused on computational run-time comparisons. Each subtour
elimination method was placed in the same edge-greedy heuristic shell so that testing would
fairly compare the speed of the three subtour tracking and elimination methodologies.
Bentley (1992) andWang et al. (2018) each used advanced computer techniques (i.e. k-d trees)
and additional data structures to speed up the process of finding the next shortest available
edge. However, as these do not affect the speed of the subtour tracking and elimination
methodologies, they were not used.

Speed tests were conducted using the R package “microbenchmark.” A total of 100
iterations of each method were run per instance to create summary statistics on 17 different
symmetric TSP instances and 9 asymmetric instances. Both symmetric and asymmetric
instances were tested to determine if symmetry effected run time.

5.3 Symmetric instance results
Table 2 provides summary statistics for the 17 symmetric instances. The mean run time is
provided on first line, with associated standard deviation below.

When looking at the directional variants, the GT is the fastest method on small instances
followed by EL then MF. Once instance size is 442 or larger, MF and GT are
undifferentiated. However, MF does begin to consistently produce lower means then the
other methods. This is probably because of its linear growth in operation count as instance
size grows. GT does not necessarily possess this characteristic but the dimensionality
reduction of GTmay prove a similar role.

Interestingly, all three non-directional variants run slower than their directional
counterparts up to around the 100 vertex instances. As with the directional variants, GT is
the fastest method till instance size 225, after whichMF becomes the fastest.

5.4 Asymmetric instance results
The directional variants of each subtour elimination codes were also run on asymmetric
TSP instances to compare runtimes to determine if any trends changed. The mean run times
and associated standard deviations are in Table 3.

Table 1.
TSP instances used
in current testing

TSP instances
Symmetric Asymmetric

bays29 br17
gr48 ry48p
gr51 ft53
berlin52 ft70
pr76 kro124p
kroa100 rgb323
gr120 rgb358
gr130 rgb403
gr195 rgb443
ts225
pma343
pcb442
dsj1000
pr1002
pr2392
fnl4461
rl5934
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For the asymmetrical instances, we note that GT is the fastest method through instance
size 124. MF became the fastest methodology when the instance size reached 358 vertices,
but was tied by the GT at an instance size of 403 vertices. This leads us to believe that
some of the subtour methodologies may have computational advantages for specific TSP
instances dependent on how the tour is constructed. For example, specific instances may
have vertices spaced in such a fashion that for a majority of the tour construction, the
tracking methodology is maintaining a small number of large fragments. It is possible
that one of the methodologies is computationally more efficient for these instances and
may be computationally slower in TSP instances where vertices force an edge-greedy
tour construction that results in many small fragments to be tracked. Future analysis of
instance geometry and resulting run times should be conducted to test whether this
hypothesis holds any merit. With the exception of the variation seen for the 403 vertex
instance, prior overall trends from the symmetric instances remain, where GT is

Table 2.
Greedy subtour

methodology run
times (symmetric

instances)

Milliseconds Directional Non-directional
Instance Stat EL MF GT EL MF GT

bays29 Mean 23.2 52.0 22.4 29.7 44.2 24.4
Std dev. 0.7 0.8 1.0 0.9 0.8 0.7

gr48 Mean 25.4 56.1 25.0 30.5 46.8 25.8
Std dev. 0.8 0.8 0.8 0.7 1.1 0.8

eil51 Mean 26.7 53.2 24.4 32.3 50.4 28.1
Std dev. 1.5 0.8 0.8 0.7 1.3 1.1

berlin52 Mean 26.6 53.1 24.1 31.4 47.9 26.3
Std dev. 1.2 0.8 0.8 0.7 1.4 0.8

pr76 Mean 30.8 56.9 28.5 32.8 46.9 29.9
Std dev. 1.3 0.8 1.3 0.6 0.6 1.3

kroa100 Mean 36.8 60.8 34.5 36.5 50.4 30.8
Std dev. 1.6 1.2 0.6 1.1 1.3 0.8

gr120 Mean 41.9 66.5 43.1 40.5 52.2 34.9
Std dev. 0.9 1.9 1.9 1.4 1.0 1.1

ch130 Mean 48.9 70.4 43.7 43.3 52.9 35.7
Std dev. 1.5 1.2 1.8 1.7 1.2 0.8

rat195 Mean 76.8 98.6 73.6 54.5 65.0 50.3
Std dev. 1.6 2.2 2.7 1.1 0.7 1.2

ts225 Mean 97.8 113.9 95.4 61.8 68.1 57.3
Std dev. 2.2 3.1 3.5 1.7 0.8 2.9

pma343 Mean 193.7 193.9 177.0 121.2 111.9 107.7
Std dev. 3.4 3.4 3.5 3.0 2.2 4.5

pcb442 Mean 363.7 312.8 317.2 177.0 166.1 180.5
Std dev. 4.4 4.4 4.1 2.3 2.1 4.7

dsj1000 Mean 1.667(s) 1.341(s) 1.440(s) 906.9 660.1 750.2
Std dev. 3.7 4.6 3.5 7.8 5.6 8.1

pr1002 Mean 1.595(s) 1.308(s) 1.374(s) 863.3 637.3 761.8
Std dev. 5.4 5.0 4.7 3.8 4.0 17.1

pr2392 Mean 9.268(s) 7.214(s) 7.611(s) 4.900(s) 3.405(s) 3.796(s)
Std dev. 20.4 24.2 22.9 15.6 9.8 20.6

fnl4461 Mean 27.416(s) 23.096(s) 24.198(s) 16.752(s) 11.268(s) 12.286(s)
Std dev. 42.3 48.2 53.1 49.0 40.9 39.6

rl5934 Mean 72.697(s) 51.579(s) 54.703(s) 41.937(s) 22.301(s) 25.171(s)
Std dev. 0.042(s) 5.789(s) 5.368(s) 4.113(s) 0.742(s) 2.616(s)

Note: For each instance, a mean of 100 runs is provided on first line and standard deviation on second line
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competitive for small- to medium-sized asymmetric instances, but MF is fastest for larger
instances.

6. Ordered greedy heuristic
The separation of the subtour tracking methodology from the underlying greedy heuristic
methodology is not just pedantic. This realization allows researchers to use subtour
elimination methodologies to develop new greedy-fragment heuristics to build viable TSP
tours. This research concludes with a new constructive heuristic called the ordered-greedy
(OG) heuristic. The OG heuristic is a vertex-greedy heuristic that takes as input a complete
ordered list of vertices. Starting at the top of the list, each vertex is considered in turn and
the available set of choices Sj at each step is limited to the feasible edges originating at that
vertex. What differentiates the OG from NN, another vertex-greedy heuristic, is that
multiple fragments may exist during the tour construction of OG.

The motivation of the OG heuristic is to apply a more structured approach in which
vertices are given priority in connecting to their NNs. Vertices higher in the list have
maximum flexibility with minimal concern for vertex degree or subtours and thus typically
choose better edges than vertices later in the list which experience significantly fewer
degrees of freedom in their legal edge choices. The quality of the solution found is thus
heavily dependent on the order of the list.

To introduce the methodology of the OG heuristic, consider the following example. In
this example, an ordered list of D, E, C, B and A has been, through some unspecified fashion,
predetermined. This ordering of the vertices list is reflected, for ease of reference, in the X
matrix and to and from arrays on the left side, and in the distance matrix on the right side of
Figure 9 whose rows are now sorted according to this list order. The constructive heuristic
now makes greedy decisions starting at the top of this list and working down. The first
greedy decision is made with respect to vertex D.

Table 3.
Greedy subtour
methodology run
times (asymmetric
instances)

Milliseconds Directional
Instance Stat EL MF GT

br17 Mean 22.2 52.5 21.1
Std dev. 0.7 1.0 0.8

ry48p Mean 24.5 53.9 23.2
Std dev. 0.8 1.4 0.8

ft53 Mean 25.6 54.0 24.7
Std dev. 0.9 1.4 0.8

ft70 Mean 28.5 56.5 27.4
Std dev. 0.8 1.4 0.8

kro124p Mean 35.9 64.4 34.6
Std dev. 1.4 1.9 0.7

rgb323 Mean 230.3 195.5 199.1
Std dev. 5.8 5.2 6.5

rgb358 Mean 242.7 219.7 231.3
Std dev. 2.8 2.8 2.5

rgb403 Mean 311.9 275.2 274.5
Std dev. 3.7 3.5 3.8

rgb443 Mean 366.5 315.3 330.5
Std dev. 2.9 2.5 2.6

Note: For each instance, a mean of 100 runs is provided on first line and standard deviation on second line
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The greediest or shortest edge, from vertex D is edge D–E as indicated above. This
edge and its associated vertex are tracked via the GT. The next step is made with
respect to vertex E. This is not because of vertex E being the head of the previous edge
added, but rather because it is the second vertex in the provided ordered list: D, E, C, B
and A. Looking at the row in the distance matrix associated with vertex E along with
the GT output that captures ineligible moves (as seen in Figure 10), the shortest legal
edge available is edge E–B.

This process continues row by row until the final row is reached which is where the to
and from arrays are scanned to find the final legal edge as seen in Figure 11.

After adding edge A–D, the resulting tour becomes A–D–E–B–C–A, which is also the
optimal tour for this TSP instance.

The OG heuristic is in-and-of itself of marginal interest when viewed as another NN style
vertex greedy construction heuristic. It is more intriguing when viewed as a general function
which takes as input an ordered list and outputs a tour. This OG function is neither one-to-

Figure 9.
OG example –

iteration 1

Figure 10.
OG example –

iteration 2

Figure 11.
OG step 3
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one, nor onto. In other words, while each ordered list uniquely maps to a tour, multiple
ordered lists may map to the same tour. Thus the range of this mapping is a proper subset of
the set of all tours. This naturally leads to a question of quality. The size of the ordered list
space and the size of the tour space are identical (for the symmetric Euclidean TSP both are
N�1ð Þ!
2 ), hence the questions:

Q1. Is exploring the ordered list space, in some fashion, worth it?

Q2. Do the tours generated by the OG heuristic for random ordered lists represent a
sufficient improvement over randomly generated tours?

To answer these questions, we took five symmetric TSP instances and two asymmetric
instances. From each instance, we randomly selected nine nodes. We exhaustively
generated all string permutations for these nine nodes and examined these strings both
as tours and as input to the OG function. The results of this analysis can be seen in
Table 4. As expected, the mean and even maximum tour lengths decreased as a result of
the OG function. The most striking, and most promising, outcome however was the
number of optimal length tours the OG function created. This result strongly suggests
that searching through the ordered list space may prove beneficial. However,
significant additional testing is required to determine if exploration of the ordered list
space is sufficiently desirable to overcome the, albeit minimal, cost of calling the OG
function.

Table 4.
Exhaustive search
results for tours vs
output of OG
function on nine
random vertices
drawn from five
symmetric and two
asymmetric
instances

Symmetric Tour OG

eil51 Mean 241.3 174.7
Max 316 239
Number opt 18 18,180

gr120 Mean 2476.0 1981.1
Max 3,267 2,677
Number opt 18 3,156

rat195 Mean 309.0 193.3
Max 410 310
Number opt 198 13,586

ts225 Mean 15,000.00 9153.5
Max 20,000 14,000
Number opt 1,152 177,218

pma343 Mean 93.5 70.4
Max 113 97
Number opt 18 10,160

Asymmetric Tour OG
br17 Mean 163.3 82.1

Max 295 166
Number opt 288 34,316

ft70 Mean 6488.0 5328.1
Max 7,613 6,378
Number opt 9 9,504

Note: Mean tour length, maximum tour length and number of occurrence of optimal tour length are
provided
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7. Conclusion
As an NP-hard combinatorial optimization problem, the TSP is often solved via heuristic
methodologies. One of the biggest considerations when constructing solutions is avoiding
subtours, or a loop of interconnected vertices that prevents a single continuous tour among
all cities within the instance. This paper introduced a novel subtour elimination
methodology for the edge-greedy heuristic that is compared to two known subtour
elimination methodologies. Computational results were generated across multiple TSP
instances for each method.

When using an edge-greedy type heuristic, additional steps must be taken to ensure that
subtours are avoided and resulting tour is a valid TSP solution. This paper recognized two
accepted edge-greedy subtour elimination methodologies, the EL and Bentley’s MF, and
compared them to our GT. The comparison used both directional and non-directional
variants of each code on 14 symmetric TSP instances and the directional variants on 9
asymmetric instances.

The results of the comparison between each of these edge-greedy subtour elimination
methodologies showed that the GT was the fastest tracking methodology for small- to
medium-sized instances. However, Bentley’s MFmaintains the computational advantage for
larger instances.

However, these results also indicated that given a more efficient coding implementation
of methodology used for the X matrix, the GT could become the preferred methodology for
all instance sizes. For future research, the GT should be modified to handle a new row/
column generation and delete technique to minimize the computational time used in the
searching portions of the GT.
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