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Abstract

Effective personnel management policies in the United States Air Force (USAF)

require methods to predict the number of personnel who will remain in the USAF

as well as to replenish personnel with different skillsets over time as they depart. To

improve retention predictions, we develop and test traditional random forest models

and feedforward neural networks as well as partially autoregressive forms of both,

outperforming the benchmark on a test dataset by 62.8% and 34.8% for the neural

network and the partially autoregressive neural network, respectively. We formulate

the workforce replenishment problem as a Markov decision process for active duty

enlisted personnel, then extend this formulation to include the Air Force Reserve and

Air National Guard. We develop and test an adaptation of the Concave Adaptive

Value Estimation (CAVE) algorithm and a parameterized Deep Q-Network on the

active duty problem instance with 7050 dimensions, finding that CAVE reduces costs

from the benchmark policy by 29.76% and 17.38% for the two cost functions tested.

We test CAVE across a range of hyperparameters for the larger intercomponent prob-

lem instance with 21,240 dimensions, reducing costs by 23.06% from the benchmark,

then develop the Stochastic Use of Perturbations to Enhance Robustness of CAVE

(SUPERCAVE) algorithm, reducing costs by another 0.67%. Resulting algorithms

and methods are directly applicable to contemporary USAF personnel business prac-

tices and enable more accurate, less time-intensive, cogent, and data-informed policy

targets for current processes.
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RETENTION PREDICTION AND POLICY OPTIMIZATION FOR UNITED

STATES AIR FORCE PERSONNEL MANAGEMENT

I. Introduction: US Air Force Human Capital Management

“Credibility of personnel policies and management practices suffers when
the reasons for their existence are not clearly defined or understood by
all members of the force. Increasing the visibility of the logic behind
personnel policies promotes acceptance and understanding.”

- The USAF Personnel Plan (Dixon Plan), 1979

1.1 Fundamentals of Manpower and Personnel (Why Does This System

Exist?)

The United States Air Force’s (USAF) manpower and personnel systems fre-

quently act in complex and counterintuitive ways that are difficult to understand

and measure without detailed knowledge of the subject. Unlike many functional ar-

eas wherein the USAF can look to industry to find solutions to common problems,

the USAF has a fundamentally different personnel problem than the majority of

businesses in the private sector, given the necessity to comply with Congressional

end-strength expectations in combination with its unique structure. With the ex-

ception of medical and legal personnel, this current structure of the USAF requires

it to develop its people from the beginning, developing the knowledge, skills, and

abilities to be a fighter pilot, F-22 crew chief, remotely piloted aircraft (RPA) pilot,

or cyber operator, for example, from the ground up. Unlike human resource planning

in many areas, the USAF’s primary personnel problem is not how quickly it can hire
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a person with the prerequisite skillset. The USAF problem is how to address current

and emerging manpower requirements with new accessions (i.e., newly hired, entry-

level personnel) and existing, experienced personnel (with various skillsets and levels

of experience). In large part, training and force management decisions made 5, 10,

or 20 years ago determine the number of people with specific skillsets and levels of

experience.

One key difference between the modern USAF and the historical approach to

fielding military personnel is the role of people in fielding technological capabilities.

Although not universally true, the combat capability of much of the military has his-

torically depended on its ability to field substantial numbers of recently trained junior

personnel. The USAF, in contrast, fields much of its combat capability via technolog-

ically complex systems. An F-22 maintenance crew chief is a most effective subject

matter expert once qualified as a 7-level craftsman, after gaining multiple years of ex-

perience. Without the correct number of 7-level maintainers, aircraft cannot fly, even

when an abundance of recently trained 3-level apprentices are available. Recently

recruited and trained infantry soldiers can have a direct and consequential impact

on Army readiness, but the same is not true for the vast majority of Air Force spe-

cialties. Therefore, the USAF must continually grapple with complex and long-term

consequences of manning challenges—even when these challenges stem from internal

or external factors many years ago.

In order to discuss this topic effectively, a clear set of definitions must be prof-

fered. First, when discussing manning, we are referring specifically to the number

of permanent party inventory divided by the number of authorizations on the Man-

power Programming and Execution System Unit Manpower Document (MPES-UMD,

also referred to as the UMD). As such, manning itself does not address whether the

number or type of authorizations are correct or what the relationship to the original
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unfunded requirements might be. Moreover, all references to manpower relate to the

process for planning and funding requirements (i.e., spaces), whereas all references

to personnel relate to the process of fielding human capital (i.e., faces). One set of

human capital challenges arises when disconnects occur between the numbers of faces

and spaces, observed as shortages.

1.2 Guiding Principles for an Idealized Human Capital System

Before delving into how the AF system works now, we need to be oriented to

how the system should work in theory. This enables an examination of where current

manpower and personnel policies and practices fall short and what solutions to those

disconnects could look like.

• Principle 1: The system should utilize the human capital it has presently to the

greatest effect by:

1. maximizing commanders’ flexibility to make resourcing decisions to exe-

cute current operations while

2. making specific decisions on where to not apply resources (colloquially: to

take risk) and

3. communicating that risk to the commanders who are not receiving the

required resources so they can adapt to this decision.

• Principle 2: The system should enable senior leaders and the U.S. Congress

to make decisions about future force composition and understand the cost and

consequences thereof. These decisions manifest as manpower authorizations but

are only relevant in how they affect future human capital (personnel). Colloqui-

ally: without a service member to fill it, no authorization has ever contributed

anything to mission effectiveness. . . ever.
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• Principle 3: The system should plan and execute precise, intentional policy

decisions to shape future human capital resources to meet future force compo-

sition. These data-informed policy decisions should consider the likely range

of outcomes associated with those policies. We should measure these outcomes

against alternatives to assess whether required human capital will be available

to enable operations over time (readiness/lethality), and whether this availabil-

ity over time can be sustained. We should measure outcomes and compare

these to predictions to continuously refine models, assess model confidence, and

identify lessons learned.

• Principle 4: The system should enable smart talent management opportunities,

balanced with executing current operations and meeting future needs. Talent

management is a dynamic rather than fixed process. Defined requirements

should largely guide policies for the development of individuals, but enabling

people to meet their full potential may require developmental experiences that

are tailored, difficult to quantify fully, or beyond the awareness of those who

establish requirements.

• Principle 5: The system should function well enough to minimize strain on the

service members within this system. Stresses from unnecessary bureaucracy,

inadequate support, or clearly inequitable or inefficient business practices create

negative consequences for performance, retention, satisfaction, and engagement.

1.3 The Human Capital Analytic Pyramid

Given the complexities of managing the USAF manpower and personnel system,

the broader problem must be identified and clearly scoped. To that end, we propose

the human capital analytic pyramid, which helps depict the range of granularity of the
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human capital problem with the relationships between these decomposed problems

and the principles identified above. This pyramid shows a way of framing the problem

where difficulty increases as one ascends upward through its layers. Each layer grows

progressively more complex while interacting with the layers above and below.

Figure 1. Five Levels of Human Capital Analytic Pyramid

The first layer is end-strength management, wherein the AF can achieve success

simply by ensuring it has the Congressionally authorized total number of people

irrespective of training or skillset composition. Even this problem is not trivial,

but it is an order of magnitude easier than even one level deeper, Air Force Specialty

Code (AFSC) Health, which is measured primarily by overall AFSC permanent party

manning. This AFSC Health layer is easier to manage than the next, which requires

not only the right mix of AFSCs, but also whether the personnel in those AFSCs have

the correct experience and competencies, historically measured by grade or skill level

for the enlisted force. Another level further includes whether the personnel available

are adequate to enable some level of combat capability. Finally, we include a nebulous

“Airman Quality of Life,” which captures many different, independently important
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features such as morale and culture. Given the scope and complexity of this level, no

single, good, representative measure relates. However, it is important to remember

this level exists, as the effects of the higher levels play a large role in influencing

airman experience, and it in turn plays a large role in influencing every other level.

As an illustrative example, when end-strength is managed aggressively (Level 1), it

makes it difficult to manage AFSC and grade manning (Levels 2 and 3), which affects

people’s lives, feelings of security, and workload (Level 5). This impact can then

be felt in retention, which in turn influences every level below, cascading through

combat effectiveness, experience, AFSC manning, and end-strength. Although we

cannot entirely separate any of these layers, there are ways to measure each that

provide different insights to the human capital problem.

1.3.1 Level One: Total Personnel (End-strength)

The first problem in managing human capital is to have the chosen total number

of people in the system. In the USAF, analysts describe this problem in terms of

managing end-strength. The USAF traditionally simplifies this problem by managing

how to finish a given fiscal year with the desired number of personnel.

The primary lever for solving this problem is determining an appropriate, aggre-

gate number of accessions. Efforts to shape retention should not be dismissed entirely,

although these efforts typically have a far smaller impact than outside factors such

as changes in economic factors or Airmen’s impressions of AF culture and standard

of living. Additionally, retention incentives change by relatively small amounts each

year in comparison to aggregate compensation. For these reasons, the USAF manages

end-strength primarily through accessions, especially when total end-strength is flat

or growing. When slight cuts are required, it can also reduce the force size through

reductions in the number of accessions. For significant cuts in end-strength, it can
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use force management actions such as Reduction in Force (RIF) and force shaping

boards; however, these tools can have significant negative impacts both to the Air-

men selected as well as those not selected, who experience the career uncertainty

when meeting these boards. Although the AF must be able to manage its resources,

it should not cavalierly embrace policy levers that create pain and frustration for its

personnel and compromise the trust and security of its Airmen.

When building active duty, or Regular Air Force (RegAF), accession plans, USAF

analysts determine the aggregate number of accessions each year not by examining

the number of accessions needed for individual AFSCs in the RegAF, but by consid-

ering the aggregate funded end-strength target. This change in end-strength is the

combination of expected attrition from the force and the desired level of growth or

decline in total personnel. In an environment with unstable budgets and desires for

different end-strength targets, accession levels change across the AF on a regular ba-

sis. As an added complication, trainees attending Basic Military Training (BMT) and

Initial Skills Training (IST) have some level of washout rate resulting in a departure

from the USAF. This washout rate describing departures is not to be confused with

a washback rate, which describes trainees who simply move back a class, or washout

rates describing transfers that result in an Airman moving to another IST pipeline,

which does not result in a loss to the AF. This washout rate describing departures

means that for every additional accession, the estimate of Airmen losses also increases

slightly due to the potential for this new recruit to depart the AF before the end of

BMT or IST. Figure 2 depicts this relationship.

The implementation of policies to manage end-strength creates bow waves (i.e.,

overages compared to steady state) and bathtubs (i.e., shortages compared to steady

state) whenever the Air Force changes its end-strength by a significant margin. Each

one of these decisions continues to impact experience, readiness, and aggregate reten-
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Figure 2. End-strength is determined by beginning strength, gains, and losses.

tion for over 20 years as Airmen age through the system.

1.3.2 Level Two: AFSC Health

It should be apparent that having the right total number of people in the RegAF

is necessary but insufficient to field the human capital needed to deliver effective

combat capabilities. As we progress to the next level, we now consider whether the

total number of permanent party personnel with a given AFSC matches the total

authorizations for that AFSC summed across the UMD for each Major Command

(MAJCOM). Permanent party personnel are fully qualified personnel who are not in

a designated Student, Transient, and Personnel Holdee status.

Further background is required to understand the nuances of the career field man-

ning aspect of USAF Human Capital Management. Unlike with end-strength man-

agement, the USAF regularly struggles to achieve its primary objectives at this level,

averaging approximately 12,000 enlisted AFSC shortages per year over the last two

decades. Fundamentally, this HCAP level is about having the right number of per-

sonnel within each AFSC. However, two complications arise. First, only permanent

party personnel can fill positions on the UMD, which do not include those still in IST

prior to arrival to their first duty station. Second, positions on the UMD change over
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time.

Career Field Health and the USAF Sustainment Model

The Career Field Health (CFH) approach to force management leverages the sus-

tainment model, which is a steady state representation of each AFSC given they

achieved 100% manning by accessing and retraining a consistent number of personnel

every year. Officer and enlisted AFSCs both utilize the Career Field Health approach,

but there are some differences. The officer methodology accounts differently for those

serving outside their core AFSC. For this reason, this discussion describes sustain-

ment in terms of the enlisted force, as that is the baseline for both methodologies.

Any differences between the two approaches are noted by exception. There are several

desirable features of this approach. First, it uses the AFSC’s own retention behavior

by years of service (YOS) over the last five years as a predictor for future behavior.

Years of service show substantial predictive power for retention behaviors; Airmen

make many transitions at key points in time that are generally stable in relation to

years of service. Retention here describes the observed probability of an Airman re-

maining in the force for an additional year given their number of completed years of

service. For example, the likelihood of departing the service after two years remains

consistently low, as the enlisted Airman entered service under a four or six year en-

listment contract and has at least two years of obligated service remaining. At four

to six years of service, as the service member completes the first enlistment or active

duty service commitment (ADSC), we observe substantially lower retention. At 18

years of service, retention rises dramatically due to the incentive of a defined benefit

retirement plan only available when the service member reaches 20 YOS. We observe

a sharp drop in retention at retirement eligibility. Finally, AFSC sustainment maps

retention within the AFSC, not within the USAF. Thus, the sustainment model con-
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siders an individual retraining out of an AFSC as a loss for that AFSC because that

Airman will no longer meet one of those AFSC’s authorizations.

The second set of behaviors that feed the sustainment line derives from the gains

distribution describing when individuals complete training and become permanent

party members in their career field. This distinction bears mentioning because the

delay into an AFSC depends not only on their own training pipeline, but any other

pipelines that the trainee did not successfully complete prior to the final AFSC.

Figure 3. Process to Build AFSC Sustainment Line

With both of these behaviors mapped, the USAF creates a sustainment profile

showing the probability of a single Airman making it to any given year of service in

that AFSC. This line goes up when personnel arrive into the AFSC and down as they

depart the AFSC or leave the AF. Once the shape of the line has been determined,

it is scaled upwards until the area under the curve is equal to total authorizations.

Another key insight from the sustainment model is the sustainment requirement

for accessions. This quantity captures the number of individuals who would need to

graduate IST each year to sustain the career field. We represent this target with the

black dashed line and the number in the black rectangle on the left side of the chart

below.

Accessing individuals at the level of the sustainment requirement still requires all

existing bathtubs (shortages) and bow waves (overages) to age through the system

prior to returning the AFSC to full health over a 20-30 year lifecycle. Conversely,
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Figure 4. Career Field Health Chart with Sustainment Line and Inventory

deviating from the sustainment accessions target builds the next set of bathtubs and

bow waves, although doing so may address aggregate manning problems in the short

term. Accessions policies and other force management policies such as retraining

policies, retention bonuses, and high year of tenure (HYT) waivers are used to move

AFSCs as close to 100% manning as possible.

There are several benefits of keeping an AFSC close to its steady state as defined

by sustainment. Absent dramatic changes in retention or requirements, this distribu-

tion of inventory results in the same aggregate retention, the same required number

of accessions, the same experience ratios and associated distribution of labor, and the

same upgrade training burden each year. The USAF invests substantial resources

(e.g., personnel and infrastructure) to execute a steady state level of recruiting and

training for accessions each year and it is extremely expensive to dramatically adjust

the number of accessions. However, deviating significantly from this sustainment dis-

tribution results in varying numbers of personnel hitting the same retention decisions

each year, simultaneously driving large swings in the required number of accessions

to offset losses and maintain 100% AFSC manning.
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Figure 5. Vignette AFSC Starting State

The need to avoid varying too far from sustainment must be balanced with the

desire to correct manning in a reasonable amount of time when changes do occur.

One consistent feature of the USAF manpower and personnel system is the need

to continually change the mix of AFSCs within the service based on changing pro-

grammatic requirements or decisions made within the MAJCOMs. As these needs

change, the demand signal for AFSCs often changes rapidly, and frequently with little

advance warning on the UMD. To illustrate the dynamics of this cycle, a notional

AFSC is examined. As shown in Figure 5, the AFSC starts out perfectly healthy with

100% manning. A 10% reduction is applied to the UMD requirements and force man-

agement programs remove 10% of personnel through a combination of separations,

retirements, transfers to the reserve components, or retraining, as shown in Figure 6.

Figure 6. Vignette AFSC After Authorization Growth

After some period of time, additional authorizations are added to return the AFSC
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to its original size, causing it to now be 90% manned. For some AFSCs, retraining

Airmen into the specialty is a viable option under these circumstances. However, other

AFSCs require a high degree of technical knowledge and are not helped by retraining

in personnel with AF experience but not the specific technical knowledge required.

Accordingly, the first option to grow the AFSC is to recruit and train new Airmen to

the sustainment target accessions level. This avoids overloading the pipeline and the

need to arbitrarily reduce accessions to other career fields (a second-order effect of

end strength management), only grows the training requirement by 12%, and avoids

creating a bow wave that will continue for 25-30 years. As seen in Figure 7, after two

years of this policy, manning has only improved from 90% to 91.4% and is implicitly

on a 20 year get well plan. This outcome is undesirable for commanders facing new

and accelerating mission requirements today.

Figure 7. Vignette AFSC Steady State Get-Well Plan

Alternatively, consider the two year get-well plan shown in Figure 8. To achieve

100% manning in only two years, the training pipeline must expand capacity by

78% immediately, exceeding programmed instructors and training resources for this

schoolhouse, while reducing accessions for other career fields below their sustain-

ment target. Such a surge compromises the grade structure, causing the mid-level

supervisors who remain in the inventory to be burdened with a significantly higher

on-the-job-training (OJT) workload to train the new, inexperienced Airmen in ad-
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dition to ensuring mission accomplishment. Moreover, the newly trained personnel

cannot complete the same duty requirements of the mid-level supervisors previously

cut, so the same level of manning (100%) would actually reduce mission effectiveness

compared to the personnel prior to the cut.

Figure 8. Vignette AFSC Two-Year Get-Well Plan

AFSC Shortage Root Causes

The aggregate effect of all of these factors is a substantial number of shortages in

the RegAF that endure to a varying degree from year to year; the enlisted force has

averaged about 12,000 since 2000.

Shortages can be roughly quantified according to root cause within two broad

categories. The first category represents unfunded manning disconnects that result

in the aggregate enlisted permanent party personnel being fewer than the aggregate

enlisted UMD authorizations. This category also includes temporary disconnects

from surges in the number of students when end-strength is growing. This category of

shortages can be observed as the difference between the total number of shortages and

the total number of overages in Figure 9. When excess overages exist, shortages can

14



Figure 9. Enlisted Overages and Shortages

be filled by force management actions (e.g., retraining and accessions). When excess

overages do not exist, the only way to solve shortages is to make funded end-strength

levels match authorizations, either by reducing the total number of authorizations or

adding end-strength.

The second category represents funded manning disconnects (i.e., disconnects due

to overages), which include pipeline constraints and training execution problems, re-

tention changes and modeling limitations, or manpower authorizations not projected

sufficiently in advance for the AF to access and train personnel to fill them. Consid-

ering these overages and shortages comprehensively, we can assess the broad perfor-

mance of the personnel system with regards to enlisted AFSC manning. We observe

a slight positive trend from 2000-2015, with the annual total disconnect remaining

largely constant over time. In 2016, two changes occurred simultaneously. The AF

began to grow its end-strength, and the enlisted sustainment model was rebuilt to

improve enlisted force management policies. At this point, we observe a decrease

in the unfunded manning disconnect, as the aggregate end-strength moved closer to

the required number of personnel to meet the aggregate authorizations. Meanwhile,

15



the AF’s improved force management policies preserved a level of efficiency only pre-

viously possible when there were large funding disconnects. When AFSCs are all

manned well below 100%, the odds of having excess personnel in any AFSC is low.

However, when AFSCs are manned at 100% on average, every person must be in the

correct AFSC to avoid overages.

1.3.3 Level Three: Competencies and Experience

While not well understood, it should be apparent to most Airmen that shortages

are a problem that the USAF should make every effort to solve. The next level of the

pyramid demonstrates no such clarity. Many assume that measuring requirements

by grade and then using force management policies to shape the force to meet these

requirements would be the next step. However, in the next section we discuss why

this is not a viable path.

More broadly, the USAF is attempting to define the competencies and experi-

ence that Airmen require to effectively complete their jobs, which is not necessarily

captured by grade. If the USAF desires additional experienced Airmen in an AFSC,

simply promoting more junior personnel to a higher grade does not solve a problem

with missing experience – the same Airmen are still completing the mission. Alter-

natively, YOS provides some measure of how long someone has had the opportunity

to learn their craft, but does not capture aptitude, attitude, or capability.

Primary skill level is a better proxy for the enlisted force, although not all AFSCs

utilize primary skill levels in the same way. Additionally, there is no “requirement” to

measure primary skill level against, as UMD authorizations only specify control skill

level, which progresses more slowly. A common misunderstanding is the difference

between control skill level and primary skill level. Control skill level is driven by grade

and is the metric being measured for skill level manning. However, primary skill level

16



reflects the level of qualification of the Airman. For example, a SSgt maintainer

(control skill level is 5) who is certified for 7 level duties (primary skill level is 7) can

meet the unit commander’s 7 level requirements to sign off on aircraft to generate

sorties, even though the SSgt’s control AFSC will continue to show as a 5 level. This

maintainer will remain a 5 level until the Airman is promoted to TSgt at which time

both the primary and control AFSCs will carry the 7 level.

Because primary skill level is achieved prior to control skill level, commanders

frequently execute the required mission with disconnects in control skill manning if

there are adequate personnel who have achieved higher primary skill levels. Figure 10

shows an example of an AFSC’s skill manning using control and primary skill levels,

with manpower authorizations in red and personnel in blue. In the pictured example,

we see that when considering only control AFSC, there appears to be a shortage of 7

levels. However, when considering primary AFSC, we see that there are plenty of 7

levels, and the excess of 7 levels can help to meet the apparent shortages in 5 & 3 skill

levels. Thus, when discussing skill manning, the conversation is truly about either

grade manning (i.e., control skill manning), or a meaningless comparison of personnel

and their primary skill level to manpower requirements and the required control skill

level. This mismatch prevents the current construct (at least in this format) from

providing meaningful feedback on whether current upgrade timelines can meet USAF

requirements.

Furthermore, “shortages,” such as we may quantify them, are frequently the result

of policy choices made years or decades ago, and significant limitations exist regarding

what the USAF can do to solve such manning problems. If the USAF faces a shortage

of competence and experience in an area, it frequently does not have adequate policy

levers to address this problem with agility. Wherever the USAF has the opportu-

nity to maximize learning and development of competencies, it attempts to construct
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Figure 10. AFSC Skill Manning Example

policies to do just that. In general, as the USAF is always looking to maximize the

learning and competencies it is developing in its Airmen. As such, the policy ques-

tion that the Air Education and Training Command (AETC) commander, in their

force development role, is challenged with is how to increase learning more generally,

not just temporarily boost learning to solve a crisis. The USAF can also influence

retention behavior to some degree, but Airmen’s aggregate compensation, outside

opportunities, and satisfaction with the USAF typically dwarf the retention incentive

provided by comparatively small Skills Retention Bonuses and similar programs (Jof-

frion and Wozny, 2015). Finally, retraining individuals into AFSCs only helps if the

experience shortfall requires generalized AF experience instead of technical capacity

only gained working in the AFSC.

The goal of this section is to provide structures that truly increase competen-

cies and experience where possible, avoid optimizing policies to “solve” flawed or

inadequate metrics, avoid policy decisions today that will drive additional dilemmas

10 years from now, and save the substantial amount of wasted effort and resources

the USAF dedicates institutionally to solving non-existent problems in our metrics.

Prior to delving into modifications to the system, we must examine some additional
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background on system behaviors that affect experience levels in the USAF.

AFSC Grade Management: The Case for Sustainable Grade Struc-

tures

In addition to the overarching grade structure issue, a second business process

disconnect results in commanders chronically not receiving personnel with the AFSC

and grade mix that has been authorized on the UMD. This disconnect must be con-

sidered separately from temporary fluctuations in grade manning that will be solved

over time. The AFSC may not have sufficient personnel to meet the sustainment re-

quirement in a specific year of service; this is temporary and will be solved over time

as bathtubs and bow waves age through the system and the USAF utilizes force man-

agement policies to solve these disconnects. The second and more serious disconnect

is systemic and arises when there is a substantial difference between the sustainable

grade distribution for an AFSC and the distribution of grades MAJCOMs place on

their UMDs.

The historical grade review process ensures that MAJCOMs are keeping aggre-

gate grades distributed correctly on the UMD; this process allocates to each MAJ-

COM a share of the overarching grade structure, while the collective requests by the

MAJCOMs determine the distribution of this share by AFSC. However, MAJCOMs

frequently request distributions of grades that by AFSC are not feasible when com-

bined with other MAJCOM requests. As an extreme example in a non-prior service

accessions AFSC, requesting all E-5s or all E-6s in an AFSC is obviously a request

that cannot be satisfied; E-3s and E-4s must exist to grow into the more senior grades.

The sustainment model defines a historical normal for an AFSC by YOS; we can also

observe the historical probability of an Airman being in a specific grade given their

level of experience as measured by YOS, shown as grade sustainment to the right.
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The existing sustainment line for the AFSC can be combined with the corresponding

historical grade distribution to determine what the approximate number of personnel

in each grade will be in the long run if the AFSC is manned at 100% and distributed

according to the sustainment line. This represents the distribution by grade that an

AFSC can achieve assuming no substantial changes in retention.

Figure 11. AFSC Grade Sustainment Example

In order to examine this disconnect, the year of service based sustainment line

discussed above is converted to a grade based model. This allows for a comparison of

current inventory, sustainment (a feasible steady state inventory), and UMD autho-

rizations for each grade. Consider Figure 11. The relationship between the blue bars

(current inventory) and the purple line (UMD authorizations) is what is reported as

grade manning. The red line (sustainment) demonstrates the feasible steady state

grade manning based on current retention behavior. Where the purple line (UMD

authorizations) departs from the red line is a manifestation of an infeasible grade

distribution on the UMD. In this particular example, there are substantial grade

manning problems for this AFSC. However, these particular problems are largely sys-

temic, a result of a desired career pyramid that is not feasible with normal retention

patterns.

As described earlier, the mechanisms to shape retention are generally weak and

highly constrained. In the absence of better options, current policies only offer two

mechanisms to meet unsustainable grade structures. The first is a hybrid grade

20



structure; supplementing non-prior service accessions with retrainees increases the

aggregate AF experience in the career field by adding personnel with higher YOS, al-

though this does not address needs for technical experience gained in the AFSC. The

second option is to promote more Airmen at junior levels of experience (also known

as promoting to requirements). The problem with this second approach is that the

commander still receives the exact same Airmen with the exact same experience and

competencies; we have simply manipulated the metric by increasing their rank and

cost, which does very little to help accomplish the mission under most circumstances.

We recommend that grade reviews include guidance on the desired grade distribution

within a specific AFSCs as well as the aggregate for each MAJCOM. While this ap-

pears to be a restriction on the MAJCOMs, in reality, this informs the MAJCOMs

what levels of experience will be available. This empowers the MAJCOMs to make

decisions about which positions may be more appropriate for more junior person-

nel, instead of creating an infeasible wishlist (which cannot be met), then effectively

delegating to the AF Personnel Center (AFPC) the MAJCOM’s decision on how to

distribute their personnel.

1.3.4 Level Four: Human Capital Fielded as Combat Capability

Readiness and Lethality

The next level of assessment for the HCAP is the USAF’s ability to field combat

capabilities with our assigned personnel. Aside from classification issues, military

readiness is a nuanced subject, difficult to effectively measure, and not necessarily

suited to simplistic metrics (Betts, 1995; Harrison, 2014).

This level becomes more complex for several reasons. The first is that personnel

must be assigned to units by AFPC based on several different prioritization schemes

by the commanders or HAF staff, depending on whether the personnel are officer or
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enlisted and whether the personnel are rated aircrew or non-rated. This assignment

process is a complex process requiring careful balancing of changing AFSC and grade

requirements, retention, move cycles, and individual personnel considerations.

Another complexity is that the RegAF, Air Force Reserve (AFR), and Air Na-

tional Guard (ANG) all deploy together to field capabilities to the joint commander,

requiring metrics that are not constrained to the RegAF. Ideally, any metrics in this

domain would need to first quantify what capabilities the USAF had fielded the hu-

man capital to support. The USAF’s current personnel readiness metrics, however,

simply report whether it has fielded what has been funded, yielding efficiency metrics

for the personnel system instead of true measures of readiness.

P-Ratings

The primary driver of poor readiness measures are unit P-ratings, an assessment of

whether units have adequate personnel to accomplish their mission. Although defining

an appropriate metric for determining whether the USAF has adequate personnel

is outside the scope of this research, the inappropriate use of P-ratings to provide

insight for resourcing decisions deserves attention. P-ratings are derived by comparing

available personnel to authorized manpower requirements on the UMD for specific

combinations of AFSCs and skill levels.

A key feature of this metric is its use of the current resourcing decisions as a

baseline. An example may help illustrate the problem with this feature. A unit

with poor readiness measures due to poor manning is being considered for additional

resourcing to solve their readiness problem. As they add manpower authorizations,

the unit’s readiness measures (i.e., P-Ratings) initially get worse, not better, as the

personnel system lags in filling the new positions. As time passes, unless the personnel

system has grown more efficient in some way, the unit’s readiness measures return to
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the old baseline despite the increase in actual readiness provided by the additional

personnel filling the new authorizations. What has been measured for P-Ratings

cannot reflect whether the resourcing decision was appropriate or what capability

has been procured by these additional personnel; it only reflects the efficiency of the

system in filling those positions, regardless of whether those positions are adequate

to provide the combat capability needed from the unit. Without increasing funded

end-strength relative to total authorizations or relying on prioritization to cannibalize

other units, the only way to boost P-Ratings with a resourcing decision is to reduce

authorizations in a unit. P-Ratings would temporarily rise in such a situation because

the loss of existing personnel from the unit will lag behind the resourcing decision.

This is counter to most decision-makers’ intuitive understanding of such a system.

1.3.5 Level Five: Airman Quality of Life

The fielding of human capital as combat capability is the primary success condition

for the manpower and personnel enterprise. However, successfully fielding combat

capability is not a sufficient success metric for the personnel themselves. There is an

entire level of complexity to Airmen’s experience that goes well beyond the functions

they enable.

Like each previous level in the human capital pyramid, this level is both affected

by the levels below it and in turn affects the levels below it. Airmen’s experiences in

their unit are greatly affected by force management actions to manage end-strength,

manning levels of their own AFSC and support AFSCs, and the competency and

experience of their fellow Airmen at every level. Positive or negative experiences

like this drive retention, performance, attitudes towards risk and innovation, culture,

and much more. A comprehensive view of the management of human capital cannot

neglect these aspects that have a substantial impact on any relevant measure of
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success.

This level is incredibly broad, including leadership, culture, messaging, and mis-

sion as well as business practices. Additionally, many of the descriptors at this level

also have significant impacts directly on readiness and lethality of units, making it

difficult to parse where one level ends and the other begins.

1. Clarity of Purpose

Airmen are naturally driven by meeting both AF and personal needs, which

vary by Airman. Impacts between these two aspects can interact with each

other; Airmen are far more willing to put up with poor conditions when the

mission is clear and has the support of the personnel involved (Siebold, 2006).

However, when both of these suffer at the same time, the negative effect is

compounded.

2. High Public and Intra-Service Esteem

One boon to USAF recruiting and retention is that the US military is perceived

by the US public as winners and public servants, and remains the most trusted

institution in the US (Kennedy, 2018). This aids the development of a culture

of reinforcement and value; high public esteem acts as a form of non-monetary

compensation. This also affects who joins the military and then how those

individuals respond to military bureaucracy, compensation, and cultures within

the military (Recruiting and Retention of Military Personnel, 2007).

High public esteem can be offset within the service by degrading or mistrustful

behavior. Those who join to become a part of something larger may then chafe

at a risk-averse leadership “treating them like children,” an oft-heard complaint

among members. Leadership must continually strike a fine balance between

managing risk for the personnel and treating their personnel with a greater
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level of trust and respect, knowing that a non-zero number of individuals in any

large organization will abuse this trust.

3. Organizational Culture

The nebulous concept of culture includes leadership styles, command climate,

levels of personnel and leadership homogeneity or diversity, work-life balance,

and much more. This research does not provide a comprehensive overview of

all aspects of culture but makes note of the importance of this difficult-to-

measure aspect of USAF life. Once again, like the other levels of the HCAP,

culture can have major impacts on readiness and lethality. This culture can

also be self-reinforcing once established. Some cultural aspects may be easily

identifiable as clearly positive or negative. Other aspects may create tradeoffs

for the organization’s mission effectiveness or simply be a matter of preference

for the individuals involved (Siebold, 2006). Notably, cultural aspects of AF

organizations can greatly influence an organization’s ability to be diverse and

inclusive either positively or negatively. This can create a cascade of effects

through the other layers of the HCAP and directly impact mission effectiveness

(Lim, 2015).

4. Compensation

Airmen have their own financial goals and considerations. Some Airmen are

profit maximizing, with marginal income directly impacting retention likeli-

hood. Others are satisficing, requiring some base amount of compensation to

meet their and their family’s needs, with limited impact to retention beyond

that personal pay requirement. While historical pay rates were much lower than

current levels, years of pay raises have increased military compensation to be

competitive with compensation for private sector employees with similar edu-
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cational attainment (Smith et al., 2020). A recent RAND study found military

personnel’s pay to outstrip their peers in the private sector (Asch, 2019), but

the military’s equitable pay system also doesn’t allow for high and low perform-

ers to be compensated at different levels as the private sector does (Hoecherl,

Schulker, Hornberger and Walsh, 2022). Thus, higher pay may be a critical

driver of a military’s effectiveness, if it enables the retention of a higher per-

forming talent pool. Additionally, direct comparisons do not account for the

substantial negative impact of a military career on a spouse’s earnings (Hosek

and Wadsworth, 2013).

Interestingly, providing credentials and experience that can result in a high

level of compensation in the private sector may also be perceived positively

as an additional form of compensation, acting as a pull both to reduce and

increase retention. However, this benefit is reduced if the benefit is transparently

transactional. Decision-makers must balance compensation policies carefully,

ensuring that the taxpayer receives a benefit for additional expense, while also

avoiding becoming too risk averse in developing its most valuable resource: its

people.

5. High Performing Organizations vs Poor Bureaucratic Processes

The USAF bureaucratic processes impact all Airmen. The effectiveness and

efficiency of these processes create work (negative compensation) for Airmen.

When this work becomes too onerous compared to the compensation, Airmen

exit the system.

Bureaucracy, counter to its use in the pejorative sense, is absolutely necessary to

make any large organization function. However, bureaucracy’s bad reputation

results from a correct assessment that many bureaucracies fail to remain re-

sponsive to the objectives of the organization. When the system demands work
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or sacrifices of its members without reason, this quickly results in cynicism and

skepticism, even of valid requirements.

In the age of social media, every policy is scrutinized and analyzed by those

with a vast access to part of the relevant information. In this environment, clear

communication of the “why” for different policy changes is critical. Historically

opaque, increases in transparency (intentional or otherwise) have resulted in

an awareness and amplification of any missteps by the organization. This new

transparency cannot and should not be reversed, but it does amplify the im-

portance of additional organizational transparency and a continuous effort to

improve systems. Many criticisms are the result of confusion; consistent mes-

saging, with regard to both specific policies and the rationale behind them, is

vital to preventing this frustration from festering.

As many systems move to the cloud and AF/A1 makes many of the AF’s core

processes more streamlined and user-friendly, the underlying data must be cap-

tured and used to continue improving the experience of Airmen at every step

of their time in the AF. Every minute spent struggling with the Defense Travel

System or being unable to solve pay discrepancies echoes through the AF’s

ecosystem, impacting retention, satisfaction, core competencies, and eventually

the ability to execute its combat mission.

1.4 Research Questions

Many facets of the current personnel system are products of historical development

and may no longer be relevant; much of the system is ready for redesign. However,

the current system is so complicated and the language to describe what is happening

so imprecise that intelligent, knowledgeable people talk right past each other. Ad-

ditionally, causality is frequently difficult to attribute; is poor performance in a unit
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due to a local leadership problem, inexperienced Airmen, a low manning level, inade-

quate authorizations compared to manpower requirements, or inadequate manpower

requirements to start with? The underlying causality is impossible to fully determine

in some cases, but end-strength management and AFSC management are not wicked

problems; they are problems of mathematics and system design. The goal of this work

is to simplify and solve these problems, so that knowledgeable experts and leaders

can examine the remaining simplified but still wicked problems.

To this end, we propose the following research questions:

1. How can the USAF use MilPDS and publicly available data to accurately and

precisely predict monthly retention behavior over a 12 month period? The

answer to this question directly impacts Level 1 of the HCAP, end-strength

management.

2. How can the USAF improve the quality of accessions policies implemented by

AFSC to reduce AFSC shortages and improve AFSC manning. The answers

to this question directly impact Level 2 (career field manning) and Level 3

(competencies and experience) of the HCAP.

3. How can the USAF improve the quality of accessions policies across all com-

ponents implemented by AFSC to reduce AFSC shortages and improve AFSC

manning? What policies that significantly impact AFSC manning need to be

managed differently or start being managed? How do we ensure good solutions

to those policies? Within this research, we confine the scope of this question to

Level 2 (career field manning) and Level 3 (competencies and experience).
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1.5 Research Contributions

This research makes the following three contributions, collectively addressing the

research questions in Section 1.4.

1. We develop, test, and compare multiple statistical machine learning methods

to predict USAF retention accurately. Accurate predictions of retention are

important because instability in retention modeling drives unnecessary changes

to AETC and Air Force Recruiting Service (AFRS) accessions and recruiting

decisions; or unnecessary overages and costs; or shortages and gaps in readiness.

This work makes a novel contribution by developing a new, partially autoregres-

sive feature and constructing a designed experiment for hyperparameter values

for both multilayer perceptrons and random forests for a novel problem.

2. We design, develop, and test novel approximate dynamic programming (ADP)

and reinforcement learning (RL) algorithms that determine high-quality acces-

sions personnel policies. Manning is a function of personnel gains, personnel

losses, and authorizations change. Voluntary retention rates are difficult to in-

crease and decreases can require force management actions. Impacting the rate

of authorizations change requires business process changes, and some courses

of action require Congressional approval. This leaves accessions and retrain-

ing policies to control personnel gains and losses, though the effect of changing

retraining policy is much more difficult to model. We formulate this problem

as a Markov decision process, develop a direct lookahead policy modification

of Concave Adaptive Value Estimation (CAVE), and develop an alternative

parameterized deep reinforcement learning approach to generate high-quality

policies for accession decisions with high dimensionality while maintaining a

low computational demand. We also test the effects of potential cost functions
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on the policies generated to inform further model development.

3. We design, develop, test, and compare multiple sequential decision-making ap-

proaches for determining high-quality personnel policies. This contribution ex-

tends the work proffered in Contribution 2 by considering a new, larger problem

set, including RegAF, AF Reserve, and Air National Guard personnel. The

USAF fields its personnel from all three components when presenting forces to

the joint commander to execute operations, meaning that the ability of each

component to meet its human capital needs is critical to collective mission ac-

complishment. Moreover, each component shares training resources and com-

petes for many of the same recruits to meet their manning needs, but current

coordination of policies is largely ad hoc. Improving these policies directly im-

proves USAF personnel readiness instead of the more limited problem of RegAF

manning. First, we extend the RegAF’s benchmark equilibrium sustainment

model to the AFR and ANG, then formulate this larger problem as a Markov

decision process. We extend the CAVE approach to this larger problem and

test performance across a range of hyperparameters. This extension creates an

expanded state and action space and an opportunity to design algorithms that

can scale efficiently to larger problems. Finally, we consider a novel algorithm

modification to the CAVE approach which leverages a perturbation and retrain-

ing process to improve solution quality at the expense of additional computation

and test the performance of this modification across multiple hyperparameters.

1.6 Organization of the Dissertation

This dissertation is organized as follows. In Chapter II, we answer Research

Question 1 with Contribution 1, a set of statistical machine learning algorithms to

predict USAF retention and enable better end strength management. In Chapter
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III, we answer Research Question 2 with Contribution 2, a set of deep reinforcement

learning algorithms to improve RegAF accessions and improve RegAF career field

manning. In Chapter IV, we answer Research Question 3 with Contribution 3, a

set of further developed deep reinforcement learning algorithms to improve a broader

set of RegAF and AFR personnel policies and improve USAF readiness. Finally, in

Chapter V, we summarize the dissertation and discuss our assumptions, limitations,

and drawbacks of our proposed models. We also identify extensions for future work.

This dissertation provides a suite of models to provide improved personnel poli-

cies, enabling more effective, efficient recruiting and training pipeline, improved Re-

gAF career field manning and fewer shortages, and improved Total Force career field

manning and fewer shortages.
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II. Partially Autoregressive Machine Learning:
Development and Testing of Methods to Predict United

States Air Force Retention

This chapter has been published in Computers and Industrial Engineering (Hoecherl,

Robbins, Borghetti and Hill, 2022).

2.1 Introduction

The quality of the personnel in the United States (US) military, especially for its

enlisted personnel, provides a substantial strategic advantage compared to most other

nations. Although many factors play a causal role in this improved quality, two of

the most important are its relatively high compensation and the all-volunteer force

structure (Rostker and Yeh, 2006). To maximize this strategic advantage, political

leaders must carefully balance the high costs of quality personnel with the opportu-

nity cost to organize, train, equip, and field these forces. The aggregation of these

balancing decisions determine the total number of personnel in the force at the end

of the year in each military service - known as the authorized end strength.

To meet Congressionally-mandated end strength targets, military planners must

plan to recruit and train new personnel to achieve any desired change in end strength

as well as replace personnel who choose to depart. Because the US does not use

compulsory service and personnel can choose to leave at specified windows of time

within their service, planners cannot ascertain the exact number of retained personnel

in advance. With average annual personnel costs exceeding $100,000 per person per

year, even slight deviations from the planned personnel totals can result in dramatic

cost overruns, complicating attempts to responsibly manage the larger budget. When

retention estimates are significantly off, the Air Force Recruiting Service and Air

Education and Training Command must also adjust their recruiting and training
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plans, sometimes with very short notice. Poor estimates incur increased expenses

as recruiters and trainers must either let purchased capacity go unused or increase

capacity for which no one planned or budgeted, frequently at a higher cost than if

the required capacity had been correctly planned.

The United States Air Force (USAF) personnel retention problem (PRP) is to

predict how many aggregate personnel in the USAF at a specified point in time will

remain in the USAF until another, future specified point in time. To this end, our

research answers the following specific questions:

1. Of the personnel currently in the USAF, what is the total number of personnel

that will retain for another 12 months?

2. How many personnel will depart each month?

These questions are examined via survival analysis, comprised of regression prob-

lems and attendant solution procedures to predict how long a process continues before

ceasing. Survival analysis problems exhibit similar features to regression problems,

but they can be solved by either estimating the retention or survival rates, or al-

ternatively, by estimating the number of persons who survive based on some set of

features, including starting inventory. Each approach offers different ways to leverage

the underlying problem structure to improve solutions. Regardless of the approach

selected, models applied to the USAF PRP must produce 12 numerical regression

outputs predicting the total proportion of personnel in the force at a given time pe-

riod who remain in the USAF over the next 12 months (i.e., the aggregate retention

rate). This requirement differs from a classification problem, wherein the models

must determine which individual airmen would depart.

The Military Personnel Data System (MilPDS) includes information on person-

nel and their characteristics across each component of the USAF, including active

duty (Regular Air Force), Air National Guard, Air Force Reserve, or USAF civilians
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(MilPDS Dataset, 2021). We track personnel longitudinally in each dataset and mea-

sure the rates at which these personnel choose to stay or depart. For this research, we

generate 51.5 million individual monthly observations of personnel retention behavior

from 2010-2021 excluding some non-representative retention data from involuntary

force management programs in 2014. Unless otherwise noted, all years referenced in

this chapter refer to the US government’s fiscal year, which ends on 30 September.

For the USAF PRP, we select models for the purpose of minimizing mean aggre-

gate absolute prediction error, which measures how well aggregate predictions match

aggregate numbers of retained personnel across all prediction lengths. Although sev-

eral models enable the identification and analysis of influential features, this chapter

prioritizes methods most suited for predictive purposes. Future work may prioritize

a different set of models for the purpose of inference.

Much of the previous work on USAF personnel retention predicted annual re-

tention behavior over a period of years. Monthly models with shorter prediction

lengths can use a much broader range of variables to predict retention because these

models do not have to simultaneously predict how such variables will change over

time. Simpler statistical methods have performed well on variants of the USAF PRP

with longer prediction lengths (Schofield et al., 2018; Pujats, 2020), but models with

greater capacity will likely prove to be more effective for the shorter term predictions

addressed in this research.

This chapter provides two novel methodologies to predict monthly retention. Both

methodologies leverage both greater model capacity as well as autoregressive struc-

ture traditionally limited to smaller, highly structured models. We compare the

performance of these models to the USAF’s current best known model for predicting

monthly enlisted retention rates.
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2.1.1 Proposed Contribution

This chapter provides three primary contributions. First, we seek to construct a

machine learning approach that generates higher quality predictions for the USAF

PRP compared to the benchmark Kaplan Meier (KM) model. We test several ap-

proaches on novel real-world, USAF training and validation datasets across a range of

hyperparameters. The final superlative models leverage a separate USAF test dataset

to develop an unbiased estimate of improvement in absolute prediction error.

Second, we propose the use of a multilayer perceptron (MLP) with a partially

autoregressive feature for survival analysis problems predicting future behavior of

population subgroups. This feature uses the previous time step’s retention observa-

tion for a larger cohort to predict the next time step’s retention observation for smaller

specific cohorts. By using the larger cohort, many of the problems with sparse com-

binations of features can be avoided, allowing machine learning approaches with far

more capacity and flexibility to be fielded and much more detailed subpopulations to

be used, while still maintaining some of the advantages of an autoregressive approach.

We call this modification a partially autoregressive neural network (PARNet).

PARNets provide a modified neural network structure that blends the advantage of

an autoregressive structure for time series data with the flexibility of a traditional

feedforward MLP without the traditional weaknesses of time series-specific machine

learning approaches. Instead of using a large number of lags or previous sparse

observations of specific subgroups, we include a set of features with the retention

observations for 1 year prior to the observation (effectively a single lag of 12 time

steps). To avoid the sparseness problem, we include the observed retention for the

parsimonious KM approach already in use instead of a similar approach to build an

observation for each specific cohort. This parsimonious model only uses years of ser-

vice (YOS) and months until the expiration of term of service (ETS), so all subgroups
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with feature vectors that match this observation will use the same observation as an

additional feature. This approach creates an autoregressive pattern. The neural net-

work can then reliably use a past observation for a much larger cohort to predict

trends and changes over time that affect the smaller cohort. The granular variables

explain differences from this larger cohort. This approach should prove particularly

useful for modeling problems wherein large shocks may affect the system, but differ-

ent subgroups respond in different ways. Importantly, this differs from previous work

on hybrid approaches using MLPs and autoregressive approaches because the use of

subgroups changes both the value and the sparsity of previous retention observations

based on the number of features included.

Third, we examine whether this partially autoregressive approach can improve

random forest regression (RFR) predictions as well. This inclusion allows the RFR

to effectively weight observations more heavily for periods that have similar retention

levels. Additionally, for problems of appropriate structure, the autoregressive ap-

proach provides a measure of closeness that may allow groups with similar features but

different retention observations to help inform each other when retention trends drive

retention behavior from one feature set to be similar to a different feature set’s past

retention observations. This approach generalizes to fewer problem structures than

the PARNet because it will only improve modeling estimates if the retention pattern

is otherwise structured similarly. However, for appropriately structured problems,

the ensemble nature of the RFR approach may still provide superlative performance.

We call this second approach a partially autoregressive random forest (PARFor).

We compare the results of each of these approaches using a full factorial exper-

imental design to sample across selected hyperparameters for the PARNet, MLP,

PARFor, and RFR models.

The rest of this chapter is organized as follows. Section 2.2 describes the specifics
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of the USAF PRP, historical approaches to survival analysis and statistical machine

learning, the sources and methods used to clean the data, and the methodology of

our examination of two novel machine learning methods and a benchmark. Section

3.5 describes algorithms’ performance on a validation dataset across all variables and

hyperparameters tested, directly compares the top-performing model of each type,

and examines the superlative models’ performance on a test dataset. This chapter

finishes with a description of the remaining work and initial conclusions.

2.2 Materials and Methods

2.2.1 USAF Problem Description and Business Practices

A solution to the USAF PRP must meet two requirements. First, it must produce

a single accurate estimate of the aggregate enlisted and officer retention for a 12 month

interval as of the beginning of the fiscal year. If the model meets this requirement,

then confident planning can minimize the cost of disruptions to USAF recruiting

and training organizations attempting to bring in personnel to replace those leaving.

Second, it must produce quality estimates for monthly prediction intervals from 1 to

11 months. This is important for two reasons:

• As the fiscal year progresses, it is important to be able to update the prediction

of losses for the remainder of the year.

• While Congressional guidance is provided in the form of a target for end strength,

personnel costs such as pay and benefits are incurred each month a person is in

the military. For this reason, accurate estimates of how end strength will rise

and fall throughout the year are important for stable, accurate budget planning.

For the USAF PRP, although creating high-quality retention predictions for in-

dividual subgroups within the population is correlated with creating high-quality
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retention predictions for the force in aggregate, the primary success metric for this

model is how the aggregate accuracy performs workforce-wide. To assess the relevant

accuracy of predictions, all errors are calculated by comparing the aggregate reten-

tion for a specific month’s estimate to the observed (actual) aggregate retention. We

examine these error metrics both by prediction length and by calculating the mean

absolute prediction error across all prediction lengths. This allows us to examine how

the cumulative statistical bias of individual predictions translates into the general

accuracy level of the total predictions. Future models used for inference to identify

the impact of changing subgroups and features would find the subgroup errors much

more relevant to building a quality model.

This chapter limits its scope to the enlisted portion of the USAF PRP because

there are many more enlisted personnel than officers, and both are managed sepa-

rately. Enlisted personnel have slightly different characteristics, and their decisions

to remain or depart are based on different incentives and policy constraints than the

officer population. Traditionally, a second model is used to estimate the number of

additional retention losses for individuals who enter the force after the prediction

date but depart before the end of the prediction interval. The retention estimates for

this model only include personnel already in the system. For time periods including

multiple months, this model does not address individuals who enter the USAF after

some number of months, then either retain or depart.

2.2.2 Review of Statistical Machine Learning Approaches

Different statistical machine learning approaches leverage different underlying

structures. Herein, we review a subset of relevant approaches, some of which we

will test and evaluate later in this chapter. We limit our examination to approaches

that predict a rate ranging from 0 to 1 for subpopulations with a given feature set.
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This rate estimates the proportion of airmen with this feature set that remain in the

personnel system for a specified additional number of months.

Kaplan Meier

KM survival estimates have the useful property of effectively handling noisy or

sparse data wherein a small number of variables may have a highly nonlinear effect on

the dependent survival variable (Meeker and Escobar, 2014). However, these survival

rates cannot extrapolate or interpolate survival rates for any combinations that have

not already been observed due to a lack of parameters or any measure of distance.

Hence, a KM approach cannot use any variables that may change over time or trend

because the model would then lack both a direct observation to inform its estimate

or a method to interpolate between existing observations.

The USAF’s current loss modeling approach uses 12 separate KM estimates of the

retention rate for existing personnel with specified combinations of features over the 12

respective prediction intervals. This predicted retention rate estimates the proportion

of personnel with the given feature set that remain after the specified prediction

interval. This approach leverages concepts from an underlying loss model based on

YOS as proposed by Hoecherl et al. (2016). However, the USAF approach extended

the variables to include months until separation date, provided the personnel had

filed separation paperwork. Due to time constraints, USAF personnel management

analysts tested only the final outputs of this model and observed a satisfactory and

much improved aggregate error of less than 1.5% for annual losses and 0.2% for annual

retained personnel using a 2015 test dataset. A notional example of two combinations

of the two predictor variables and the 12 predicted retention rates is shown in Table

1.
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Months Until Years of Months
Sep Date Service 1 2 3 4 5 6 7 8 9 10 11 12

0 8 .32 .11 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
5 8 .97 .95 .95 .94 .48 .12 .06 .01 .01 .01 .01 .01

Table 1. Notional examples of KM retention estimates for feature groupings

Random Forest

A random forest is an ensemble method based on decision trees originally intro-

duced by Ho (1995), which Breiman (1996) refined with a bagging approach. Origi-

nally developed for classification, Breiman (2001) extended its use to regression, and

RFR has proven to be an effective machine learning approach for a number of prob-

lems (Géron, 2019). Unlike a single decision tree, which partitions the feature space

to develop an estimate for an observation, random forests are collections of decision

trees formed by allowing each decision node in each tree to randomly select a subset

of features and then search for the best partition among just those features. This

approach decorrelates the partitioning process in the set of trees, increasing the di-

versity of the individual trees in the random forest. Diversity in the forest helps

ensure the model generalizes well to observations not already included in the training

data. By examining how the inclusion of each feature impacts tree leaf purity (the

lack of diversity of the observations contained within each leaf) throughout the forest,

a second benefit of RFR is the ability to identify which features are most important

for making accurate predictions.

Autoregressive Approaches for Time Series

One approach to predicting future values of time series data is the use of autore-

gressive approaches. Instead of observing correlations between the variable of interest

and potential explanatory variables over time as in traditional regression approaches,

autoregressive approaches seek to use information from previous observations to pre-
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dict changes in the variable of interest (Wooldridge, 2016). This is especially useful

for time series datasets where observations are often not independent and identically

distributed. Autoregressive approaches deal with this problem by using some number

of previous observations of the variable of interest as explanatory variables.

Vector autoregression, commonly annotated as VAR(p), is one of several time se-

ries forecasting methods that use previous observations with p lags to predict future

evolution of interconnected variables (Sims, 1980). Vector autoregression with exoge-

nous variables (VARX) extends this basic approach to allow the modeling of systems

in which some of the explanatory variables are not affected by the primary variable

of interest. These approaches can struggle with large models due to the number of

parametric terms required, which creates problems with the number of degrees of

freedom (Bernanke et al., 2005). Another limitation of vector autoregression is the

need to only train with data that includes a historical record of p lags. This limitation

becomes problematic when a relatively small dataset includes censored data, which

then effectively censors all later data for p time steps in the future. Certain time

periods of USAF retention data are unrepresentative due to large force management

actions that perturb natural retention behavior in ways that are not easily modeled.

One example of this phenomenon is the approval of large numbers of early retirements

as well as reduction in force and force management boards in 2014 to comply with

the fiscal constraints of the US government’s sequestration policy.

Given the likelihood of some seasonality over the course of the year for personnel

retention, 12 or 24 lags are likely to be the minimum number required to create an

effective model using monthly data. Especially when considering 24 or more lags,

this additional censoring can result in a potentially dramatic reduction of available

training data for datasets with a limited history like the USAF PRP. One additional

problem for autoregressive datasets is the limitation on the quantity of variables used.
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With any large number of explanatory variables, the low frequency of observations

with high numbers of years of service means that observations can be quite sparse for

specific combinations of features. Many combinations of features may only have a few

observations over time, so any methods that rely on a certain number of lags must

severely restrict the number of variables to ensure a number of observations greater

than 0 for all combinations of features. Other time series-oriented competitors to the

VAR approach such as the autoregressive integrated moving average (ARIMA) and

vector autoregressive moving average (VARMA) models share these censoring and

sparsity-related weaknesses.

Multilayer Perceptrons (Artificial Neural Networks)

MLPs capitalize on many of the strengths of the other statistical machine learn-

ing methods previously described (McCulloch and Pitts, 1943; Chollet, 2021). With

appropriate network size and hyperparameter selection, MLPs are flexible enough to

map highly nonlinear functions. This flexibility provides the model capacity to handle

complex problems whereas approaches with lower capacity struggle. Because MLPs

are a parametric approach that constructs weights based on observed features, they

do not require exact observations of every combination of features like KM. Although

methods exist to examine the effect of different features on the final prediction, the

large number of trainable parameters in most MLPs makes using them for inference

and model understanding difficult. Nevertheless, MLPs are often able to perform bet-

ter than other machine learning approaches precisely because of that level of capacity.

Indeed, Hornik et al. (1989) proved that a single layer perceptron of sufficient size

can approximate any continuous function for any arbitrary level of accuracy, leading

to the title of “the universal function approximator.”

Multilayer perceptrons can be used for survival analysis problems with the inclu-
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sion of a sigmoid activation function on the output layer, which forces outputs to

range from 0 to 1. Any other activation function that forces outputs from 0 to 1

can also be used for this problem structure, although the sigmoid activation function

provides the benefit of being continuously differentiable.

As implied by the name, nonlinear autoregressive neural networks (NARNets) use

an autoregressive structure similar to that of the VAR(p) model, but they instead use

an MLP structure to determine appropriate parameters (Chakraborty et al., 1992).

This approach has been shown to function well for many time series problems and

continues to evolve (Triebe et al., 2019). However, NARNets share some of the same

problems as the VAR(p) model described previously due to their reliance on lagged

observations. When certain years of data are censored, the retention observations for

these approaches require additional censoring to avoid contaminating training data

with the censored retention behavior in the lagged observations. These approaches

also generally require each retention observation to have a past observation with the

appropriate number of lags. When modeling subgroups within a population, this

structure requires the use of a limited number of variables to avoid problems with

sparsely populated subgroups with inconsistent observations and partially diminishes

the benefit of high-capacity approaches like MLPs.

Taskaya-Temizel and Casey (2005) provide a detailed comparison of autoregression-

neural network hybrids; many of these approaches seek to use the nonlinear strengths

of the neural network structure to fit the residuals of a classical autoregression ap-

proach. These approaches still retain the censoring and sparsity problems discussed

here for other classical autoregression techniques.
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2.2.3 Partially Autoregressive Feature Selection

In addition to features directly recorded in MilPDS, the PARNet and PARFor

approaches include an autoregressive feature. Simply including the previous observa-

tion for the subpopulation with the identical feature set is not possible if no cohort

with that feature set existed at the previous time step. This is a significant problem

at this level of detail but becomes more problematic with every additional variable

as the subpopulation sizes steadily decrease. At the extreme, with enough variables,

all cohorts have a size of 1. For this reason, we select a larger cohort for which the

subpopulation shares some features, but is also defined by few enough variables to

reliably generate an observation at each time step. Because the current KM model

has historically worked well under most conditions, we constructed the autoregres-

sive feature to use the same combination of YOS and months until separation date.

Hence, all subpopulations with a given combination of YOS and months until sepa-

ration date include the single month retention observation for this larger cohort at

the previous time step.

A common alternative approach is to use econometric data to develop a predictor

of changing retention behavior. Including a partially autoregressive feature has two

notable advantages over this approach, although they may be used in tandem. First,

an autoregressive approach may prove more robust when there are multiple trends

occuring at the same time, because it can capture the net effect of different variables

even when the data does not provide a way to measure which variable is causing

the aggregate trend. This specifically helps in the case identified here, wherein many

USAF policies have changed over time, frequently without a consistent documentation

captured in a single quantitative dataset.
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2.2.4 Data Partitioning: Validation and Test Approach

USAF personnel policy has changed dramatically over time; events such as the

transition to an all-volunteer force, the fall of the Soviet Union, the attacks of Septem-

ber 11, 2001, and the US government’s policy of sequestration starting in 2014 all

drove both immediate and lasting changes in USAF policy and personnel retention.

Additionally, changes in compensation, mission, and culture occur slowly over time

and create very different retention choices at various stages of the USAF’s history.

The MilPDS personnel retention data extracts extend from September 1992 through

September 2021. In advance of any other data processing, we partition a test dataset

that uses only the observations from September 2020 to generate an estimate of model

performance. Notably, the test dataset occurs during a notably unstable period in

labor economic conditions. The last portion of 2020 fiscal year yielded an upward

shift in retention due to the rapid change in economic circumstances related to the

COVID-19 pandemic. The conditions of the economy from a labor perspective began

to accelerate through 2021 as worker shortages yielded an upward pressure on wages

and unemployment fell. Although this 2021 data may pose a substantial challenge to

any set of retention models, this test dataset should allow us to determine whether

the new models are able to robustly use partially autoregressive features and per-

sonnel data to successfully identify retention changes compared to previous retention

modeling methodologies.

Next, we seek to ensure models can generalize well enough to predict behav-

ior of the current force, despite changes in enlistment contracts, pay, benefits, and

many other policies over time. We must either include variables that capture these

changes or appropriately censor the data to avoid confusing the varying relationships

of explanatory variables from periods with different policies. Aggregate retention,

measured as the proportion of personnel in the USAF at the beginning of the fiscal
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year who remain on active duty in the USAF 12 months later, shows two different sets

of retention behavior during this period as shown in Figure 12. Notably, years with

nonrepresentative policies to involuntarily separate personnel (red squares) and invol-

untarily retain personnel (green square) significantly alter natural retention behavior

and must be censored without some other method to account for this nonrepresenta-

tive pattern of behavior. As one senior personnel analyst quipped: “Nothing boosts

retention like making it illegal to get out of the military” (Barger, 2017).

Figure 12. High loss rates in the 1990s followed by lower loss rates after financial crisis

It is unclear whether the change in loss rates from the 1990s to the recent years

is due to economic changes between the roaring economy of the dot com boom and

the tepid recovery after the 2007 financial crisis, changes in mission or compensation,

cultural changes, or the changing messaging to airmen as the US government drew

down USAF end strength dramatically throughout this period. Regardless, the pe-

riods are sufficiently different to merit treating post-2007 retention separately. We

censor 2006-2008 and 2014 due to the forced losses in those years. We also censor

2009 and 2015 data to prevent contamination due to the inclusion of lagged retention

observations in the partially autoregressive feature. After this censoring, we retain

2010-2013 and 2016-2020 retention observations to meet our training and validation

needs.
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One danger of using monthly data for predictions spanning multiple months is that

longer prediction lengths sample the same personnel retaining in a single month for

multiple observations. An 11-month retention observation from September 2016 and

another 11-month retention observation from October 2016 are observing most of the

same retention behavior. For example, a single airman in the force who retains from

September 2016 to September 2017 would be represented as 2 separate observations of

11-month predictions for a single 12-month period. To avoid problems with repeated

evaluation of the same portions of time, we use only the September observations from

each fiscal year, providing non-overlapping observations for training and validation

and also preventing any overlap with the test dataset.

We set aside two distinct, non-overlapping validation sets. The second valida-

tion set is a traditional validation dataset consisting of the monthly observations of

starting inventory for September 2019 (i.e., 2020 data); this dataset is used to select

the superlative model after all models across all hyperparameter combinations are

fully trained. Although this data does contain a retention shift from the COVID-19

pandemic, this change in environment only manifested in the last 6 months of the

fiscal year and retention effects experience some lag as reenlistment contracts are of-

ten signed in advance of the actual departure of an airman. This approach ensures

that we avoid favoring large capacity models that simply overfit the training data yet

fail to generalize to unseen data. Simultaneously, selecting models that perform well

on both the dataset used during training and the second validation dataset should

also help avoid underfitting. Residual analysis of predictions on the second validation

dataset will help confirm if these models are appropriate.

Several of the models proposed in this research work best by using some validation

data or process as part of their internal training process to build good models. For

example, this implementation of the MLP uses a validation set and a version of early
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stopping. During training, this approach selects the model weights that generalize

best prior to further learning leading to overfitting on the training data. However,

no data used in the process to train the models can help inform which models should

perform the best because the models are already being fit to that data. For this

reason, we partition both a test dataset and two separate validation datasets. After

data cleaning and transformation, the training set and first validation set are split

pseudo-randomly from the observations of starting inventory through September 2018.

Of this data, 80% are used for training and 20% for initial validation. This initial

validation set is either used to help ensure training generalizes for MLP and PARNet

or folded back into the training data the RFR and PARFor models. Valid concerns

exist with regard to using randomly split validation data for time series estimation

because the observations in the first validation set will temporally overlap some of

the observations in the training data, resulting in some level of cross-contamination.

However, appropriate time series approaches would preserve the most recent data,

which is also likely to be the most valuable data, entirely for validation. Because

this first validation dataset is being used to help the models better generalize but

is not being used to select the best model, the cross-contamination is an acceptable

tradeoff to ensure we maintain enough data for effective training. The final size of

each dataset is shown in Table 2.

Dataset Individual Observations

Training and Validation 1 2,069,339
Validation 2 263,976

Test 265,369

Table 2. Number of final observations in each dataset given selected features
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2.2.5 Military Personnel Data and Generation of Retention Observa-

tions

The MilPDS extracts used for this research do not contain retention observations

themselves, but instead record longitudinally which personnel are on active duty

each month and their respective personnel details. Because social security number

is one of the recorded variables, we can examine when specific individuals enter,

retain, and depart active duty and what variables are recorded at each of these stages.

After censoring non-representative retention years, the training, validation, and test

datasets contains 2,598,684 individual data points from 10 years of retention data,

each containing 12 retention observations corresponding to the prediction lengths

of interest. This research attempts to predict total numbers of personnel who will

retain over different time intervals, so individual classification of retention behavior is

unnecessary for high quality predictions. Instead, we group individuals with identical

sets of features and attempt to predict how many of the group will retain at each

time interval. Because retention observations are based on the rate of subgroups with

a given feature set retaining, the number of observations is reduced as individual

retention observations are translated to the retention observations of subgroups with

the same combination of features. As an example, consider a cohort of 10 individuals

with the same feature set at a given time. If 9 retain and 1 departs for the prediction

interval of interest, these 10 individual observations become a single observation with

a retention rate of 0.9.

Prior to grouping data points to create retention observations, this dataset requires

several data preprocessing steps.

1. Blank entries are grouped by a common flag for each variable. In some cases,

this represents a true similarity, such as a missing separation date suggesting

that a person has not submitted separation paperwork. In other cases, this
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grouping may represent a common error, such as pay date errors for reservists

participating in a Voluntary Limited Period on Active Duty tour.

2. Less common observations for categorical variables are grouped together as

well. Some variables have many ways to categorize a field, but the numbers

may be sparse and have few personnel by which to judge a likely retention rate,

especially when spread across the other variables. To reduce this sparsity, we

used a minimum cutoff of 1% of the monthly observations.

3. Each categorical string variable was converted to multiple dummy variables

representing each possible value (i.e., one-hot encoding was implemented).

4. All ordinal and interval data was normalized (scaled to range from 0 to 1)

without standardization. While standardization is a common approach for data

with significant outliers, each of these distributions only included integer values

ranging from 0 to 14 or 0 to 30, meaning that a linear scaling would best allow

a machine learning approach to differentiate the effects of observed values.

5. All dates in the future are translated into an integer measurement of the months

until such an event happens. Since this set of models will only predict retention

over a relatively short prediction interval (12 months), the maximum value for

such observations is set to 14.

The features of interest (i.e., military personnel variables) are shown in Table 3.

These variable are selected to maximize known explanatory relationships. These

include the following categorical and boolean variables.

• AFSC (Air Force Specialty Code: Career Field)

Different specialties have different cultures, expectations, and economic oppor-

tunties outside the service, which drives different retention patterns.
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Variable Type Processed Features

YOS (Years of Service) Interval 1
Gender Categorical 1
Race Categorical 6

AFSC (Career Field) Categorical 24
Grade/Rank Categorical 10

Reenlistment Eligibility Boolean 1
Separation Paperwork Filed Categorical 2

Months Until Separation Date Interval 1
Months Until ETS Interval 1

Months Until HYT Cutoff Interval 1

Table 3. Military personnel variables

• Grade/Rank

Grade provides some measure of performance and compensation, which affects

outside earning potential.

• Gender

Female airmen leave at higher rates than their male peers early in their career,

making gender an important consideration for the probability of retention.

• Race

Although not as clear of a relationship as gender, race still has substantial

predictive power for retention observations.

• Reenlistment Eligibility

Some airmen may not be eligible to reenlist for a number of reasons. Even in

absence of separation paperwork being filed, an impending expiration of term

of service (ETS, i.e., the end of the enlistment contract) without reenlistment

eligibility increases the probability of separation.

• Separation Paperwork Filed

If they have filed their separation paperwork and have a separation status, they

have signaled their intention to leave.
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In addition, we include the following interval variables.

• Years of Service

YOS correlates closely with significant career milestones and retention decisions;

airmen reach the end of their first enlistment at four to six years and reach

retirement eligibility at 20 years. Some airmen are not eligible to reenlist in

their current career field; upcoming retention decisions may require volunteering

to cross-train to another career field to remain in the USAF. This variable is

recorded as the integer value of completed years of service, ranging from 0 to

30 for enlisted airmen.

• Months Until Separation Date

Once paperwork has been filed indicating that a service member intends to

depart, the date of the intended departure is also recorded. The difference

between the current date and this variable is recorded in integer months, with

a maximum value of 14.

• Months Until ETS

An ETS occurs when the current enlistment runs out, driving a stay or go

decision. If the airman reenlists, the ETS is extended into the future. If an

ETS is very close but no separation paperwork has been filed, then the airman

has probably not made a decision, although some airmen may wait to see if

they become eligible for bonuses or similar policies. The difference between the

current date and the ETS is recorded in integer months, with a maximum value

of 14.

• Months until HYT Cutoff

High Year of Tenure (HYT) cutoffs indicate the maximum YOS an airman of a

specified grade can have before being forced to exit the service. This ceiling is a
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mechanism to prevent personnel from remaining in the force if not continuing to

progress in rank. The difference between the current date and the HYT cutoff

is recorded in integer months, with a maximum value of 14.

After encoding each of the variables according to these rules, the vector repre-

senting a combination of these features is defined as f ∈ F where F is the set of all

possible feature vectors.

As individual observations aggregate to form retention observations of groups, the

number of observations declines proportional to the size of those groups. With this

selection of features and the data cleaning methods employed, the original 2,598,694

individual data points transforms to 405,137 subgroup data points. The final size of

each dataset is shown in Table 4.

Dataset Subgroup Observations

Training 255,868
Validation 1 63,968
Validation 2 42,729

Test 42,572

Table 4. Number of final observations in each dataset given selected features

After transforming categorical variables with one-hot encoding, 48 total binary,

ordinal, and interval features are produced for each observation, plus a single partially

autoregressive feature. Feature vectors are annotated as f and the set of all possible

feature vectors is F . Specific time periods are annotated as t and the set of all time

periods is T . We define starting and surviving inventories of personnel as

Sf,t = number of personnel with feature vector f

at time t, and

(1)

Sf,t,τ = number of remaining personnel starting with

feature vector f at time t after τ time steps.

(2)
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Our retention estimation approaches capitalize on one aspect of the problem struc-

ture: with certainty, the rate of surviving personnel over τ time steps from time t

with a given feature set will fall between 0 and 1. A retention rate is then defined as

rf,t,τ =
Sf,t,τ

Sf,t

, where 0 ≤ rf,t,τ ≤ 1,

∀f ∈ F , t ∈ T , τ ∈ {1, 2, ..., 12}.
(3)

Predicted retention rates are denoted as r̂f,t,τ .

Figure 13. Correlation between transformed input variables for training dataset ranging
from -1 to 0.54

We tested the correlation of the input variables in the training data, shown in

Figure 13. One-hot encoded transformations of the same variable (i.e., the dummy

variables) showed small negative correlations with each other, shown in the boxed

areas of the figure. Additionally, YOS showed a correlation with several variables,

including grade and separation ID. Grades generally progress over time, as does YOS,
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so this matches our expectations. Enlistment contracts define a required term of ser-

vice and HYT policies force personnel out at higher YOS if they have not progressed

quickly enough to a higher grade, so some relationship is expected with these variables

as well. Separation data and separation ID also predictably showed a strong relation-

ship with each other and the partially autoregressive feature. The generalizability of

models can suffer when the effects of different variables cannot be distinguished from

each other due to multicollinearity. To observe whether this is a problem, we com-

pute the variance inflation factors (VIFs) for each non-categorical variable, shown in

Table 5. VIFs measure how each variable affects multicollinearity and are commonly

used to diagnose problems for ordinary least squares regression problems. Most of

the VIFs are in desirable ranges, although YOS is somewhat high at 6.7. Because it

remains below the threshold of 10 recommended by Menard (2001), we proceed with

these variables.

Variable VIF
Reenlistment Eligibility 1.15
Months Until ETS 1.41
Gender 1.12
Months Until Separation Date 2.59
YOS (Years of Service) 6.71
Months Until HYT Cutoff 1.59
Autoregressive Variable 1.42

Table 5. Variance inflation factors for each non-categorical variable

Traditionally, classification problems need to utilize balanced datasets to create

high-quality machine learning models. Regression problems have not faced the same

issues, but our problem constrains predictions to a small range from 0 to 1 in the

same way as historical classification problems. Even with the relatively parsimonious

feature selection, we still observe many observations at the extreme values of 0 and

1. In such a case, we know that residuals will not be normally distributed, so highly

imbalanced datasets may result in low-quality machine learning models. We tested
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the transformed subgroup observations, and retention observations of 100% composed

less than 64% of the totals, despite many of the aggregate retention rates being greater

than 90%. For this reason, we did not explore resampling or selectively sampling our

training data. The distribution of retention observations is shown in Figure 14.

Figure 14. Histogram of 12-Month prediction interval retention observations in training
dataset

Aggregate predictions of total retained personnel are constructed by summing the

product of the predicted retention rates for a given combination of features with the

number of starting personnel for that same combination of features, across all possible

combinations of features:

ρ̂t,τ =
∑
f∈F

r̂f,t,τSf,t ∀t ∈ T , τ ∈ {1, 2, ..., 12}, (4)

while the observed aggregate retained personnel is denoted as ρt,τ . Finally, we define

the absolute aggregate prediction error for a given time t and prediction length τ as

Et,τ = |ρ̂t,τ − ρt,τ |. (5)
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This measure provides the means to assess the goodness of any model predictions

because it directly measures a model’s usefulness to the research sponsor. Because

τ ∈ {1, ..., 12} the size of the output layer for our MLP approaches is 12. For random

forest approaches, we generate 12 separate models to produce the 12 outputs.

The initial retention code was developed in SAS, the native language of the

datasets and their Air Force Personnel Center caretakers. Datasets were then im-

ported to Python for further cleaning and subsequent analyses.

2.2.6 Hyperparameter Selection for Computational Experiments

In RFR models and various forms of neural networks for problems of our size, a

significant driver of model quality is the selection of hyperparameters that tune how

the model is structured and optimized. For our approaches using a feedforward neural

network, we consider the following hyperparameters.

Given the importance of both generalizability and computational demand, we

select a large batch size of 8,192 and seek to use a high learning rate. We implement

the 1cycle approach to scheduling learning rate (Smith, 2018) with the maximum

learning rate set according to the test recommended by Géron (2019) over five epochs.

This test begins training over some small number of epochs, steadily increasing the

learning rate at each iteration to observe how high the learning rate can rise before

training diverges and the loss begins rising dramatically. In order to automate this

test, we find the minimum loss value during this training and set the maximum loss

rate to 90% of the value of the corresponding learning rate. The minimum loss rate

is then set to 10% of this value. Smith (2018) recommends using stochastic gradient

descent with weight decay as the optimizer and using a weight decay value that allows

the highest learning rate. We test three recommended values, 0, 0.001, and 0.01,

to explore if any consistent relationship exists for this problem structure. We also
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test a version of each architecture with and without momentum. Architectures with

momentum use the momentum scheduling approach described by Smith (2018). All

models use binary cross entropy for the loss function because the predicted outcomes

are probabilities ranging from 0 to 1.

Another important architecture design issue is determining the superlative com-

bination of activation function and regularization approach. The regularization ap-

proach is particularly important for time series problems as we attempt to find models

that generalize well to future observations and avoid overfitting noise in the training

data. We examine two activation functions: exponential linear units (ELU) (Clevert

et al., 2015) and scaled exponential linear units (SELU) (Klambauer et al., 2017). The

use of 1cycle is a form of regularization, so we test both of these approaches with-

out additional regularization as well as with appropriate techniques for both. For

ELU activation functions, we consider batch normalization (Ioffe and Szegedy, 2015)

and Monte Carlo Dropout (Gal and Ghahramani, 2016). For models with Monte

Carlo dropout, we test 2 configurations: 1 with dropout after each hidden layer and

1 with dropout after only the final hidden layer. For SELU activation functions, we

test AlphaDropout, the modification to traditional dropout proposed by Klambauer

et al. (2017). This approach maintains the mean and variance of the outputs for each

hidden layer, preserving desirable properties of the SELU activation function.

Finally, we test architectures with hidden layers ranging from two to five and

between 25 and 100 neurons per hidden layer, with discrete settings of 25, 50, and

100. We conduct a full factorial experiment with 10 replications of each of these

sets of features, indicated in Table 6. While these additional replications could be

used to sample a wider collection of hyperparameter settings, replications enable

observation of whether differences in performance are due to the hyperparameter

settings or random noise generated by the algorithm’s stochastic starting conditions.
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If the addition of a partially autoregressive feature is a valuable addition to the

MLP modeling approach for this problem, we should observe the superlative models

consistently using this feature.

For all MLP models, we use the Tensorflow API (Abadi et al., 2015) for develop-

ment, training, and testing.

Hyperparameter Settings
ELU, no regularization
ELU, batch normalization

Activation Function ELU, MC dropout on each hidden layer
and Regularization ELU, MC dropout on final hidden layer

SELU, no regularization
SELU, AlphaDropout

Weight Decay 0, 0.001, 0.01
Momentum Scheduled, No momentum
Hidden Layers 2, 3, 4, 5
Neurons/Hidden Layer 25, 50, 100

Table 6. Hyperparameters for MLP and PARNet models

We next consider the hyperparameters for our random forest models. Although

random forest models are less sensitive to hyperparameter selection due both to their

structure and their nature as an ensemble learner, correct selection of hyperparameter

settings can still have a significant effect on superlative performance. We consider

three hyperparameters of interest: number of decision trees, maximum tree depth,

and the use of bootstrapping, as shown in Table 7. Like the MLP approach, we repli-

cate each group of hyperparameter settings 10 times using different seeds to ensure

reproducability. Based on preliminary empirical testing, the minimum observations

to split a node was set to five and the minimum observations per node was set to

two. The models were trained using the Random Forest Regression module from

Scikit-Learn (Pedregosa et al., 2011); all other hyperparameters used the module’s

default settings.
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Hyperparameter Settings

Number of Trees 100, 250, 500
Maximum Depth 10, 25, 50
Bootstrapping Yes, No

Table 7. Hyperparameters for RFR and PARFor Models

2.3 Results and Discussion

We seek a modeling approach that improves prediction performance versus the

benchmark. Approaches that produce robust results with different randomized start-

ing conditions are preferable to those requiring multiple restarts to find a high per-

forming model, but the primary success criterion is performance as measured by mean

absolute aggregate error.

2.3.1 Validation Results for MLP and PARNet Models

Once all training completes, each model generates a set of predictions for the

second validation dataset, predicting the probability of retention for the population

with each set of features for the next 1-12 months. As seen in Figure 15, both the

random forest approach and the MLP approach generated models that outperformed

the benchmark, shown in the green shaded portion of the chart. Moreover, both

approaches showed improved performance for the highest performing models when

including the partially autoregressive feature.

As seen in Figure 16, the quality of the MLP predictions varied significantly across

all architectures, though only some architectures generated high quality predictions.

Three of the architectures failed to produce any models that could defeat the bench-

mark, including both approaches without an additional form of regularization. A

fourth architecture using ELU activation functions and Monte Carlo Dropout on all

layers generated only a single model that defeated the benchmark, which appeared

to be an outlier.
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Figure 15. Overall performance varies, but multiple approaches produce models that
outperform the benchmark of 1,383.3 (shown in green)

Examining the top performing models more closely in Figure 17, the architecture

using ELU activation functions and batch normalization generates only a few models

that defeat the benchmark, contrasting with the large number of better performing

models generated using SELU activation functions and AlphaDropout. Moreover,

for this architecture, the inclusion of the partially autoregressive feature appears to

improve prediction performance for the best-performing models.

Figure 18 shows the performance results of the best models using the SELU activa-

tion function, AlphaDropout regularization method, and the partially autoregressive
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Figure 16. While each architecture had a wide range for quality of predictions, only 3
produced models that outperformed the benchmark

Figure 17. SELU with AlphaDropout and the partially autoregressive feature produces
the best-performing models

feature. None of the other hyperparameters show a consistent relationship with so-

lution quality, although many of the highest performing models used 25 neurons per

hidden layer, suggesting that this smaller size may improve generalization for su-

62



Figure 18. While the best model uses the largest architecture, many of the best models
used the smallest number of neurons per hidden layer tested

Figure 19. Best combination of hyperparameters showed inconsistent performance,
suggesting that the difference in solution quality depends on pseudo-random initializa-
tion values

perlative models trained on this problem. Additionally, models with 3 hidden layers

generated the largest number of models that outperformed the benchmark for each

number of neurons per hidden layer.

Because each set of hyperparameters is used to generate 10 models, we seek to
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Figure 20. Top performing architecture for Validation 2 dataset shows minimal rela-
tionship between validation loss during training with Validation 2 performance

check whether this particular set of hyperparameters that generated the top model is

consistently high-performing or whether such an approach requires a significant num-

ber of models trained with different starting weights to find a high-quality model.

In Figure 19, we see that the superlative model’s hyperparameter settings do not

produce consistently high quality predictions. This suggests that the activation func-

tion and regularization method are very important, but that considerations such as

computational demand can drive other hyperparameter settings without substantial

worsening of prediction quality as long as a sufficient number of models are trained
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to find a high-performing model. We focus on the best model generated, but future

investigation of the USAF PRP should focus on the smaller model architectures for

increased computational efficiency with minimal loss of solution quality.

Figure 21. Best model for aggregate error in Validation 2 dataset demonstrates in-
creased individual errors but reduced aggregate statistical bias

When generating these models, the use of separate validation datasets for training

and for model selection helps to examine of how the prediction error on the first

validation dataset used during training correlates with the aggregate prediction error

for the second validation dataset. Generally, one would expect these errors to closely
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correlate if the first set generalizes well to the second. In Figure 20, this proves true

for all but one combination of activation functions and regularization method. In the

case of the top performing architecture, we observe generally higher errors for the

first validation set as well as a statistically insignificant relationship between the two

errors.

We observe evidence for the first set generalizing well to the second in the results

from the other architectures. However, consistent errors in a single direction, also

known as statistical bias, could cause error in the first validation set to be low but

aggregate error in the second validation set to be high if the small errors were con-

sistently in the same direction. This is a significant concern for prediction of rates,

because prediction errors cannot be symmetric for rates close to 0 or 1, making statis-

tical bias particularly sensitive to the distribution of observations. Indeed, we observe

this exact phenomenon in Figure 21, which compares the residuals for the highest per-

forming model as measured by the loss for the first validation dataset to the residuals

for the highest performing model as measured by the aggregate prediction error for

the second validation dataset.

Next, we examine the performance of the approaches using a random forest struc-

ture on the second validation dataset. As we see in Figure 22, the approach is also

able to outperform the benchmark and demonstrates more consistent performance

across replications but fails to match the performance of the approaches using a neu-

ral network architecture. We observe that the inclusion of the partially autoregressive

feature consistently demonstrates superior performance across all hyperparameter set-

tings, as seen in Figure 23, wherein the validation error for each replication appears

above the diagonal line representing parity between the two approaches.

Although the primary selection criterion is model quality, computational effort

remains an important consideration. As seen in Figure 24, the MLP models require
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Figure 22. Superlative random forest architectures consistently outperform the bench-
mark but fail to match highest performing MLP models

Figure 23. Random forest models with the partially autoregressive feature performed
better (i.e., attained decreased validation error) than those without the feature across
all replications.

relatively less training time, attaining times ranging from 9 to 31 seconds. However,

a practitioner must train many models to generate a high quality prediction. Con-
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Figure 24. With the tested hyperparameters, training individual MLP models require
less computation time (9-31 seconds) than the RFR models (162-1,829 seconds).

versely, the RFR models require a relatively greater amount of time to train, attaining

times ranging from 162 to 1,829 seconds with the middle two quartiles ranging from

358 to 1,148 seconds, but consistently converge to models of similar quality given the

same hyperparameters. The MLP models were trained on an NVIDIA Quadro RTX

8000 GPU while the RFR models were trained in parallel on an Intel Xeon CPU

E5-2680 v3 at 2.50 GHz with 24 cores. Because RFR training ran on the CPU and

MLP training ran on the GPU, a precise comparison regarding computational effort

should be avoided.

With these results, we select the superlative model to be the highest-performing

replication of the PARNet model with SELU activation functions and AlphaDropout.

We also select the highest performing MLP model with SELU activation functions and

AlphaDropout to measure the effect of including the partially autoregressive feature.
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2.3.2 Test Results for Superlative Model

Given an inability to differentiate improvement in models based only on loss func-

tion, we directly apply the same superlative models with and without the partially

autoregressive feature to the test dataset to estimate performance improvement of

these models over the benchmark KM model without further training. Moreover, we

leverage this dataset to assess the effect of the inclusion of the autoregressive feature

for MLP structures. Like the validation results, the test observations are not inde-

pendent, so confidence intervals do not provide an appropriate means to assess the

significance of our findings due to the limitations of the data.

Model Mean Error Reduction versus KM
PARNet 34.82%
MLP 62.78%

Table 8. Mean reduction in absolute aggregate prediction error on test dataset shows
both models outperformed the benchmark, but the inclusion of the partially autore-
gressive feature resulted in a smaller improvement

Both the MLP and the PARNet substantially improve prediction quality com-

pared to the current benchmark model, as indicated in Table 12. However, contrary

to expectations based on the validation results, the MLP provides the highest qual-

ity predictions for the test dataset. A likely cause of this deviation is that the test

dataset included economic data during the recovery from the COVID-19 pandemic.

This data reflected a dramatic decline in economic opportunities and an associated

increase in USAF personnel retention, followed by a reversal in labor market con-

ditions as wages spiked and unemployment dropped. The earlier validation results

suggest that the superlative algorithmic configurations with a partially autoregressive

feature performed well in a retention year with a more stable trend, while the changes

in retention during the test set will measure how much the algorithm can improve

performance over the KM benchmark in a very different environment.
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Figure 25. Mean test error of superlative models by prediction length

As expected, the PARNet’s improvement in error rates in Table 12 is reduced

from the validation results due to the rapid changes in underlying retention behavior

caused by the pandemic. We see in Figure 25 that retention shifted direction in the

ninth month, where the slope of the error in the KM model reverses direction. This

change significantly worsened the prediction of the PARNet model, which beat the

benchmark but did not beat the MLP without the partially autoregressive feature.

The MLP appears to be generalizing quite well with the exception of the prediction

from month 11. The PARNet error is higher than the MLP for early months, but

a large spike in the observed error over the last three predictions appears to be

caused by the shift in underlying retention behavior due to accelerating economic

conditions. Because this shift occurred between the prediction and the observations
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of the last three months, no indicators of the reversal were available in the partially

autoregressive feature to help inform this estimate. The test dataset does appear

to confirm that both the PARNet model and the basic MLP can provide generally

superior performance to the current benchmark, even in difficult conditions.

2.4 Conclusions and Future Work

We have demonstrated multiple models that generate higher quality predictions for

the USAF PRP compared to the current benchmark model. In addition, we showed

that the inclusion of a partially autoregressive feature can reduce modeling error for

multiple types of well-tuned machine learning algorithms during periods of consistent

trend, although we were unable to confirm that this approach improved performance

during periods of rapidly changing economic conditions or measure a positive impact

using test data with these conditions. While the partially autoregressive MLP ap-

proach’s results on the test dataset demonstrate sensitivity to changes in the trend

direction compared to a model trained without the partially autoregressive feature,

the chosen model still significantly outperformed the current USAF model serving

as the benchmark. As additional training data is collected that includes changes in

trend direction, both this approach and the MLP without the partially autoregressive

feature are likely to improve in performance beyond the current measurement. Ad-

ditionally, future test data without such a substantial shift in trend direction should

show substantially improved results, although such theorized improvements in per-

formance should be understood to be a measure of performance under those differing,

economically steady conditions.

While the best PARNet model reduced mean absolute aggregate prediction error

by 34.82% in the test dataset, most combinations of hyperparameters and replica-

tions failed to beat the KM benchmark during the validation process. This approach
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currently requires a large number of neural networks to be trained to find a small

number of high performing models. Further work should more finely examine the

hyperparameter space near the winning combination and examine how robust those

settings are for different time periods.

The primary problem with the approach provided in this chapter is the statis-

tical bias of the estimates. The models that perform best as measured by binary

cross-entropy have a consistent statistical bias that negatively impacts the quality of

aggregate predictions. The architecture selected is not fitting the data better than the

other architectures; it simply is fitting the data with less statistical bias. This must

be addressed prior to operationalizing this model. Several methods are available to

address this issue. First, reducing the number of features included until cohorts are

significantly larger would ensure that fewer observations are at the extreme ends of

the distribution at 0 and 1, decreasing the likelihood of consistent statistical bias in

one direction. However, this statistical property comes at the cost of restricting the

specific variables that have the most explanatory power. Second, the loss function

can be modified to overweight penalties in one direction when consistent statistical

bias is detected. Both of these approaches should be explored in further work.

Resampling data to address the imbalance between high and low retention ob-

servations may prove helpful to improve model training and prediction quality for

low retention observations, but this will not address the statistically biased residu-

als for extreme values, which will remain imbalanced in the real world applications.

Moreover, because this may increase error for the large number of high-retention

observations, this may worsen problems with statistical bias.

In addition to the data used from MilPDS, AF policy variables and national-level

econometric variables can provide a proxy measure for the individual opportunities

and compensation available in the broader US labor market. To measure the value
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of opportunities and compensation within the USAF, variables measuring personnel

policies can be constructed, although most existing documentation of these policies

is not stored in easily extractable formats or in a single location. Complicating the

use of machine learning approaches, these policies are appropriately implemented

to shape outcomes and not randomly designed to observe the exact effect of these

policies, and thus create an endogeneity problem when attempting to model their

effects. For these reasons, it is difficult to discern what caused retention behavior

to change as well as to predict retention behavior when these underlying variables

change. Further complicating the use of econometric variables, economic conditions

often change slowly and only change direction every few years, making it difficult

to model data spanning only short time periods. As policies change in the USAF,

personnel from long ago may not retain similarly to airmen in the force today, making

it difficult to use the entirety of data spanning long time periods. This shorter dataset

used for our models was also limited by a single econometric trend during the training

data; future machine learning work over the next few years will benefit from the

natural experiment of a large economic shock from COVID-19. Early testing with

econometric variables generalized poorly, but the inclusion of this natural experiment

in a training dataset is likely to enable much better future performance.

Notably, this reversal in trend direction was marked by significant external fac-

tors that generated changes in macroeconomic variables. Some portion of this change

would be captured simply by updating projections as the year progressed, still pro-

viding awareness of the retention impacts in advance. In addition, an operational

deployment of such a model would not be blindly administered; analysts observing

macroeconomic indicators can implement models using features that appear likely to

improve performance. Further work could establish specific markers of trend instabil-

ity based on macroeconomic indicators that can be used to select models that perform
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best in the current environment. In addition, both of the superlative models showed

the best performance for at least 25% of the prediction lengths. In combination with

uncertainty about future trend stability, this suggests that the inclusion of an en-

semble model using predictions from multiple types of machine learning models may

provide better and more robust solutions than any individual model. Additionally,

while the random forest approaches only beat the benchmark by a small margin in

the second validation dataset, the inherent robustness of such approaches may be a

valuable contribution to such an ensemble. Future work should examine both the

inclusion of multiple models as well as strategies for creating diverse, high-quality

models to contribute to this ensemble. Finally, although sequence-based approaches

like long short term memory networks and other recurrent neural networks face many

of the same problems associated with modeling heavily censored sequences, as de-

scribed in Section 2.2.2, future work should verify that these approaches are unable

to replicate or enhance the level of performance provided by the techniques proposed

in this research.

74



III. Reinforcement Learning Approaches to Improve United
States Air Force Accession Policies

3.1 Introduction

Each year approximately 9-13% of active duty personnel in the United States Air

Force (USAF) depart the service. The USAF must develop policies to replace these

personnel while meeting specialized skillset needs. The USAF manages a myriad of

specific skill requirements for its personnel, primarily via career field designations,

indicated by specific Air Force Specialty Codes (AFSCs). The Air Force corporate

structure, United States Congress, and Air Force major commands each play a role

in funding specific skillsets. This funding for current and future personnel is recorded

as programmed manpower authorizations. Each year, the USAF must recruit and

train many individuals for each required skillset; recruits entering each career field

are called accessions.

Compared to historical military forces, much of the modern USAF’s human capital

is dedicated to fielding highly complex warfighting systems, which can take years to

fully learn and operate effectively. Rapid changes in organizational experience levels

due to large fluctuations in personnel in different year groups can substantially affect

mission accomplishment. This effect can be partially measured by examining how

the inventory in each AFSC matches the authorizations by grade for that AFSC.

The number of accessions entering each AFSC impacts this distribution of experience

because most skillsets in the USAF must be developed from the beginning for junior

personnel. For this reason, policies that determine the accession level for each AFSC

must be carefully constructed to meet both short and long term human capital needs.

Not having adequate personnel with each skillset can have serious national security

implications, so the long-term effects of these policies deserve careful consideration.
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This chapter provides improved methods to accomplish this task.

This research formulates a closed workforce replenishment problem (WRP) to rep-

resent the USAF human capital decision context (i.e., without allowing for outside

hiring to meet senior requirements), constructing a Markov decision process model

to capture the effects of policies on outcomes. The USAF’s Military Personnel Data

System dataset is leveraged to design a realistic, high-quality state transition simu-

lation. We present and test several reinforcement learning methods for developing

high-quality enlisted accession policies for the Regular Air Force (i.e., active duty)

that meet current and future manpower requirements as well as comply with and

identify pipeline constraints. We measure the success of our proposed modeling and

solution approaches by comparing simulated policy results to those obtained using

the USAF’s current benchmark equilibrium policy.

In pursuit of this goal, we propose the following methodological contributions.

We propose and test a solution procedure that constructs a direct lookahead (DLA)

policy using Monte Carlo simulation and a modification of Concave Adaptive Value

Estimation (CAVE) (Godfrey and Powell, 2001). This extends previous work by

using accessions constraints and relative values to solve a knapsack problem that

determines the composition of total accessions for each time step. We also propose

and test a second solution procedure that constructs a parameterized dynamic policy

using approximate value iteration with Deep Q-Networks. This approach uses target

networks and a replay buffer to stabilize learning. This parameterized approach

overcomes computational limitations for searching enormous action spaces by using

the same policy structures as the subject matter experts currently developing policies.

Defining the ideal state, wherein the number of personnel with each combination

of AFSC, years of service (YOS), and grade match the corresponding number of

manpower authorizations, allows a clear formulation of the WRP. However, ambiguity
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exists when comparing the relative goodness of other possible states. Typically, the

number of personnel within each AFSC and grade will differ from the ideal as defined

by manpower authorizations. To examine this issue further for stakeholders, we

test two candidate cost functions. This examination allows us to determine model

robustness, gain insight about these function’s effects on policies and outcomes, and

present results that can be used to determine appropriate cost functions for future

work.

The rest of this chapter is organized as follows. Section 3.2 describes the USAF

WRP and the real world data and processing used to characterize system behavior.

Section 3.3 formulates the Markov decision process model representing the USAF

workforce system behavior. Section 3.4 describes how we developed and tested op-

timization approaches to find high-quality policies (relative to current practice) for

this system. Section 3.5 describes the results from our computational experiments.

This chapter finishes with implications for policy development and a description of

the remaining work.

3.2 U.S. Air Force Workforce Replenishment Problem and Data

The USAF experiences constant programmatic change, which causes attendant

changes in the mix of skills and competencies required from its workforce. Decisions

regarding the appropriate personnel levels for these requirements are programmed

and recorded as manpower authorizations by career field, designated by AFSC. As

accession, retraining, and retention policies take time to plan, fund, and implement,

the gap between the change in requirements and the change in numbers of personnel

due to policies such as recruiting, training, and assigning personnel manifests as an

AFSC shortage.

The quantity of personnel inventory with each skillset is an outcome of flows
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through each AFSC, YOS, and grade, as shown in Figure 26. Policies seeking to

affect this inventory must either change the rate of personnel departing the system,

crosstraining between each AFSC within the system, or arriving into an AFSC from

outside the system. Changing retention levels can require significant levels of invest-

ment, especially because most retention incentives must compensate both the addi-

tional individuals being retained as well as those who would have retained already.

Moreover, retention incentives at the levels typically offered to enlisted AFSCs often

have only small effects on personnel decisions (Joffrion and Wozny, 2015). Cross-

flows (i.e., moving personnel from a donor AFSC to a receiving AFSC) can alleviate

problems, but involuntary retraining policies come with a cost to retention because

they create an opportunity for personnel to decline retraining and leave the service

entirely. Because personnel depart the USAF each year and must be continually re-

placed, selecting an appropriate level of annual accessions for each AFSC is the policy

that most directly impacts AFSC shortages.

The USAF has explored making the service more open to experienced outside

talent because of this lack of flexibility in the current system, but this idea has yet to

become a normal feature of the service’s human capital lifecycle. Until such change

occurs, methods to determine accession policies for each AFSC have effects that last

for decades as the personnel in that cohort age through the system. Policies bringing

in too many personnel can be offset by force management actions in later years.

Policies bringing in too few are not so easily counterbalanced, especially in areas

where training is either expensive, lengthy, or constrained.

Each year, the USAF first selects a level of total accessions to maintain aggregate

end strength and comply with Congressionally-mandated end strength constraints.

Even slight overages result in large military personnel expenditures and require off-

sets from other areas, so current practices prioritize end strength management, then
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Figure 26. The number of personnel with each combination of attributes depends on
the flows into and out of this state from adjacent states with combinations of AFSC,
YOS, and grade at each time step.

address AFSC shortages within those budget constraints. After the aggregate acces-

sions level is set, the staff of the Deputy Chief of Staff, Manpower, Personnel and

Services, Headquarters USAF (AF/A1), works with the AFSCs’ respective career

field managers to divide this total among the various AFSCs. This research provides

methods to rigorously develop a USAF-level accession policy for all AFSCs.

The USAF currently uses an equilibrium accession level for each AFSC as a start-

ing point to develop current policy. This equilibrium level is developed using the

USAF’s Officer and Enlisted Sustainment Models. These models determine targets

for the long term sustainment of an AFSC. These sustainment targets indicate the

number of accessions desired for an AFSC to be 100% manned on average over an

infinite time horizon if the USAF never adjusted its accession policy. USAF analysts

develop these targets by measuring retention by AFSC and years of service over a
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five-year period, excluding retention observed from years with non-representative force

management actions, then projecting this behavior over a 30-year career by YOS. The

sustainment model scales this projected profile based on the number of manpower au-

thorizations at the furthest year recorded in the authorizations programming. This

quantity is the 5th year personnel target programmed in the Manpower Programming

and Execution System Unit Manpower Document (MPES-UMD, alternately referred

to as the UMD).

Although the sustainment target provides a useful baseline for accessions policy,

sustainment targets effectively produce a 20-30 year “get well plan,” i.e., a plan for

correcting AFSC imbalances due to personnel shortages and overages. Such a plan

requires too long a time to make a meaningful impact and, in a dynamic environ-

ment with constantly changing requirements, the recovery time is even greater. This

environment necessitates development of a set of accession policies that can more

aggressively address AFSC shortages. Currently, this process requires a team of ana-

lysts to build these targeted accession policies in a time-intensive process. The process

to validate these accession targets has historically relied on publishing these targets,

then receiving feedback from the myriad supporting training schoolhouses to identify

constraints. This process is iterated until a set of accession targets is both desir-

able and feasible within the current set of constraints. Fortunately, Air Education

and Training Command has begun streamlining this process, and a new opportunity

presents itself to improve the quality and timeliness of the planning processes. Be-

cause the sustainment target is the baseline for this manually developed target, we

use it as the baseline policy for comparison when evaluating policies developed by

our solution approach. We seek to determine high-quality accessions policies rela-

tive to the currently practiced baseline policy. Given the 7,050 dimensions of AFSC

and YOS combinations for the inventory state space at each time step for the WRP
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instance of interest, the use of conventional dynamic programming or approximate

dynamic programming techniques that require an explicit listing of potential states

prove intractable for this problem without some form of aggregation, decomposition,

or parameterization.

To appreciate the need for a policy that can tailor accessions to emerging require-

ments without waiting for existing personnel cohorts to entirely depart of the system,

it helps to observe the high rate of change for the manpower authorizations in many

AFSCs. The authorization change for one example AFSC in a growing mission is

shown in Figure 27. Each line represents a snapshot of the UMD in that year, with

the first point on the line showing the actual number of authorizations in that year.

The remainder of each line shows the projection of the future size of the AFSC based

on the programming at that time. As seen in Figure 27, much of the growth in

such AFSCs is not programmed in advance. This lack of anticipation requires agile

policies that adapt to these changes quickly without violating training pipeline con-

straints or compromising long-term AFSC health due to large fluctuations in career

field experience caused by disproportionately small or large year group cohorts.

The presence of non-stationary, stochastic demand (i.e., authorizations) suggests

the need for deliberate modeling of this problem feature and an algorithmic approach

to devise policies that display more resilience to this changing demand signal. How-

ever, anticipating future policy changes and developing policies to build a force that

differs from that which is funded through Congressional and AF corporate struc-

ture inputs would effectively undercut senior decision-maker authority and the US

Congress’s legal oversight authority. Policies must address requirements as currently

funded, but also induce a responsive structure resilient to change.

All transition behavior is measured using longitudinal measurement of 5 years of

transitions in the USAF’s Military Personnel Data System (MilPDS Dataset, 2021),
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Figure 27. Many snapshots of the programmed authorizations level for the next five
years change significantly when comparing the later years of programming with actual
programming in that year

comprising 1,196,433 individual retention observations. Historical transition behavior

is included for AFSCs that have changed their specified code based on the contents of

the Enlisted Classification Directories over the last few years. Some AFSCs progress

from a specific AFSC with a junior skill level to a related AFSC with a more senior

skill level without requiring any kind of retraining action. A portion of these pro-

gression flows have multiple junior AFSCs progressing into a single senior AFSC as

the scope of responsibility increases, necessitating explicit modeling of each to deter-

mine the correct accession level for each junior AFSC. AFSCs managed separately for

visibility purposes, but having deterministic transitions from a single junior AFSC

to a corresponding senior AFSC, are combined to reduce unnecessary noise in the

projections. The starting inventory considered in the WRP instance of interest is the

actual USAF enlisted inventory on 30 September 2021, which is the end of the fiscal

year. The authorizations use the current and projected authorizations programmed

82



in the UMD recorded on 30 September 2021 (MPES-UMD Dataset, 2021).

3.3 Markov Decision Process Formulation

To effectively apply ADP and RL solution techniques, we first formulate the USAF

WRP as a Markov decision process. We propose a finite-horizon formulation with a

length of T = 30 years based on the enlisted maximum career length. Let

t ∈ T = {1, 2, ..., T}. (6)

3.3.1 State Variables

The state of the USAF personnel system St indicates the number of personnel

with each combination of attributes. Let St,a,y ∈ Z+
0 be the number of personnel with

AFSC a ∈ A and YOS y ∈ Y at time t ∈ T , where A is the set of all skillsets and

Y = {0, 1, ..., Y } is the set of all YOS with a maximum career length Y = 30. Let

St = (St,a,y)a∈A,y∈Y compactly indicate the state of the system at time t.

This problem requires the specification of several domain-specific parameters, rep-

resented within the starting state S1. We define a set of manpower authorizations

as

mt = (mt,a,g)t∈T ,a∈A,g∈G, (7)

wherein mt,a,g ∈ Z+
0 is the sum of the authorizations on the UMD for AFSC a ∈ A

and grade g ∈ G, with G = {1, 2, ..., 6}, representing 6 enlisted grades. This approach

combines the grades of E-1, E-2, and E-3 because of the structure of enlistment

contracts that bring personnel in at different grades as well as E-8 and E-9 because of

the small numbers of personnel in senior grades. Because manpower authorizations

on the UMD are only programmed 5 years in advance, we use the authorizations
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programmed for the latest year as an approximation of future demand. Moreover,

the US Congress limits total end strength, constraining the total accessions for each

annual timestep to At based on the expected aggregate departure rate for the following

year and any desired change in the number of total personnel.

3.3.2 Decision Variables

The accessions decision at each time step t is defined as

xt = (xt,a)a∈A′ , (8)

wherein xt,a ∈ Z+
0 (i.e., the set of positive integers including zero) indicates the number

of accessions for AFSC a ∈ A′ and where A′ ⊂ A is the subset of AFSCs that use

accessions to replenish their personnel instead of entirely relying on crosstraining or

progression into the AFSC from a corresponding junior AFSC. For the USAF WRP

instance of interest, |A′| = 186.

A trivial and unhelpful solution to this problem would be to increase the total

number of personnel in the force. Previous work included a penalty for overages in

the cost function and allowed the algorithm to vary aggregate end strength slightly

based on this tradeoff (Hoecherl et al., 2016). Such an approach is consistent with

legal authorities granted to the Secretary of the Air Force, but it is inconsistent

with the actual business processes and financial realities that govern the process to

generate accessions. In practice, the annual total accession target, denoted At, is

generated by a USAF personnel model that uses aggregate inventory by YOS and

historical retention by YOS to estimate the number of personnel who will leave in the

next year, modified for any desired end strength growth or decline. The accessions

decisions for individual AFSCs are developed to ensure total end strength is satisfied.

That is,
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∑
a∈A′

xt,a = At ∀t ∈ T . (9)

We also include the ability to select lower and upper constraints for each AFSC’s

accession decision, η−t,a and η+t,a, letting

η−t,a ≤ xt,a ≤ η+t,a ∀a ∈ A′, t ∈ T . (10)

Together, these constraints restrict the potential actions xt to the set Xt. For

the problem instance of interest, we set such constraints to 75% and 150% of the

sustainment level. For operational applications, this would be modified to the actual

constraints as recorded in Air Education and Training Command’s Business Reporting

and Intelligence Tool. Upper constraints represent limitations on the number of

instructors, available dormitory space, or other AFSC-specific constraints. Lower

constraints capture interrelationships between training pipelines where production

of one specialty relies on corresponding training in another specialty, contractual

obligations, or agreements with other services for shared training pipelines.

3.3.3 System Transition

A system transition function models a single time step stochastic transition from

any given state to a potential future state. Let

St+1 = SM(St, xt, ωt+1) ∀t ∈ T , (11)

wherein ωt+1 ∈ Ω represents the exogenous information discovered during the transi-

tion to the next time step, shown in Table 13, and Ω represents all possible outcomes.

To model this transition, we first develop a Kaplan Meier estimate of retention

rates by AFSC and YOS, then use a binomial distribution to simulate future reten-
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tion outcomes using those estimates. Cohorts at the maximum YOS deterministically

transition out of the service whereas the selected number of new accessions transition

into the service according to a stochastic YOS distribution based on historic arrival

patterns. This YOS distribution accounts for both lengthy training pipelines and

underlying processes wherein personnel who fail to complete one set of initial skills

training are reclassified into another AFSC. In such a case, the reclassified member

restarts the training process for their new AFSC. These individuals are only counted

as part of the AFSC’s manning once they have been awarded their AFSC and per-

manent party status. Students in these training pipelines and basic military training

are accounted for separately in the total end strength using a separate account for

student man-years.

Although rates of departure from and arrivals to the USAF are relatively stable,

crossflows present a much more difficult phenomenon to model. Retraining policies

that govern crossflows adjust both the number of quotas into different AFSCs as well

as eligibility for personnel to retrain out of undermanned AFSCs after the service

member’s initial enlistment. This dynamic policy means that overly simple modeling

with static transition probabilities can yield unrealistic behavior. We specify the

transition probabilities based on particular state variable conditions at the beginning

of each time step. We model the probability of transitioning out of an AFSC to any

other AFSC, then model a second stochastic process to determine which AFSC gains

the service member based on a constructed number of potential retraining quotas.

Potential Outcome Probability Calculation Distribution AFSC-Specific Destination
Retain in AF P(Retain | a, y) Binomial No

Remain in AFSC P(Stay | a, y, Retain) Binomial Yes
Progress P(Progress | a, y, Retain, Not Remain) Binomial Yes

Crosstrain Out P(Cross Out | a, y, Retain, Not Remain, Not Progress) Fully Determined No
Gain to System P(Gain in YOS y | a, xt,a) Multinomial Yes
Crosstrain In P(Cross to AFSC a | Cross Out) Uniform Yes

Table 9. Potential State Transitions

All rates are measured based on historical observations using 5 years of Military
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Personnel Data System data. The dynamic nature of the simulation of crossflows is

an important step for modeling USAF personnel retention behavior. Past approaches

either modeled retraining as distinct phenomena for each AFSC without modeling

actual personnel flowing from one to the other (Hoecherl et al., 2016) or modeled

fixed transition rates based on historical data. The rationale for the USAF admin-

istrative policies that created the conditions for those historical rates included nu-

anced perceptions of manning, overages, shortages, and political realities at the time,

and computing those rates under different conditions implicitly assumes policies that

would not be executed in the differing conditions in the modeled scenario.

3.3.4 Cost Function

Solving the WRP requires defining a cost function that well represents the pref-

erences of the USAF. Although identifying the ideal state is straightforward (i.e.,

personnel match authorizations), evaluating the quality of other states is consider-

ably more difficult. Past approaches focus on two methods to define rewards or

penalties; both are inadequate to ensure desirable real-world outcomes. The first

approach minimizes aggregate shortages and overages by AFSC. Although shortages

are the primary concern, the USAF budget does not allocate resources for personnel

that do not meet a funded authorization, so any overage in one AFSC directly results

in a shortage elsewhere. However, this approach generates undesirable real-world

outcomes, and its recommended solutions are trivial. If personnel within an AFSC

are treated as exactly fungible, then the optimal solution is always to simply replace

losses and increase or decrease accessions to grow or shrink the AFSC to any desired

size, subject to accession constraints. However, personnel within an AFSC are not

exactly fungible.

The second approach attempts to address this limitation by measuring personnel
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inventories and authorizations by grade as well, which serves as a proxy for disparate

competencies and experience. can be grouped by grade, which correspond to the grade

of authorizations. Policies can be then developed to best minimize shortages by grade

and AFSC. Increasing accessions to solve manning problems in one time period will

result in a year group cohort that is larger on average than the steady-state level for

the next 30 years. As the year group cohorts with fewer people eventually depart

the system, accessions must be restricted below the steady-state level to prevent

manning from rising above 100%, resulting in shortages in other AFSCs. This policy

results in a pendulum effect, creating grade shortages far into the future to correct

aggregate AFSC shortages. Hoecherl et al. (2016) consider an extended variant of the

approach, developing accession policies that seek to minimize shortages and overages

by both AFSC and grade, ensuring personnel can meet the workload associated with

a required level of manpower authorizations.

However, this approach too does not capture the scope of the problem for two

reasons. First, it ignores the ways that additional personnel in a higher or lower

grade can partially compensate for a lack of needed personnel in a specific grade.

Having the right number of total personnel is not sufficient for a good outcome, but

it is necessary. Aggregate AFSC shortages still have relevance when defining which

outcomes are good. Second, some AFSC grade structures are constructed in a way

that is unsustainable. These AFSCs have too many or too few senior authorizations

relative to the number of junior authorizations needed to grow the required senior

personnel. If only considering grade shortages for an AFSC, an optimal solution

for some of these AFSCs may be to simply accept that these positions cannot be

filled and choose to prioritize feasible grade structures, consistently under-resourcing

these AFSCs. To generate the cost functions for this research, we combine the two

approaches to ensure both the aggregate disconnect and the effect of disproportionate
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year group sizes are captured.

Notably, the state variables defined previously do not include grade. Static tran-

sitions by grade are difficult to model because the USAF modifies its grade structure

and promotions policies based on several dynamic processes using significant subject

matter expert input. This process is heavily influenced by the relative sizes of differ-

ent YOS cohorts (i.e., year groups) and changes based on a number of quantitative

and qualitative factors from year to year. Testing transition rates based on historical

rates yielded simulated behavior that deviates substantially from historically observed

grade structures and experience levels for individual grades. Given this complexity, a

viable modeling approach must either replicate the additional complexity present in

the promotions process or else translate the more parsimonious state vector into an

inventory that includes grade. Because grade structures generally maintain the same

approximate relationship between YOS and grade, we instead calculate an expected

grade inventory for each AFSC, YOS combination. Let

St,a,y,g = St,a,yP (g|a, y) ∀t ∈ T , a ∈ A, y ∈ Y , g ∈ G, (12)

wherein P (g|a, y) is the historically-observed probability of a person being in a given

grade g given the person is in AFSC a and YOS y.

This approach allows us to use AFSC and YOS information to emulate realistic

transition behavior within the system, computing expected grade distributions to

compare these states to requirements (i.e., mt,a,g) defined by AFSC and grade but

not YOS. Each AFSC’s grade authorizations mt,a,g ∈ Z+
0 sum to the total AFSC

authorizations, mt,a:

mt,a =
∑
g∈G

mt,a,g ∀t ∈ T , a ∈ A. (13)

Because there are |G| grades, we weight AFSC shortages by a factor of 2|G| to
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reflect the general importance of the aggregate health. We also define the number of

personnel in each AFSC as St,a =
∑

y∈Y St,a,y and the number of personnel in each

AFSC and grade combination as St,a,g =
∑

y∈Y St,a,y,g. This yields the following cost

function:

C(St) =
∑
a∈A

[
(2|G|)max

(
mt,a − St,a, 0

)
+
∑
g∈G

max

(
mt,a,g − St,a,g, 0

)]
. (14)

Although representing the general preferences of the USAF, this cost function

based on shortages demonstrates a critical weakness: shortages impact AFSCs of dif-

ferent sizes with different levels of severity. For example, lacking 100 trained personnel

in a community of tens of thousands of military police will result in less dramatic im-

pacts to readiness than in a community of 400 specialized aircraft maintainers. For

this reason, we consider a second cost function that uses manning percentage to mea-

sure how far below the total requirement an AFSC falls instead of a direct measure

of shortages.

C(St) =
∑
a∈A

[
(2|G|)max

(
1− Sa

ma

, 0

)
+
∑
g∈G

max

(
1− Sa,g

ma,g

, 0

)]
(15)

3.3.5 Objective Function

The objective of the Markov decision process is expressed as follows:

min
π∈Π

(
Eπ

[ T∑
t=1

γt−1C(St)
])

, (16)

where γ is the discount factor and Π is the set of all possible policies. Recall that

system transition occurs according to St+1 = SM(St, xt, ωt+1), wherein the accession

decision xt is selected according to the policy π ∈ Π, expressed by the decision function
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Xπ
t (St). For small enough problem instances, this policy is found by recursive selection

of the optimal action according to the modified Bellman equation:

xπ
t = Xπ

t (St) = argmin
xt∈Xt

(
C(St) + γE

[
V (St+1|St, xt)

])
, (17)

where Xπ
t (St) is the decision function, V (St+1) is the value of the next state at time

t+1, and the expectation of the value of the next state at time t+1, E[V (St+1|St, xt)],

is the sum of the value of each potential future state weighted by the probability of

transitioning to that state across all potential states at t + 1. However, while this

expectation can be directly computed for smaller problem instances, larger problem

instances require an approximation of this expectation to achieve tractable compu-

tation times. For problems using Monte Carlo simulation to sample potential future

states and approximate this expectation, we determine the approximate best action

using the values of the parameter θ. The best known decision based on the current

values of θ is the policy Xπ
t (St|θ).

The discount factor impacts the relative value of different policies significantly

and must be chosen with care. Values set too high place too much confidence in the

authorization structure remaining static, valuing the ability to meet uncertain autho-

rization levels in the future near equally to the ability to meet certain authorizations

in the present. We utilize γ = 0.8 in our analysis, striking a balance between senior

leaders’ observed emphasis on solving problems in a short period of time while also

reflecting the common wisdom that the long term impacts of personnel policies on

national security are of great importance.

3.4 Algorithms

We first provide an overview of the benchmark algorithm currently in use by the

USAF then describe two candidate algorithmic approaches we develop to improve
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upon the policies generated by the benchmark.

3.4.1 Benchmark: Equilibrium Sustainment Model (Markov Chain)

As the benchmark for this research, we use the USAF’s current policy baseline

called the sustainment model. This model uses a Markov Chain for each AFSC,

constructed with Kaplan Meier retention estimates by YOS. This approach does not

consider grade requirements but is used to generate an equilibrium policy that would

result in each AFSC being manned at 100% on average over the long term. This policy

successfully addresses manning issues but only after a substantial delay as existing

year groups that are larger or smaller than the steady-state distribution eventually

depart the system.

Two primary issues negatively impact this sustainment model approach. The first

weakness is the slowness to adapt to new mission requirements, especially for AFSCs

that continually grow. Each time the number of authorizations increases, the new

steady-state policy requirement increases, meaning that past accession policies admit

too few personnel even compared to the steady-state policy. For example, a 16-year

“get well plan” results in perpetual undermanning because the year group sizes are

continually undersized for the new requirement. The second weakness of the current

USAF policy is that it only adjusts accessions based on how they fill authorizations

in their original AFSC. Future transitions to other AFSCs do not affect the policy

calculation. This omission is especially problematic for AFSCs that progress upwards

in a pyramid design, steadily expanding the service member’s scope of responsibility.

Such policies likely result in healthy AFSCs that rely primarily on accessions, but

may result in negative secondary and tertiary effects in crossflow and progression

AFSCs.

Because aggregate year group sizes vary, the same number of personnel do not
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depart the USAF each year, and the required number of total accessions varies ac-

cordingly. In addition, the total number of accessions varies further based on desired

changes in end strength for a given year. Changing end strength using accession lev-

els is generally cheaper and less disruptive than requiring existing personnel to leave

involuntarily. As this aggregate target changes, the sustainment level for accessions

is simply scaled upwards or downwards proportionately for all AFSCs to comply with

the end strength constraint. This current USAF approach serves as the benchmark.

We propose and test two algorithmic approaches to identify improved accession

policies. The policies determined by these algorithms are compared to each other and

the benchmark sustainment policy to examine the quality of such approaches. The

sustainment policy cannot be used in its existing form due to the need to comply with

end strength limits. For this reason, once the aggregate accession level is determined

at each time step, the individual sustainment targets are proportionately scaled up

or down to match the aggregate target. The current USAF sustainment model policy

indicates an accession decision for each AFSC a at a given timestep t as et,a ∈ Z+
0 .

3.4.2 Concave Adaptive Value Estimation (CAVE)

Godfrey and Powell (2001) developed Concave Adaptive Value Estimation (CAVE)

to efficiently find optimal solutions for a single time step resource allocation problem

with stochastic demand using a piecewise linear value function approximation. God-

frey and Powell (2002a) demonstrated this approach’s effectiveness for large control

problems with high-dimension action spaces.

Piecewise linear value function approximation allows for efficient updating of esti-

mated gradients because the slope at every breakpoint is known to be monotonically

decreasing. Subject to a learning rate to stabilize training with stochastic outcomes,

observations of a lower gradient allow all higher gradients at higher values to be up-

93



dated simultaneously. The same procedure holds for observations of a higher gradient

and updating lower gradients at lower values. This approach is particularly suitable

for discrete functions, such as those measuring the value of personnel, where only

whole people are observed in the system. By varying the length of the interval be-

tween breakpoints from large to small as the algorithm progresses, the algorithm very

efficiently converges to high-quality solutions.

Godfrey and Powell (2001) and Godfrey and Powell (2002a) considered resource

allocation problems wherein a resource was allocated or replenished to meet a single

specific potential future demand. In this case, a single piecewise linear value func-

tion approximation could represent tradeoffs between the allocation of resources to

different choices. Godfrey and Powell (2002b) extended this approach for multiperiod

problems, but the algorithm still made decisions based on the single period use of a

resource. Topaloglu and Powell (2003) proved that the CAVE approach converges to

the optimal solution for the discrete newsvendor problem under certain assumptions.

Kunnumkal and Topaloglu (2008) extended CAVE’s use to multiperiod inventory

problems with backlogged demands. More recently, Salas and Powell (2018) tested

CAVE’s performance using different stepsize rules contrasting a harmonic stepsize

rule and a Bias-Adjusted Kalman Filter for an energy storage problem. However,

each of these contributions developed CAVE variants for a problem structure that

allocated a consumable resource. In the WRP, the inventory (i.e., personnel) are not

consumed by demand. Instead, inventory can meet demand (i.e., authorizations) at

multiple timesteps, and the length of the inventory’s survival is not closely related to

the utilization (i.e., inventory is not “used up” by meeting demand).

Several other contributions extended CAVE’s application to WRPs. Song and

Huang (2008) provided a related stochastic programming approach called the Succes-

sive Convex Approximation Method to solve a workforce capacity planning problem
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with stochastic demands. However, their approach requires static transition rates and

does not scale to the size of the USAF WRP, even with a simpler transition model.

Hoecherl et al. (2016) applied the CAVE algorithm to solve a smaller form of the

USAF WRP, one featuring both skillsets and grade, multiple time steps, and deter-

ministic demand. Two key modifications enabled its successful application. First, the

CAVE algorithm updated a direct lookahead policy based on the gradients of the indi-

vidual decisions instead of the state variable. Second, the CAVE algorithm weighted

the future observed gradients with an expectation of the probability of survival until

the future demand, allowing an accurate estimate of the true gradient. A successful

application of CAVE was possible because the USAF WRP exhibits a helpful problem

structure; an accession decision’s individual marginal impact to shortages at every

future timestep is concave, holding all other decisions equal. Thus, the cumulative

gradient of effects at all future timesteps is also concave.

Although this concave structure allows for efficient, simultaneous updating of

gradient estimates, a problem arises. Generating good policies requires the algorithm

to simulate far enough into the future to observe penalties or derive an alternative

estimate of the value of a given state. Such an approach might require a lookahead

horizon, defined as Tπ, of 50 years for something like the WRP, since this approach

must simulate effects 15-20 years away but still model policies at that time that

do not become myopic and ignore future effects of accessions. Hoecherl et al. (2016)

overcame this limitation by examining a single starting state and making a simplifying

assumption that policies would revert back to the equilibrium sustainment policy after

a specified number of years. In the WRP, each time step’s decision interacts with other

time steps’ decisions due to the relatively long career length of the recruits resulting

from any given accessions policy. For this reason, the direct lookahead approach can

easily become trapped in a local optimum when modeling sequential decisions that
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can fill the same demands, such as accessions policies over multiple years. This is also

true for multiple decisions in the same time step that contain an interaction term,

such as retraining and accession policies. Despite these limitations, the approach has

been demonstrated to provide high-quality policies.

We propose a further modification of the CAVE algorithm, shown in Algorithm 3.

This modification involves two major changes that should improve its solution quality

compared to Hoecherl et al. (2016). First, the gradients sampled are based on the

modified contribution function, which no longer penalizes overages, so the observed

gradient is always positive. The constraint to accessions is not based on the overages,

but on the actual end strength constraint, with the decisions being made based on the

relative value of the AFSCs. Second, as the system model now captures transitions

between AFSCs, the gradient for accessions in each AFSC is calculated based on the

cumulative probability of a given accession filling a shortage in each of the 235 AFSCs

at each time step, not just the original AFSC. This inclusion of cross-training allows

for a much more realistic representation of actual business processes and behaviors

because many AFSCs rely on cross-training as a source of personnel. The previous

approach may have underestimated the value of accessions in skillsets that serve as a

source for these lateral-entry AFSCs. Notably, the expectation may change based on

whether particular AFSCs are overmanned or undermanned. As an approximation of

this expectation, we calculate these probabilities based on the unrestricted crossflow-

out rates from each AFSC. We also restrict the crossflow-in rates for this calculation

for any AFSCs that rely primarily on accessions instead of retraining or a blend of

retraining and accessions. These categories are provided by the research sponsor as

a policy decision made with advice from the respective career field managers.

In our CAVE implementation, the piecewise linear value function approximation

model is defined using the parameter tuple
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Algorithm 1 CAVE Algorithm

Step 1: Initialization
1: Identify At, the aggregate constraint for accessions ∀t ≤ Tπ, where Tπ is the

desired length of the lookahead policy before reverting to equilibrium policy.
2: For each xt,a, let kt,a = 2, where ν1

t,a = 0.0001, ν2
t,a = 0, u1

t,a = 0, u2
t,a = et,a, where

et,a is the equilibrium policy s.t.
∑

a∈A′ et,a = At ∀t ∈ {1, ..., Tπ}.
3: Initialize parameters δn and αn.
4: for n = 1 to N do

Step 2: Determine current policy Xπ
t (St | θ)

5: for t ∈ {1, ..., Tπ} do
6: Initialize policy with xt,a = 0 by setting kt,a = 1 ∀a ∈ A′

7: while
∑

a∈A′ xt,a < At do

8: Select AFSC a+ with largest estimated gradient argmaxa∈A′(ν
kt,a
t,a )

9: Increase the accessions for decision xt,a+ by setting kt,a+ = kt,a+ + 1.
10: end while
11: end for

Step 3: Collect Gradient Information
12: Simultaneously sample the gradients ∆−

t,a(xt,a, ω) and ∆+
t,a(xt,a, ω) over a finite

time horizon with random outcomes ω ∈ Ω ∀t ≤ Tπ, a ∈ A′

Step 4: Define Smoothing Interval
13: Let k−

t,a = min{kt,a ∈ Kt,a : ν
kt,a
t,a ≤ (1− αn)ν

kt,a+1
t,a + αn∆

−
t,a(xt,a, ω)}.

14: Let k+
t,a = max{kt,a ∈ Kt,a : (1− αn)ν

kt,a−1
t,a + αn∆

+
t,a(xt,a, ω) ≤ ν

kt,a
t,a }.

15: Define the smoothing interval

Ut,a =

[
max{xt,a − δn, u

k−t,a
t,a , η−t,a},min{xt,a + δn, u

k+t,a+1

t,a , η+t,a}
)
.

16: Create new breakpoints at xt,a and the endpoints of Ut,a as needed. Since a
new breakpoint always divides an existing segment, the segment slopes on
both sides of the new breakpoint are the same initially.
Step 5: Update θ based on current policy

17: For each segment in the interval Ut,a, update the slope according to
νk
t,a = αn∆t,a + (1− αn)ν

k
t,a, where ∆t,a = ∆−

t,a(xt,a, ω) if u
k
t,a < xt,a and

∆t,a = ∆+
t,a(xt,a, ω) otherwise.

18: Adjust δn+1 and αn+1 according to step size rules.
19: end for
20: End
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θ = (ut, νt)t∈Tπ , (18)

where ut = (ut,a)a∈A′ and νt = (νt,a)a∈A′ respectively represent the vectors of break-

points and the gradient at each breakpoint for each AFSC a with an associated

accession decision. The system transition function for the CAVE approach is then

defined as St+1 = SM(St, X
π
t (St|θ), ωt+1). Because these tuples of vectors show the

gradients for multiple potential decisions for each AFSC a at time t, we use the vari-

able kt,a to represent the selected breakpoint of the current decision, with the kt,ath

element of ut,a denoted u
kt,a
t,a defining the decision xt,a.

In Step 1, we initialize each of these variables using the equilibrium policy. At each

iteration n, we complete Step 2: determine current policy; Step 3: collect gradient

information; Step 4: define smoothing interval; and Step 5: update θ based on current

policy. In Step 2, we iteratively find the AFSC a+ with the highest gradient at each

timestep t and increment the associated breakpoint kt,a until the total number of

accessions in timestep t meets the constraint At. In Step 3, we then sample the

gradients using survival rates and simulated future outcomes to find the marginal

effect on discounted cost below and above the current breakpoint, denoting these

gradients as ∆−
t,a(Xt,a, ω) and ∆+

t,a(xt,a, ω), respectively. In Step 4, the smoothing

interval Ut,a is updated to account for any constraints or potential concavity violations,

then the algorithm inserts breakpoints above and below the selected decision at kt,a

in ut,a and νt,a. The piecewise linear value function approximation begins with a

large smoothing interval as the new breakpoints are inserted based on high values of

δn, then updates smaller intervals as the algorithm progresses and δn declines. This

approach allows for large adjustments to decisions in early stages of training, then

more granular adjustments as the algorithm progresses and the overall quality of the

policy improves. Finally, in Step 5, the algorithm modifies the appropriate elements
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of the estimate of the gradients, νt,a, adjusted for a stepsize αn. Training continues

for N total iterations.

3.4.3 Parameterized Policy Generation with Deep Q-Networks

Deep Q-Networks (DQN) algorithms extend traditional Q-Learning to larger state

spaces by mapping the value of the state action pairs with a neural network instead

of tabulation, but many DQN implementations still optimize over a relatively small

set of actions, such as the controls of an Atari console (Mnih et al., 2013). A pri-

mary difficulty for any algorithm attempting to solve large sequential decision-making

problems is the computational demands for modeling the high-dimension state, ac-

tion, and outcome spaces of these systems. We use several methods to address this

challenge. First, the use of Monte Carlo simulation reduces the problems associated

with the large outcome space. Second, by starting each simulation at the current state

of the system and resetting after a specified number of time steps, the state space to

be sampled is dramatically reduced to only states that may actually be visited during

a finite length simulation. However, the action space remains a challenging problem.

DQN is a powerful technique when solving problems with small action spaces, but

when the action space becomes too large, it faces significant limitations. Even with

a high-quality value function approximation, simply searching the action space for

a good policy is computationally demanding and potentially intractable, limiting its

application. Because effective training typically requires iteratively solving problems

many times, appropriately addressing the challenge of a large action space is a major

concern for scaling deep reinforcement learning in general. This difficulty is present

for the USAF WRP. Individual accession decisions have a large number of possible

integer solutions and high dimensionality because of the large number of AFSCs.

Beyond simply applying more computation, different approaches have been de-
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veloped to effectively scale deep Q-Networks or other value function approximation

techniques to larger action spaces. However, each of these approaches must limit the

action space to some smaller subset of the total space by sampling the action space

pseudo-randomly and finding an approximate best action (Ho, 1999; Van de Wiele

et al., 2020). Given the size of the action space for this problem and the large number

of low-quality actions, randomly selecting a subset of actions would be an inefficient

and likely ineffective method to explore other good state-action combinations. An-

other alternative is to develop parameterized policies that use known structure to

solve the problem using a much smaller action space. If high-quality or optimal poli-

cies cannot be represented by the selected parameterization, this may significantly

worsen solution quality, so the parameterization must be selected carefully.

Our second proposed algorithm, shown in Algorithm 2, is a DQN variant with

a parameterized decision structure that USAF analysts have developed and used

for personnel policy generation, but the structure has not been empirically tested to

determine the appropriate parameter setting. This approach makes use of the existing

equilibrium model and the knowledge that accessions should generally be higher for

undermanned AFSCs and lower for overmanned AFSCs. We investigate policies of the

following form. A discretized decision dp ∈ Dp = {0%, 20%, 40%, 60%, 80%, 100%}

must be found regarding the proportion of shortages to fill for AFSCs with a shortage.

We also describe these decisions with their corresponding index d ∈ {1, 2, ..., 6}. One

benefit of discretizing this accession decision instead of treating it as a continuous

variable is the ability to generate a separate output for the value of each action for

a given state, making a search for the best action computationally efficient. AFSCs

with a manning level between 95% and 105% simply receive the sustainment target

automatically; these cutoffs are appropriate for future tuning as a parameter for

this strategy. Donor AFSCs (i.e., those that are overmanned) receive a fair-share
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proportion of their sustainment target once the other AFSCs receive what they need.

Given the broad variety of potential state outcomes, this parameterized approach

may sometimes lead to absurdities. The following conditions handle those cases. If

zero donor (overmanned) or needy (undermanned) AFSCs exist at a given timestep,

the accession decision for all AFSCs defaults back to the sustainment target. If donor

AFSCs have less total accessions than would be donated by the selected decision, the

number of accessions to be transferred is set to the number available to be donated.

Algorithm 2 Baseline Parameterized Deep Q Network Algorithm

1: for n = 1 to N Policy Improvement Loop
2: Initialize St as Starting Inventory S1

3: for t ∈ T Policy Evaluation Loop
4: Record 1-dimensional vector of expected grade inventory of St as next row

of Sbuffer

5: for dp ∈ Dp Policy Observation Loop
6: Determine xt,a∀a ∈ A′ from dp

7: Observe transition to next state St+1

8: Predict Q(St, d
p | θtarget) and maxdp∈Dp Q(St+1, d

p | θtarget)
9: Set dth element of next row of vbuffer as v̂(d) =

(1−αn)Q(St, d
p | θtarget)+αn

(
C(St)+γ

(
maxdp∈Dp Q(St+1, d

p | θtarget)
))

10: end for
11: Pursue ϵ-greedy state sampling strategy to transition to next state
12: end for
13: Select Ssample and vsample as normalized random sample of 10% of Sbuffer and

vbuffer

14: Update θ with single batch update with Ssample (input) and vsample (output)
15: if n mod N∆ = 0 then
16: θtarget = θ (Update Target Network)
17: end if
18: Record maxdp∈Dp Q(S1, d

p | θtarget) as estimated value of starting inventory
19: if Range of last NΩ estimates of maxdp∈Dp Q(S1, d

p | θtarget) < threshold V Ω

then
20: End Training
21: end if
22: end for

In addition to the problems with large action spaces, the potential for divergence
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of DQN and other RL algorithms has been a subject of concern for years (Tsitsiklis

and Van Roy, 1997). The combination of the deadly triad of function approximation,

bootstrapping, and off-policy training, as described by Sutton and Barto (2018), and

further explored by other reinforcement learning researchers (Van Hasselt et al., 2018),

speaks to this problem. This triad can be devastating when used on deterministic

systems, but the danger increases dramatically when bootstrapping off of stochastic

outcomes, which may increase the odds of diverging if the function approximation

happens to fit some amount of stochastic noise early in the training process. Much of

the research on these algorithms focuses on deterministic problem sets; early testing

suggests that stochasticity increases the potential for divergence and establishes the

importance of finding effective ways to stabilize training.

In preliminary testing, we observed this divergent behavior during some training

runs. To stabilize performance, we implemented a a target network and a modified

form of the experience replay buffer as demonstrated by Mnih et al. (2015). The

target network provides stability and efficient convergence traditionally observed in

approximate policy iteration algorithms, where multiple observations are sampled

with a given policy before updating (Alpaydin, 2014). The replay buffer effectively

decorrelates observations from the simulation by storing previous experiences and only

sampling a few observations from each run. Because samples are computationally

costly to obtain, relatively small amounts of noise in the bootstrapped estimates

of Q values can prevent the algorithm from converging in an acceptable number of

iterations. We tested algorithm variants that record the predicted values of states

and found improved stability, though this comes at the cost of rapidly updating the

policy.

Algorithm 2 shows this baseline algorithmic approach. In our DQN implementa-

tion, the value function approximation is defined by the trained θ (i.e., the weights of
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the neural network) which produces an estimate of the value of each parameterized

action given a state and its corresponding features. Using similar notation to the

CAVE approach, we iterate over n = 1, 2, ..., N policy improvement loops to update

θ and through the set of time steps T to generate the observations for these updates.

While problems with longer trajectories that have thousands of time steps necessitate

the use of a longer sequence length with many updates, the USAF WRP is primarily

concerned with mapping the state-action values for states likely to be observed in

the next several decades, observed as tens of time steps in our simulations. For this

reason, each iteration simply observes one simulation length before performing an

update. Iterating over dp ∈ Dp, we observe the next state St+1 given each action and

predict the corresponding current state value Q(St, d
p | θtarget) and next state value

maxdp∈Dp Q(St+1, d
p | θtarget). This information allows us to generate a new estimate

of the value of the state-action pair v̂(d) adjusted for a learning rate αn. These values

are then added to the replay buffer in vbuffer while the corresponding features are

recorded in Sbuffer. We size these replay buffers such that they completely replace

all observations every 10 iterations of n. When the simulation concludes, we sample

the replay buffer to create a minibatch to update the trained network parameters θ,

periodically updating the target network’s parameters θtarget with the trained net-

work every N∆ updates. Finally, we establish a convergence criterion because the

computation time can extend much longer than the alternative choice of algorithm,

but stopping the algorithm while in the middle of a noisy training period can result

in erratic estimated values and low quality solutions. If the last NΩ estimates of the

starting state vary less than V Ω, then training stops, with NΩ and V Ω both being

tunable hyperparameters. In our DQN implementation, the value function approxi-

mation θ is defined by the trained weights of the neural network which produce an

estimate of the value of each parameterized action given a state and its corresponding
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features.

3.5 Implementation, Results, and Policy Discussion

We seek to compare each of these solution approaches in terms of quality, com-

putational effort, and robustness. While CAVE has relatively few hyperparameters

compared to other algorithmic approaches, there are still several places to tune, as

summarized in Table 10. Potentially the most important for this application is the

length of the lookahead horizon. This length directly affects both the computational

requirements, which increase as this quantity increases, and the quality of the solu-

tions generated. Setting this horizon too short forces the algorithm to try to initiate

all the necessary corrections for future years into a short timeframe before the policy

reverts back to the equilibrium level. Solution quality faces a tradeoff with computa-

tional requirements, although the interactions between policies at different time steps

may ameliorate or even reverse these effects on solution quality for shorter horizons.

This is also true for the number of training iterations. The number of training it-

erations N was empirically tested at 100 and found to perform well. Two CAVE

hyperparameters that affect the rate of convergence are the stepsize and initial up-

date size (i.e., the gap between breakpoints). For both of these, we set the initial level

relatively high and create a rule to steadily decrease the hyperparameter as training

progresses. The stepsize rule is specifically developed and tested for the problem in-

stance of interest, starting at 1 for the first 60 iterations, then linearly decreasing to

0.6. The reason for starting with the stepsize at 1 for an extended portion of training,

effectively overwriting the current gradient with the observed gradient, is that this

algorithm directly compares gradients between decisions. If one decision has recently

been adjusted upwards, the algorithm will be updating a gradient that has not yet

been updated from 0. Decisions that have already updated the gradient will appear
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to be more valuable, creating a bias. This learning rate schedule is appropriate for

the USAF WRP because the stochastic outcomes are not overly noisy. In general, the

learning rate should be tailored for other problem instances. Finally, the initial inter-

val starts at 8, then decreases by 50% every 15 iterations until reaching 1. This allows

for rapid updates and fast movements early in the training, then smaller updates by

iteration 45, and decreasing stepsizes starting at iteration 60.

Hyperparameter Variable Setting
Lookahead Horizon Tπ 5 years
Training Iterations N 100

Stepsize Rule αn

{
1 if n ≤ 60

1− n−60
N

otherwise

Initial Update Interval δ1 8

Table 10. CAVE Hyperparameter Settings

Table 11 reports the hyperparameter settings for our DQN algorithm. The DQN

algorithm utilizes a neural network model for value function approximation. The

architecture comprises 3 hidden layers with 600 neurons per layer as shown in Table

11. Heaton (2008) provides three rules as starting points for determining the number

of neurons in hidden layers: the number of hidden layers should be between the size

of the input and output layers, the number of hidden layers should be 2/3 the size

of the input layer plus the output layer, and the number of hidden layers should be

less than twice the size of the input layer. While the answer that meets all three

recommendations is 942 neurons per hidden layer, Heaton (2008) makes these recom-

mendations for neural networks in general, including shallower architectures. Because

3 layers is deeper than many feedforward neural networks and initial empirical testing

showed that fewer neurons performed as well or better than this guideline, we reduce

this number to 600. Because we need to produce many predictions in an iterative

structure, we use Rectified Linear Unit (ReLU) activation functions to decrease the

computational burden. The learning rate was empirically tested, and the algorithm
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showed choppier (i.e., high variance) learning during preliminary testing at levels of

0.1 and 0.01 whereas a level of 0.005 resulted in a more consistent convergence. This

architecture uses 6 outputs, so each potential action is sampled at every observation.

This approach also uses an ϵ-greedy mechanism to select which observed next state

the model transitions to and evaluates next. We select the batch size based on a sin-

gle simulation of 50 years, run in parallel on 36 cores, resulting in 1800 observations

being loaded into the replay buffer for each iteration. Finally, we require NΩ = 40

consecutive periods with the estimate of the value of the initial starting state vary-

ing no more than V Ω = 5% for the early stopping criterion. Decreasing this range

parameter may increase solution quality, but preliminary testing showed increased

computation times of 5-10 times longer.

Hyperparameter Setting
Hidden Layers 3

Neurons per Hidden Layer 600
Activation Function ReLU

Batch Size 1800
Neural Network Learning Rate 0.005

Stepsize (αn) Generalized Harmonic Stepsize, a = 10
Exploration Rate (ϵ) 0.2

Target Network Update Frequency (N∆) 10
Stopping Criterion: Number of Estimates (NΩ) 40
Stopping Criterion: Maximum Range (V Ω) 5%

Table 11. DQN Hyperparameter Settings

To improve computational efficiency when generating observations, we ran mul-

tiple simulations in parallel for their complete length to observe the outcomes, then

trained updates with a much larger batch size of 1800 and a proportionately higher

learning rate of 0.005. Given this smaller number of higher-impact updates, we up-

date the target network every 10 time steps and used a buffer sized such that each

batch randomly sampled 10% of the buffer. To further stablize training, we also used

2-step bootstrapping (Sutton and Barto, 2018), which lets the algorithm view the
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next two states and associated penalties instead of only one.

We compare the policies determined via CAVE and DQN approaches by running

48 simulations with a length of 30 years and recording the total discounted costs

during each simulation. During these simulations, the CAVE approach dominated the

other two approaches for both cost functions, as shown in Table 12. The computation

times differed significantly, in part due to the different algorithmic approaches to

training. Because the DQN algorithm seeks to train a value function approximation

that is valid across multiple states, the algorithm trains for a longer period of time

prior to simulating outcomes to measure the quality of the solution. Conversely,

CAVE requires approximately 7.7 minutes to generate an accession policy, though it

requires this time to generate each direct lookahead policy, so simulating over many

years requires much more time. The DQN approach required more time upfront

to train the neural network but was able to generate policies much more quickly

during the simulation afterward. For operational use, the data used to train the DQN

changes between each policy being generated, so the CAVE approach requires less

computation. However, for algorithm testing purposes, the DQN approach requires

less time to simulate many policies.

Cost Percent Discounted Cost Reduction Computation
Function Model versus Benchmark, 95% CI Time to Test (min)
Manning CAVE 29.76 ± 1.04 7.7

DQN 1.53 ± 1.14 314.9
Shortages CAVE 17.38 ± 0.76 7.7

DQN 4.45 ± 0.82 153.7

Table 12. Mean reduction in absolute aggregate prediction error on test dataset shows
that CAVE outperforms both DQN and the benchmark for both potential cost func-
tions.

The CAVE approach developed highly dynamic sets of policies, but the DQN

approach selected the same parameter choice at each decision, set to 40% of existing

shortages. While this DQN policy was consistent, the parameterized structure still
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resulted in a relatively wide variety of accession decisions as AFSCs became better

or worse manned over time. The level of 40% makes intuitive sense as a good setting

and is remarkably close to the 35% setting chosen by subject matter experts. This

policy selection may be due to the setting truly being the best possible setting at

each time period for both cost functions, or it may reflect a lack of nuance to the

learned value function approximation. The degree to which the CAVE algorithm

improved solution quality compared to the DQN algorithm suggests that the policy

parameterization approach, while a useful way to improve upon the benchmark, does

not compete with higher quality optimization approaches such as our implementation

of CAVE. Additional computation time may improve the policy quality slightly, but

an alternative approach to searching the action space is necessary.

We tested to see if an approach that used a DQN and searched a small space

around the given policy could develop an improved policy beyond the parameterized

approach. This technique was able to develop statistically significant improvements

to policies when searching around the benchmark but was unable to improve upon the

parameterized policy developed here when limited to a computation time restriction

of two orders of magnitude beyond the CAVE computation time.

Notably, the CAVE approach not only outperformed the other two approaches on

average, it outperformed both competing approaches for every single simulation, as

shown in Figure 28. This high-quality result is in addition to the lower computational

burden required to generate a single CAVE policy. CAVE is the superlative performer

with respect to solution quality, computational requirement, and robustness.

In addition to producing algorithms that can efficiently solve the workforce replen-

ishment problem, a key insight for these approaches is determining how policies react

to potential cost functions. Observing obviously incorrect policies can help inform

cost function selection as a form of inverse reinforcement learning (Russell, 1998). We
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Figure 28. CAVE Consistently Outperforms both Benchmark and DQN Policies

see just such a case in Figure 29. For overmanned AFSCs, we see policies that make

intuitive sense, where the applications of CAVE for each cost function reduce the

accessions level compared to the benchmark policy. However, we see a strange occur-

rence for large, undermanned AFSCs. When finding good policies based on shortages

(i.e., CAVE-S), we see the expected increase in accessions. However, when we use the

manning cost function to choose policies (i.e., CAVE-M), we see the algorithm choose

policies that actually reduce accessions, intentionally driving manning further down

for these AFSCs. Upon further examination, this is actually a very good strategy to

decrease the resulting penalties. These large AFSCs can be reduced by many acces-

sions while only penalizing one AFSC, keeping a large number of AFSCs at or above

100% manning. This intentional undermanning is not inline with Congressional guid-

ance to procure AFSC-specific talent, so this cost function is not suitable without
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Figure 29. Policies Compared to Equilibrium Benchmark

weighting the AFSCs in some way to prevent this behavior, although a full weighting

by AFSC size would yield the equivalent of the shortages cost function.

Figures 30 and 31 display the mean manning levels attained over time for selected

AFSCs using the CAVE-M, CAVE-S, DQN, and benchmark sustainment policies.

Examining the mean AFSC manning outcomes for AFSCs that rely only on accessions

in Figure 30 yields some insight regarding how these solution approaches differ. In

the top left panel, we observe that the manning levels generally converge close to

100% over time with the equilibrium policy. In the top right panel, the manning

levels converge somewhat faster and remain close to 100% manning as stochastic

outcomes that cause manning to drift are corrected by the DQN policy. In the bottom

right panel, we see the CAVE approach when using the manning cost function. As

previously observed in Figure 29, we see that the algorithm prioritizes some AFSCs
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Figure 30. Mean AFSC Manning levels for basic AFSCs that rely entirely on new
accessions

over others, resulting in a high variance of outcomes for AFSC manning. Finally,

in the bottom left panel, we see that the CAVE approach using the shortages cost

function acts more aggressively to close manning gaps early, but it displays more

dispersed set of outcomes as some AFSCs are prioritized over others.

The shortages cost function also includes grade shortages and shortages in pro-

gression and lateral AFSCs, so quality of solution does not perfectly align with this

measure when examining only the overall manning for AFSCs receiving accessions.

We see one example of this in Figure 31, where the sustainment and DQN approaches

result in increasing manning levels for lateral AFSCs. In the real world, high levels of

manning would result in the modification of policies to avoid such outcomes because

these overmanned AFSCs are causing undermanning elsewhere. The CAVE approach

observes this outcome in measurements of the gradients for each accession and adjusts

accession policies over time to avoid too many personnel working in AFSCs where
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Figure 31. Mean AFSC Manning levels for lateral AFSCs that rely entirely on
crosstraining

they are not needed.
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3.6 Conclusions and Way Forward

This work develops a mathematical model of the USAF WRP and describes two

solution approaches for determining enlisted accession policies. Both solution ap-

proaches perform better than the currently practiced benchmark equilibrium policy

when tested using real USAF personnel data from 2015-2021. The CAVE approach

outperformed the DQN approach in terms of solution quality and required computa-

tional resources. We recommend the use of CAVE for implementation by the research

sponsor as a benchmark for future accessions planning and its inclusion as an addi-

tion to the current USAF Career Field Health modeling package. We tested two

historically-accepted candidate cost functions and observed evidence suggesting that

one was inappropriate for developing policies in its current form. This cost function

testing indicates the robustness of the CAVE approach and its ability to determine

high-quality policies for a range of potential cost functions.

Future work should expand the use of CAVE to other policies that exhibit concave

structure for the underlying value function. The personnel policy space is consider-

ably larger than just accessions, although these decisions remain of primary interest.

One area that deserves further attention is the retraining policies that can supple-

ment shortages in later years. The primary practical limitation of using algorithms

to optimize this set of policies is the lack of a reliable set of constraints for these

policies. In practice, USAF analysts generate recommendations and receive input

from each AFSC’s career field manager. Creating a reasonable simulation of future

outcomes would require committing resources to recording which AFSCs can benefit

from retraining and which are constrained to only cross-training personnel from other

compatible AFSCs. Such AFSCs may have ratios of cross-training to direct accessions

that need to be maintained as well as other restrictions. This set of constraints would

require maintenance to generate consistently high-quality policies. Other potential
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policies include those considering retraining out constraints and those targeting per-

sonnel to transition from the active duty force to the reserve components.

Future work should also expand the policy space to include the reserve compo-

nents, including both the Air Force Reserve and the Air National Guard. Although

some AFSCs may have a disparate impact on mission accomplishment, it is difficult

to measure how much priority should be placed on these disparate impacts within

the current problem construction. However, extending this work to include the re-

serve components would allow problem structures to directly address readiness, which

is determined by a combination of personnel from different components, instead of

just using AFSC and grade manning. This would enable the development of acces-

sion policies that would improve readiness beyond the current set of recommended

policies.

One weakness of this approach is that the current approach to CAVE constructs a

direct lookahead policy that can easily be trapped in a local optima. Adding a pertur-

bation after convergence to a solution could improve solution quality at the expense of

additional computational resources. Future work should also examine further refine-

ments of CAVE under both static and dynamic requirements environments. While

environments with dynamic requirements are inappropriate to use to directly train

such algorithms without detailed validation of the requirements perturbation mech-

anism, selection of methodologies that perform well in such environments is entirely

appropriate. Additionally, future work is needed to build and validate simulations of

this dynamic requirements environment.

Although we use a simpler state space that does not allow for the complexity

of some of the top-performing personnel retention models developed for the USAF

(Hoecherl, Robbins, Borghetti and Hill, 2022; Pujats, 2020; Schofield et al., 2018),

future work will explore including one or more economic parameters that can improve
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the prediction quality in the short term without a large increase in the state space.

In the long term, our confidence level in any economic prediction will be low, so we

will return to an economically neutral forecast or a range of economic outcomes.

Although improved problem formulation and high-quality policy solutions are in-

dependently important, this cost also enables a significant business process realign-

ment for manpower authorizations programming. Although authorizations change

frequently, those changes result from decisions by senior USAF leaders and the US

Congress. The future manning of these AFSCs and the warfighting ability generated

by those personnel are vitally important planning considerations for choosing future

manpower authorizations. Previous methods to simulate future outcomes required

a lengthy, human-intensive process to generate realistic accessions policies, but this

approach can provide high-quality policies rapidly enough to fit within current plan-

ning timelines without consuming scarce analytic resources. This approach offers

the potential to tighten the relationship between the process to program authoriza-

tions and the corresponding personnel policies, informing higher quality decisions for

both authorizations and personnel. When considering a candidate set of authoriza-

tion changes, identifying constrained pipelines and shortages that cannot be closed

enables senior leaders to select from three options:

1. Reduce the rate of required change for emerging requirements.

2. Find alternative offsets to allow human capital to be repurposed for the emerging

requirement.

3. Apply required resources to relax the relevant constraint, allowing bottlenecks

to be identified and removed during the planning process instead of waiting for

the problem to manifest.

Such an approach would provide senior leaders and the US Congress the oppor-
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tunity to make a decision about future human capital directly, rather than through

the more roundabout process of making decisions about programmed levels of autho-

rizations, with the hope that the personnel system will be able to deliver whatever

has been programmed.
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IV. SUPERCAVE: A Reinforcement Learning Approach for
Integrating Workforce Replenishment Policies Across United

States Air Force Regular and Reserve Components

4.1 Introduction

The United States Air Force (USAF) conducts operations through the use of com-

plex systems and platforms requiring a high-skill workforce. The USAF’s closed sys-

tem, requiring senior personnel to be developed from junior personnel instead of hired

from outside organizations, complicates the USAF’s ability to ensure this workforce is

appropriately recruited and trained. Furthermore, the US Congress and USAF senior

leaders change the mix of required skillsets as missions and resourcing change over

time (Hoecherl, Barger, Robbins and Zavislan, 2022). These factors cause decisions

in one year to create significant long term consequences as the size of annual cohorts

with varying levels of experience change based on accessions decisions at the time

the cohort entered service. This decision-information structure necessitates solving

a specific form of the closed workforce replenishment problem, using an approach

appropriate for a problem with sequential decision-making under uncertainty.

In addition to the closed nature of the problem, workforce management is fur-

ther complicated by the separation of personnel into multiple components of service,

including the Regular Air Force (RegAF) consisting of active duty Airmen, the Air

Force Reserve (AFR) consisting of reservists, and the Air National Guard (ANG)

consisting of Airmen assigned to various states. Each of these components must com-

pete for the same general pool of recruits, utilize many of the same training school

resources for different skillsets, and rely on each other for specific mission sets in

times of war, contingency operations, or emergencies. Additionally, many of the new

personnel the AFR and ANG recruit are fully trained RegAF personnel departing

active duty, attracted by increased stability or the lifestyle associated with the AFR
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and ANG. While the components historically managed their accessions policies to

recruit and train new personnel separately, the decreased size of the RegAF over time

and increased costs of personnel necessitate a more holistic approach to maintain the

effectiveness of the collective USAF personnel at an acceptable cost.

To address this problem, this research makes the following contributions to the

workforce replenishment problem literature. First, we extend the benchmark equi-

librium model for RegAF Air Force specialty codes (AFSCs) to the AFR and ANG,

which do not currently have an enterprise-level model to provide as a benchmark.

Second, we formulate this problem as a Markov decision process using realistic be-

havior developed from data stored in the USAF’s Military Personnel Data System.

This formulation includes existing accession policies as well as a policy lever to in-

crease affiliations from the RegAF to the AFR and ANG over the baseline rate.

Third, we demonstrate the efficiency of scaling a direct lookahead policy using Con-

cave Adaptive Value Estimation (CAVE) to this larger problem set with 645 dimen-

sions in the action space, over 3 times larger than previous applications. We test

CAVE across multiple hyperparameters including lookahead horizon, training length,

and stepsize rule, determining a superlative modeling structure for the problem in-

stance of interest. Fourth, we develop and test a novel modification to the CAVE

approach. Previous applications had no means to escape local optima created by the

interactions between policies at different time steps. We propose the addition of a

perturbation to developed policies with retraining to find improved policies, called

Stochastic Use of Perturbations to Enhance Robustness of Concave Adaptive Value

Estimation (SUPERCAVE). This approach develops improved solutions to the direct

lookahead policy without the exponential increase in computing power typically re-

quired to exactly solve large, high-dimension sequential decision-making problems.

We test this modification across two new hyperparameters, number of perturbations
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and perturbation weighting scheme. Finally, we test the effect of including or ex-

cluding the additional affiliations policy lever on the quality of solutions available to

provide additional insight to USAF decision-makers.

The remainder of this chapter is organized as follows. Section 4.2 describes the

intercomponent USAF workforce replenishment problem. Section 4.3 reviews related

work in the existing literature. Section 4.4 details our formulation of the problem

as a Markov decision process, and Section 4.5 explains the optimization approaches

we develop and test to find high-quality policies. Finally, Section 4.6 details the

experimental designs and results, and Section 4.7 describes our conclusions and future

work.

4.2 USAF Total Force Management

While many of the military recruiting challenges focus on identifying which per-

sonnel with specific characteristics, talents, and competencies should be recruited, the

more basic question of how many personnel the USAF needs to enter each AFSC is a

significant problem that must be solved prior to addressing these other pressing ques-

tions (Hoecherl, Barger, Robbins and Zavislan, 2022). When developing policies for

determining the quantity of personnel to recruit, most private industry approaches to

workforce replenishment prioritize meeting short term human capital needs because

these organizations retain the ability to recruit more senior personnel at later stages

of their career, correcting any problems created by earlier policies. For this reason,

many of these approaches focus on immediate hiring decisions with shorter time hori-

zons instead of considering decisions about the quantity of recruits with a long-term

framing required in a closed workforce replenishment problem. Since many USAF

skillsets require years of experience to fully mature, the ability to conduct operations

in a given time period often depends on accession decisions made 3-10 years ago.
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Most private sector problems are either relatively small compared to the military

problem or decomposable into smaller problems, with workforce requirements deter-

mined at lower levels of the organization. Conversely, the military’s plans to fund

manpower positions, recorded as authorizations, require adjudication by the collective

USAF corporate structure and approval by the US Congress, although commanders

of major commands have the ability to make modifications to funded billets within

certain constraints. Since the military provides a public good instead of pursuing

a profit, the measurement of relative contributions from different allocations of hu-

man capital becomes much more difficult. This becomes relevant when considering

that the military manages the total number of personnel, defined as end strength,

to meet Congressional guidance and that the processes for recruiting new personnel

or releasing existing personnel require significant coordination and involve multiple

bureaucratic structures. Since end strength does not exceed the programmed level of

manpower authorizations, excess personnel in one AFSC causes a shortage in another

AFSC.

The RegAF, AFR, and ANG do not approach this problem in the same way. The

RegAF manages skillsets and the associated accession decisions at an enterprise level

because they have the ability to simply move personnel from one location to another

to achieve the correct balance. The AFR and ANG rely on each wing to determine

their training and recruiting requirements. Members of these components cannot be

involuntarily relocated but may voluntarily move between locations. However, service

members do not relocate at the scale needed to meet local imbalances given the lack of

compelling incentives, their civilian employment, family considerations, and cultural

affinity for remaining with one unit.

The AFR and ANG rely on a combination of personnel transitioning from the

RegAF, called affiliations, and non-prior service accessions. However, the long term

120



trend of declining end strength in the RegAF has caused the number of affiliations

to decrease over time, creating increased difficulties in achieving the correct skill mix

(Hoecherl, Schulker, Hornberger and Walsh, 2022). While the AFR and ANG must

still develop a more granular, location-specific accessions policy, this changing end

strength dynamic necessitates enterprise modeling of skillsets first, integrated with

RegAF modeling to allow a more holistic approach to managing personnel transitions

through the different components. In addition, the USAF has traditionally managed

affiliations from the RegAF to the AFR and ANG in an ad hoc manner. RegAF AFSC

manning informs release of personnel, but the corresponding benefit to readiness

or manning in the AFR and ANG is not considered. We propose the inclusion of

intentional affiliations in addition to the current baseline volunteer rate.

The USAF’s current modeling approach for RegAF personnel uses Kaplan Meier

survival rates by completed years of service (YOS) to construct a Markov chain model

for each AFSC. USAF analysts construct these rates based on longitudinal observa-

tions of personnel and their associated features in the Military Personnel Data System

over a 5 year period. For basic AFSCs (i.e., those that only use crosstraining to correct

manning problems), this model determines the equilibrium distribution of personnel

by YOS sustained only by accessions. This approach also generates the equilibrium

number of accessions, to maintain the AFSC at 100% manning in the aggregate, which

provides a useful baseline for accession policies and resourcing decisions to determine

training pipeline capacity. However, this approach has several weaknesses. First, it

considers only retention within the original AFSC the airman enters, so the effects of

accessions on other AFSCs that Airmen may transition to do not affect the required

target. Some of these transitions are crossflows and may occur relatively infrequently,

but some transitions reflect automatic AFSC changes as airmen progress from junior

skill levels to more senior skill levels. In cases where progression AFSCs are too large
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or small compared to their corresponding junior AFSCs, this imbalance can create

overages or shortages, even in an equilibrium state. Second, this approach provides

equilibrium policies, so any disproportionately large or small year group cohorts must

age out of the system before it returns to full manning, potentially requiring more than

a decade to fully restore AFSCs that are undermanned. Third, the USAF has only

applied this enterprise level modeling to RegAF AFSCs. Because the AFR and ANG

rely on many local decision-makers to choose accessions for their individual locations,

past efforts have not generated enterprise-level models for career field health analysis.

However, changing relative sizes between the RegAF, AFR, and ANG components

necessitates a broader modeling approach to ensure adequate personnel. Senior lead-

ership has expressed interest in using such a model to inform policy discussions and

adjudication between decision-makers (Miller, 2017).

Given the rate at which authorizations change over time, an equilibrium policy is

inappropriate. While USAF analysts generate highly customized policies to ensure

AFSCs remain manned at appropriate levels, this policy construction is manual and

very time-intensive, requiring multiple subject matter experts and detailed review.

While some of the aspects of this review are not captured in the datasets available,

improved benchmark policies are a valuable tool to reduce the required time to develop

high-quality policies and improve the effects of anchoring bias toward low-quality

policies.

4.3 Related Work

To develop good policies for the closed workforce replenishment problem, re-

searchers have leveraged a number of approaches. Stochastic programming and goal

programming have been applied to smaller workforce replenishment (WRP) problem

instances, including for 33 broad specialties in the US Army (Gass et al., 1988) and
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more detailed approaches to specialties in the US Army medical workforce (Bastian

et al., 2015) and cyber workforce (Bastian et al., 2020). These approaches fail to scale

to the size of the enlisted USAF problem while remaining computationally tractable,

especially with transition rates that change based on the state variable to reflect the

reality of USAF policies that guide retraining decisions. These dynamic transition

rates require a dramatic increase in computational resources to apply goal program-

ming or stochastic programming approaches. These approaches require policy or

problem simplification to scale to the full USAF WRP.

The use of conventional dynamic programming to find optimal solutions to work-

force problems exhibiting this structure cannot scale well to large problem instances

due to the curse of dimensionality (Powell, 2011). Approximate dynamic program-

ming provides a means to develop high-quality solutions to problems with this struc-

ture, including for the larger question of end strength management (Situ, 2018).

Because the workforce replenishment problem is a question of how to allocate

a scarce resource (i.e., accessions) across different specialties, approximate dynamic

programming algorithms designed to take advantage of structure in resource allo-

cation problems are appropriate. Godfrey and Powell (2001) developed Concave

Adaptive Value Estimation (CAVE) as a way to construct a piecewise linear value

function approximation to solve the newsvendor problem, showing that it scales to

high-dimension action spaces (Godfrey and Powell, 2002a). This approach leverages

the concave nature of the value of additional accessions to efficiently update the value

function approximation. The authors later extended this work to the multiperiod

newsvendor problem (Godfrey and Powell, 2002b), and Topaloglu and Powell (2003)

showed that CAVE converges to optimality under specified conditions. Researchers

later extended CAVE to a multiperiod inventory control problem with backlogged

demands (Kunnumkal and Topaloglu, 2008) and energy storage problems (Salas and
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Powell, 2018).

Like the newsvendor and energy storage problems, the WRP exhibits concave

structure, where each additional accession faces a decreasing probability of address-

ing an unmet demand. However, a difficulty arises when considering how to apply

CAVE to the workforce replenishment problem. Unlike the newsvendor and energy

storage problems, the workforce replenishment problem secures a resource that can

meet multiple demands over time, has a stochastic survival rate, can meet different

demands based on the length of survival, and is not consumed by this demand. There

have been approximate algorithms that leverage concave structure in this problem to

workforce planning for limited problem sizes (Song and Huang, 2008). Hoecherl et al.

(2016) extended the CAVE approach to the workforce replenishment problem by con-

structing a direct lookahead policy with an assumed equilibrium policy beyond the

lookahead horizon. Hoecherl and Robbins (2022) refined this further, modifying the

problem structure to match USAF business processes and testing candidate contri-

bution functions. However, this approach demonstrates a weakness: the algorithm

leverages the same future simulation of shortages to inform simultaneous gradient

updates for policies in multiple timesteps. Although this approach has been shown

to converge to high-quality policies, this approach is not robust to the interactions

between decisions in different time steps because accessions in multiple time steps

can fill the same future needs.

4.4 Markov Decision Process Formulation and Simulation

To develop and assess high-quality policies, we first formulate the USAF WRP as

a Markov decision process. This formulation uses a finite time horizon with annual

time steps defined as
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t ∈ T = {0, 1, ..., T}, (19)

where T is the set of all timesteps through the end of the finite horizon T .

4.4.1 State Variables

We define the state variable using the number of personnel St,c,a,y ∈ Z+
0 with each

combination of component (c), AFSC (a), and YOS (y) at each time t.

The state at time t is then compactly defined as

St = (St,c,a,y)c∈C,a∈A,y∈Y , (20)

where C is the set of components, A is the set of all AFSCs or skillsets, and Y =

{0, 1, ..., Y } is the set of all YOS with Y being the maximum career length.

4.4.2 Problem Parameters

The initial state S0 includes fixed problem parameters that represent important

and unchanging features of the problem. Included in this set of problem parameters

is the sum of the programmed requirements mt,c,a,g ∈ Z+
0 for each component c ∈ C,

AFSC a ∈ A, and grade g ∈ G, where G = {1, 2, ..., G}, with G total grades, at time

t. Let the authorizations at time t be compactly represented by

mt = (mt,c,a,g)c∈C,a∈A,g∈G. (21)

Importantly, authorizations do not specify the YOS of the required Airmen, relying

on the grade variable to ensure the Airmen have the appropriate competencies and

experience.
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4.4.3 Decision Variables

At each time step, the USAF must decide a set of decisions da for accessions,

a set of decisions dr for personnel affiliating to the AFR, and a set of decisions dg

for personnel affiliating to the ANG, with the decision class defined as d ∈ D =

{da, dr, dg}, where D is the set of all decision classes. In addition, not every AFSC

requires a corresponding decision of each class. While most AFSCs rely on accessions

to replenish their personnel, some rely on service members progressing from a more

junior AFSC, and some rely entirely on crosstraining from other AFSCs due to a need

for maturity or general military experience. This categorization of AFSCs varies by

component, and some AFSCs do not exist in certain components. For AFSCs that

rely on accessions in each component c, we define the subset of AFSCs that require

an accession decision as A′
c,da

⊂ A. In addition, we define the collection of AFSCs

that require an affiliation decision as A′
c,dr

⊂ A for affiliations from component c to

the AFR and A′
c,dg

⊂ A for affiliations from component c to the ANG. The decision

at each time step is then defined as

xt = (xt,c,a,d ∈ Z+
0 )c∈C,a∈A′

c,d,d∈D. (22)

Whereas the affiliation decision is constrained only by the number of personnel

in the AFSC at time t, the collective accession decisions are constrained by the need

to manage total end strength within each component according to Congressional

guidance. Although the services have some flexibility to deviate from these targets,

the cost to do so even by relatively small margins is prohibitively expensive because of

the high cost of personnel. Each year, an aggregate retention model predicts the total

number of personnel who will retain for the next several years, generating a series

of annual aggregate accession constraints for each component, denoted as At,c. The

accessions for each individual AFSC must then sum to this total for each component
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in the given year. This constraint is defined as

∑
a∈A′

c

xt,c,a,da = At,c ∀c ∈ C, t ∈ T . (23)

In addition to the aggregate constraint for accessions, the number of personnel ac-

cessed in each AFSC must also remain within pipeline constraints defined by Air

Education and Training Command. Many training pipelines require specialized equip-

ment, instructors, classroom or dormitory space, agreements with other services for

shared pipelines, or significant coordination between complementary pipelines to en-

sure the correct training opportunities are available. Let

η−t,c,a ≤ xt,c,a,da ≤ η+t,c,a ∀c ∈ C, a ∈ A′
c,da , t ∈ T , (24)

wherein η−t,c,a and η+t,c,a represent the respective lower and upper pipeline constraints

for each accession decision. These constraints limit possible actions at time t so that

xt ∈ Xt, where Xt is the subset of feasible actions that meet both the aggregate and

combined AFSC- and component-specific constraints.

4.4.4 System Transition

We model the transition during a single annual time step from a given state to

a future state using a system transition function. This transition function uses the

existing state, a selected action xt, and the observation of the exogenous informa-

tion discovered during the transition to simulate the composite result of each set of

transitions shown in Table 13. Let

St+1 = SM(St, xt, ωt+1), (25)

wherein ωt+1 ∈ Ω is the exogenous information discovered during the transition and
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Ω represents all possible outcomes.

Potential Outcome Probability Calculation Distribution AFSC-Specific
Destination

Remain in AFSC P(Stay | c, a, y, Sc,a

mc,a
) Binomial Yes

Progress P(Progress | c, a, y, Not Remain) Binomial Yes

Crosstrain Out P(Cross Out | c, a, y, Not Remain, Not Progress, Sc,a

mc,a
) Binomial No

Baseline Affiliation to AFR or ANG P(Cross to c′ | c, a, y, Not Remain, Not Progress, Not Crosstrain) Binomial Yes
Gain to System P(Gain in YOS y | c, a,Xt,c,a) Multinomial Yes

RegAF Crosstrain In P(Cross to AFSC a′ | c, Cross Out,
Sc,a′

mc,a′
) Uniform Yes

AFR, ANG Crosstrain In P(Cross to AFSC a′ | c, a, y, Cross Out) Multinomial Yes
Complete YOS P(y + 1 | c, a, y, Remain or Cross or Progress or Affiliate) Binomial No
Depart System P(Loss | c, a, y, Not Remain, Not Cross, Not Progress, Not Affiliate)=1 Fully Determined No

Table 13. Potential State Transitions

The transition to the next state first determines the number of Airmen with a

given component c, AFSC a, and YOS y who will remain in the same component and

AFSC using a binomial distribution. While approaches have been developed to gener-

ate higher-quality estimates of retention behavior (Hoecherl, Robbins, Borghetti and

Hill, 2022), we constrain our retention model to the information contained within the

state variable to preserve the model’s Markovian property. Next, the transition se-

quentially determines progression, crosstraining out, and affiliation transitions for the

remaining personnel with each combination of features. Notably, the transition rate

for remaining in or cross-training out of an AFSC is conditioned not only on the ob-

served rate, but on the aggregate manning level of the AFSC, defined as St,c,a

mt,c,a
, where

St,c,a =
∑

y∈Y St,c,a,y is the aggregate number of personnel in AFSC a and component

c at time t and mt,c,a =
∑

g∈G mt,c,a,g is the aggregate number of authorizations for

AFSC a and component c at time t. For personnel who have cross-trained out from

AFSCs in the RegAF, the next transition is determined by a uniform random draw

based on open retraining quotas for AFSCs. This approach reflects the existence of

enterprise level policy development for the RegAF with significant involvement from

USAF policy analysts and career field managers as well as the ability to move in-

dividuals to locations that match their new specialty. Conversely, AFR and ANG

cross-training is not managed at the enterprise level, so base-level openings may al-

low cross-training out of specialties that are undermanned in the aggregate and into
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specialties that are overmanned in the aggregate. Given this complexity, historical

transition rates are treated as the most likely estimate of future behavior, and we

generate a multinomial distribution of destination AFSCs using historically observed

transition rates. Any personnel who started in a given component c, AFSC a, and

YOS y at time step t but did not remain in the AFSC, crosstrain to a new AFSC, or

affiliate to a new component deterministically transition out of the system as a loss.

While RegAF personnel who remain in the service reliably complete one YOS

each year and progress to the next, the completion of each YOS used to calculate

pay for the AFR and ANG depends on the service member’s duty status during the

year. For this reason, personnel transition to either the next YOS or remain in their

current YOS according to a binomial distribution.

4.4.5 Cost Function

While the ideal state is for the inventory of personnel to perfectly match the au-

thorized number of personnel by AFSC and grade, our state variable does not include

grade. Modeling USAF personnel inventories with grade is difficult because promo-

tion policies are modified each year both in the aggregate and by AFSC. Replicating

these business processes requires both significantly increased computation as well as

the development of complex rulesets to generate transition rates that replicate sys-

tem behavior. A more stable approach is simply to model inventory with component,

AFSC, and YOS as St,c,a,y ∈ Z+
0 and then calculate an expected grade inventory

St,c,a,y,g ∈ R+
0 , since the relationship between YOS and grade is relatively stable. Let

St,c,a,y,g =St,c,a,yP (g|c, a, y) ∀c ∈ C, a ∈ A, y ∈ Y , g ∈ G, t ∈ T , (26)

wherein P (g|c, a, y) indicates the historically observed probability of an airman being
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in grade g given the airman is in component c, AFSC a, and YOS y.

Despite the simplicity of measuring whether inventory matches authorizations,

measuring the relative goodness of states that do not perfectly match authorizations

poses a more difficult problem. The first complicating factor is the comparison of

inventory to authorizations in the aggregate and by grade. Meeting aggregate autho-

rizations is an important consideration, as even having more junior or senior personnel

than authorized is preferable to having no personnel to fill an authorization. However,

personnel are not all equally capable of executing tasks and leading other personnel.

For this reason, including an assessment of whether the correct number of personnel

is available in each AFSC and grade is important. We use both, but weight aggregate

measures by 2|G| to emphasize the importance of the aggregate number of personnel

in the AFSC and offset the larger number of measures for each grade.

In Chapter III, we observe that using the ratio of inventory to authorizations

as a means to measure shortfalls is inappropriate because the resulting policies will

sacrifice a few large AFSCs to preserve healthy manning in a large number of small

AFSCs. However, using the actual number of shortages for each combination of

features misses the large relative importance of shortages in small AFSCs who may

be unable to adapt to missing personnel in the same way that a large AFSC can. For

this reason, we develop a hybrid approach where the costs for manning shortfalls are

weighted by a variable κc,m such that manning shortfalls are 1/3rd the magnitude of

the cost for shortages in each component based on the starting state S0. Additionally,

the RegAF is both much larger and acts as a donor for the other components. To

ensure that the holistic approach developed here does not undercut the effectiveness

of the RegAF, we further weight each component’s costs by κc such that the RegAF

contributes twice as much to the cost function as the other two components. This

yields the following cost function:
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Ct(St) =
∑
c∈C

κc

[∑
a∈A

[
2|G|max

(
mt,c,a − St,c,a, 0

)
+
∑
g∈G

max
(
mt,c,a,g − St,c,a,g, 0

)]
+ κc,m

∑
a∈A

[
2|G|max

(
1− St,c,a

mt,c,a

, 0
)
+
∑
g∈G

max
(
1− St,c,a,g

mt,c,a,g

, 0
)]]

.

(27)

4.4.6 Objective Function

We define the objective of the Markov decision process as

min
π∈Π

(
Eπ

[∑
t∈T

γt−1Ct(St)
])

. (28)

where γ is the discount factor. The transition from St to St+1 proceeds according

to the transition function St+1 = SM(St, xt, ωt+1). The decision xt is chosen using

the decision function xt = Xπ
t (St | θ) where θ is the set of estimated parameters for

a value function approximation. The policy π ∈ Π, where Π is the collection of all

possible policies, is the associated policy for a given θ.

4.4.7 Selected Parameters for the Intercomponent USAF WRP

We proceed by specifying particular parameter values for this generalized Markov

decision process formulation to represent the specific system behavior of the USAF

WRP. First, we use data from the USAF’s Military Personnel Data System from

September 2016 through September 2021 to measure the 5 years of transition rates

and the starting personnel inventory as of September 2021, the beginning of fiscal year

2022 (MilPDS Dataset, 2021). In addition, we also record manpower authorizations

from the Manpower Programming and Execution System - Unit Manpower Document

for the next 5 years as of September 2021 (MPES-UMD Dataset, 2021). We treat the
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authorizations for future years as maintaining the level of authorizations in the final

year in this dataset, as this is the best estimate available for the magnitude of future

authorizations.

It is important to strike a delicate balance when selecting a discount factor. We

must set the discount factor low enough to reflect senior leaders’ demonstrated ur-

gency for addressing shortages in a timely manner and the real world uncertainty of

future authorizations. Conversely, we must set the discount factor high enough to

ensure that the algorithm does not generate policies that solve problems in the short

term at the expense of poor outcomes in the future given the importance of long term

impacts of personnel policies on national security. Setting γ = 0.8, we select a horizon

length T = 20 years for this problem instance based on the selected discount factor,

where the cumulative discount factor at the end of the time horizon γT ≈ 0.01.

With 3 components (i.e., RegAF, AFR, and ANG), 236 AFSCs, and a maximum

career length Y = 40 years, the dimensionality of the state variable is 21, 240. We

show the dimensionality of each decision category for the USAF problem instance

in Table 14. Baseline affiliation rates and affiliation decisions are only calculated

for RegAF personnel because we do not model flows between the AFR and ANG

or back to the RegAF. These additional flows are relatively small in magnitude but

require significant additional computational burden to implement. Moreover, correct

measurement of these flows necessitates additional data cleaning from an additional

system, the Defense Civilian Personnel Data System.

We denote the equilibrium policy for each component and AFSC as ec,a ∀c ∈

C, a ∈ A′
c,da

. In addition, we use et,c,a ∀t ∈ T , c ∈ C, a ∈ A′
c,da

to describe the

modified equilibrium policy that complies with aggregate accession constraints. We

set the AFSC-specific pipeline constraints for the RegAF at a default level based on

a range above and below the equilibrium policy level, where η−t,c,a = 0.75ec,a for the
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Policy Dimensions
RegAF Enlisted Accessions 186
AFR Enlisted Accessions 129
ANG Enlisted Accessions 144
RegAF Affiliations to AFR 186
RegAF Affiliations to ANG 186
Total 831

Table 14. Expanded Policy Set

lower bound and η+t,c,a = 1.5ec,a for the upper bound, respectively. For the AFR and

ANG, we set the lower bound to η−t,c,a = 0.35ec,a to reflect the smaller population and

lack of enterprise-level modeling of skillsets. However, operational applications would

modify these to reflect the actual constraints recorded in Air Education and Training

Command’s Business Reporting and Intelligence Tool. Finally, when modeling grade,

we combine E-1, E-2, and E-3 ranks because of enlistment contract structures that

allow some personnel to enter directly as an E-3. We also combine E-8 and E-9

because of their low numbers and nuanced management practices, setting G = 6.

4.5 Optimization Approach

4.5.1 Baseline CAVE adapted to USAF WRP

In Chapter III, we demonstrate the relative efficacy of the CAVE approach for a

smaller form of the USAFWRP compared to other reinforcement learning approaches,

but for a smaller form of the problem with only the RegAF and the associated ac-

cession decisions for RegAF AFSCs. We adapt this implementation of CAVE to

the larger intercomponent USAF WRP with three components and a second class of

decisions.

Unlike model-free forms of value function approximation that must directly esti-

mate the value of different states, CAVE instead constructs a direct lookahead policy

for the next Tπ years and estimates the gradient of the value function for decisions
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during that period to find a high-quality solution. One limitation for direct lookahead

policies is that they must be able to represent costs far enough into the future to avoid

becoming myopic. One approach to address this concern is to extend Tπ to the end

of a finite horizon problem, but this requires significant computational resources for

problems with long horizons. Alternately, one can either create a different model of

future actions after the lookahead horizon Tπ or develop an estimate of the value of

the state at the end of the lookahead horizon. In the USAF WRP, we can use the

equilibrium policy as a reasonable approximation of future policies.

A second limitation is that the gradient for a stochastic problem like the USAF

WRP depends both on the future state outcomes such as manning or shortages as

well as the survival of personnel to contribute to those outcomes. For example,

the addition of one accession in time period t may solve a shortage in the same

AFSC a at time t+ 7, or the additional accession may solve a shortage in a different

AFSC a′ after crosstraining at time t+7, or the additional accession may depart the

service before 7 time periods have passed and fill no shortages. We overcome this

limitation by calculating a survival probability for each decision to each respective

component, AFSC, and YOS combination after t timesteps have passed. For accession

decisions, this survival calculation simply weights the probability of survival to meet

demands. For affiliation decisions, two survival probabilities must be calculated:

the probability of meeting an authorization after transferring to the new component

and the probability that the respective service member affiliating would have met

an unfilled authorization by remaining in their original component. Because these

transition probabilities can vary according to AFSC manning, there is no single set of

survival probabilities for a given decision. We use the baseline, unrestricted transition

probabilities for crossflows out of AFSCs as a close approximation and the restricted

crossflow in rates for AFSCs who are intended to meet their authorizations with
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accessions and only use retraining-in as a corrective measure. This prevents the

algorithm from intentionally deciding to fill authorizations in one of these AFSCs with

crossflows from another AFSC, counter to the intention of the career field manager

and USAF policy analysts. This approach has been validated by Hoecherl et al. (2016)

and Hoecherl and Robbins (2022), contributing to the development of high-quality

policies.

In this CAVE variant, shown in Algorithm 3, we express the parameters of the

piecewise linear value function approximation as

θ = (ut, νt)t∈Tπ , (29)

wherein ut = (ut,c,a,d)t≤Tπ ,c∈C,d∈D,a∈A′
c,d
, with ut,c,a,d being a vector of breakpoints for

a specific decision, νt = (ut,c,a,d)∀t≤Tπ ,c∈C,d∈D,a∈A′
c,d
, with νt,c,a,d being a corresponding

vector of gradients for a specific decision, and Tπ = {1, 2, ..., Tπ}. The variable kt,c,a,d

represents the selected breakpoint for a specific decision, where xt,c,a,d = u
kt,c,a,d
t,c,a,d .

In Step 1, the CAVE approach begins by defining each accessions policy using two

breakpoints, 0 and the equilibrium policy et,c,a constrained by At,c. CAVE selects a set

of decisions on how to distribute a total number of accessions At,c for a given t ∈ Tπ

and c ∈ C by iteratively identifying the AFSC a+ ∈ A′
c,da

with the highest gradient

ν
kt,c,a,da
t,c,a,da

, incrementing kt,c,a,da to move to the next breakpoint for that decision until

reaching the accessions constraint η+t,c,a. During initialization, we accomplish this

by setting a small positive gradient at ν1
t,c,a,da

for accession decisions. For affiliation

decisions, we start with 0 additional affiliations. Because the process to find a good

policy for each t ∈ Tπ and c ∈ C for these decision classes simply increases the decision

for each AFSC a until we reach a ν
kt,c,a,d
t,c,a,d ≤ 0, we set ν1

t,c,a,d = 0 during initialization.

In Steps 2 and 3, we select our decisions xt at each time step t according to the

decision function Xπ
t (St | θ), where θ is defined as (ut, νt)t∈Tπ . For accession decisions,
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Algorithm 3 CAVE Algorithm

Step 1: Initialization
1: Identify At,c, the aggregate constraint for accessions ∀t ≤ Tπ, where Tπ is the

desired length of the lookahead policy before reverting to equilibrium policy.
2: for t ∈ Tπ, c ∈ C, d = da, a ∈ A′

c,da
do

3: To model each accession decision xt,c,a,da , let kt,c,a,da = 2, ν1
t,c,a,da

= 0.0001,
ν2
t,c,a,da

= 0, u1
t,c,a,da

= 0, u2
t,c,a,da

= et,c,a, where et,c,a is the equilibrium policy
s.t.

∑
a∈A′

c
et,c,a = At,c.

4: end for
5: for t ∈ Tπ, c ∈ C, d ∈ {dr, dg}, a ∈ A′

c,d do
6: To model each affiliation decision xt,c,a,d, let kt,c,a,d = 1, ν1

t,c,a,d = 0,
u1
t,c,a,d = 0.

7: end for
8: Initialize parameters δn,d and αn.

9: for n = 1 to N do
Step 2: Determine current policy Xπ

t (St | θ)
10: for c ∈ C, t ∈ Tπ do
11: Initialize policy with xt,c,a,da = 0 by setting kt,c,a,da = 1 ∀a ∈ A′

c,d

12: while
∑

a∈A′
c
xt,c,a,da < At,c do

13: Select AFSC a+ with largest estimated gradient argmaxa∈A′
c,d
(ν

kt,c,a,da
t,c,a,da

)

14: Increment the decision xt,c,a+,da by setting kt,c,a+,da = kt,c,a+,da + 1.
15: end while
16: end for

Step 3: Identify Current Affiliations Policy
17: for c =RegAF, d ∈ {dr, dg}, t ∈ Tπ, a ∈ A′

c,d do
18: Initialize policy with xt,c,a,d = 0 by setting kt,c,a,d = 1 ∀a ∈ A′

c

19: while ν
kt,c,a,d
t,c,a,d > 0 do

20: Increment decision xt,c,a,d by setting kt,c,a,d = kt,c,a,d + 1
21: Increment aggregate accessions for the donor component At,c by 1
22: Decrement aggregate accessions for the receiving component At,c′ by 1
23: end while
24: end for
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Step 4: Collect Gradient Information
25: Simultaneously sample the gradients ∆−

t,c,a(Xt,c,a, ω) and ∆+
t,c,a(Xt,c,a, ω) over

a finite time horizon with random outcomes ω ∈ Ω ∀t ≤ Tπ, a ∈ A′
c

Step 5: Define Smoothing Interval
26: Let k−

t,c,a,d =

min{kt,c,a,d ∈ Kt,c,a,d : ν
kt,c,a,d
t,c,a,d ≤ (1− αn)ν

kt,c,a,d+1

t,c,a,d + αn∆
−
t,c,a,d(xt,c,a,d, ω)}.

27: Let k+
t,c,a,d =

max{kt,c,a,d ∈ Kt,c,a,d : (1− αn)ν
kt,c,a,d−1

t,c,a,d + αn∆
+
t,c,a,d(Xt,c,a,d, ω) ≤ ν

kt,c,a,d
t,c,a,d }.

28: Define the smoothing interval

Qt,c,a,d =

[
max{xt,c,a,d − δn,d, u

k−t,c,a,d
t,c,a,d , η

−
t,c,a},min{xt,c,a,d + δn,d, u

k+t,c,a,d+1

t,c,a,d , η+t,c,a}
)
.

29: Create new breakpoints at the endpoints of Qt,c,a,d as needed. Since a new
breakpoint always divides an existing segment, the segment slopes on both
sides of the new breakpoint are the same initially.

Step 6: Update Estimates
30: for each segment k in the interval Qt,c,a,d do

31: if u
kt,c,a,d
t,c,a,d < xt,c,a,d then ∆t,c,a,d = ∆−

t,c,a,d(xt,c,a,d, ω)

32: else ∆t,c,a,d = ∆+
t,c,a,d(xt,c,a,d, ω)

33: end if
34: Update the slope νk

t,c,a,d = αn∆t,c,a,d + (1− αn)ν
k.

35: end for
36: Adjust δn+1,d and αn+1 according to step size rules.
37: end for
38: End
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we iteratively increase accessions for each component and time period t ∈ Tπ in

the AFSC with the highest gradient at the current breakpoint until the accessions

constraint is met. For affiliation decisions, we increase the number of affiliations from

each RegAF AFSC until the observed gradient at the current breakpoint falls to zero

or below.

After the piecewise linear value function has been initialized and the current

decision has been identified, the algorithmic approaches for accessions and affilia-

tions are identical. In Step 4, the CAVE algorithm uses Monte Carlo simulation

to simultaneously observe future outcomes and estimate both the negative gradient

∆−
t,c,a,d(xt,c,a,d, ω) and the positive gradient ∆+

t,c,a,d(xt,c,a,d, ω) for all decisions xt where

t ∈ Tπ.

In Step 5, we establish how wide the smoothing interval Qt,c,a,d must be with the

existing breakpoints to avoid any concavity violations and establish these end points

as k−
t,c,a,d and k+

t,c,a,d. We next further modify the smoothing interval Qt,c,a,d by adding

additional breakpoints based on the pipeline constraints η−t,c,a and η+t,c,a as well as the

declining size of the interval width parameter δn,d. In Step 6, we update the slopes

below xt,c,a,d according to the observed gradient ∆−
t,c,a,d(xt,c,a,d, ω) and the slopes above

xt,c,a,d according to the corresponding observed gradient ∆+
t,c,a,d(xt,c,a,d, ω), with the

size of both updates adjusted for the stepsize parameter αn.

4.5.2 SUPERCAVE

The CAVE variant converges to a high-quality solution, but the algorithm cannot

escape local optima. To address this issue, we propose SUPERCAVE, which begins

by finding a solution xπ
t using the CAVE algorithm, but then generates ϱ perturbed

solutions around this solution. For each perturbation p ∈ {1, 2, ..., ϱ}, the algorithm

randomly selects ξ AFSCs where the accession decision is increased in t = 1 as the
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set of A−
c,da

. The algorithm also selects ξ other AFSCs where the accession decision

is decreased as the set of A+
c,da

. Each set of AFSCs is split into pairs of a−p and a+p ,

where AFSC a−p has its corresponding accession decision decreased by ϵ accessions

in time t while AFSC a+p has its accession decision increased by the corresponding

amount.

We know that the number of personnel brought in through accessions decisions

cannot be perfectly substituted by corresponding accessions at a later time period,

but when the time periods are close these personnel do overlap heavily in which

authorizations they can fill. For this reason, simply perturbing accessions in time

t would likely result in any retraining undoing much of the perturbation because

the AFSC has simply been under- or over-resourced based on the direction of the

perturbation. To address this, we generate a corresponding perturbation of the same

magnitude ϵ but opposite in direction at time τ ∈ {2, 3, ..., Tπ}. We also select a

desired perturbation size σ, though this must be reduced to ϵ to avoid violating any

pipeline constraints for either AFSC at time t or τ . Once all of these perturbations

have been generated, we have ϱ perturbed policies in addition to the original trained

policy.

Next, we retrain using a truncated form of the CAVE algorithm on these per-

turbed solutions. Because we know these perturbed solutions are already very close

to high-quality solutions, we reduce the training length from N to Nr and set δn,d = 1.

We reinitialize each policy as we did with the original equilibrium policy as the base-

line. Affiliation decisions are initialized as the unperturbed initial solution but are

allowed to continue changing during the retraining process. Each final retrained set of

decisions is recorded as xp. To assess the relative goodness of each perturbed decision

xp, we simulate each for T timesteps and ζ replications and select the set of decisions

xp with the lowest mean discounted cost, unless the original unperturbed policy xπ
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Algorithm 4 SUPERCAVE Algorithm

Step 1: CAVE Baseline
1: Identify At,c, the aggregate constraint for accessions ∀t ≤ Tπ, where Tπ is the

desired length of the lookahead policy before reverting to equilibrium policy.
2: Train CAVE algorithm, identify xπ

t ∀t = Tπ

Step 2: Perturb accessions solutions
3: for t ∈ Tπ, c ∈ C do
4: for p = 1 to ϱ do
5: Select ξ AFSCs as A−

c,da
∈ A′

c,da

6: Select ξ AFSCs as A+
c,da

∈ A′
c,da

: A−
c,da

∩ A+
c,da

= ∅
7: for each pair of AFSCs a−p and a+p from A−

c,da
and A+

c,da
do

8: Select future policy year τ ∈ {2, 3, ..., Tπ} to perturb
9: Identify perturbation size ϵ = min

(
σ, xπ

t,c,a−p ,da
−η−

t,c,a−p
, η+

t,c,a+p
−xπ

t,c,a+p ,da
,

xπ
τ,c,a+p ,da

−η−
τ,c,a+p

, η+
τ,c,a−p

−xπ
τ,c,a−p ,da

)
10: Set xt,c,a−p ,da,p

= xπ
t,c,a−p ,da

− ϵ

11: Set xt,c,a+p ,da,p
= xπ

t,c,a+p ,da
+ ϵ

12: end for
13: end for
14: end for

Step 3: Retrain perturbed solutions
15: for p = 1 to ϱ do
16: for t ∈ Tπ, c ∈ C, d = da, a ∈ A′

c,da
do

17: To model each perturbed accession decision xt,c,a,da,p, let kt,c,a,da = 2,
ν1
t,c,a,da

= 0.0001, ν2
t,c,a,da

= 0, u1
t,c,a,da

= 0, u2
t,c,a,da

= xt,c,a,da,p.
18: end for
19: for t ∈ Tπ, c ∈ C, d ∈ {dr, dg}, a ∈ A′

c,d do
20: To model each affiliation decision xt,c,a,d, let kt,c,a,d = 2, ν1

t,c,a,da
= 0.0001,

ν2
t,c,a,da

= 0, u1
t,c,a,d = 0, u2

t,c,a,d = xπ
t,c,a,da

.
21: end for
22: Initialize parameters δn = 1 and αn.
23: Train with CAVE algorithm for n = {1, 2, ..., Nr = 15} to find xp.
24: end for

Step 4: Simulate to select superlative solution
25: Simulate each xp for T timesteps and ζ replications to identify superlative policy
26: End
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is the superlative performer.
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4.6 Experimental Design and Results

Next, we test the relative performance of these algorithms. We run all experiments

in MATLAB using MATLAB’s parallel computing toolbox and using a GPU for

certain matrix calculations. Each experiment is run locally with an Intel Xeon Gold

6240 CPU at 2.60 GHz with 36 cores and an NVIDIA Quadro RTX 8000 GPU.

All computation times are reported for a full simulation length of 20 years with 35

replications run in parallel on the CPU, sharing GPU resources.

4.6.1 CAVE Performance

We first test the performance of CAVE with two candidate stepsize rules, two

stepsize parameters for each stepsize rule, two training lengths, and three lookahead

horizons as shown in Table 15 to find which hyperparameters deliver the best per-

formance for the intercomponent USAF WRP. The stepsize rules test a deterministic

stepsize rule, the Generalized Harmonic Stepsize, and a stochastic stepsize rule that

accounts for the variance and distribution of the observed updates, the Bias Adjusted

Kalman Filter. Both of these stepsize rules have been applied successfully to CAVE

variants in past research. For each of these approaches, we test two settings for the

stepsize decay parameter a, which determines how quickly the stepsize reduces as n

progresses.

Hyperparameter Settings
Stepsize Rule (α) Generalized Harmonic Stepsize,

Bias Adjusted Kalman Filter
Internal Stepsize Parameter (a) 5, 10
Training Length (N) 50, 100
Lookahead Horizon (Tπ) 3, 5, 7

Table 15. CAVE Hyperparameter Testing

Previous applications of CAVE to the USAF WRP used a training length of N =
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100, but preliminary testing suggested that a shorter training timeline might deliver

similarly high-quality results. These previous applications also used a lookahead

horizon of Tπ = 5, in part because USAF accession plans tend to be developed

for three to five year windows. While plans shorter than three years would not

be as helpful for planners, we tested lookahead horizons of 3, 5, and 7 years. We

hypothesized that shorter lengths would decrease problems with interactions between

time periods but at the expense of being constrained to simpler policies.

Lookahead Training Stepsize Stepsize Percent Improvement Computation
Horizon Length (N) Schedule Rule Parameter (a) over Benchmark (95% CI) Time (hours)

3 50 BAKF 5 18.90± 0.45 6.7
3 50 BAKF 10 18.72± 0.52 6.7
3 50 GHS 5 21.98± 0.47 6.7
3 50 GHS 10 21.05± 0.44 6.7
3 100 BAKF 5 19.06± 0.47 13.5
3 100 BAKF 10 18.68± 0.43 13.4
3 100 GHS 5 23.06 ± 0.44 13.3
3 100 GHS 10 22.64± 0.47 13.5
5 50 BAKF 5 17.59± 0.58 9.5
5 50 BAKF 10 17.28± 0.47 9.5
5 50 GHS 5 19.97± 0.49 9.5
5 50 GHS 10 19.14± 0.38 9.5
5 100 BAKF 5 17.56± 0.43 18.8
5 100 BAKF 10 17.43± 0.40 18.9
5 100 GHS 5 20.61± 0.55 18.6
5 100 GHS 10 19.96± 0.49 18.8
7 50 BAKF 5 17.51± 0.54 12.3
7 50 BAKF 10 16.92± 0.39 13.0
7 50 GHS 5 19.42± 0.50 12.4
7 50 GHS 10 18.94± 0.37 12.3
7 100 BAKF 5 17.29± 0.40 25.4
7 100 BAKF 10 17.07± 0.44 25.5
7 100 GHS 5 19.82± 0.48 24.7
7 100 GHS 10 19.23± 0.44 25.2

Table 16. Policy performance comparison: shorter lookahead horizons and longer train-
ing times demonstrated the strongest performance.

We tested each combination of hyperparameters with 35 replications of a simu-

lation over T = 20 years to observe the mean discounted cost for each algorithmic

implementation. Table 16 shows very clear effects of each hyperparameter tested,

with the Generalized Harmonic Stepsize rule with a = 5 outperforming every other
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stepsize for all hyperparameter combinations, the shorter horizon length Tπ = 3 out-

performing all other horizons for every other hyperparameter combination, and the

longer training length N = 100 outperforming the shorter training length for nearly

every hyperparameter combination. The superlative combination of hyperparameters

was found to use a Generalized Harmonic Stepsize with a = 5, N = 100, and Tπ = 3.

The high performance of the short horizon length formulations was counter to

initial hypotheses, but is a logical finding for two reasons. First, current manpower

funding business practices prioritize near term authorizations. These practices often

do not fully execute future authorizations with any required AFSC changes, resulting

in demand signals that show significant change in the first year or two but little

change in later years. This business practice is subject to change as these business

processes improve, requiring further testing in the future. Second, we specifically

design the SUPERCAVE approach to overcome interactions between time steps. With

few changes in future years, the original CAVE approach may spread deviations from

the equilibrium policy (i.e., ”fixes”) over a longer timeline, resulting in less responsive

policies.

As expected, longer lookahead horizons and increased training length both clearly

increased training time. While the effect of the stepsize rule on training time was less

clear, the superlative stepsize rule requires fewer calculations than the Bias-adjusted

Kalman Filter and demonstrates faster times for most combinations of lookahead

horizon and training length.

While all other experiments used 35 replications using specified seeds, the sus-

tainment results were replicated 350 times due to the lower computational burden of

this approach. Table 16 shows the superlative result to be a statistically significant

improvement over the equilibrium sustainment policy, with an estimate of the effect

size as 23.06% ± 0.44% with 95% confidence using a two sample t-test.
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4.6.2 SUPERCAVE Improvement Over Baseline

We extend the CAVE algorithm using these superlative hyperparameter settings.

While SUPERCAVE should provide larger performance gains for longer time horizons

due to the greater number of interactions between policies, we test the shorter time

horizon to ensure that the SUPERCAVE implementation can outperform the highest

quality solutions generated by CAVE for the current USAF system. To investigate

the performance of the SUPERCAVE algorithm, we design a test across a range of

SUPERCAVE-specific hyperparameters, shown in Table 17.

Hyperparameter Settings
Number of perturbations (ϱ) 5, 10, 20
Number of AFSCs (ξ), Size of perturbations (σ) Small Setting: ξ = 40,σ = 5

Large Setting: ξ =
|A′

c,da
|

2
,σ = 10

AFSC Sampling Approach Uniform, Weighted

Table 17. SUPERCAVE Hyperparameter Testing

First, we test with the number of perturbations ϱ, where additional perturbations

should improve solution quality but at the expense of computation time. Next we test

the size of the perturbations, either testing a subset of 40 AFSCs each for positive

and negative perturbations with a perturbation size σ = 5 accessions or perturbing

half of the AFSCs in each direction with a perturbation size σ = 10 accessions. For

the setting with each AFSC perturbed, all AFSCs are sampled each time, but the

setting with ξ = 40 is also tested with both a uniform sampling mechanism as well

as a weighted sampling mechanism based on the AFSC’s distance from being 100%

manned in the aggregate.

Table 18 shows improvements in mean performance for all but one of the exper-

iment results which appears to be caused by noise in the stochastic outcomes. The

highest performing model shows statistically significant improvements over the su-

perlative CAVE model at the 95% confidence level using a paired t-test. Table 18
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Perturbation Number of AFSC Sampling Percent Improvement Computation
Size Perturbations Approach over CAVE (95% CI) Time (hours)
Small 5 Uniform 0.45± 0.49 31.9
Small 10 Uniform 0.06± 0.46 49.1
Small 20 Uniform 0.09± 0.54 84.9
Small 5 Weighted 0.32± 0.57 34.0
Small 10 Weighted −0.05± 0.50 54.8
Small 20 Weighted 0.23± 0.49 101.2
Large 5 Uniform 0.67 ± 0.42 30.9
Large 10 Uniform 0.25± 0.55 47.6
Large 20 Uniform 0.42± 0.48 82.7

Table 18. SUPERCAVE policy performance comparison: Large perturbations improve
performance, but the effect of the number of perturbations is lost in the noise.

also shows the computational time for one batch of 35 replications run in parallel. As

expected, using weighted sampling results in slightly higher computation times, while

the number of perturbations to retrain has large effects on the required computation

time.

4.6.3 Affiliations Improvement Over Component-Centric Policy

We tested an alternative policy structure without the affiliation decision classes

dr and dg to show the impact of managing these policies. We compared results using

the superlative tested SUPERCAVE configuration with 5 perturbations and the large

perturbation setting. This test showed a 14.98± 0.58% increase in mean costs when

restricting affiliations to the baseline rate using a 95% confidence level and a paired

t-test. This result suggests that the inclusion of policies to directly manage and

optimize affiliations to the AFR and ANG can meaningfully improve the USAF’s

ability to maintain the required number of personnel across all components.

4.7 Conclusions and Future Work

This research first extends the benchmark equilibrium model for RegAF AFSC

management to the AFR and ANG, providing the first approach to enterprise model-
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ing of AFR and ANG skillsets at the enterprise level. This provides a policy baseline

that can be used for resourcing training pipelines and an expected distribution of

personnel that can provide significant insight regarding the composition of current

personnel inventories to AFR and ANG policy analysts.

We then formulate the intercomponent USAF WRP as a Markov decision process

and extend previous applications of CAVE to this larger problem, showing significant

improvement over the benchmark equilibrium policy. We test CAVE’s applications

across a range of hyperparameters and find superlative settings that vary from pre-

vious applications of CAVE to the USAF WRP.

We next devise and test SUPERCAVE, a methodological improvement to the

CAVE approach that demonstrates a statistically significant improvement versus

CAVE. We show small but statistically significant improvements over the CAVE ap-

proach, demonstrating that this approach can deliver higher-quality solutions even

for very short lookahead horizons. While improvements are relatively small in scale,

the USAF spends billions of dollars on its personnel and deviations from the funded

authorizations drive personnel utilization and talent management decisions at many

different organizational levels, meaning that even small improvements in the USAF’s

ability to meet funded authorizations may have dramatic effects on mission effective-

ness as well as airmen’s quality of life and career satisfaction. Additionally, as future

business processes change how the USAF funds future authorizations, the USAF may

need to increase the use of more complex accession policies, where these benefits

will increase. In the short term, SUPERCAVE can provide the highest-quality policy

recommendations if adequate time and computational resources are available. If com-

putation is a limiting factor, as may be the case if considering the effects of different

future authorizations or pipeline constraints where rapid iteration is desirable, CAVE

may provide policies that are useful for planning even if they accept some reduction
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in solution quality. Selecting a lower number of iterations for training can extend

this tradeoff further, maintaining most of the improvement over the benchmark while

reducing the computation time substantially.

Finally, we validate the importance of beginning to optimize affiliations from the

RegAF to the AFR and ANG. The USAF does not set specific targets for this policy

lever, relying on individual volunteers and the concurrence of RegAF career field

managers. However, we demonstrate the large potential benefits of directly managing

affiliation targets from the RegAF to the other components. Because this application

was constructed to assess the impact of additional affiliations above the volunteer rate,

future applications of this approach should modify the policy structure to directly

optimize the total number of affiliations. This structure will provide a useful target

for USAF decision-makers when attempting to modify the volunteer rate, whereas

the target number of “extra” personnel is not helpful without the baseline.

When operationalizing such an approach, the AFR and ANG will need to estab-

lish new processes to communicate with the disparate decision-makers at individual

locations to determine how to inform accession-planning. While fully-centralized ac-

cessions are not compatible with current business processes and cultural expectations

within the AFR and ANG, these policy baselines should be used as a starting point

to inform local decision-makers as to the likely future consequences of their accession

decisions and inform resourcing decisions to ensure AFR and ANG recruiters can

find the right talent. Additionally, such a policy baseline and use of simulated results

from the Markov decision process formulation can help the components negotiate

when constrained training resources are fungible between components.

Future work should increase the number of replications to refine the estimated

effect of SUPERCAVE’s hyperparameters. While the increased quality of the large

perturbation setting seems clear, increased testing on the individual effects of the
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number of AFSCs to be perturbed and the size of the perturbation merits exploration.

Additionally, the findings showing the highest performance with a small number of

perturbations tested appears to be due to stochastic noise within the system. Future

testing should seek to confirm this hypothesis or address why a smaller number of

perturbations would provide higher-quality solutions.

Future work should also develop models for how authorizations may change over

time. While such an approach is not appropriate for directly developing policy solu-

tions, CAVE and SUPERCAVE hyperparameters should be further tested for robust-

ness in an environment with changing authorizations. Current performance estimates

assume that current projections of future authorization levels remain at the projected

levels without further programmatic change, which would be a historical anomaly.

Finally, future work should test such approaches for more granular approaches that

work to maintain specific skillsets. The US Space Force is currently experimenting

with directly quantifying skillsets instead of relying on a career field designation to

measure groups of skillsets. The CAVE and SUPERCAVE approaches are suitable

for such a structure, although the computational complexity of such an approach

increases as the granularity of the skillsets increases.

One area of concern when modeling more complex relationships is whether the

approximation of the survival rate to potential future states is a good approxima-

tion, or whether solution quality could be limited by any difference between the true

survival probability and the approximation. One approach to address this would be

to observe these survival transitions during each simulation and update this approx-

imation instead of relying on the original. This would potentially improve CAVE

and SUPERCAVE’s results on the current problem instance as well as enable their

application to more complex state spaces where no initial approximation exists.
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V. Conclusion

“Rational decision-making requires a position of considerable political
power. The sources of ‘irrationality’ are not simply muddled thinking
or psychological quirks, but the regular intrusion of insistent lobbyists
for some cause or interests, or inadequate bureaucratic structures or the
divergent pull of opposing objectives.”

- Sir Lawrence Freedman

Professor of War Studies, King’s College

The Evolution of Nuclear Strategy, 3rd Ed., p. 219

5.1 Summary of Research Contributions

While the potential scope of USAF talent management and workforce replenish-

ment policies is large, this research improves the USAF’s ability to manage these

problems by answering the each of the following specific research questions.

Research Question 1: How can the USAF use MilPDS and publicly available

data to accurately and precisely predict monthly retention behavior over a 12 month

period?

In Chapter II, we show we can generate better predictions than the current bench-

mark Kaplan Meier model with both a feedforward neural network and by a feed-

forward neural network trained with a partially autoregressive feature. While the

partially autoregressive neural network showed the superlative performance for the

validation dataset, the traditional feedforward neural network showed the greatest

performance on the test dataset. Importantly, to generate one high-quality model,

many models needed to be trained and tested on a validation dataset. While the

baseline neural network approach can be deployed to improve the quality of predic-

tions, the partially autoregressive neural network (PARNet) model appears likely to

outperform the baseline during periods of less volatile economic conditions and can

150



be used as a second estimate. While an ensemble of the various modeling approaches

was not tested, the use of an ensemble to develop robust predictions of the likely

range of outcomes may be operationally useful to help inform decision-making.

Research Question 2: How can the USAF improve the quality of accessions

policies for the active duty force implemented by AFSC to reduce AFSC shortages

and improve AFSC manning?

In Chapter III, we design, develop, and test novel approximate dynamic program-

ming (ADP) and reinforcement learning (RL) algorithms that determine high-quality

personnel accessions policies. We develop a direct lookahead policy modification of

Concave Adaptive Value Estimation (CAVE) as well as a parameterized deep rein-

forcement learning approach to generate high-quality policies for decisions with high

dimensionality while maintaining a low computational cost. We show that CAVE

performs well for the USAF workforce replenishment problem (WRP) at a low com-

putational cost and provide insight into cost function development by testing the

effects on policy of two candidate cost functions.

While the primary use of this contribution will be to develop a baseline for ac-

cession policies across all AFSCs, this approach provides a standardized approach to

examine the effect of existing policies and inform functional stakeholders for specific

communities. This Markov decision process model and insights from this work have

been used to inform the USAF operations research analyst career field management

team’s policy planning and coordination with AF/A1 (Hoecherl, 2022). The insights

from this model have driven modifications to accession policies across multiple years

to procure the required analytic talent to meet analytics and artificial intelligence

initiatives directed by the Secretary of the Air Force.

Research Question 3: How can the USAF improve the quality of accessions

policies across all components implemented by AFSC to reduce AFSC shortages and
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improve AFSC manning? What policies that significantly impact AFSC manning

need to be managed differently or start being managed? How do we ensure good

solutions to those policies?

In Chapter IV, we design, develop, test, and compare multiple sequential decision-

making approaches for determining high-quality personnel policies. This contribution

extends the work proffered in Chapter III by considering a new, larger problem set,

including RegAF, AF Reserve, and Air National Guard personnel. First, we extend

the RegAF’s benchmark equilibrium sustainment model to the AFR and ANG, then

formulate this larger problem as a Markov decision process. We extend the CAVE

approach to this larger problem and test performance across a range of hyperpa-

rameters. Finally, we develop and test a novel algorithm modification to the CAVE

approach which leverages a perturbation and retraining process to improve solution

quality at the expense of additional computation. Tests show statistically significant

improvements over the baseline CAVE approach, which shows statistically significant

improvements over the benchmark equilibrium policy. While the computational costs

for implementing SUPERCAVE compared to CAVE are not trivial, relatively infre-

quent policy development of accession targets could support such an investment for

improvements in solution quality for such a high-stakes set of policies.

Although the primary intent of such an algorithmic implementation is to provide

high-quality accessions and affiliation policy baselines, this approach also has the po-

tential to dramatically change the USAF’s approach to making decisions about future

human capital composition. Current approaches allow senior leaders to make deci-

sions about future authorizations that are divorced from considerations of whether

we can meet these authorizations with corresponding personnel. This results in many

decisions that are not feasible within known policy constraints and frustration as se-

nior leaders seek ways to procure the human capital needed for their various missions.
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While some business processes would need to change to include AFSC-level detail in

the USAF programming process, by projecting policies and personnel inventories this

research can provide an alternative decision framework. With a considered set of fu-

ture authorizations that are shown to be infeasible, senior leaders can instead choose

to:

1. Reduce the rate of required change for emerging requirements.

2. Find alternative offsets to allow human capital to be repurposed for the emerging

requirement.

3. Apply required resources to relax the relevant constraint, allowing bottlenecks

to be identified and removed during the planning process instead of waiting for

the problem to manifest.

With such a process, quick responses may be more important than fine policy adjust-

ments, so using the superlative CAVE implementation with simulations over 5 years

could provide such insights with less than 2 hours of computation on a comparable

machine.

Additionally, this set of models and algorithms allows for an unprecedented level

of integration with the AFR and ANG. One key to successful implementation of

such an approach will be developing the relationships and business processes between

enterprise-level modelers and the AFR and ANG commanders at each location that

own the corresponding policies. This approach will be most effective if used to iden-

tify areas of concern with existing policy and inform local commanders, rather than

centralize decision-making without an understanding of local conditions or comman-

der’s constraints. This can provide an avenue to identify the relative importance

of different recruiting problems and inform resourcing decisions to overcome these

limitations.
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In addition to the individual accession and affiliation policies, this contribution

has informed analysis of aggregate personnel behavior across components and the

strategic consequences of such patterns, historically not observed within a specific

model. Insights from examining such behavior were briefed at Operation Retrench-

ment Specter in December 2021, showing that aggregate retention within the RegAF

had driven additional costs and a significant vulnerability during future conflicts with

significant attrition. Based on this analysis, we developed a course of action demon-

strating the need to begin managing affiliations directly and boosting the overall

level of these affiliations. This course of action was rated as the top submission for

overall quality at the wargame and is the subject of a follow-on paper (Hoecherl,

Schulker, Hornberger and Walsh, 2022). Implementing this course of action would

require data-informed policy development for affiliations, which do not currently have

a data-informed target. The models in Chapter IV provide a defensible, integrated

target, though future development may need to establish modifications to costs or

constraints if a specific total affiliations target is established.

5.2 Future Work

Future retention modeling research should be conducted in four general direc-

tions. First, the selection of features used in Chapter II was informed by subject

matter expertise of known relationships. Many other variables within the Military

Personnel Data System may have significant explanatory power, though the addi-

tion of features will increase problems with imbalanced observations and statistical

bias. The positive and negative effects of such feature selection is deserving of future

study. In addition to personnel features, economic data may provide valuable infor-

mation about the likelihood of personnel to depart without changing the distribution

of retention observations, but requires multiple economic trends within the training

154



data to effectively measure. As more data is collected after the COVID-19 pandemic

has passed, we can measure the effects of including this data either to supplement

or to compete with the use of a partially autoregressive feature to predict trends in

retention behavior.

A second area for future research is the development of loss functions that more

closely respond to statistical bias. Because this approach leverages large minibatch

sizes, one approach may be to create a bias-adjusted loss function that adjusts updates

to the neural network based on the statistical bias measured across all predictions in

a single minibatch update. Such an approach may provide higher quality predictions

and an improved ability to assess model quality after initial training, though this

approach may cause problems with training stability.

Because of the high level of noise in the quality of the models generated, many of

the hyperparameters showed only weak relationships with model quality. Especially

in combination with the development of new loss functions, further work to assess the

effect of hyperparameters may provide additional insight, especially in more stable

retention environments.

Finally, the level of variance in prediction quality is concerning from a practi-

tioner’s perspective. Barring further progress in some other area, constructing an

ensemble approach to produce multiple predictions may improve robustness. One

area to consider is the inclusion of the Random Forest models, which performed well

in preliminary testing and displayed very consistent, robust predictions even though

their superlative models did not produce predictions of the same quality as the su-

perlative neural network models.

For the WRP, the most pressing future work is to reconfigure the Markov decision

process formulation to directly optimize the number of affiliations. While the current

approach was important for demonstrating the value of beginning to manage this
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process directly, implementation will require a direct target.

While many of the advances from Chapter II are not suitable for a parsimonious

model that must predict years into the future, economic data included in the starting

state S0 may be able to help provide high-quality, short-term retention predictions.

While these effects should fade as the time progresses and confidence in economic

conditions decreases, including economic features may increase the quality of policies

generated to account for losses in the short term.

Although retraining policies are generally more difficult to model due to the high

level of volition involved and the lack of natural experiments, retraining policies have

a significant effect on the manning of many AFSCs. Further work to replicate the

approach used for affiliations and extend this to transitions to other AFSCs within

the same component may provide both better policy baselines for retraining as well

as more refined accessions policies.

The effect of SUPERCAVE hyperparameters is difficult to measure because of the

noise in stochastic outcomes. Further work to increase the sample size can refine our

understanding of these effect sizes and the benefit of increasing the computational

investment to further refine policies.

All current testing was conducted in a static authorizations environment, where

future authorizations do not deviate from the projected plan. This assumption is

inconsistent with USAF system behavior, where programmatic changes occur every

year. Future testing of such approaches should examine performance in both static

and dynamic authorizations environments to assess the robustness of different algo-

rithmic approaches.

The USAF may increasingly need to measure and develop policies to procure

more granular skillsets beyond the career field level of detail. Such an approach

is already being explored by the USAF with its Multi-Capable Airmen initiative
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and by the US Space Force, who are forgoing the use of career fields in favor of

directly quantifying specific skills for personnel. We can easily adapt the CAVE and

SUPERCAVE algorithmic approaches to such formulations, though at the expense of

additional computation as the state space grows.

Finally, the CAVE and SUPERCAVE approaches rely on developing a gradient

using both a direct observation of future outcomes as well as a survival function ap-

proximation. While the future outcomes are an exact measure of simulated future

states, the survival function is currently built on an approximation of future transi-

tion rates because the actual transition rates are dynamic, so no single set of weights

will be appropriate for all possible training scenarios. While the default setting is

the most appropriate approximation for survival rates generally, the CAVE and SU-

PERCAVE algorithms can potentially produce a survival approximation specific to

the starting state S0 by simply observing the simulated survival and recording the

actual transition rates. Given the stochastic transitions in the system, such an ap-

proach should leverage a stepsize and update its approximation by a small amount

after each training iteration.
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