
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-2022

Quantum Error Detection Without Using Ancilla Qubits Quantum Error Detection Without Using Ancilla Qubits

Nicolas Guerrero

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons, and the Other Physics Commons

Recommended Citation Recommended Citation
Guerrero, Nicolas, "Quantum Error Detection Without Using Ancilla Qubits" (2022). Theses and
Dissertations. 5538.
https://scholar.afit.edu/etd/5538

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F5538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/207?utm_source=scholar.afit.edu%2Fetd%2F5538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5538?utm_source=scholar.afit.edu%2Fetd%2F5538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

QUANTUM ERROR DETECTION WITHOUT
USING ANCILLA QUBITS

DISSERTATION

Nicolas Guerrero, Captain, USAF

AFIT-ENP-DS-22-S-044

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENP-DS-22-S-044

QUANTUM ERROR DETECTION WITHOUT USING ANCILLA QUBITS

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Applied Physics

Nicolas Guerrero, M.S.A.P.

Captain, USAF

September 15, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENP-DS-22-S-044

QUANTUM ERROR DETECTION WITHOUT USING ANCILLA QUBITS

DISSERTATION

Nicolas Guerrero, M.S.A.P.
Captain, USAF

Committee Membership:

Dr. David Weeks, Ph.D
Chair

Dr. Laurence Merkle, Ph.D
Member

Dr. Anil Patnaik, Ph.D
Member

AFIT-ENP-DS-22-S-044

Abstract

Quantum computers are beset by errors from a variety of sources. Although quan-

tum error correction and detection codes have been developed since the 1990s, these

codes require mid-circuit measurements in order to operate. In order to avoid these

measurements we have developed a new error detection code that only requires state

collapses at the end of the circuit, which we call no ancilla error detection (NAED).

We investigate some of the mathematics behind NAED such as which codes can

detect which errors. We then ran NAED on three separate types of circuits: Green-

berger–Horne–Zeilinger circuits, phase dependent circuits, and a quantum approxi-

mate optimization algorithm running the max cut problem. In total, we used the

IBMQ quantum computers over 325 million times and were able to show that NAED

can be used to improve the performance of the quantum computers. Additionally,

we present generalized logical encodings and gates as well as proofs of the fidelity of

these gates.

iv

Table of Contents

Page

Abstract . iv

List of Figures . viii

List of Tables . xix

I. Introduction, background, and literature review . 1

1.1 Introduction . 1
1.2 The early history of quantum computing . 1
1.3 Errors in quantum computing . 4
1.4 Error correction codes . 6

1.4.1 The Shor code . 6
1.4.2 The 5-qubit correction code . 10
1.4.3 Distance 3 surface correction code . 13

1.5 Error detection codes . 17
1.5.1 The Knill code . 18
1.5.2 Distance 2 surface code . 20
1.5.3 No ancilla error detection (NAED) . 22

1.6 Mathematical notation and similarity measure . 23
1.6.1 Important mathematical notation . 23
1.6.2 Similarity measure . 24

II. Mathematical foundations of NAED . 25

2.1 Definitions . 25
2.1.1 Logical states and encodings . 25
2.1.2 The code, error, and orthogonal sets . 26
2.1.3 Flawless Encodings . 27
2.1.4 Near-flawless encodings . 28
2.1.5 Natural representations . 29
2.1.6 Final States . 29
2.1.7 Logical Gates . 30
2.1.8 Encoding and decoding matrices . 30
2.1.9 Robust encodings . 30
2.1.10 Stable endings . 33

2.2 Theorems . 35
2.2.1 Theorem 1: When a state is valid . 35
2.2.2 Theorem 2: When a state is invalid . 35
2.2.3 Theorem 3: Every encoding is a robust encoding 37
2.2.4 Theorem 4: Every encoding has a stable ending 38
2.2.5 Theorem 5: The existence of a flawless encoding 39

v

Page

2.2.6 Theorem 6: The existence of a matrix with
determinant zero . 42

2.2.7 Corollary 1: There is no flawless encoding over
two qubits . 51

2.2.8 Theorem 7: Near-flawless encodings . 53
2.2.9 Theorem 8: The existence of a near-flawless

encoding . 56
2.2.10 Theorem 9: Encoding a near-flawless code takes

at least two controlled not gates . 59
2.2.11 Corollary 2: Two physical controlled not gates is

sufficient for a near-flawless encoding . 61

III. The Bit-Flip Encoding . 63

3.1 Bit-flip error detection . 63
3.1.1 Encoding, logical gates, decoding, and detectable

errors . 64
3.1.2 Proofs of logical gates . 66

3.2 An application of the bit-flip encoding . 71
3.2.1 Experimental design, results, and discussion 72

3.3 Conclusion . 77

IV. The XY, YZ, and ZX encodings . 78

4.1 Motivation . 78
4.2 XY, YZ, and ZX encodings . 79

4.2.1 The XY encoding . 79
4.2.2 The YZ encoding . 82
4.2.3 The ZX encoding . 83
4.2.4 General U ⊗ U encodings . 85
4.2.5 Catastrophic cancellation and barriers . 86

4.3 Experiment design . 88
4.4 Results and analysis . 90
4.5 Conclusion . 95

V. Improving QAOA using NAED . 96

5.1 The quantum approximate optimization algorithm
(QAOA) . 96
5.1.1 Combinatorial optimization problems . 96
5.1.2 Implementing QAOA . 98
5.1.3 The maximum cut problem (MCP) . 100
5.1.4 Review of masters thesis results . 103

5.2 Experiments run . 105
5.2.1 Comparing 2019 and 2022 results . 106

vi

Page

5.2.2 Implementing XY, YZ, and ZX encodings 107
5.2.3 No encodings with barriers . 109
5.2.4 Failed experiments . 110

5.3 Results and analysis . 112
5.3.1 Analysing by angle . 112
5.3.2 XY versus YZ/ZX encodings . 114

5.4 Combing XY encoding with unencoded results . 118
5.5 Conclusions . 120

VI. Overall results, conclusions, and future work . 121

VII. Appendix . 124

Bibliography . 141

vii

List of Figures

Figure Page

1. The encoding circuit for a single logical qubit. The
input is 1 qubit in some state |ψ⟩ and 8 qubits in the |0⟩
state. The output is |ψ⟩L. To decode a logical state,
simply perform this circuit in reverse. 8

2. The bit flip error correction circuit for qubits q0 through
q2. Using this circuit we can extract a syndrome and
after referencing Table 1 we can correct any error that
might have occured. 9

3. The phase error correction circuit. We can correct any
phase errors after extracting the syndrome and
consulting Table 2. 10

4. The encoding circuit for the 5-qubit DiVincenzo-Shor
code. To decode a logical state perform this circuit in
reverse. 11

5. The syndrome extraction circuit for the 5-qubit
DiVincenzo-Shor code. Consult Table 3 for any possible
corrections. 12

6. This code uses nine physical qubits (qubits q0 through
q8) to encode a single logical qubit as well as two sets of
four ancilla qubits each: z1 through z4 and x1 through x4. 13

7. Example syndrome extraction for the x1, x2, z1, and z2
ancilla qubits. The other four ancilla qubits are
associated with the same circuits with different physical
qubits attached. If any of M1 through M4 are measured
in the |1⟩ state then an error has occured. Correcting
the error is dependent on which Mi are in the |1⟩ state. 14

8. Suppose that z1 is measured in the state |1⟩ and z2, z3,
and z4 are measured in the state |0⟩. We can conclude
we need to operate on q0 with σz as this is the most
likely source of σz error. A similar argument works for
the blue errors x2 and x4. With this syndrome, we may
conclude we need to correct q5 with σx. 15

viii

Figure Page

9. If the x1, x3, and x4 ancilla qubits measure an error (red
qubits), then either configuration is possible for double
σx errors (yellow qubits). 16

10. We can turn a distance 3 planar code into a toric code
by connecting z1 to q6 and q7, z4 to q7 and q8, x2 to q0
and q3, and x3 to q3 and q6. 17

11. A simple bit flip error detection code for the code words
in equation 9. If M is measured |1⟩ then no error has
occured, if it is measured |0⟩ then a bit flip error has
occured although we cannot say on which qubit. 18

12. The encoding circuit for the 4-qubit Knill error
detection encoding. To decode this state simply run this
circuit in reverse. 19

13. The syndrome extraction circuit for the 4-qubit Knill
code. If either M1 or M2 measure in the state |1⟩, then
an error has occurred. 19

14. The four physical qubits and three ancilla qubits which
compose the distance 2 surface code. 20

15. The syndrome extraction circuits for the distance 2
surface code. If either M1, M2, or M3 are measured in
the |1⟩ state, then an error has occured. 21

16. The most general way to describe a 2-qubit gate created
with one physical Cx. The gates U1-U4 are general
single qubit gates. 60

17. This circuit encodes a bell state for Q = 2 physical
qubits per logical qubit with codewords |0⟩L = |01⟩ and
|1⟩L = |10⟩. The first set of gates to the left of the first
barrier transforms |0000⟩ to |0101⟩ = |00⟩L. The second
set of gates is the logical Hadamard gate L{1}(H). The
third set of gates is the logical Cx gate L{1}(CX). At the
end of this circuit, the qubits will be in the linear
combination
|ψ⟩ = 1/

√
2(|00⟩L + |11⟩L) = 1/

√
2(|0101⟩+ |1010⟩). 66

ix

Figure Page

18. The simplified GHZ(2, 2) circuit. This circuit is
identical to the circuit in Fig. 17 except that the first
Cx gate and bottom σx gates have been removed as
redundant. This does not change the overall state
|ψ⟩ = 1/

√
2(|0101⟩+ |1010⟩) that this circuit produces. 72

19. The similarity measure µFull of the GHZ(N,Q) circuits
over the input space (N,Q) ∈ {2, 3, 4, 5} × {1, 2, 3, 4, 5}.
Not surprisingly, the best results occur at GHZ(2, 1)
with a similarity measure of 90.8. The similarity
decreases as both N and Q increase, with the worst
similarity of 0.4 for N = Q = 5. 73

20. The similarity measure µNAED of the GHZ(N,Q)
circuits over the input space
(N,Q) ∈ {2, 3, 4, 5} × {1, 2, 3, 4, 5}. The highest
similarity is now 97.2 for GHZ(2, 2) with the circuit
from Fig. 18. while the greatest incr ase in similarity
from the unencoded circuit occurs between GHZ(5, 1)
and GHZ(5, 2). 74

21. The percentage of runs retained for each GHZ(N,Q)
circuit over the input space
(N,Q) ∈ {2, 3, 4, 5} × {1, 2, 3, 4, 5} after error detection
has been performed. For Q = 1, there are no runs
removed. The next highest percentage is for the
GHZ(2, 2) circuit (given by Fig. 18) at 76.4% kept.
From here, the percentage retained decreases as both N
and Q increase. 75

22. The P gate is a phase gate of phase ϕ and the
probabilities of measurement are given by
P (|00⟩) = cos(ϕ/2)2 and P (|10⟩) = sin(ϕ/2)2. 79

23. The physical gates used for encoding (A), L(U) (B),
L(Cx) (C), and decoding (D) for the XY encoding.
Notice that the decoding step is blank as the logical
states are valid final states. 81

24. The physical gates used for encoding (A), L(U) (B),
L(Cx) (C), and decoding (D) for the YZ encoding. 83

x

Figure Page

25. The physical gates used for encoding (A), L(U) (B),
L(Cx) (C), and decoding (D) for the ZX encoding. S is
the matrix given in equation 218. 84

26. The bell circuit implemented using the YZ encoding
without simplification. 86

27. The bell circuit implemented using the YZ encoding
with catastrophic cancellations of the Hadamards. 87

28. Barriers have been added between every circuit element.
These include logical gates, encoding, and decoding. 87

29. The full YZ circuit for implementation. The P gate is a
phase gate with input ϕ ∈ S. 89

30. The average similarities before performing NAED
compared to the unencoded circuit. 90

31. The average similarities after performing NAED
compared to the unencoded circuit. The amount of runs
kept per encoded circuit is also shown. 91

32. The previous plot with a smaller y-axis. 91

33. The function f(ϕ) = 1− |.043 sin(ϕ− 1.391)| fitted
against the XY experimental data (with NAED). 92

34. The function f(ϕ) = 1− |.065 sin(ϕ− 4.042)| fitted
against the YZ experimental data (with NAED). 93

35. The function f(ϕ) = 1− |.108 sin(ϕ− 2.589)| fitted
against the ZX experimental data (with NAED). 93

36. The function f(ϕ) = 1− |.037 sin(ϕ− 2.094)| fitted
against the unencoded experimental data. 94

37. W = {4} does not dominate this graph since 0 is not
connected to 4. 98

38. W = {0, 4} does dominate this graph since 1, 2, 3 are
connected to 4 and 0 is connected to 0. 98

39. Choosing nodes 2 and 4 results in a score of three:
edges 0− 1, 1− 4, and 3− 4. 101

xi

Figure Page

40. Choosing nodes 0 and 4 results in a score of six as all
edges are between vertices of different colors. 101

41. The physical gates used to encode exp(−iγC(u,v)). Here,
the top qubit is qubit u and the bottom qubit is qubit
v. The P gate has phase −γ. 101

42. A graph with four nodes. 102

43. The UC(γ) gates associated with the graph in Fig. 42.
The phase gates have phase −γ. Each qubit qi
corresponds to node i in the graph. 103

44. The full QAOA circuit for the graph in Fig. 42. A) is
the H⊗4 gates, B) is the UC(γ) gate, C) is the UB(β)
gate where each U gate is given in equation 233, and D)
are the measurements. 103

45. The 20 qubit machine ibmq poughkeepsie. Before being
decommissioned in 2020, it had a quantum volume of 8. 104

46. Graph 13 . 104

47. The average similarities for the QAOA circuits run on
Poughkeepsie as compared to the QAOA circuits run on
the IBMQ simulator. Note that graph number
corresponds to the graph numbers presented in
Appendix A. 105

48. The topology of ibmq montreal. This machine has 27
qubits and a quantum volume of 128. 106

49. A comparison of average similarities between 2019
Poughkeepsie (quantum volume 8) and 2022 Montreal
(quantum volume 128). Montreal outperformed
Poughkeepsie on every graph. 107

50. The average similarity for the encoded QAOA circuits
without performing error detection. 108

51. The average similarity for the encoded QAOA circuits
after performing error detection. 108

52. The circuit in Fig. 52 with added barriers in each layer. 109

xii

Figure Page

53. The unencoded QAOA circuits, both with and without
barriers every layer. 110

54. The QAOA circuit associated with the K2 graph. 111

55. The QAOA circuit from Fig. 54 with the XY encoding. 111

56. The QAOA circuit from Fig. 55 simplified. 111

57. Graph 9 results (just encodings). The red dot represents
an approximate maximum of equation 236. 113

58. Graph 9 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 113

59. For graph 21 XY beats out YZ and ZX. 114

60. Graph 21 has no cycles. 114

61. For graph 22 XY loses to YZ and ZX. 114

62. Graph 22 has one cycle. 114

63. The y-axis is the number of K3 subgraphs in each graph
(the x-axis). The color is red if XY has the most input
angles (γ, β) with the highest similarity and blue
otherwise. 115

64. Graph 3, a graph with no 3 cycles. 116

65. Graph 4, the K3 graph with a single cycle of length 3 116

66. The QAOA implementation of the UC(γ) matrix from
equation 238 for graph 3. 116

67. The QAOA implementation of the UC(γ) matrix from
equation 238 for graph 4. 116

68. The y-axis is the number of K3 subgraphs in each graph
(the x-axis). The color is red if the XY encoding has a
higher average similarity over the YZ and ZX encodings
(blue otherwise). 117

69. A comparison of the average similarities between the
XY, YZ, ZX encodings and no encoding (with barriers).
No encoding is greater for every graph except graph 15. 118

xiii

Figure Page

70. When combining the XY and unencoded circuits, if an
input (γ, β) is in the green regions then use the XY
encoding. If not, then use no encoding. 119

71. The average similarity for the combined XY and
unencoded circuits. After graph 7, the combination
performs better than the unencoded circuit on its own. 119

72. Graph 1 . 124

73. Graph 2 . 124

74. Graph 3 . 124

75. Graph 4 . 124

76. Graph 5 . 124

77. Graph 6 . 124

78. Graph 7 . 125

79. Graph 8 . 125

80. Graph 9 . 125

81. Graph 10 . 125

82. Graph 11 . 125

83. Graph 12 . 125

84. Graph 13 . 125

85. Graph 14 . 125

86. Graph 15 . 126

87. Graph 16 . 126

88. Graph 17 . 126

89. Graph 18 . 126

90. Graph 19 . 126

91. Graph 20 . 126

xiv

Figure Page

92. Graph 21 . 126

93. Graph 22 . 126

94. Graph 23 . 127

95. Graph 24 . 127

96. Graph 25 . 127

97. Graph 26 . 127

98. Graph 1 results (just encodings). The red dot represents
an approximate maximum of equation 236. 127

99. Graph 1 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 127

100. Graph 2 results (just encodings). The red dot represents
an approximate maximum of equation 236. 128

101. Graph 2 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 128

102. Graph 3 results (just encodings). The red dot represents
an approximate maximum of equation 236. 128

103. Graph 3 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 128

104. Graph 4 results (just encodings). The red dot represents
an approximate maximum of equation 236. 129

105. Graph 4 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 129

106. Graph 5 results (just encodings). The red dot represents
an approximate maximum of equation 236. 129

107. Graph 5 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 129

108. Graph 6 results (just encodings). The red dot represents
an approximate maximum of equation 236. 130

xv

Figure Page

109. Graph 6 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 130

110. Graph 7 results (just encodings). The red dot represents
an approximate maximum of equation 236. 130

111. Graph 7 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 130

112. Graph 8 results (just encodings). The red dot represents
an approximate maximum of equation 236. 131

113. Graph 8 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 131

114. Graph 9 results (just encodings). The red dot represents
an approximate maximum of equation 236. 131

115. Graph 9 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 131

116. Graph 10 results (just encodings). The red dot
represents an approximate maximum of equation 236. 132

117. Graph 10 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 132

118. Graph 11 results (just encodings). The red dot
represents an approximate maximum of equation 236. 132

119. Graph 11 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 132

120. Graph 12 results (just encodings). The red dot
represents an approximate maximum of equation 236. 133

121. Graph 12 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 133

122. Graph 13 results (just encodings). The red dot
represents an approximate maximum of equation 236. 133

123. Graph 13 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 133

xvi

Figure Page

124. Graph 14 results (just encodings). The red dot
represents an approximate maximum of equation 236. 134

125. Graph 14 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 134

126. Graph 15 results (just encodings). The red dot
represents an approximate maximum of equation 236. 134

127. Graph 15 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 134

128. Graph 16 results (just encodings). The red dot
represents an approximate maximum of equation 236. 135

129. Graph 16 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 135

130. Graph 17 results (just encodings). The red dot
represents an approximate maximum of equation 236. 135

131. Graph 17 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 135

132. Graph 18 results (just encodings). The red dot
represents an approximate maximum of equation 236. 136

133. Graph 18 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 136

134. Graph 19 results (just encodings). The red dot
represents an approximate maximum of equation 236. 136

135. Graph 19 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 136

136. Graph 20 results (just encodings). The red dot
represents an approximate maximum of equation 236. 137

137. Graph 20 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 137

138. Graph 21 results (just encodings). The red dot
represents an approximate maximum of equation 236. 137

xvii

Figure Page

139. Graph 21 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 137

140. Graph 22 results (just encodings). The red dot
represents an approximate maximum of equation 236. 138

141. Graph 22 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 138

142. Graph 23 results (just encodings). The red dot
represents an approximate maximum of equation 236. 138

143. Graph 23 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 138

144. Graph 24 results (just encodings). The red dot
represents an approximate maximum of equation 236. 139

145. Graph 24 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 139

146. Graph 25 results (just encodings). The red dot
represents an approximate maximum of equation 236. 139

147. Graph 25 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 139

148. Graph 26 results (just encodings). The red dot
represents an approximate maximum of equation 236. 140

149. Graph 26 results (with unencoded circuits). The red dot
represents an approximate maximum of equation 236. 140

xviii

List of Tables

Table Page

1. Bit flip corrections for qubits q0 through q2. 9

2. Bit flip corrections for qubits q0 through q2. 10

3. Reference table for required corrections for the 5-qubit
DiVincenzo-Shor code. 12

4. The mean of the average similarities for the XY, YZ,
ZX, and unencoded circuits without performing NAED. 90

5. The mean of the average similarities for the XY, YZ,
ZX, and unencoded circuits after performing NAED. 92

6. The average absolute value between the fitted function
and the experimental data. 94

7. All possible inputs and outputs for the cost function.
This function is maximized at s = 7. 97

xix

QUANTUM ERROR DETECTION WITHOUT USING ANCILLA QUBITS

I. Introduction, background, and literature review

1.1 Introduction

Quantum computing promises to be a natural extension to classical computational

architecture. While these exotic machines can exponentially speed up key algorithms

over classical machines, they are highly prone to various errors that do not effect

classical machines. Even more disturbingly, classical error correction does not work

for correcting qubit errors. Luckily, quantum error detection and correction codes

have been developed since the 1990s and can theoretically correct any quantum error.

Initially, we wished to investigate these codes using the IBMQ quantum systems.

However, when we started our experiments the IBM systems were unable to perform

mid-circuit measurements, a key part of all previous quantum error correction and

detection codes. Thus, we developed a new error detection code which does not

require these measurements. We experimented with this code in various different

situations/circuits and were able to improve the overall performance of the algorithms.

1.2 The early history of quantum computing

In 1980, Benioff published an unassuming paper relating Turing machines to

Hamiltonians of certain quantum systems [1]. He showed that for any Turing ma-

chine, and any N steps of this machine, that there exists an initial state ψ(0) and

some Hamiltonian H such that

1

ψ(t) = exp(−itH)ψ(0) (1)

describes the Turing machine. At times t1, t2, ..., tN the state ψ(ti) matches the state

of the Turing machine at the ith step. Additionally, this Hamiltonian and initial state

can be made in such a way that the quantum system is stable for an arbitrary amount

of time around each ti. This paper introduced a key idea: that qubits (although they

were not called that then) represent classical data. In his paper each qubit state

corresponded to a particular letter from an arbitrary alphabet, although we now use

qubits with two spins where each spin corresponds to a binary bit. By combining these

two seemingly separate fields of study, computer science and quantum mechanics,

Benioff had laid the foundation for the nascent field of quantum computing.

The next significant event for quantum computing occurred during the 1981 con-

ference on the physics of computation. During his keynote lecture, Feynman discussed

how one could model a quantum system using a classical computer [2]. The issue he

presented was that many particle systems could not be efficiently simulated on classi-

cal computers. Thus, if one hoped to simulate a quantum system, a classical computer

could only determine macroscopic properties from other macroscopic properties. To

get around this, Feynman proposed a ’quantum computer’ which would be able to

efficiently simulate a quantum system. A researcher would set up their quantum

computer to model a desired system, run the quantum computer, and then tabulate

outputs in order to learn something about the original problem. From this talk it is

clear that Feynman envisioned quantum computers not as a generalization of classical

computers but rather exotic experimental setups that would only act as an additional

tool for researchers.

The jump from experiment to quantum computation happened in 1985 when

Deutsch published a paper on a theoretical quantum computer [3]. He showed that

2

such a machine would not only be able to model quantum systems but also per-

form any computation that a classical computer could. He also introduced many

terms/practices that are still in use today: computational basis states are the set of

eigenvectors which span the Hilbert space over the physical qubits and the spectrum

of two state particles is defined to be |0⟩ and |1⟩ rather than | − 1/2⟩ and |1/2⟩. Sev-

eral years later, he and Jozsa would produce one of the first demonstrative quantum

algorithms.

The Deutsch-Jozsa algorithm [4] was the first quantum algorithm to demonstrate

an advantage over classical computing. Imagine the following: suppose there is some

function f : {0, 1, ..., 2n− 1} → {0, 1} with the condition

f(0) = f(1) = ... = f(2n− 1) or |{k : f(k) = 0}| = n (2)

Can we determine whether f is the constant function? On a classical computer, we

can query n+1 different values of f(n) to determine if it is constant or not. However,

using the quantum algorithm we can determine the answer with a single query. That

is, after running the algorithm we will definitively know whether or not the function

is constant. Of course, the algorithm does not tell us whether the function is the

constant 0 or 1 function, just that it is or is not constant. While interesting, this

problem did not fundamentally change anything in the field as it is a ’toy problem’

with no practical application.

The most important algorithm in all of quantum computing is undoubtedly Shor’s

algorithm [5], which factors a large inter into two smaller integers in polynomial time.

Such an equivalent algorithm does not currently exist for classical computers, and

the problem is suspected to be NP-intermediate. Although no proof of this claim

exists, indeed such a proof would prove P ̸= NP [6], it is widely held to be true. It

is not hyperbolic to say that if Shor’s algorithm is ever implemented at a useful size,

3

then the vast majority of digital encryption on Earth would be in danger. Of course,

the algorithm is not yet implementable for any meaningful size. For example, to

factor a number with 2048 bits (RSA-2048) would take around 4000 qubits and over

100 million gates [7]. Without quantum error correction, a useful implementation of

Shor’s algorithm is a near certain impossibility although small instances have been

run with some success [8, 9, 10, 11].

1.3 Errors in quantum computing

In his 1995 paper Is Quantum Mechanics Useful? [12], Rolf Landauer describes

two main issues with quantum computing. First, there are ”manufacturing” issues,

or things that can theoretically be controlled by a researcher in a closed system. In

quantum computers, qubits are controlled by some outside, classical source described

by a Hamiltonian operator on the quantum system. In the world of pure theoretical

mathematics/physics, these qubits and operators can be exactly defined and generally

provide a full description of the quantum system. Of course, real life is not so tidy.

Even in a completely isolated system, we cannot produce these Hamiltonians such

that the difference between the theoretical operator acting on theoretical qubits and

experimentally applied operator acting on physical qubits is negligible for anything

other than the smallest circuits.

This was an issue in 1995 and it is still an issue today. In this 2019 paper Not

all qubits are created equal [13] the authors discuss variable error rates for different

single and multi-qubit gates on the IBMQ systems. They show that the variability

in these error rates, not just the error rates themselves, can have a large effect on the

reliability of the quantum computer.

Material issues are also a source of errors in quantum computers. In 2013 Eck-

stein and Levy published a paper describing the various material issues facing several

4

common types of quantum computation [14]. Quantum dots are highly sensitive to

charge fluctuation noise which is mainly mitigated through more precise manufac-

turing techniques. Superconducting qubits are sensitive to a host of material defects

which can eventually dephase/decohere a quantum state [15]. Trapped ions suffer

from defects in the electrodes which hold the qubits. These defects can be errantly

charged, simulating an operation on the ion [16]. Of course, there has also been sig-

nificant progress in addressing these material issues. For example, a 2019 paper in

Nature [17] discusses the effects that material defects have on quantum computing

and propose a potential mitigation technique during the manufacturing process. Ad-

ditionally, they claim that their electric field spectroscopy technique can also be used

to positively alter circuits that may have suffered degradation over long term use.

The second issue Landauer describes is ”restandardization”, or the correction of

errors accumulated over the course of a quantum computation. In a classical com-

puter, this process is easily achievable. However, an issue arises for error correction

of a quantum system. Correction implies the erasure of the incorrect information,

erasure implies energy loss, which in turns contradicts the idea of a Hamiltonian sys-

tem. Landauer was very familiar with this idea of a reversible computation as he had

previously written a seminal paper on the classical analogue as well as the drawbacks

such a system might encounter [18]. Of course, we now know that quantum error

correction codes do exist, and the vast majority of this document will be used to

explore these and similar codes.

In fact, there is a third issue that Landauer nor anyone else considered until rel-

atively recently: systemic environmental errors. In an ideal universe, we would hope

that we could sufficiently isolate a quantum computer so as to ignore all other possible

outside sources of error. Unfortunately, this is not the case. Vacuum fluctuations,

gravity waves, and cosmic rays all have the potential to produce seemingly random

5

errors in quantum computations. Although these types of errors are only beginning

to be understood [19, 20, 21, 22], they create a problem without an easy solution for

quantum computing.

1.4 Error correction codes

According to Landauer’s principle, error correction (whether in a classical or quan-

tum system) requires the dissipation of some energy from the system [18]. This would

seem to suggest that quantum error correction is impossible, as any energy released

from the system contradicts the assumptions of a Hamiltonian system. Of course, we

now know there are ways of bypassing such restrictions. Quantum error correction

and detection work by assigning large groups of physical qubits to logical qubits.

These logical qubits are operated on by logical gates (see section 2.1.7 for complete

definition) and produce desired logical states. In this section, we will describe several

different error correction and detection schemes which utilize mid-circuit measure-

ment. These mid-circuit measurements produce a syndrome while simultaneously

collapsing the wave function into a certain set of possible states. The syndrome can

then be used to declare an error has occured or correct the error (in the case of

detection or correction respectively).

1.4.1 The Shor code

The first error correction code was Shor’s 9-qubit error correction code. The idea

behind this code was to combine two other correction codes: a bit flip code and a

phase code, each using three physical qubits. The bit code can be described with the

following logical states

|0⟩L = |000⟩ and |1⟩L = |111⟩ (3)

6

Obviously, if a bit flip were to occur then the three qubits will be in a mixed state

of |0⟩s and |1⟩s. Interestingly, this code was actually first outline by Peres in 1985

[23]. Although this code does not detect phase errors, it suited his purposes as he

was interested in performing classical computations on a quantum computer. In a

similar manner, the phase code is given by

|0⟩L =
1√
8
(|0⟩+ 1|⟩)⊗3 and |1⟩L =

1√
8
(|0⟩ − 1|⟩)⊗3 (4)

Unfortunately, this code cannot detect bit flip errors.

Combining these two codes gives us the full 9 qubit Shor code. As the name

implies, this error correction code uses 9 physical qubits to encode the states

|0⟩L =
1√
8
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩) (5)

|1⟩L =
1√
8
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩) (6)

These logical states can be encoded and decoded using the circuit in Fig. 1. This

encoding circuit takes a qubit in some state |ψ⟩ and 8 qubits in the state |0⟩ and

outputs a single logical state |ψ⟩L. To decode this state, simply perform the circuit in

reverse. We can create logical gates using these encoding and decoding circuits in the

following manner: decode the logical state to a single qubit, perform whatever gate

we desire on the single qubit (or multiple qubits if it is a multi-qubit gate), and recode

the logical state using the encoding circuit. Of course, it is probable that producing

logical gates in this manner is inefficient: the encoding and decoding alone takes at

least 16 physical Cx gates.

7

Figure 1: The encoding circuit for a single logical qubit. The input is 1 qubit in some

state |ψ⟩ and 8 qubits in the |0⟩ state. The output is |ψ⟩L. To decode a logical state,

simply perform this circuit in reverse.

Performing error correction is a four step process: three bit flip error checks and

one phase error check. To begin, label the qubits in Fig. 1 from 0 to 8 from top

to bottom. Now implement the bit flip correction circuit on the following blocks of

qubits: q0 through q2, q3 through q5, and q6 through q8. For example, for the first

block the circuit is shown in Fig. 2

8

Figure 2: The bit flip error correction circuit for qubits q0 through q2. Using this

circuit we can extract a syndrome and after referencing Table 1 we can correct any

error that might have occured.

After getting measurements M1 and M2, we can consult the Table 1 to see what

corrections we need to perform.

M1 M2 Correction
0 0 Nothing
0 1 σx on q2
1 0 σx on q1
1 1 σx on q0

Table 1: Bit flip corrections for qubits q0 through q2.

The same procedure is performed on blocks q3 through q5 and q6 through q8. A

different circuit is used to correct for phase errors and is shown in Fig. 3.

9

Figure 3: The phase error correction circuit. We can correct any phase errors after

extracting the syndrome and consulting Table 2.

After using this circuit to extract a syndrome, consult Table 2 for correction.

M1 M2 Correction
0 0 Nothing
0 1 σz on q6q7q8
1 0 σz on q0q1q2
1 1 σz on q3q4q5

Table 2: Bit flip corrections for qubits q0 through q2.

Overall, each cycle of error correction will take at least 24 physical Cx gates, 18

Hadamard gates, and 8 mid-circuit measurements.

1.4.2 The 5-qubit correction code

Developed in 1996, the DiVincenzo-Shor [24] 5-qubit code is the smallest possible

error correction code [25]. It is impossible to perform full error correction with less

than five physical qubits per logical qubit. The encoding is defined by the code words

10

4|0⟩L = |00000⟩+ |11000⟩+ |01100⟩+ |00110⟩

+|00011⟩+ |10001⟩ − |10100⟩ − |01010⟩

−|00101⟩ − |10010⟩ − |01001⟩ − |11110⟩

− |01111⟩ − |10111⟩ − |11011⟩ − |11101⟩ (7)

4|1⟩L = |11111⟩+ |00111⟩+ |10011⟩+ |11001⟩

+|11100⟩+ |01110⟩ − |01011⟩ − |10101⟩

−|11010⟩ − |01101⟩ − |10110⟩ − |00001⟩

− |10000⟩ − |01000⟩ − |00100⟩ − |00010⟩ (8)

To encode these states we use the complicated circuit in Fig. 4 [26]

Figure 4: The encoding circuit for the 5-qubit DiVincenzo-Shor code. To decode a

logical state perform this circuit in reverse.

We can use this encoding circuit in a similar manner as the 9-qubit Shor code to make

11

logical gates. Decode a logical state by performing the encoding circuit in reverse,

perform whatever gates you want on the single qubit states, then recode using the

circuit above. In Fig. 5, we present the syndrome extraction circuit.

Figure 5: The syndrome extraction circuit for the 5-qubit DiVincenzo-Shor code.

Consult Table 3 for any possible corrections.

After running this circuit, consult Table 3 for any possible corrections. Note that

we are assuming the qubits are labeled top to bottom from q0 to q4 and that the

measurements are arranged (M1,M2,M3,M4).

(M1,M2,M3,M4) Correction (M1,M2,M3,M4) Correction
0000 Nothing 1000 σz on q0
0001 σz on q4 1001 σx on q2
0010 σx on q1 1010 σx on q4
0011 σz on q3 1011 σy on q4
0100 σx on q3 1100 σz on q1
0101 σx on q0 1101 σy on q0
0110 σz on q2 1110 σy on q1
0111 σy on q3 1111 σy on q2

Table 3: Reference table for required corrections for the 5-qubit DiVincenzo-Shor
code.

This code has been experimentally verified in small instances [27, 28, 29].

12

1.4.3 Distance 3 surface correction code

Surface codes represent a different type of error correction scheme than the two

previously described. Initially described by Kitaev in 1997 [30], they represent one

of the most promising error correction codes for noisy intermediate-scale quantum

(NISQ) computers [31, 32, 33]. It is illuminating to present the logical qubit topology

and only after describe the code. This topology is given in Fig. 6 below:

Figure 6: This code uses nine physical qubits (qubits q0 through q8) to encode a

single logical qubit as well as two sets of four ancilla qubits each: z1 through z4 and

x1 through x4.

This code uses nine physical qubits (q0 through q8) to encode a single logical qubit.

There are four circuits used to extract syndromes, examples of which are presented

below:

13

Figure 7: Example syndrome extraction for the x1, x2, z1, and z2 ancilla qubits. The

other four ancilla qubits are associated with the same circuits with different physical

qubits attached. If any of M1 through M4 are measured in the |1⟩ state then an error

has occured. Correcting the error is dependent on which Mi are in the |1⟩ state.

These syndrome extraction circuits are only powerful enough to tell us if an error has

occured, which happens when any of the ancilla qubits are measured in the |1⟩ state.

To get full error correction, we need to analyze which ancilla qubits are in the |1⟩

state. The following example is illuminating:

14

Figure 8: Suppose that z1 is measured in the state |1⟩ and z2, z3, and z4 are measured

in the state |0⟩. We can conclude we need to operate on q0 with σz as this is the

most likely source of σz error. A similar argument works for the blue errors x2 and

x4. With this syndrome, we may conclude we need to correct q5 with σx.

If we measure z1 to be in the |1⟩ state, then we can conclude we need to operate on

q0 with σz as this is the most likely source of σz error. In a similar manner, we know

that q5 had a σx error since both x2 and x4 were measured in the |1⟩ state and x1

and x3 were measured in the |0⟩ state. These interaction have been experimentally

verified in a variety of circumstances [34, 35].

It is valuable to discuss generalizing this type of surface code in two ways: larger

distances and more exotic topologies. The distance 3 surface code is so named since

the nine physical qubits are arranged in a 3 × 3 grid. An obvious generalization

is to expand this idea to larger grids (see 1.5.2 for the distance 2 code). In fact,

this generalization provides a nice bonus: larger surface codes are more resistant to

physical errors. The main reason this occurs is that larger distances are less likely

to produce misidentified qubit errors [36, 37]. So far, we have only discussed errors

in the context of single error occurrences. Of course, this is powerful assumption to

15

make as it would seem natural that multiple errors could occur near instantaneously.

If this were to occur, it is possible that our error correction codes would recognize

an incorrect error or not recognize any error had occured. These misidentified errors

would then be corrected (or ignored) and the desired qubit state would be destroyed.

For example, suppose that the three qubit surface code reports errors on the x1, x3,

and x4 ancilla qubits (see Fig. 9). Then the possible σx errors occurred either on q3

and q7 or q4 and q6.

Figure 9: If the x1, x3, and x4 ancilla qubits measure an error (red qubits), then

either configuration is possible for double σx errors (yellow qubits).

The second way to generalize surface codes is with more exotic topologies. The

distance 3 code discussed above (indeed, all distance n codes) are referred to as planar

topologies. Perhaps the simplest exotic code is the toric code. This code takes a planar

topology and then with the use of boundary conditions creates a topological torus.

For example, one can turn a distance 3 planar code into a toric code by connecting

the ancilla qubits in a certain way:

16

Figure 10: We can turn a distance 3 planar code into a toric code by connecting z1

to q6 and q7, z4 to q7 and q8, x2 to q0 and q3, and x3 to q3 and q6.

Wrap each side of the planar code and connect it to the opposite side. This toric code

represents two logical qubits (instead of the single logical qubit for the planar code).

These toric codes have been simulated [38] and experimentally verified [39, 40, 41] at

small scales.

1.5 Error detection codes

In many ways, error detection codes are similar to error correction codes. They

both use groups of physical qubits to define logical qubits and both utilize mid-circuit

measurement of ancilla qubits. Error detection uses fewer physical qubits though and

obviously cannot tell one how to correct a given error. It is useful to present a simple

example to demonstrate the differences between correction and detection. Consider

the encoding given by

|0⟩L = |01⟩ and |1⟩L = |10⟩ (9)

17

To see whether a bit-flip has occurred, we can run the circuit in Fig. 11

Figure 11: A simple bit flip error detection code for the code words in equation 9. If

M is measured |1⟩ then no error has occured, if it is measured |0⟩ then a bit flip error

has occured although we cannot say on which qubit.

If M is measured in the |1⟩ state then no bit flip occured, if it is measured in the |0⟩

state then a bit flip occured although we cannot say on which qubit.

1.5.1 The Knill code

The foundational paper on error detection was written by Knill in 2005 [42]. He

popularized the term ”post-selection” to mean measuring qubits and either accepting

or rejecting a run based off of the measurement outcome. In his original paper,

he described the smallest (in terms of physical qubits per logical qubit) [43] error

detection code possible. The code words for this encoding are given by

|00⟩L =
1√
2
(|0000⟩+ |1111⟩) (10)

|01⟩L =
1√
2
(|1100⟩+ |0011⟩) (11)

|10⟩L =
1√
2
(|1010⟩+ |0101⟩) (12)

18

|11⟩L =
1√
2
(|0110⟩+ |1001⟩) (13)

Note that this error detection code works with pairs of logical qubits rather than

single logical qubits. To encode this state we can use the circuit in Fig. 12.

Figure 12: The encoding circuit for the 4-qubit Knill error detection encoding. To

decode this state simply run this circuit in reverse.

To perform logical gates, one can decode the logical state, perform gates on the

unencoded state, and reencode to a new logical state. We can extract a syndrome

and perform error detection using the circuit in Fig. 13 below

Figure 13: The syndrome extraction circuit for the 4-qubit Knill code. If either M1

or M2 measure in the state |1⟩, then an error has occurred.

19

If either M1 or M2 measure in the |1⟩ state, then an error has occured and the run is

discarded. This code has been verified for instances of a single logical qubit [44].

1.5.2 Distance 2 surface code

The distance 2 surface code is very similar to distance 3 surface code. Here, four

physical qubits create one logical qubit with code words

|0⟩L =
1√
2
(|0000⟩+ |1111⟩) (14)

|1⟩L =
1√
2
(|0101⟩+ |1010⟩) (15)

These physical qubits are accompanied by three ancilla qubits used for error detection.

These physical qubits are arrange in the following manner:

Figure 14: The four physical qubits and three ancilla qubits which compose the

distance 2 surface code.

The syndrome extraction is also very similar to the distance 3 code. The extraction

circuits are given in Fig. 15.

20

Figure 15: The syndrome extraction circuits for the distance 2 surface code. If either

M1, M2, or M3 are measured in the |1⟩ state, then an error has occured.

After measuring the ancilla qubits, if any of them were measured in the |1⟩ state then

an error has occured and the run is discarded.

Encoding logical states and creating logical gates is a highly non-trivial problem.

A recent Nature article [45] describes an algorithm to prepare any initial logical state

|ψ⟩L = α|0⟩L + β|1⟩L. To begin, hit q0 and q3 with the unitary matrices

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 on q0 (16)

 cos(θ) − sin(θ)

eiϕ sin(θ) eiϕ cos(θ)

 on q3 (17)

This produces the state

|ψ⟩ = [cos(θ)|0⟩+ sin(θ)|1⟩]|0⟩[cos(θ)|0⟩+ eiϕ sin(θ)|1⟩] (18)

After implementing the syndrome extraction circuits from Fig. 15 we collapse the

state and have a certain probability of being in the logical state

21

|ψ⟩L =
1√
N

(
cos(θ)2|0⟩L + eiϕ sin(θ)2|1⟩L

)
(19)

(here N is the normalizing constant). This probability is given by

P =
1

2

(
cos(θ)4 + sin(θ)4

)
(20)

We know we are in the final logical state if the measurements M2 and M3 agree. this

same article also describes how to perform single qubit logical gates [45]. They are

implemented in the much the same way as the initial states: perform specific single

qubit gates on the physical qubits q0 through q3. Perform the syndrome measurements

circuits and collapse the wave function into the desired state.

1.5.3 No ancilla error detection (NAED)

No ancilla error detection (NAED) uses groups of physical qubits to represent

logical qubits in much the same way as the previously described error correction

and detection. It differs in the fact that there are no ancilla qubits or mid-circuit

measurements. This is important as the IBMQ systems did not allow mid-circuit

measurements at the start of this dissertation. This meant that it was impossible to

experimentally verify any of the error correction or detection schemes detailed above.

At this point though IBM has introduced mid-circuit measurement [46] rendering the

whole issue moot.

As we will come to see, NAED can perform error detection with fewer physical

qubits. However, the main downside to NAED is that it only gives a probability

of detecting an error. Without ancilla qubits, it is possible to have an error occur,

complete the error detection scheme, and then not learn that said error occured. In

this document we will discuss NAED in detail: its encodings and decodings, logical

22

gates, and present experimental evidence of it in action.

1.6 Mathematical notation and similarity measure

1.6.1 Important mathematical notation

A word on the notation used throughout this document: let σx be the standard

2× 2 Pauli x matrix. We will use the notation σi to represent the 2Q × 2Q matrix

σi = I2i ⊗ σx ⊗ I2Q−i−1 (21)

where In is the n× n identity matrix. For example, for Q = 3 we have

σ0 = σx ⊗ I4 (22)

σ1 = I2 ⊗ σx ⊗ I2 (23)

σ2 = I4 ⊗ σx (24)

Note that qubits are counted starting from 0 rather than 1.

For any two physical qubits in a given circuit, the gate Cx(i, j) is defined to be

a Cx gate with control qubit i and target qubit j. Additionally, qubits other than i

and j are assumed to be operated on by identity gates. The gate Cx(i, j) represents

a 2n × 2n matrix, rather than a 4× 4 matrix, where n will be obvious from context.

As an example, for n = 3 physical qubits

Cx(1, 2) = I2 ⊗ Cx (25)

23

Cx(0, 2) = (I2 ⊗ SWAP)(Cx ⊗ I2)(I2 ⊗ SWAP) (26)

Cx(1, 0) = (SWAP · Cx · SWAP)⊗ I2 (27)

Here, both Cx and SWAP are the standard 4 × 4 controlled-not and swap gates

respectively. Finally, when using product notation for matrix multiplication, we will

use the convention

N∏
n=1

An = ANAN−1 · · ·A2A1 (28)

1.6.2 Similarity measure

In order to measure how well a quantum algorithm works, we will employ a mod-

ified version of the total variation distance [47, 48] between probability measure de-

noted τ(A,B) for finite probability distribution functions (PDFs) A and B. Define

the similarity between two finite PDFs to be

0 ≤ µ(A,B) = 100(1− τ(A,B)) = 100− 50

|A|∑
i=1

|Ai −Bi| ≤ 100 (29)

The similarity is equal to 0 if two PDFs are completely dissimilar and 100 if they are

identical.

24

II. Mathematical foundations of NAED

Preamble

NAED provides not only an experimental framework with which to work with,

but also a rich background of mathematical tools and discoveries. In this chapter,

we will present some basic definitions, examples of useful concepts, and proofs of

foundational facts.

2.1 Definitions

In this section we define several useful concepts for NAED as well as provide

examples of each definition.

2.1.1 Logical states and encodings

In the most general case we use q physical qubits to define a single logical qubit.

These encodings are defined as follows

|0⟩L =
2q−1∑
n=0

an|n⟩ (30)

|1⟩L =
2q−1∑
n=0

bn|n⟩ (31)

with the stipulations that

2q−1∑
n=0

|an|2 =
2q−1∑
n=0

|bn|2 = 1 (32)

2q−1∑
n=0

anbn = 0 (33)

25

for some ai, bi ∈ C.

Notation: Normally, we write out the logical states to define an encoding. For example

|0⟩L =
|00⟩+ |01⟩+ |11⟩√

3
(34)

|1⟩L =
|00⟩+ |10⟩+ |11⟩√

3
(35)

2.1.2 The code, error, and orthogonal sets

For a given logical encoding over q qubits and n logical qubits, define the set

(H+)n =

{
2n−1∑
i=0

ai|i⟩L :
2n−1∑
i=0

|ai|2 = 1

}
(36)

and define the set

(H−)n = Hnq − (H+)n (37)

where Hnq is the Hilbert space over all nq-qubits. We say that (H+)n is the set of

code states for n logical qubits and (H−)n is the set of error states. Additionally,

define the orthogonal set

(H†)n = Hnq/(H
+)n = {|ϕ⟩ ∈ Hnq : ⟨ϕ|ψ⟩ = 0 for all |ψ⟩ ∈ (H+)n} (38)

For the sake of notation, for n = 1 we will let H+ = (H+)1, H− = (H−)1, and

H⊥ = (H⊥)1.

Example: Consider the encoding |0⟩L = |01⟩ and |1⟩L = |10⟩. Then

H+ =
{
(0, a, b, 0)T : |a|2 + |b|2 = 1

}
(39)

26

H− =
{
(ϵ, a, b, δ)T : |ϵ|+ |δ| > 0

}
(40)

H† =
{
(ϵ, 0, 0, δ)T : |ϵ|2 + |δ|2 = 1

}
(41)

See Theorem 1 and Theorem 2 (sections 2.2.1 and 2.2.2) respectively for qualifiers for

code and error states.

2.1.3 Flawless Encodings

We say that an encoding over Q physical qubits is k-flawless (for k ≤ Q) if for all

|ψ⟩ ∈ H+

U(i1,i2,...,ik)|ψ⟩ ∈ H+ (42)

(where U(i1,i2,...,ik) is some 2k × 2k unitary matrix acting on the k qubits i1, i2, ..., ik)

implies U(i1,i2,...,ik) = eiθI2k . That is, the 2k × 2k identity matrix multiplied by some

phase θ. The phase θ appears as we are allowed to multiple any quantum state by

a global phase and get the same measurement out when we are done. As discussed

in chapter I we generally assume that errors encountered during actual quantum

computation effect single qubits at a time. Thus, for the rest of this paper, we will

drop the prefix and simply let flawless denote 1-flawless and only consider single qubit

errors. Then the definition of flawless becomes: for all |ψ⟩ ∈ H+ and all 0 ≤ n < Q

I2n ⊗ U ⊗ I2Q−n−1|ψ⟩ ∈ H+ (43)

implies U = eiθI2 for some phase θ.

Example: An example of the smallest flawless encoding is given by

27

|0⟩L =
1√
3

(
|001⟩+ |010⟩+ |100⟩

)
(44)

|1⟩L =
1√
3

(
|011⟩+ |101⟩+ |110⟩

)
(45)

See Theorem 5 and Corollary 1 (sections 2.2.5 and 2.2.7) for proof.

2.1.4 Near-flawless encodings

Let E be some flawed encoding and let Ω be the set of 2× 2 unitary matrices U

such that

I2n ⊗ U ⊗ I2q−n−1|ψ⟩ ∈ H+ (46)

for some |ψ⟩ ∈ H+ and 0 ≤ n ≤ q − 1. We say that U ∈ Ω is ignorable if either of

the following conditions hold

1. U = eiϕI2 for some ϕ ∈ R (the trivial error)

2. µ({|ψ⟩ ∈ H+ : I2n ⊗ U ⊗ I2q−n−1 |ψ⟩ ∈ H+ for any 0 ≤ n ≤ q − 1}) = 0

Here µ(S) denote the Lebesgue measure of the set S in the set H+. Using this

definition of ignorable, we define a near flawless encoding: an encoding E is near

flawless if the following two conditions hold

1. E is flawed

2. Every U ∈ Ω (as defined above) is ignorable

Example: The following encoding is near flawless

|0⟩L =
1

2
√
3

(
3|00⟩+ |01⟩+ |10⟩+ |11⟩

)
(47)

28

|1⟩L =
1

2

(
− |00⟩+ |01⟩+ |10⟩+ |11⟩

)
(48)

See Theorem 7 and Theorem 8 (section 2.2.8 and 2.2.9) for details.

2.1.5 Natural representations

For a given encoding E over Q physical qubits, define the set of natural represen-

tations by

χ(E) =





a0 b0 . . .

a1 b1 . . .

...
...

. . .

a2q−1 b2Q−1 . . .


∈ U(2Q)


(49)

χ(E) is the set of 2Q×2Q unitary matrices with the property that the first and second

columns are the |0⟩L and |1⟩L vectors respectively.

Example: Consider the encoding E defined by |0⟩L = |01⟩ and |1⟩L = |10⟩. Then

χ(E) =





0 0 eiδ cos(θ) −ei(ϕ+δ) sin(θ)

1 0 0 0

0 1 0 0

0 0 ei(λ+δ) sin(θ) ei(λ+ϕ+δ) cos(θ)


: δ, θ, λ, ϕ ∈ R


(50)

2.1.6 Final States

We define a pair of valid final states |0⟩F =
∑2Q−1

i=0 ci|i⟩ and |1⟩F =
∑2Q−1

i=0 di|i⟩ as

orthonormal vectors (similar to our logical states) with the added stipulations that∑2Q−1
i=0 |cidi| = 0 and for at least one 0 ≤ i ≤ 2Q − 1 we have ci = di = 0.

29

2.1.7 Logical Gates

We say a gate U is a logical gate V if for all possible states |ψ⟩

V |ψ⟩ = |ϕ⟩ ⇒ U |ψ⟩L = |ϕ⟩L (51)

where |ψ⟩L and |ϕ⟩L are the logical versions of |ψ⟩ and |ϕ⟩ respectively.

Example: Consider the encoding given by |0⟩L = |01⟩ and |1⟩L = |10⟩. Then the

logical σx is given by L(σx) = σx ⊗ σx. This is obvious as

L(σx)(α|0⟩L+β|1⟩L) = (σx⊗σx)(α|01⟩+β|10⟩) = α|10⟩+β|01⟩ = α|1⟩L+β|0⟩L (52)

2.1.8 Encoding and decoding matrices

For a given encoding E over Q physical qubits we define the following sets of

encoding and decoding matrices: define A to be the set of matrices A ∈ U(2Q)

such that A|0...00⟩ = eiθ|0⟩L for some θ ∈ R and define B to be the set of matrices

B ∈ U(2Q) such that B(α|0⟩L + β|1⟩L) = α|0⟩F + β|1⟩F for some pair of valid final

states.

2.1.9 Robust encodings

Let Ω = {M1,M2, ...,Mk} be the set of base gates used for a particular quantum

computing architecture. We say that a encoding over Ω is robust if for all M ∈ Ω

and |ϕ⟩ ∈ (H†)n, there is some logical M
′
such that

M
′|ϕ⟩ ∈ (H†)n (53)

30

Usually (and for the rest of this document) we will take Ω = {U,Cx} where U is the

most general single qubit unitary gate and Cx is the controlled-not gate. Thus, when

we say an encoding is robust from here on, we mean that the encoding is robust over

{U,Cx}.

Example: Consider the encoding |0⟩L = |01⟩ and |1⟩L = |10⟩. The first step to

showing that this encoding is robust is to designate our logical gates for U and Cx.

Let

L(U) =



cos
(
θ
2

)
0 0 −eiϕ sin

(
θ
2

)
0 cos

(
θ
2

)
−eiϕ sin

(
θ
2

)
0

0 eiλ sin
(
θ
2

)
cos

(
θ
2

)
eiλ+iϕ 0

eiλ sin
(
θ
2

)
0 0 cos

(
θ
2

)
eiλ+iϕ


(54)

31

L(Cx) =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0



(55)

On a single qubit, every |ϕ⟩ ∈ H† is of the form |ϕ⟩ = (ϵ0, 0, 0, ϵ3)
T which implies

L(U)|ϕ⟩ =



ϵ1 cos
(
θ
2

)
− ϵ2e

iϕ sin
(
θ
2

)
0

0

ϵ2 cos
(
θ
2

)
eiλ+iϕ + eiλϵ1 sin

(
θ
2

)


∈ H† (56)

For two logical qubits, |ϕ⟩ ∈ (H†)2 has the form

|ϕ⟩ = (ϵ0, ϵ1, ϵ2, ϵ3, ϵ4, 0, 0, ϵ7, ϵ8, 0, 0, ϵ11, ϵ12, ϵ13, ϵ14, ϵ15)
T (57)

32

When operated on by the logical Cx, this turns into

L(Cx)|ϕ⟩ = (ϵ1, ϵ0, ϵ3, ϵ2, ϵ4, 0, 0, ϵ7, ϵ11, 0, 0, ϵ8, ϵ14, ϵ15, ϵ12, ϵ13)
T ∈ (H†)2 (58)

2.1.10 Stable endings

We say that an encoding has a stable end if there exist final states |0⟩F , |1⟩F , and

some gate M such that the following conditions hold

1. For all |ψ⟩ = α|0⟩L + β|1⟩L ∈ H+, |⟨0|FM |ψ⟩|2 = |α|2 and |⟨1|FM |ψ⟩|2 = |β|2

2. For all |ϕ⟩ ∈ H−, |⟨0|FM |ϕ⟩|2 + |⟨1|FM |ϕ⟩|2 < 1

Example: For a nontrivial example, consider

|0⟩L =
|00⟩+ |11⟩√

2
(59)

|1⟩L =
|01⟩+ |10⟩√

2
(60)

the matrix

M =
1√
2



1 0 0 1

0 1 1 0

1 0 0 −1

0 1 −1 0


(61)

and final states |0⟩F = |00⟩ and |1⟩F = |01⟩. Then

33

M(α|0⟩L + β|1⟩L) =
1

2



1 0 0 1

0 1 1 0

1 0 0 −1

0 1 −1 0





α

β

β

α


=



α

β

0

0


= α|0⟩F + β|1⟩F (62)

Thus, the first condition is satisfied. To show the second condition is satisfied, let |ϕ⟩

be any state in the whole computational space such that

|⟨0|FM |ϕ⟩|2 + |⟨1|FM |ϕ⟩|2 = 1 (63)

Since |0⟩F = |00⟩ and |1⟩F = |01⟩, this statement is equivalent to saying

M |ϕ⟩ =



γ

δ

0

0


(64)

for some |γ|2 + |δ|2 = 1. But then

|ϕ⟩ =M−1M |ϕ⟩ = 1√
2



1 0 1 0

0 1 0 1

0 1 0 −1

1 0 −1 0





γ

δ

0

0


=

1√
2



γ

δ

δ

γ


∈ H+ (65)

We conclude the second condition is fulfilled.

34

2.2 Theorems

2.2.1 Theorem 1: When a state is valid

For a given encoding E and a state |ψ⟩, |ψ⟩ is in H+ if and only if

|ψ⟩ =M(α, β, 0, ..., 0)T (66)

(for some α, β ∈ C) for any M ∈ χ(E).

Proof: ⇐ This is obvious as

|ψ⟩ =M(α, β, 0, ..., 0)T = α
2q−1∑
n=0

an|n⟩+ β
2q−1∑
n=0

bn|n⟩ = α|0⟩L + β|1⟩L ∈ H+ (67)

⇒ In the other direction, |ψ⟩ ∈ H+ implies

|ψ⟩ = α|0⟩L + β|1⟩L = α
2q−1∑
n=0

an|n⟩+ β
2q−1∑
n=0

bn|n⟩ =M(α, β, 0, ..., 0)T (68)

QED

2.2.2 Theorem 2: When a state is invalid

For a given encoding E and a state |ϕ⟩, |ϕ⟩ is in H⊥ if and only if

|ϕ⟩ =M(0, 0, x1, x2, ..., xn)
T (69)

(for some xi ∈ C) for any M ∈ χ(E).

Proof: ⇐ Let |ψ⟩ = α|0⟩L + β|1⟩L be an arbitrary vector in H+. Then

35

⟨ϕ|ψ⟩ =



0

0

x1

x2
...

xn



†

M †M



α

β

0

0

...

0


=



0

0

x1

x2
...

xn



† 

α

β

0

0

...

0


= 0 (70)

Thus, |ϕ⟩ ∈ H†.

⇒ Suppose that |ϕ⟩ ∈ H† and consider the vector components of

M †|ϕ⟩ = (y1, y2, ..., yn)
T (71)

whereM is any element of χ(E). If either y1 or y2 is non-zero, let |ψ⟩ = α|0⟩L+β|1⟩L ∈

H+ where

α =
y1√

|y1|2 + |y2|2
(72)

β =
y2√

|y1|2 + |y2|2
(73)

Note that these are valid choices for α and β since |y1|2 + |y2|2 > 0. But then

⟨ϕ|ψ⟩ =



y1

y2

y3
...

yn



†

M †M



α

β

0

...

0


=



y1

y2

y3
...

yn



† 

α

β

0

...

0


=

|y1|2 + |y2|2√
|y1|2 + |y2|2

> 0 (74)

36

Since this contradicts the fact that |ϕ⟩ ∈ H†, it must be the case that y1 = y2 = 0

and we are done.

QED

2.2.3 Theorem 3: Every encoding is a robust encoding

Every encoding is a robust encoding. Further, any logical gates L(U) and L(Cx) will

satisfy the conditions that

|ϕ⟩ ∈ H† ⇒ L(U)|ϕ⟩ ∈ H† (75)

|ϕ⟩ ∈ (H†)2 ⇒ L(Cx)|ϕ⟩ ∈ (H†)2 (76)

Proof: By definition, we have that

L(U)(α|0⟩L + β|1⟩L) = τ |0⟩L + δ|1⟩L (77)

for some complex τ and δ. But then equation 77 becomes

L(U)M(α, β, 0, ..., 0)T =M(τ, δ, 0, ..., 0)T (78)

M †L(U)M(α, β, 0, ..., 0)T = (τ, δ, 0, ..., 0)T (79)

Since α and β are arbitrary, it must be the case that

M †L(U)M(0, 0, x1, ..., xn)
T = (0, 0, y1, ..., yn)

T (80)

for all xi ∈ C. But this implies that for an arbitrary

37

|ϕ⟩ =M(0, 0, z1, ..., zn)
T ∈ H† (81)

we have

L(U)|ϕ⟩ = L(U)M(0, 0, z1, ..., zn)
T =M(0, 0, w1, ..., wn)

T ∈ H† (82)

for some wi ∈ C. The case for L(Cx) can be proven a similar manner.

QED

2.2.4 Theorem 4: Every encoding has a stable ending

Every encoding has a stable ending.

Proof: Let E be an arbitrary encoding, M to be the conjugate transpose of any

element in χ(E), |0⟩F = |00...00⟩, and |1⟩F = |00...01⟩. Then for |ψ⟩ = α|0⟩L+β|1⟩L ∈

H+ we have

|⟨0|FM |ψ⟩|2 =
∣∣(1, 0, ..., 0)(α, β, 0, ..., 0)T ∣∣2 = |α|2 (83)

|⟨1|FM |ψ⟩|2 =
∣∣(0, 1, ..., 0)(α, β, 0, ..., 0)T ∣∣2 = |β|2 (84)

For any |ϕ⟩ ∈ H−, note that

|ϕ⟩ =M(α, β, x1, ..., xn)
T (85)

with the condition that for some 1 ≤ i ≤ n, |xi| > 0 (else |ϕ⟩ would be a member of

H+). This then implies that

|α|2 + |β|2 < |α|2 + |β|2 + |xi|2 ≤ 1 (86)

38

Therefore

|⟨0|FM |ϕ⟩|2 + |⟨1|FM |ϕ⟩|2 = |α|2 + |β|2 < 1 (87)

QED

2.2.5 Theorem 5: The existence of a flawless encoding

The encoding given by

|0⟩L =
1√
3

(
|001⟩+ |010⟩+ |100⟩

)

|1⟩L =
1√
3

(
|011⟩+ |101⟩+ |110⟩

)
(88)

is flawless.

Proof: Consider the state

|ψ⟩ = α|0⟩L + β|1⟩L =
1√
3



0

α

α

β

α

β

β

0



(89)

Now, observe what happens in each of the following three situations:

39

U0 = U ⊗ I4 (90)

U1 = I2 ⊗ U ⊗ I2 (91)

U2 = I4 ⊗ U (92)

Here, U is the most general 2× 2 unitary matrix (up to a phase)

U =

 cos (θ) −eiϕ sin (θ)

eiλ sin (θ) cos (θ) eiλ+iϕ

 (93)

and Ui is U applied to qubit i. For i = 0, the outcome is

U0|ψ⟩ =



−αeiϕ sin (θ)

α cos (θ)− βeiϕ sin (θ)

α cos (θ)− βeiϕ sin (θ)

β cos (θ)

α cos (θ) eiλ+iϕ

αeiλ sin (θ) + β cos (θ) eiλ+iϕ

αeiλ sin (θ) + β cos (θ) eiλ+iϕ

βeiλ sin (θ)



∈ H+ (94)

Since the first entry and the last entry must both be zero (and at least one of α and β

is nonzero) we may conclude that sin (θ) = 0 and therefore cos (θ) = ±1. The vector

then simplifies to

40

U0|ψ⟩ = ±



0

α

α

β

αeiλ+iϕ

βeiλ+iϕ

βeiλ+iϕ

0



∈ H+ (95)

Again, since at least one of α and β is non-zero, we may conclude that eiλ+iϕ = 1.

But what is this unitary matrix? It is easy to calculate that

U =

 cos (θ) −eiϕ sin (θ)

eiλ sin (θ) cos (θ) eiλ+iϕ

 = ±

 1 0

0 eiλ+iϕ

 = ±

 1 0

0 1

 = ±I2 (96)

In the same manner, we can prove that U1|ψ⟩ ∈ H+ and U2|ψ⟩ ∈ H+ implies U is

±I2. Thus, we have shown that the encoding given above is a flawless encoding.

QED

2.2.5.1 Lemma 1

If X is any matrix in C2×2, then there exists a unitary matrix U , with the stipulation

that U ̸= eiϕI2 for any angle ϕ, such that

det([U,X]) = |UX −XU | = 0

Proof: By definition there exists a magnitude 1 vector v⃗1 such that Xv⃗1 = τ v⃗1 for

41

some τ ∈ C. Let v⃗2 be any vector orthonormal to v⃗1. Now, let U be the unitary

matrix defined by

Uv⃗1 = v⃗1 and Uv⃗2 = −v⃗2 (97)

Note that we are assured that U is not the identity matrix times a phase since its

eigenvalues have different phases. But then

(UX −XU)v⃗1 = UXv⃗1 −XUv⃗1 = τUv⃗1 −Xv⃗1 = τ v⃗1 − τ v⃗1 = 0⃗ (98)

We conclude that there exists a non-trivial U such that det([U,X]) = 0.

QED

2.2.6 Theorem 6: The existence of a matrix with determinant zero

Let M be an arbitrary 4× 4 unitary matrix and consider the following two matrices

M †(U ⊗ I2)M =

 Q0 R0

S0 T0

 (99)

M †(I2 ⊗ U)M =

 Q1 R1

S1 T1

 (100)

Here, U is a 2× 2 unitary matrix and Qi, Ri, Si, Ti ∈ C2×2. There exists a non-trivial

2× 2 unitary matrix U (non-trivial in the sense that it is not the identity times some

phase) such that either det(S0) = 0 or det(S1) = 0.

Proof: Let M be an arbitrary 4× 4 unitary matrix

42

M =



a0 b0 c0 d0

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3


(101)

There are 7 possible cases for M that we will investigate:

1.

∣∣∣∣∣∣∣
a0 b0

a1 b1

∣∣∣∣∣∣∣ ̸= 0

2.

∣∣∣∣∣∣∣
a2 b2

a3 b3

∣∣∣∣∣∣∣ ̸= 0

3.

∣∣∣∣∣∣∣
a1 b1

a3 b3

∣∣∣∣∣∣∣ ̸= 0

4.

∣∣∣∣∣∣∣
a0 b0

a2 b2

∣∣∣∣∣∣∣ ̸= 0

5. M =



eiδ1 cos(θ1) −ei(δ1+ϕ1) sin(θ1) 0 0

0 0 eiδ2 cos(θ2) −ei(δ2+ϕ2) sin(θ2)

0 0 ei(δ2+λ2) sin(θ2) ei(δ2+λ2+ϕ2) cos(θ2)

ei(δ1+λ1) sin(θ1) ei(δ1+λ1+ϕ1) cos(θ1) 0 0


for some (δ1, θ1, λ1, ϕ1, δ2, θ2, λ2, ϕ2) ∈ R8

6. M =



0 0 eiδ2 cos(θ2) −ei(δ2+ϕ2) sin(θ2)

eiδ1 cos(θ1) −ei(δ1+ϕ1) sin(θ1) 0 0

ei(δ1+λ1) sin(θ1) ei(δ1+λ1+ϕ1) cos(θ1) 0 0

0 0 ei(δ2+λ2) sin(θ2) ei(δ2+λ2+ϕ2) cos(θ2)


for some (δ1, θ1, λ1, ϕ1, δ2, θ2, λ2, ϕ2) ∈ R8

43

7. M does not fall into cases 1− 6

We will start with case 7) as this case is actually impossible:

Case 7: In order to show that this case is impossible, we will assume that we are

not in cases 1 − 4 and from there show how this implies either of case 5, case 6, or

a contradiction. To start, note that every 2 × 2 matrix with determinant 0 has the

form

 a b

xa xb

 or

 0 0

a b

 (102)

for some a, b, x ∈ C. Then with matrices from cases 1−4, we are left with 16 subcases,

each one corresponding to a different form from equation 102. For example, the first

subcase is

Case 7.1: Assume that the matrices are of the form

 a0 b0

a1 b1

 =

 a b

xa xb

 (103)

 a2 b2

a3 b3

 =

 c d

yc yd

 (104)

 a1 b1

a3 b3

 =

 e f

ze zf

 (105)

 a0 b0

a2 b2

 =

 g h

wg wh

 (106)

44

for some a, b, c, d, e, f, g, h, x, y, z, w ∈ C. Right off the bat, we get the following

equalities: a = g, b = h, c = wg, d = wh, e = xa, and f = xb. With these equations,

we can rewrite the first two columns of M as



a0 b0

a1 b1

a2 b2

a3 b3


=



a b

xa xb

wa wb

zxa zxb


(107)

But this is a contradiction as these columns are not linearly independent. Thus, this

subcase is impossible.

Case 7.2: We will show the work in this case as it diverges enough from the work in

case 7.1 to be worth writing out in full. Assume that the matrices are of the form

 a0 b0

a1 b1

 =

 0 0

a b

 (108)

 a2 b2

a3 b3

 =

 c d

xc xd

 (109)

 a1 b1

a3 b3

 =

 e f

ye yf

 (110)

 a0 b0

a2 b2

 =

 0 0

g h

 (111)

for some a, b, c, d, e, f, g, h, x, y ∈ C. Again, we get a set of easy equations:

c = g, d = h, a = e, b = f , xc = ye, and xd = yf . But then we can rewrite the first

45

two columns of M as



a0 b0

a1 b1

a2 b2

a3 b3


=



0 0

e f

c d

xc xd


(112)

Now, if y ̸= 0 then we can further manipulate this as

=



0 0

x
y
c x

y
d

c d

xc xd


(113)

But again, these columns are not linearly independent. Thus, y must be 0 (implying

that xc = xd = 0) and therefore the first two columns of M are of the form



a0 b0

a1 b1

a2 b2

a3 b3


=



0 0

a b

c d

0 0


(114)

Since these columns are orthonormal, the four non-zero elements must form a 2 × 2

unitary matrix, and we are therefore firmly planted in case 6.

Cases 7.3-7.16: The remaining cases are all dealt with in a similar manner as the

previous two cases.

Case 1: Write equation 99 in block matrix form:

46

 Q1 R1

S1 T1

 =M †(I2 ⊗ U)M =

 A† C†

B† D†


 U 0̂

0̂ U


 A B

C D

 (115)

Note that by our assumption we know that A is invertible and thus by the Nullity

Theorem [49] we also know that D is invertible. But then we can rewrite

M † =M−1 =

 (A−BD−1C)−1 0̂

0̂ (D − CA−1B)−1


 I2 −BD−1

−CA−1 I2


(116)

which comes from the block matrix inversion formula [50]. Using this form of M † in

equation 115 give us

 Q1 R1

S1 T1

 =

 (A−BD−1C)−1 0̂

0̂ (D − CA−1B)−1


 I −BD−1

−CA−1 I


 U 0̂

0̂ U


 A B

C D

 (117)

Multiplying this out, we get that

S1 = (D − CA−1B)−1(UCA−1 − CA−1U)A (118)

We may now appeal to the lemma proved earlier with X = CA−1. Thus, we conclude

there is a non-trivial U such that

det(S1) = det(D − CA−1B)−1 det(UCA−1 − CA−1U) det(A) = 0 (119)

47

Case 2: For this case, define

P =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


(120)

Then we write

 Q1 R1

S1 T1

 =M †(I2 ⊗ U)M =

 A† C†

B† D†


 U 0̂

0̂ U


 A B

C D



=

 A† C†

B† D†

P †P

 U 0̂

0̂ U

P †P

 A B

C D

 (121)

But this simplifies as

PM =

 C D

A B

 (122)

P

 U 0̂

0̂ U

P † =

 U 0̂

0̂ U

 (123)

Then equation 121 simplifies to

=

 C† A†

D† B†


 U 0̂

0̂ U


 C D

A B

 (124)

This is the same as case 1 (as we assumed that C was invertible) except we now have

that

48

S1 = (B − AC−1D)−1(UAC−1 − AC−1U)C (125)

Again appealing to the lemma, we conclude that there is a non-trivial U such that

det(S1) = 0.

Case 3: This case can be worked through in the same manner as the last two cases

except we start with equation 100 instead of equation 99. First, define

P =



0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0


(126)

Then

 Q0 R0

S0 T0

 =M †(U ⊗ I2)M =M †P †P (U ⊗ I2)P
†PM (127)

If we write

U =

 eiδ cos(θ) −ei(δ+ϕ) sin(θ)

ei(δ+λ) sin(θ) ei(δ+λ+ϕ) cos(θ)

 (128)

(the most general 2× 2 unitary matrix), we see that

49

P †(U ⊗ I2)P =



ei(δ+λ+ϕ) cos(θ) ei(δ+λ) sin(θ) 0 0

−ei(δ+ϕ) sin(θ) eiδ cos(θ) 0 0

0 0 ei(δ+λ+ϕ) cos(θ) ei(δ+λ) sin(θ)

0 0 −ei(δ+ϕ) sin(θ) eiδ cos(θ)



=

 1 0

0 1

⊗

 ei(δ+λ+ϕ) cos(θ) ei(δ+λ) sin(θ)

−ei(δ+ϕ) sin(θ) eiδ cos(θ)

 = I2 ⊗ U
′

(129)

where U
′
is simply another way to write the most general 2 × 2 unitary matrix.

Importantly, note that if U = eiϕI2 then U
′
= eiϕI2 (and vice-versa). We can also

write

PM =

 A
′
B

′

C
′
D

′

 (130)

where A
′
=

 a1 b1

a3 b3

 (note that by our assumption A
′
is invertible). But this

leads us to the same situation we had in cases 1 and 2. Here, we get that

S0 = (D
′ − C

′
A

′−1
B

′
)−1(U

′
C

′
A

′−1 − C
′
A

′−1
U

′
)A

′
(131)

Thus, there is a nontrivial matrix U (related to U
′
in a complicated manner) such

that det(S0) = 0.

Case 4: This final case is proved in much the same way as the previous cases. We

simply take

50

P =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


(132)

and the logical train of thought will lead us to

S1 = (B
′ − A

′
C

′−1
D

′
)−1(U

′
A

′
C

′−1 − A
′
C

′−1
U

′
)C

′
(133)

(where C
′
is matrix we assumed was invertible). Thus, there exists non-trivial U such

that det(S0) = 0.

Case 5 and Case 6: These cases will be proved in a different manner than the

previous cases. Simply note that

 Q0 R0

S0 T0

 =M †

I2 ⊗
 1 0

0 eiτ


M =

 A 0̂

0̂ B

 (134)

 Q1 R1

S1 T1

 =M †


 1 0

0 eiτ

⊗ I2

M =

 C 0̂

0̂ D

 (135)

for some 2 × 2 unitary A,B,C,D. In both cases, it is obvious that S0 = S1 = 0̂ for

all angles τ . Since these clearly have determinant 0, we are done.

QED

2.2.7 Corollary 1: There is no flawless encoding over two qubits

There are no flawless encodings over two physical qubits.

51

Proof: Let E be an arbitrary encoding over two physical qubits and let M ∈ χ(E).

From Theorem 6 we know there exists a 2× 2 unitary matrix U such that either S0

or S1 in

M †(U ⊗ I2)M =

 Q0 R0

S0 T0



M †(I2 ⊗ U)M =

 Q1 R1

S1 T1

 (136)

has determinant zero and U is not the identity matrix times some phase. Suppose

that det(S0) = 0 (the work is identical if det(S1) = 0) and let α, β ∈ C be complex

numbers such that (α, β)T has unit magnitude and is in the nullspace of S0. Then

for |ψ⟩ =M(α, β, 0, 0)T ∈ H+ we have

(U ⊗ I2)|ψ⟩ =MM †(U ⊗ I2)M



α

β

0

0



=M

 Q0 R0

S0 T0




α

β

0

0


=M



τ

δ

0

0


∈ H+ (137)

where the last equality happens from our definition of α and β. Thus, E is not a

flawless encoding and we are done.

QED

52

2.2.8 Theorem 7: Near-flawless encodings

A 2-qubit encoding E is near flawless if and only if the matrices S0 and S1 (as defined

in Theorem 6 in equations 99 and 100 for any M ∈ χ(E)) are never the 0̂ matrix

except for the trivial error eiϕI2.

Proof: (⇒) We will prove the contrapositive. Suppose there is a non-trivial error U

such that S0 or S1 is the 0̂ matrix. If it is the former, then

M †(U ⊗ I2)M



α

β

0

0


=

 R0 Q0

S0 T0




α

β

0

0


=

 R0 Q0

0̂ T0




α

β

0

0


=



τ

δ

0

0


(138)

That is, for any α|0⟩L + β|1⟩L ∈ H+ we have

(U ⊗ I2)(α|0⟩L + β|1⟩L) = δ|0⟩L + τ |1⟩L ∈ H+ (139)

We conclude that the encoding is not near flawless.

(⇐) Suppose that S0 and S1 are never the 0̂ (except for the case U = eiϕI2). Now, if

U is an error matrix on the 0th qubit we know

(U ⊗ I2)|ψ⟩ ∈ H+ (140)

If such a U does not exist then it must exist for qubit 1 since no 2-qubit encoding is

flawless (and the arguement is the same). This then implies

53



τ

δ

0

0


=M †(U ⊗ I2)M



α

β

0

0


=

 R0 Q0

S0 T0




α

β

0

0


(141)

It is clear that det(S0) = 0 since

S0

 α

β

 =

 0

0

 (142)

As stated before, this implies S0 is of the form

 a b

xa xb

 or

 0 0

a b

 (143)

We will now prove that µ (Ω) = 0 where

Ω =


 y

z

 : S0

 y

z

 =

 0

0

 and |y|2 + |z|2 = 1

 (144)

Case 1.1: Assume a = 0, b ̸= 0, and S0 is the first type of non-invertible matrix.

Then

 0 b

0 xb


 y

z

 =

 zb

zxb

 =

 0

0

 (145)

Since b ̸= 0 we conclude z = 0 and thus

Ω =


 y

0

 : |y| = 1

 (146)

54

Thus, µ(Ω) = 0 and we are done.

Case 1.2 Assume a = 0, b ̸= 0, and S0 is the second type of non-invertible matrix.

This case follows in the same way as the previous case.

Case 2: Assume b = 0 and a ̸= 0. Then this case follows in the same was as Case 1.

Case 3.1: Assume ab ̸= 0 and S0 is the first type of non-invertible matrix. Then

 a b

xb xb


 y

z

 =

 ya+ zb

x(ya+ zb)

 =

 0

0

 (147)

We then have

ya+ zb = 0 ⇒ y = −zb
a

(148)

Thus, the set Ω is

Ω =


 −z a

b

z

 : |z| = 1

1 +
∣∣a
b

∣∣2
 (149)

Then µ(Ω) = 0 and we are done.

Case 3.2: Assume ab ̸= 0 and S0 is the second type of non-invertible matrix. By the

same logic as above, we have µ(Ω) = 0.

Case 4: The last case is impossible as a = b = 0 implies S0 = 0̂.

Having covered all our cases, we conclude µ(Ω) = 0.

55

QED

2.2.9 Theorem 8: The existence of a near-flawless encoding

The encoding given by

|0⟩L =
1

2
√
3

(
3|00⟩+ |01⟩+ |10⟩+ |11⟩

)

|1⟩L =
1

2

(
− |00⟩+ |01⟩+ |10⟩+ |11⟩

)
(150)

is near flawless.

Proof: Let M ∈ χ(E) be given by

M =



√
3
2

−1
2

0 0

1
2
√
3

1
2

1√
6

1√
2

1
2
√
3

1
2

1√
6

− 1√
2

1
2
√
3

1
2

−
√

2
3

0


(151)

We can then calculate S0 and S1 explicitly with

U =

 cos
(
θ
2

)
−eiϕ sin

(
θ
2

)
eiλ sin

(
θ
2

)
cos

(
θ
2

)
eiλ+iϕ

 (152)

to get

S0 =

 sin(θ
2)(eiλ−eiϕ)−cos(θ

2)(−1+ei(λ+ϕ))
6
√
2

cos(θ
2)(−(−1+ei(λ+ϕ)))−sin(θ

2)(3eiλ+eiϕ)
2
√
6

cos(θ
2)(−(−1+ei(λ+ϕ)))−sin(θ

2)(3eiλ+eiϕ)
2
√
6

sin(θ
2)(eiλ−eiϕ)−cos(θ

2)(−1+ei(λ+ϕ))
2
√
2


(153)

56

S1 =

 sin(θ
2)(eiλ−eiϕ)−cos(θ

2)(−1+ei(λ+ϕ))
6
√
2

cos(θ
2)(−(−1+ei(λ+ϕ)))−sin(θ

2)(3eiλ+eiϕ)
2
√
6

sin(θ
2)(3eiλ+eiϕ)+cos(θ

2)(−1+ei(λ+ϕ))
2
√
6

sin(θ
2)(eiϕ−eiλ)+cos(θ

2)(−1+ei(λ+ϕ))
2
√
2


(154)

Now, define the function

f


 a b

c d


 = |a|2 + |b|2 + |c|2 + |d|2 (155)

Note that this function is zero if and only if the input matrix is 0̂. We can then write

out

f(S0)f(S1) =
1

81
(3 cos(θ) cos(λ) cos(ϕ)− (cos(θ) + 3) sin(λ) sin(ϕ)

− sin(θ) cos(λ) + sin(θ) cos(ϕ) + 3 cos(θ) + cos(λ) cos(ϕ)− 7)2 (156)

Thus, the matrices S0 and S1 can only ever be 0̂ if the function

g(θ, λ, ϕ) = 3 cos(θ) cos(λ) cos(ϕ)− (cos(θ) + 3) sin(λ) sin(ϕ)

− sin(θ) cos(λ) + sin(θ) cos(ϕ) + 3 cos(θ) + cos(λ) cos(ϕ)− 7 (157)

is equal to 0. We will show that this function is only zero on the set

(θ, λ, ϕ) ∈ {(2πk, λ,−λ+ 2πm) : λ ∈ R and k,m ∈ Z} (158)

Note that for any element of this set we have U = eiτI2 for some τ ∈ R which is why

these solutions can be safely ignored. To prove that this is the only solution set, we

will use the half-tangent angle substitution. That is

57

tan

(
θ

2

)
= x⇒ cos(θ) =

1− x2

1 + x2
and sin(θ) =

2x

1 + x2
(159)

where x ∈ R (we can do the same for λ and ϕ with y and z). Then transforming

0 = g(θ, λ, ϕ) into a function of x, y, z gives us

0 = −4 (x2 (y2 (3z2 + 2) + 2yz + 2z2 + 3) + x (z2 − y2) + 2(y + z)2)

(x2 + 1) (y2 + 1) (z2 + 1)
(160)

This simplifies to

0 = x2
(
y2

(
3z2 + 2

)
+ 2yz + 2z2 + 3

)
+ x

(
z2 − y2

)
+ 2(y + z)2 (161)

Solving this quadratic in x gives us

x =
±
√

−3(y + z)2(8 + 6yz + 5z2 + y2(5 + 8z2)) + y2 − z2

2 (3y2z2 + 2y2 + 2yz + 2z2 + 3)
(162)

It is easy to show that both

8 + 6yz + 5z2 + y2(5 + 8z2) > 0 (163)

3y2z2 + 2y2 + 2yz + 2z2 + 3 > 0 (164)

for all (y, z) ∈ R2. Thus, x can only be a real number if y+z = 0 (else the discriminant

would be negative). This implies that

tan

(
λ

2

)
= − tan

(
ϕ

2

)
⇒ λ = −ϕ+ 2πm (165)

for some m ∈ Z. Additionally, plugging y = −z back into x gives us

58

x = 0 ⇒ θ = 2πk (166)

for some k ∈ Z. Thus, the only matrices U which can set either of S0 or S1 to be 0̂

are the matrices U = eiτI2 for some τ ∈ R. By Theorem 7 we conclude the encoding

is near flawless.

QED

2.2.10 Theorem 9: Encoding a near-flawless code takes at least two

controlled not gates

If E is a near-flawless encoding and M ∈ χ(E), then M cannot be created using zero

or one physical Cx gate.

Proof: The following proof will be slip into two cases: the case where E is an en-

coding over two physical qubits and the case where E is an encoding over more than

two physical qubits. As the possibility of M being the product of single qubit gates

is obviously impossible, we shall focus on the situation where M is constructed with

a single Cx gate.

Case 1: Suppose that E is an encoding over two physical qubits but there exists

M ∈ χ(E) which takes a single physcial Cx to create. Without loss of generality,

suppose that this M has the form

M = (U3 ⊗ U4)Cx(U1 ⊗ U2) (167)

which in circuit form is

59

Figure 16: The most general way to describe a 2-qubit gate created with one physical

Cx. The gates U1-U4 are general single qubit gates.

Here, the gates U1-U4 are general single qubit gates. Now, consider an error on the

second qubit (the one being controlled by the Cx gate) of the form

Error = U4
1√
2

 1 −i

i −1

U †
4 (168)

Plugging these matrices into M and U in equation 100 gives us

M †(I2 ⊗ Error)M =

 A 0̂

0̂ B

 (169)

for some unitary matrices A and B. Thus, S1 = 0̂ and therefore by Theorem 7 E is

not a near-flawless encoding.

Case 2: Suppose that E is an encoding over r ≥ 3 physical qubits. Since there

exists M ∈ χ(E) that can be constructed with a single Cx, without loss of generality

suppose this gate is between the first two qubits. Then M is of the form

M = D ⊗ U (170)

where D is a 2r−1 × 2r−1 unitary matrix and U is some single qubit gate. But then

for any |ψ⟩ = α|0⟩L + β|1⟩L ∈ H+ and error

60

Error = UσxU
† (171)

on the final qubit we have

M †(Ir−1
2 ⊗Error)M(α, β, 0, ..., 0)T = (D†⊗U †)(Ir−1

2 ⊗UσxU †)(D⊗U)(α, β, 0, ..., 0)T

(D†I2r−1D)⊗(U †UσxU
†U)(α, β, 0, ..., 0)T = (I2r−1⊗σx)(α, β, 0, ..., 0)T = (β, α, 0, ..., 0)T ∈ H+

(172)

Since |ψ⟩ was arbitrary, we conclude E is not a near-flawless encoding.

QED

2.2.11 Corollary 2: Two physical controlled not gates is sufficient for

a near-flawless encoding

Two physical Cx gates is sufficient for a near-flawless encoding.

Proof: Consider the encoding E given in Theorem 8 defined by

|0⟩L =
1

2
√
3

(
3|00⟩+ |01⟩+ |10⟩+ |11⟩

)

|1⟩L =
1

2

(
− |00⟩+ |01⟩+ |10⟩+ |11⟩

)
(173)

with M ∈ χ(E) be given by

61

M =



√
3
2

−1
2

0 0

1
2
√
3

1
2

1√
6

1√
2

1
2
√
3

1
2

1√
6

− 1√
2

1
2
√
3

1
2

−
√

2
3

0


(174)

By the work of Vatan and Williams [51], we know thatM can be implemented in two

physical Cx gates. Since E is a near-flawless encoding, we are done.

QED

62

III. The Bit-Flip Encoding

Preamble

In this chapter, we will describe a procedure to implement a simple NAED code.

This includes the operators required to encode the initial states as well as methods

to create logical gates out of the standard base set of U3 and Cx gates. These logical

gates are then used to produce logical Greenberger–Horne–Zeilinger (GHZ) states

with differing amounts logical qubits and physical qubits per logical qubit. In gen-

eral, constructing these logical gates remains an active area of research for all error

mitigation schemes [52, 53, 54, 55].

The unencoded GHZ circuit can be thought of as generalized bell circuit and

produces the state

GHZ(N, 1) =
|00...0⟩+ |11...1⟩√

2
(175)

Here, there are N 0s and N 1s in each ket and the 1 in GHZ(N, 1) represents the

fact that there is no encoding with one physical qubit per logical qubit. We then run

these circuits and compare the results with and without error detection.

3.1 Bit-flip error detection

The bit-flip encoding (based on classical Hamming Codes [56]) is the simplest

NAED code. In general, a bit-flip encoding on Q physical qubits can be defined by a

set S ⊆ {0, 1, ..., Q− 1}. We then define the two integers

x =

 0 S = ∅∑
i∈S 2

i otherwise
(176)

63

y = 2Q − 1− x (177)

The code words are then defined as |0⟩L = |x⟩ and |1⟩L = |y⟩ where x and y are

written in binary. From this, it is apparent that for Q physical qubits, there are 2Q

encodings that we might utilize. For example, a simple set of codewords for Q = 3

physical qubits is |0⟩L = |001⟩ and |1⟩L = |110⟩ as determined by the set S = {0}.

3.1.1 Encoding, logical gates, decoding, and detectable errors

In order use the bit-flip encoding, three things are required: a way to encode the

initial |0⟩L state, a method to construct logical gates that operate on |0⟩L and |1⟩L,

and a way to decode the states to some set of final states. However, since the logical

states also function as final states, we do not need to perform any decoding for NAED

to function. To encode |0⟩L for a given set S (with Q physical qubits starting in the

state |00...0⟩) we simply need to operate on each qubit qi with a σx if i ∈ S. This can

be written mathematically as

MS =
∏
i∈S

σi (178)

where MS is identified as the encoding matrix.

The construction of logical gates for the bit-flip encoding is slightly more compli-

cated. For Q physical qubits and S = ∅ we have

L∅(U3) =

[
Q−1∏
i=1

Cx(0, Q− i)

]
U3 ⊗ I2Q−1

[
Q−1∏
i=1

Cx(0, i)

]
(179)

Note that this logical gate uses 2(Q − 1) physical Cx gates. For a general set S we

have

64

LS(U3) =

 L∅(σxU3σx) 0 ∈ S

L∅(U3) 0 /∈ S
(180)

Finally, to define the logical Cx gate we must introduce some notation describing

the physical qubits of each logical qubit: let {r0, r1, ..., rQ−1} be the Q physical qubits

that correspond to the logical control qubit and let {p0, p1, ..., pQ−1} be the Q physical

qubits that correspond to the logical qubit being operated on. Then for an arbitrary

S the logical Cx gate is given by

LS(Cx) =

Q−1∏
i=0

Cx(ri, pi)(I2Q ⊗MS) (181)

Here, MS is the encoding matrix defined in equation 178. For proofs that equations

180 and 181 are indeed logical gates, see the next section (section 3.1.2). An example

of bit-flip encoding and the associated logical gates is given by encoding a bell state

with Q = 2 and S = {1}. In this example x = 2 and y = 1 with |0⟩L = |10⟩

and|1⟩L = |01⟩. The circuit includes an encoding step, a logical Hadamard L{1}(H),

and a logical controlled-not L{1}(CX) as shown in Fig. 17. The final state will be

given by |ψ⟩ = 1/
√
2(|00⟩L + |11⟩L) = 1/

√
2(|0101⟩+ |1010⟩).

After measurement, there are 16 possibilities: 4 states in H+ and 12 states in

H−. If we measure |0101⟩ then we obtain |00⟩L. In a similar fashion |1010⟩ yields

|11⟩L, |0110⟩ yields |01⟩L, and |1001⟩ yields |10⟩L. If we measure any other of the 12

combinations of 0s and 1s, then we are in H− and an error is declared.

65

Figure 17: This circuit encodes a bell state for Q = 2 physical qubits per logical

qubit with codewords |0⟩L = |01⟩ and |1⟩L = |10⟩. The first set of gates to the left

of the first barrier transforms |0000⟩ to |0101⟩ = |00⟩L. The second set of gates is

the logical Hadamard gate L{1}(H). The third set of gates is the logical Cx gate

L{1}(CX). At the end of this circuit, the qubits will be in the linear combination

|ψ⟩ = 1/
√
2(|00⟩L + |11⟩L) = 1/

√
2(|0101⟩+ |1010⟩).

It is possible to describe the errors that we have a chance to detect while using

the bit-flip code. If we model these errors by 2× 2 unitary gates, then any error not

of the form

P (θ, ϕ) = eiϕ

 1 0

0 eiθ

 (182)

for ϕ, θ ∈ R, will force any state |ψ⟩ ∈ H+ into some state |ψ′⟩ ∈ H−. These

detectable errors include σx, σy, and any other non-phase error that might occur.

3.1.2 Proofs of logical gates

In order to prove the validity of the logical gates described in equations 180-181,

we will use the following four identities:

66

(I2 ⊗ σx)Cx = Cx(I2 ⊗ σx) (183)

(σx ⊗ I2)Cx(σx ⊗ I2) = (I2 ⊗ σx)Cx (184)

α|0⟩L + β|1⟩L =MS(α|00...0⟩+ β|11...1⟩) (185)

where MS is the encoding matrix given in equation 178. The first two of these

equations are easily checked while the third equation follows from the definition of

MS. For the rest of these proofs, we will drop the S subscript and simply refer to the

encoding matrix as M . After noting that M =M † =M−1, this also gives us

M(α|0⟩L + β|1⟩L) = α|00...0⟩+ β|11...1⟩ (186)

3.1.2.1 Logical U3 gate

We will start with the S = ∅ case (with codewords |0⟩L = |00...0⟩ and |1⟩L =

|11...1⟩) and from there prove the general case. To prove that L∅(U3) is a logical U3

gate, we must show that if U3(α|0⟩+β|1⟩) = τ |0⟩+δ|1⟩ then L∅(U3)(α|0⟩L+β|1⟩L) =

τ |0⟩L + δ|1⟩L. With the first part of L∅(U3) we have

|ψ1⟩ =

[
Q−1∏
i=1

Cx(0, i)

]
(α|0⟩L + β|1⟩L)

= α|00...0⟩+ β|10...0⟩ = (α|0⟩+ β|1⟩)⊗ |00...0⟩ (187)

where the state |00...0⟩ in the resulting expression has Q − 1 zeros. Then applying

the U3 gate gives us

67

|ψ2⟩ = U3 ⊗ I2q−1|ψ1⟩ = U3 ⊗ I2q−1(α|0⟩+ β|1⟩)⊗ |00...0⟩

= (τ |0⟩+ δ|1⟩)⊗ |00...0⟩ (188)

The final part of L∅(U3) gives us

|ψ3⟩ =

[
Q−1∏
i=1

Cx(0, Q− i)

]
|ψ2⟩

=

[
Q−1∏
i=1

Cx(0, Q− i)

]
(τ |0⟩+ δ|1⟩)⊗ |00...0⟩

= τ |00...0⟩L + δ|11...1⟩L = τ |0⟩L + δ|1⟩L (189)

as desired.

For the general case, if 0 ̸∈ S then

LS(U3)(α|0⟩L + β|1⟩L) = L∅(U3)(α|0⟩L + β|1⟩L)

= L∅(U3)MM(α|0⟩L + β|1⟩L) = L∅(U3)M(α|00...0⟩+ β|11...1⟩) (190)

We also know that [L∅(U3),M] = 0̂ since every Cx in L∅(U3) is controlled by q0, the

physical U3 gate in L∅(U3) acts on q0, and 0 ̸∈ S which allows us to use equation 183.

Thus, equation 190 becomes

= L∅(U)M(α|00...0⟩+ β|11...1⟩)

=ML∅(U)(α|00...0⟩+ β|11...1⟩)

68

=M(τ |00...0⟩+ δ|11...1⟩) = τ |0⟩L + δ|1⟩L (191)

For the case where 0 ∈ S, let M
′
= σ0M . Then using the fact σi = σ−1

i , we have

L∅(σxU3σx)M = σ0σ0L∅(σxU3σx)σ0M
′

(192)

Then using equation 184 2(Q− 1) times (one for each physical Cx in L∅(σxUσx)) and

simplifying using equation 183 we get

= σ0M
′
M

′
L∅(U3)M

′
=ML∅(U3) (193)

Using this relation we may now conclude

LS(U3)(α|0⟩L + β|1⟩L) = L∅(σxUσx)(α|0⟩L + β|1⟩L)

= L∅(σxUσx)MM(α|0⟩L + β|1⟩L) =ML∅(U)(α|00...0⟩+ β0|11...1⟩)

=M(τ |00...0⟩+ δ|11...1⟩) = τ |0⟩L + δ|1⟩L (194)

3.1.2.2 Logical Cx gate

In a similar manner to the previous proof, We will start with the S = ∅ case and

from there prove the general case. To prove that L∅(Cx) is a logical Cx gate, we must

show that L∅(Cx)(α|00⟩L+β|01⟩L+τ |10⟩L+δ|11⟩L) = α|00⟩L+β|01⟩L+δ|10⟩L+τ |11⟩L.

As in the main paper, let {r0, r1, ..., rQ−1} be the Q physical qubits the make up the

logical control qubit and let {p0, p1, ..., pQ−1} be the Q physical qubits that make up

the logical target bit. For ease of notation, the full ket corresponding to these 2Q

69

physical qubits shall be written as |r0r1...rQ−1; p0p1...pQ−1⟩, note the semi-colon used

to distinguish between both sets of qubits. We then have

Cx(r0, p0)(α|00⟩L + β|01⟩L + τ |10⟩L + δ|11⟩L)

= Cx(r0, p0)(α|00...0; 00...0⟩+ β|00...0; 11...1⟩

+τ |11...1; 00...0⟩+ δ|11...1; 11...1⟩)

= α|00...0; 00...0⟩+ β|00...0; 11...1⟩

+ τ |11...1; 10...0⟩+ δ|11...1; 01...1⟩ (195)

Repeating this process for the other Q − 1 physical Cx gates in L∅(Cx) gives us the

desired result. To generalize to all S, note that by equations 183 and 184 we have

LS(Cx) = L∅(Cx)(I2Q ⊗M) = (I2Q ⊗M)L∅(Cx)

= (M ⊗ I2Q)L∅(Cx)(M ⊗ I2Q)

= (M ⊗MM)L∅(Cx)(M ⊗ I2Q) = (M ⊗M)L∅(Cx)(M ⊗M) (196)

Using this equivalent definition for LS(Cx), we get

LS(Cx)(α|00⟩L + β|01⟩L + δ|10⟩L + τ |11⟩L)

70

= (M ⊗M)L∅(Cx)(M ⊗M)(α|00⟩L + β|01⟩L + δ|10⟩L + τ |11⟩L)

= (M ⊗M)L∅(Cx)(α|00...000...0⟩+ β|00...011...1⟩)

+ δ|11...100...0⟩+ τ |11...111...1⟩) (197)

by equation 186. But this is precisely the relationship we just showed (the S = ∅

encoding). Thus, it simplifies to

= (M ⊗M)(α|00...000...0⟩+ β|00...011...1⟩)

+τ |11...100...0⟩+ δ|11...111...1⟩)

= α|00⟩L + β|01⟩L + τ |10⟩L + δ|11⟩L (198)

as desired.

3.2 An application of the bit-flip encoding

The logical U3 and Cx gates are used to construct GHZ(N,Q) circuits where N is

the number of logical qubits and Q is the number of physical qubits per logical qubit.

Gates corresponding to this circuit are given by

GHZ(N, 1) =

[
N−1∏
i=0

Cx(i, i+ 1)

]
(H ⊗ I2N−1) (199)

which uses N − 1 physical Cx gates and a single Hadamard gate. Note that this is

not the only way to create the GHZ(N, 1) state [57].

In order to turn the GHZ(N, 1) circuit into the GHZ(N,Q) circuit (using bit-flip

71

encoding) we simply replace all physical gates in the GHZ(N, 1) circuit with their

logical equivalents from equations 180 and 181. Of course, we also have to decide

which set S we will use for the encoding. In order to balance the number of 0s and 1s

that make up |0⟩L and |1⟩L, we will use S = {0, 1, ..., ⌈Q/2⌉}. The last thing we need

to do is slightly simplify the resulting circuit before implementation. For example,

for the circuit GHZ(2, 2) we have the the circuit given in Fig. 17, however the first

Cx gate as well as the two σx gates on q3 are redundant. Removing these gives us the

circuit in Fig. 18, and a similar simplification will be used for all experimental runs.

Figure 18: The simplified GHZ(2, 2) circuit. This circuit is identical to the circuit

in Fig. 17 except that the first Cx gate and bottom σx gates have been removed as

redundant. This does not change the overall state |ψ⟩ = 1/
√
2(|0101⟩+ |1010⟩) that

this circuit produces.

3.2.1 Experimental design, results, and discussion

For our experiments we will use the similarity measure (equation 29 in section

1.6.2) and compare the experimentally determined PDF for the GHZ(N,Q) circuit

with theoretical expected PDF. For the simple GHZ(N,Q) circuit, this theoretical

PDF is easily computed and will always be an equally split between two states in the

full HNQ circuit space.

72

For each (N,Q) ∈ {2, 3, 4, 5}×{1, 2, 3, 4, 5}, theGHZ(N,Q) circuit was submitted

at optimization level 1 for 213 shots. Two similarity measures are computed using

equation 29. The first retains all of the experimental results and represents the full

similarity measure of the encoded circuit, µFull. The second omits all experimental

results for which an error is detected and is the NAED result, denoted µNAED. This

process was repeated between 220 and 230 times for each circuit, and averaged to

yield µFull and µNAED for each (N,Q) pair.

Figure 19: The similarity measure µFull of the GHZ(N,Q) circuits over the input

space (N,Q) ∈ {2, 3, 4, 5} × {1, 2, 3, 4, 5}. Not surprisingly, the best results occur at

GHZ(2, 1) with a similarity measure of 90.8. The similarity decreases as both N and

Q increase, with the worst similarity of 0.4 for N = Q = 5.

Values of µFull are shown in Fig. 19 where the best run overall is the GHZ(2, 1)

circuit with a similarity measure of 90.8. The similarity then decreases as both N

and Q increase. Values of µNAED are shown in Fig. 20 and

73

Figure 20: The similarity measure µNAED of the GHZ(N,Q) circuits over the input

space (N,Q) ∈ {2, 3, 4, 5} × {1, 2, 3, 4, 5}. The highest similarity is now 97.2 for

GHZ(2, 2) with the circuit from Fig. 18. while the greatest incr ase in similarity

from the unencoded circuit occurs between GHZ(5, 1) and GHZ(5, 2).

demonstrate that NAED is a viable option for improving quantum computation. As

seen in Fig. 20, values of µNAED for GHZ(N,Q) where 2 ≤ Q ≤ 4 are all greater

than µNAED for the unencoded GHZ(N, 1) circuit. It is not until Q = 5 that NAED

produced lower values of µNAED than Q = 1 where no error detection is performed.

Also seen in Fig. 20 is evidence that even values of Q outperform odd values of Q.

For example, the similarity of GHZ(N, 4) is greater than the similarity of GHZ(N, 3)

for all N . This behavior is caused by an assymmetry in the number of 0’s and 1’s

that make up the codewords for odd values of Q. Since super conducting qubits

will naturally decohere towards the |0⟩ state [58, 59], this leads to an asymmetry in

measured states for odd Q.

A primary cost of NAED is the number of runs that are discarded when an error is

74

declared. The total number of runs that are not included in the calculation of µNAED

increases with N and Q as seen in Fig. 21 where only a few percent of the runs are

retained for larger N and Q.

Figure 21: The percentage of runs retained for each GHZ(N,Q) circuit over the input

space (N,Q) ∈ {2, 3, 4, 5}×{1, 2, 3, 4, 5} after error detection has been performed. For

Q = 1, there are no runs removed. The next highest percentage is for the GHZ(2, 2)

circuit (given by Fig. 18) at 76.4% kept. From here, the percentage retained decreases

as both N and Q increase.

It is interesting to note the values of µFull in Fig. 19 and percentage retained in

Fig. 21 approach each other in value as both N and Q increase. This observation is

used to show that the ratio of false positives to the total number of measurements

decreases as N and Q increase. To illustrate why this is the case, define the following

• T = the total number of measurements

• r0 = the total number of |00...0⟩L measured

75

• r1 = the total number of |11...1⟩L measured

• ra = the total number of logical states other than |00...0⟩L or |11...1⟩L measured

• rb = the total number of states which don’t fall into any logical state measured

Here, rb are errors that NAED would catch while ra are errors that NAED would

not catch. For example, with N = 3 and Q = 2 the state |010110⟩ = |001⟩L is

an invalid GHZ state but will not be caught by error detection. Also note that

T = r0 + r1 + ra + rb. Then the percentage of measurements kept is given by

PKept = 1− rb
T

(200)

Without detection, µFull can be written as

µFull = 1− 1

2

(∣∣∣∣12 − r0
T

∣∣∣∣+ ∣∣∣∣12 − r1
T

∣∣∣∣+ ra
T

+
rb
T

)
(201)

The absolute values may be ignored since the chance that r0
T
> 1

2
or r1

T
> 1

2
is negligible

for higher N and Q. Then equation 201 becomes

µFull = 1− 1

2T
(T − r0 − r1 + ra + rb)

= 1− 1

2T
(T − r0 − r1 − ra − rb + 2ra + 2rb)

= 1− ra
T

− rb
T

= PKept −
ra
T

(202)

As N and Q increase, the value of ra/T in equation 202 goes to zero.

76

3.3 Conclusion

As an initial endeavour, these experiments have shown that NAED is a viable

option for increasing the fidelity of quantum circuits. At its best, it was able to

improve the similarity measure of a GHZ(5, 1) circuit from µFull = 73.9 to µNAED =

92.5 using a GHZ(5, 2) circuit. Additionally, we have shown that the ratio of false

positives to the total number of measurements decreases as the number of logical

qubits and the number of physical qubits per logical qubits increase. One drawback

to this experiment however is that the GHZ circuit does not utilize phase in any

way. In the next chapter we will implement NAED with a circuit in which phase is a

critical part of the final result.

77

IV. The XY, YZ, and ZX encodings

Preamble

In the previous chapter, we described and experimentally verified the bit-flip en-

coding using GHZ states. While useful as a demonstration that NAED is a viable

possibility for quantum error detection, the experiments were nonetheless lacking due

to the fact that the qubit phases were completely ignored. The bit-flip encoding is

unable to catch phase errors and the GHZ states do not use phase anywhere in the

algorithm.

4.1 Motivation

The Gottesman-Knill Theorem [60] states that any quantum circuit composed

of gates entirely from the Clifford group can be efficiently simulated on a classical

computer. The Clifford group can be generated by the following set of gates [61]

Cx =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, H =

1√
2

 1 1

1 −1

 , S =

 1 0

0 i

 (203)

(this includes the Pauli matrices). Thus, any quantum circuit that uses only these

gates is unable to provide anything other than a polynomial speedup versus a classical

computer. While this may suffice for some applications, it illustrates the importance

general phase gates have for quantum algorithms.

In order to further develop NAED, we found it necessary to investigate codes

which can detect phase errors. In this chapter, we will describe three different codes,

78

the process we went through in creating them, and the types of errors they can and

cannot detect. Additionally, we will implement these codes on the circuit in Fig. 22

Figure 22: The P gate is a phase gate of phase ϕ and the probabilities of measurement

are given by P (|00⟩) = cos(ϕ/2)2 and P (|10⟩) = sin(ϕ/2)2.

This circuit is important because unlike the GHZ circuits used in the bit-flip encoding,

this circuit utilizes phase in an appreciable manner. Performing the matrix math and

simplifying, we find that the probability of measuring |00⟩ is given by cos(ϕ/2)2 while

the probability of measuring |10⟩ is given by sin(ϕ/2)2. Here, ϕ is the phase of the

phase gate P .

4.2 XY, YZ, and ZX encodings

The bit-flip error detection code can detect any error except for phase errors.

Although simple, it easily expanded to a large number of physical qubits per logical

qubit and has a well designed process for implementation. In fact, the bit-flip error

detection can be thought of as a generalization of a 2-qubit code we call the XY code.

This code is named to symbolize that it can detect σx errors and σy errors but not

σz errors. In a similar manner, we have also developed YZ and ZX encodings.

4.2.1 The XY encoding

The XY encoding is a specific form of the bit-flip encoding where Q = 2 and

S = {0}. This gives the logical states

79

|0⟩L = |01⟩ and |1⟩L = |10⟩ (204)

In order to show which errors this encoding can and cannot detect, we complete the

following procedure:

• Let M ∈ χ(XY) be given by M =



0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1


.

• Compute both S0 and S1 (equations 99 and 100) in

M †(U ⊗ I2)M =

 Q0 R0

S0 T0

 (205)

M †(I2 ⊗ U)M =

 Q1 R1

S1 T1

 (206)

where U is the most general 2× 2 (up to a phase) unitary matrix given by

U =

 cos
(
θ
2

)
−eiϕ sin

(
θ
2

)
eiλ sin

(
θ
2

)
cos

(
θ
2

)
eiλ+iϕ

 (207)

• Recall the function f(A) (equation 208) defined as

f


 a b

c d


 = |a|2 + |b|2 + |c|2 + |d|2 (208)

Compute

80

f(S0)f(S1) = 4 sin

(
θ

2

)4

(209)

We call this the functional equation of the encoding XY and it is equal to 0 if

and only if at least one of S0 and S1 is the zero matrix. That is, the functional

equation is equal to 0 if and only if U is an error of XY.

• Solving the functional equation for 0 in terms of (θ, λ, ϕ) we find

ErrorXY =

 1 0

0 eiτ

 (210)

for any τ ∈ R.

We can also describe how to encode, decode, and create logical gates for the XY

encoding. In Fig. 23 we show circuit diagrams for each of these objects.

Figure 23: The physical gates used for encoding (A), L(U) (B), L(Cx) (C), and

decoding (D) for the XY encoding. Notice that the decoding step is blank as the

logical states are valid final states.

The encoding step A) is a σx gate on the second physical qubit, the L(U) gate B) is

81

given by a physical U gate and two Cx gates, the L(Cx) gate is given by a σx gate and

two Cx gates, and the decoding step is blank as the logical states given in equation

204 also function as final states.

4.2.2 The YZ encoding

As the name suggests, the YZ encoding can detect σy and σz errors but not σx

errors. It is given by the code words

|0⟩L =
1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩)

|1⟩L =
1

2
(|00⟩+ |01⟩ − |10⟩ − |11⟩) (211)

Working through a similar set of steps as above reveals that the functional equation

is given by

0 = (1− cos(θ) cos(λ) cos(ϕ) + sin(λ) sin(ϕ))2 (212)

Solving this in terms of (θ, λ, ϕ) give two solution sets: (0,−τ, τ) and (π, τ, τ + π) for

any τ ∈ R. The first of these gives the matrix I2, an ignorable error. The second one

gives us our error

ErrorY Z = eiτ

 0 1

1 0

 = eiτσx (213)

In Fig. 24 we also display the circuit diagrams for the various elements needed

for the YZ encoding. The encoding step A) uses two Hadamard gates and a σx gate,

the logical U gate B) uses two physical Cx gates and various U3 gates, the logical Cx

uses two physical Cx gates and various single qubit gates, and the decoding step D)

uses two Hadamard gates.

82

Figure 24: The physical gates used for encoding (A), L(U) (B), L(Cx) (C), and

decoding (D) for the YZ encoding.

Of particular note, the 4 × 4 matrix defined for the encoding step above is not in

χ(Y Z). Written out, it is given by

EncodingY Z = (H ⊗H)(I2 ⊗ σx) =



1
2

1
2

1
2

1
2

−1
2

1
2

−1
2

1
2

1
2

1
2

−1
2

−1
2

−1
2

1
2

1
2

−1
2


̸∈ χ(Y Z) (214)

Still, this is a valid encoding matrix since the first column is equal to |0⟩L and each

logical qubit starts in the |00⟩ state.

4.2.3 The ZX encoding

The final encoding we shall investigate is the ZX encoding given by

|0⟩L =
1

2
(|00⟩ − i|01⟩+ i|10⟩+ |11⟩)

|1⟩L =
1

2
(|00⟩+ i|01⟩ − i|10⟩+ |11⟩) (215)

The functional equation for this encoding is similar to the YZ encoding

83

0 = (1− cos(λ) cos(ϕ) + cos(θ) sin(λ) sin(ϕ))2 (216)

Solving this equation gives us the error

ErrorZX = eiτ

 0 −i

i 0

 = eiτσy (217)

In Fig. 25 we display the circuit diagrams for the encoding, decoding, and logical

gates of the ZX encoding. The matrix S is defined as

S =
1√
2

 1 −i

1 i

 (218)

but otherwise the elements are identical to the YZ encoding.

Figure 25: The physical gates used for encoding (A), L(U) (B), L(Cx) (C), and

decoding (D) for the ZX encoding. S is the matrix given in equation 218.

In fact, all three of these encodings can be described in much the same way: if we

replace S in Fig. 25 with Hadamard gates, we get the YZ encoding. If we replace it

with identity gates, we get the XY encoding.

84

4.2.4 General U ⊗ U encodings

So far we have presented three two qubit encodings, ways to encode and decode

them, logical gates associated with them, and which errors they are unable to detect.

Generalizing this idea, let us define a general encoding G with logical states

|0⟩L =
1

2
e−iλ0 sin (θ0) |00⟩+

1

2
(cos (θ0) + 1) e−i(λ0+ϕ0)|01⟩

1

2
(cos (θ0)− 1) e−i(λ0+ϕ0)|10⟩ − 1

2
sin (θ0) e

−i(λ0+2ϕ0)|11⟩ (219)

|1⟩ = 1

2
e−iλ0 sin (θ0) |00⟩+

1

2
(cos (θ0)− 1) e−i(λ0+ϕ0)|01⟩

1

2
(cos (θ0) + 1) e−i(λ0+ϕ0)|10⟩ − 1

2
sin (θ0) e

−i(λ0+2ϕ0)|11⟩ (220)

To get the circuit elements, let S in Fig. 25 be given by the general matrix

S =

 cos
(
θ0
2

)
−eiϕ0 sin

(
θ0
2

)
eiλ0 sin

(
θ0
2

)
cos

(
θ0
2

)
eiλ0+iϕ0

 (221)

Then the functional equation of G is given by

0 =
1

16

[
4 sin2 (θ0) sin (ϕ0 − ϕ1) sin (λ1 + ϕ0) + cos (θ1)

(
4 sin2 (θ0) cos (ϕ0 − ϕ1) cos (λ1 + ϕ0) + 2

)
+2 sin (2θ0) sin (θ1) (cos (ϕ0 − ϕ1)− cos (λ1 + ϕ0))

+ cos (2θ0 − θ1) + cos (2θ0 + θ1)− 4]2 (222)

with a non-detectable error of

ErrorG =

 cos
(
θ1
2

)
−eiϕ1 sin

(
θ1
2

)
eiλ1 sin

(
θ1
2

)
cos

(
θ1
2

)
eiλ1+iϕ1

 (223)

Interestingly, the variable λ0 does not appear in the functional equation.

85

4.2.5 Catastrophic cancellation and barriers

Although mathematically sound, the YZ and ZX encodings present an issue when

used for error detection. When implemented without any extra precautions, the

native qiskit back end will force catastrophic cancellation. Catastrophic cancellation

is less an issue with NAED than the native IBM qiskit compiler. Unless one manually

implements every physical gate and timing in a circuit, the compiler will attempt to

perform simple cancellations where possible. Although normally good practice, this

can be detrimental when trying to implement NAED. For example, in Fig. 26 we

have implemented a bell circuit using the YZ encoding.

Figure 26: The bell circuit implemented using the YZ encoding without simplification.

The problem is that qiskit will naturally cancel the Hadamard gates, leaving the

circuit in Fig. 27.

86

Figure 27: The bell circuit implemented using the YZ encoding with catastrophic

cancellations of the Hadamards.

This circuit is exactly the same as if we had implemented the XY encoding, removing

any possible advantages the YZ encoding might have given us. The solution to the

issue of catastrophic cancellation is to add barriers into the circuit between circuit

elements. This stops the compiler from performing catastrophic cancellation and

allows us to test different NAED encodings. Taking the YZ encoding of a bell circuit

from above, we now have the circuit diagram in Fig. 28

Figure 28: Barriers have been added between every circuit element. These include

logical gates, encoding, and decoding.

Barriers have been placed between the encoding step, the logical gates, and the de-

coding step. In the next section, we will use this technique to test the XY, YZ, and

ZX encodings on a phase dependent circuit.

87

4.3 Experiment design

As previously stated, we will implement the XY, YZ, and ZX encodings on the

circuit in Fig. 22 as well as an unencoded circuit as a control. Without any encodings,

this circuit in matrix form is

Circuit = (H ⊗ I2)Cx(P (ϕ)⊗ I2)Cx(H ⊗ I2) (224)

Here, P (ϕ) is a phase gate of angle ϕ which is our independent variable and will be

varied from 0 to 2π. Specifically, ϕ will be taken from the set

S =

{
2π · 0
200

,
2π · 1
200

,
2π · 2
200

, ...,
2π · 199
200

}
(225)

To implement any of the XY, YZ, or ZX encodings, replace every gate in Fig.

22/Equation 224 with the corresponding logical gates from Figs. 23, 24, and 25.

Additionally, add barriers between every layer in the circuit to avoid catastrophic

cancellation. For example, for the YZ encoding we have the Fig. 29

88

Figure 29: The full YZ circuit for implementation. The P gate is a phase gate with

input ϕ ∈ S.

where the P gate is a phase gate with input ϕ ∈ S. We then implement these circuits

on ibmq montreal [62] according to the following procedure

1. Encode the circuit using the XY encoding

2. For each angle in S, submit the circuit at optimization level 3 for 213 shots

3. Tabulate the similarity measure before and after applying NAED

4. Repeat 1)− 3) for the YZ and ZX encodings

5. Repeat 1)− 2) for the unencoded circuits

6. Tabulate the similarity measure

7. Repeat 1)− 6) 20 times and average the results

Overall, this experiment uses the quantum computer over 130 million times.

89

4.4 Results and analysis

Before performing NAED, the average similarities came out to

Figure 30: The average similarities before performing NAED compared to the unen-

coded circuit.

Taking another average can give us a picture of the overall performance of each

experiment. These averages of averages are presented in Table 4:

Encoding Average
XY 0.837
YZ 0.798
ZX 0.791
None 0.978

Table 4: The mean of the average similarities for the XY, YZ, ZX, and unencoded
circuits without performing NAED.

After performing NAED, the average similarities were

90

Figure 31: The average similarities after performing NAED compared to the unen-

coded circuit. The amount of runs kept per encoded circuit is also shown.

Figure 32: The previous plot with a smaller y-axis.

There has clearly been a large increase in similarity although we had to sacrifice 15%

to 20% of the total number of runs. Computing the averages again gives use the data

in Table 5:

91

Encoding Average
XY 0.971
YZ 0.958
ZX 0.931
None 0.978

Table 5: The mean of the average similarities for the XY, YZ, ZX, and unencoded
circuits after performing NAED.

For these encoded circuits, the average increase in similarity is .144.

The plots in Fig. 32 seem to be following some 2π periodic curve: the function

f(ϕ) = 1− |a sin(ϕ− b)| (226)

seems to be a good fit. We can find a and b by minimizing a linear L1 fitting which

produces the following four functions:

Figure 33: The function f(ϕ) = 1− |.043 sin(ϕ− 1.391)| fitted against the XY exper-

imental data (with NAED).

92

Figure 34: The function f(ϕ) = 1− |.065 sin(ϕ− 4.042)| fitted against the YZ exper-

imental data (with NAED).

Figure 35: The function f(ϕ) = 1− |.108 sin(ϕ− 2.589)| fitted against the ZX exper-

imental data (with NAED).

93

Figure 36: The function f(ϕ) = 1− |.037 sin(ϕ− 2.094)| fitted against the unencoded

experimental data.

While the XY, YZ, and ZX fits work relatively well, it seems that the unencoded data

may be described by some other function. The average distance between the fitted

function and the data is presented below:

Encoding Average distance (×103)
XY 4.82
YZ 3.20
ZX 3.61
None 6.49

Table 6: The average absolute value between the fitted function and the experimental
data.

Obviously, none of the encoded circuits best the unencoded circuit on average.

However, it is clear that for certain angles, the encoded circuits with NAED produce

better similarities than the unencoded circuits. For example, at 4 radians both the XY

and YZ encodings perform better than the unencoded control circuit. This suggests

that while NAED is circuit dependent, at some angles there is phase error detection

occurring. Further study is needed to determine which angles correspond to which

94

phase error detections.

4.5 Conclusion

We experimented with a circuit which had phase hard wired into the final mea-

surement probabilities. Although the XY, YZ, and ZX encodings did not perform as

well as the bit-flip encoding did with the GHZ circuits in the previous chapter, we

still managed to show an increase in the similarities for certain angles. This suggests

that NAED can be viable but care must be taken to choose the right encoding for

the right circuit. Overall, these experiments showed that NAED can work for more

complicated circuits as well as correct phase errors in addition to bit-flip errors.

95

V. Improving QAOA using NAED

5.1 The quantum approximate optimization algorithm (QAOA)

The quantum approximate optimization algorithm (QAOA) is a noisy intermediate-

scale quantum algorithm designed to give approximate solutions to a wide range of

combinatorial optimization problems. First introduced in 2014 by Farhi and Gold-

stone [63], the algorithm takes advantage of both classical and quantum resources to

arrive at a desired answer. Although it is unable to solve NP-complete problems (that

anyone knows of), it is able to provide answers which approximate optimum solutions.

As a relatively simple algorithm, it has been studied a number of times by a large set

of researchers. These include many different foundational studies [64, 65, 66], simula-

tions [67, 68, 69, 70], and experiments on physical machines [71, 72]. In this section,

we will provide a brief overview of the algorithm as well as the specific problem we

will be implementing for our experiments.

5.1.1 Combinatorial optimization problems

Consider the set S = {0, 1, ..., 2n − 1} for some n ∈ N and some finite set of

functions Ci : S → {0, 1} (for 1 ≤ i ≤ m). In general, the goal in combinatorial

optimization is to find the maximum of

C(s) =
m∑
i=1

Ci(s) (227)

This function is called the cost function and the individual Ci functions are called

the individual clauses of the cost function. For example, one might have n = 3 and

the clauses

96

C1 =


1 if s2 = 1

0 if s2 = 0

(228)

C1 =


1 if s1s0 = 1

0 if s1s0 = 0

(229)

where the si are the binary digits of s (s = 22s2 + 21s1 + 20s0). Writing out all

possibilities in the following cost function table

Input s (in binary) C1(s) C2(s) C(s)
000 0 0 0
001 0 0 0
010 0 0 0
011 0 1 1
100 1 0 1
101 1 0 1
110 1 0 1
111 1 1 2

Table 7: All possible inputs and outputs for the cost function. This function is
maximized at s = 7.

it is clear that s = 7 maximizes C(s).

Of course, any problem with a set number of clauses is ultimately uninteresting.

Normally, as the problem size increases the number of possible inputs will increase

exponentially while the number of clauses will increase polynomially. One such ex-

ample is the dominating set problem (DSP). The DSP is an NP-complete problem

[73] which asks: what is the minimum number of vertices required to ’dominate’ a

given graph. We say that a vertex set W dominates a graph if every vertex in the

graph is connected to a vertex in W (every vertex is self-connected). Fig. 37 and 38

provide a visual explanation of this concept.

97

Figure 37: W = {4} does not dom-

inate this graph since 0 is not con-

nected to 4.

Figure 38: W = {0, 4} does dominate

this graph since 1, 2, 3 are connected

to 4 and 0 is connected to 0.

For the sake of notation, we will split the clauses associated with the DSP into

two categories: Ti(s) and Di(s). For n nodes, the input space is s ∈ {0, 1, ..., 2n − 1}

and the clauses are defined as

Ti(s) =

 1 if the ith nodes is connected to some kth node where sk = 1

0 if otherwise
(230)

Di(s) =

 1 if si = 0

0 if si = 1
(231)

From these clauses, we see that the number of inputs is given by 2n while the number

of clauses is given by 2n.

5.1.2 Implementing QAOA

It is instructive to present QAOA from a purely theoretical perspective. Suppose

that we have a combinatorial optimization problem withm clauses Ck(s) on 2n inputs.

The independent variables are a set of p angles {γi : 1 ≤ i ≤ p} and a set of p angles

98

{βi : 1 ≤ i ≤ p}. However, since increasing p simply refines any answer one might

get, we will stick with p = 1 for the rest of this chapter. For the sake of notation,

denote γ1 = γ and β1 = β. To begin, define

UC(γ) =
m∏
k=1

exp(−iγCk) (232)

where Ck is an n× n diagonal matrix where the rth diagonal entry is 1 if Ck(r) = 1

and 0 otherwise. With the product over every clause, the matrix UC(γ) becomes a

diagonal matrix where the rth diagonal is given by e−iγC(r). For the angle β, define

UB(β) =

 cos(β) −i sin(β)

−i sin(β) cos(β)


⊗n

(233)

With these matrices defined, we can fully describe QAOA. In matrix notation, it is

given by

|ψ⟩ = UB(β)UC(γ)H
⊗n|0⟩⊗n (234)

where (γ, β) ∈ [0, 2π] × [0, π/2]. As an aside, note that we have not described how

to implement matrices of the form exp(−iγCk) as in general it is problem dependent.

However, since the general case is not needed for our experiments, we shall describe

how to implement our specific problem instance in the next section.

Run the circuit described in Equation 234 for some angles (γ, β) for a ’large’

number of shots. At measurement, each qubit corresponds to a bit of a number

and each possible measurement result over all n qubits corresponds to a value in

{0, 1, ..., 2n − 1}. Using these results, calculate

fN(γ, β) =
1

N

2n−1∑
i=0

aiC(i) (235)

99

where N is the total number of shots run and ai is the total number of times i

(in binary) is measured. While this may appear to take an exponential number of

operations, the vast majority of ai will be 0 and as such this quantity can be calculated

in polynomial time.

In the limit as the number of shots goes to infinity, this function fN(γ, β) becomes

lim
N→∞

fN(γ, β) = lim
N→∞

2n−1∑
i=0

ai
N
C(i)

=
2n−1∑
i=0

lim
N→∞

ai
N
C(i) =

2n−1∑
i=0

P (|i⟩)C(i) = f∞(γ, β) (236)

which is continuous over the space (γ, β) ∈ [0, 2π]× [0, π/2]. The goal of the classical

computation portion of QAOA is to find angles (γ, β) which maximize this function.

Once such a maximum has been found (or a set of angles that one believes to be the

maximum) at some angles (γ, β), then QAOA is run one more time at these (γ, β).

After the desired number of shots have been performed, every measured outputs is

fed into the original cost function. Whichever measured r produces the largest C(r)

is declared to be the s which maximizes C(s) for s ∈ {0, 1, ..., 2n − 1}.

5.1.3 The maximum cut problem (MCP)

Suppose you have some graph for which you split up the vertices into two vertex

sets. The maximum cut problem (MCP) asks how many edges is possible between

the two vertex sets and the decision problem version is know to be NP-complete [74].

For example, suppose we color some vertices red (to represent being in one of the

vertex sets) in the graphs in Fig. 39 and 40:

100

Figure 39: Choosing nodes 2 and 4 re-

sults in a score of three: edges 0 − 1,

1− 4, and 3− 4.

Figure 40: Choosing nodes 0 and 4 re-

sults in a score of six as all edges are

between vertices of different colors.

The clauses associated with the MCP are very simply: there are exactly as many

clauses as edges and they are defined as

C(u,v)(s) =

 1 if su ̸= sv

0 if su = sv

(237)

Basically, each clause is 1 if the two nodes an edge connects are in different vertex

sets and 0 otherwise.

Finally, we need to implement the UC(γ) gate associated with the MCP (from

equation 232). To this end, we will demonstrate how to implement exp(−iγC(u,v))

and from there the general gate follows. Consider the circuit given by

Figure 41: The physical gates used to encode exp(−iγC(u,v)). Here, the top qubit is

qubit u and the bottom qubit is qubit v. The P gate has phase −γ.

Here, the top qubit represents qubit u, the bottom qubit represents qubit v, and the

101

phase gate has phase −γ. In matrix notation, this circuit is given by



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



 1 0

0 1

⊗

 1 0

0 e−iγ





1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



=



1 0 0 0

0 e−iγ 0 0

0 0 e−iγ 0

0 0 0 1


= exp


−iγ



0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




= exp(−iγC(u,v)) (238)

This analysis can be extended for the general UC(γ) gate. For example, for the graph

given in Fig. 42

Figure 42: A graph with four nodes.

the UC(γ) gate is given by Fig. 43

102

Figure 43: The UC(γ) gates associated with the graph in Fig. 42. The phase gates

have phase −γ. Each qubit qi corresponds to node i in the graph.

Putting everything together, the QAOA circuit for the graph in Fig. 42 is given by

Figure 44: The full QAOA circuit for the graph in Fig. 42. A) is the H⊗4 gates, B)

is the UC(γ) gate, C) is the UB(β) gate where each U gate is given in equation 233,

and D) are the measurements.

Here, section A) is the H⊗4 gates, B) is the UC(γ) gate, C) is the UB(β) gate (given

in equation 233), and D) are the measurements.

5.1.4 Review of masters thesis results

In this section we will review work previously done testing QAOA with the max

cut problem. These experiments were run on the 20 qubit ibmq poughkeepsie [62]

machine represented in Fig. 45

103

Figure 45: The 20 qubit machine ibmq poughkeepsie. Before being decommissioned

in 2020, it had a quantum volume of 8.

Before being decommissioned in 2020, it had a quantum volume of 8 [75] representing

a space of three working qubits. 26 graphs were investigated in these experiments:

all connected graphs with 5 or less edges and four connected graphs with 6 edges.

For example, the 13th graph we tested is presented in Fig. 46. For diagrams of all 26

graphs, see Appendix A.

Figure 46: Graph 13

To test QAOA, the input space was subdivided into 121 angles sets

(γ, β) ∈ W =

{
2π · 0

10
, 2π · 1

10
, ..., 2π · 10

10

}
×
{
π

2
· 0

10
,
π

2
· 1

10
, ...,

π

2
· 10
10

}
(239)

104

For each of these elements inW the associated QAOA circuit was run on Poughleepsie

for 213 shots at optimization level 3, producing a PDF PEx(γ, β). Additionally, this

QAOA circuit was also run on the IMBQ simulator producing a PDF PSim(γ, β).

These PDFs were then compared and a final similarity was found for each graph and

pair of angles. After getting a similarity for every pair of angles, the average is taken

for a final similarity. These similarities are presented in Fig. 47.

Figure 47: The average similarities for the QAOA circuits run on Poughkeepsie as

compared to the QAOA circuits run on the IBMQ simulator. Note that graph number

corresponds to the graph numbers presented in Appendix A.

The graph number in the x-axis denotes the graph numbers presented in Appendix

A. Although this is not indicative of any particular graph property increasing other

than the number of edges, it is clear that as the graph number increases the average

similarity µ(PEx, PSim) generally decreases.

5.2 Experiments run

The QAOA algorithm is susceptible to both phase and bit-flip errors. As such,

it is a useful circuit to fully test NAED. This section will detail the encodings used,

105

the different experiments ran, as well as some experiments that could not be com-

pleted. All experiments were run on ibmq montreal. This computer has 27 physical

qubits, a quantum volume of 128 (corresponding to 7 working qubits) and a topology

represented in Fig. 48 [62].

Figure 48: The topology of ibmq montreal. This machine has 27 qubits and a quantum

volume of 128.

Like the previous chapter, we will encode QAOA circuits using the XY, YZ, and

ZX encodings. The following sections will follow a set pattern: a specific experiment

will be described, any interesting notes will be detailed, and the final average sim-

ilarities will be shown. Overall, a grand total of 150 million shots were run on the

quantum computer

5.2.1 Comparing 2019 and 2022 results

The first thing we did was repeat the experiments run on Poughkeepsie on Mon-

treal. With an increase in quantum volume from 8 to 128, we expected to see an

overall increase in the average similarity measure of the QAOA circuits. Indeed, this

is exactly what we found

106

Figure 49: A comparison of average similarities between 2019 Poughkeepsie (quan-

tum volume 8) and 2022 Montreal (quantum volume 128). Montreal outperformed

Poughkeepsie on every graph.

Montreal outperformed Poughkeepsie on every graph and the average similarity in-

crease was 0.076. This is evidence that the IBMQ machines have indeed improved

over subsequent generations of machines.

5.2.2 Implementing XY, YZ, and ZX encodings

In a previous chapter, we detailed the XY, YZ, and ZX encodings (sections 4.2.1,

4.2.2, and 4.2.3). These encodings were then implemented for every graph and associ-

ated QAOA circuit. To do this, the gates in the unencoded circuit were replaced with

logical versions from each encoding (Fig. 23 through 25) and barriers were added

between each logical gate to prevent catastrophic cancellation. These circuits were

then run at each pair of angles in W (equation 239) at optimization level 3. The

average similarity between the experimental PDF and the simulated PDF without

error detection is shown in Fig. 50.

107

Figure 50: The average similarity for the encoded QAOA circuits without performing

error detection.

While it is rather interesting that the XY encoding does the best overall, each one of

the three encodings does extremely poorly. However, after performing error detection,

the average similarities becomes

Figure 51: The average similarity for the encoded QAOA circuits after performing

error detection.

108

It seems that the YZ and ZX encodings perform roughly the same. Indeed, the

average distance between the similarities is 8.2 · 10−3. Unfortunately, there is not an

immediate pattern apparent that describes when the XY encoding beats the other

two encodings. See section 5.3.2 for more analysis of this phenomenon.

5.2.3 No encodings with barriers

Finally, the QAOA circuits were run without encoding but with barriers every

layer of the circuit. For example, the circuit in Fig. 52 becomes

Figure 52: The circuit in Fig. 52 with added barriers in each layer.

The reason for these barriers is to ’level the playing field’ between the unencoded

circuits and the encoded circuits since the encoded circuits have barriers each layer to

prevent catastrophic cancellation. However, this advantage is purely an artifact of the

IBMQ compiler and does not represent an inherent advantage that the unencoded

circuit enjoys over an encoded circuit. We believe that for this reason this is a

reasonable experiment to run to get a better understanding of the differences between

the encoded and unencoded circuits. Running these QAOA circuits at optimization

109

level 3 an averaging over the angle pairs produces Fig. 53

Figure 53: The unencoded QAOA circuits, both with and without barriers every

layer.

Every QAOA circuit saw a decrease in the similarity, with an average decrease of

0.041. This is to be expected as adding barriers at every layer forces a less efficient

optimization during the compilation of the circuit.

5.2.4 Failed experiments

Unfortunately, there were several experiments which were planned but could not

be fully executed due to compiler issues. The first such experiment was attempting

to simplify QAOA circuits encoded with the XY encoding. As an example, consider

the QAOA circuit associated with the K2 graph

110

Figure 54: The QAOA circuit associated with the K2 graph.

Encoding the circuit using the XY encoding transforms this into the circuit in Fig.

55

Figure 55: The QAOA circuit from Fig. 54 with the XY encoding.

The idea to simplify the circuit would proceed thusly: remove the barriers and

combine any sets of gates which simplify to the identity gate. After such a simplifi-

cation, the circuit became

Figure 56: The QAOA circuit from Fig. 55 simplified.

This would obviously greatly reduce the number of overall gates. Just in this example,

the Cx count went from 14 Cx gates to 8 Cx gates.

111

Unfortunately we were not able to run these circuits for all the graphs. Optimiza-

tion level 3 represents the most intensive optimization that IBM offers for quantum

circuits and in order to prevent the wasting of computing resources, IBM puts a hard

cap on the number of optimizations allowed by the compiler. Graphs with 4 nodes (8

nodes when encoded) began to hit this hard cap and could not be implemented by the

compiler. It seems that removing barriers and simplifying creates a large additional

overhead that would otherwise not appear. Overall, we were only able to actually

experiment on 5 of the 26 total graphs.

There were some additional graphs we wished to add to the experiments described

above. These graphs included various graphs with 8, 10 and 12 node graphs. Un-

fortunately, we encountered the same problem as the simplified XY code. For both

the unencoded QAOA circuits and the encoded QAOA circuits (with barriers) we hit

the hard limit on the compiler and were unable to implement the circuits. It would

seem that any further testing has to take place with at least optimization level 2 as

7-8 qubit QAOA circuits seems to be about the compiler limit.

5.3 Results and analysis

5.3.1 Analysing by angle

Above, we presented results after averaging over all 121 angle pairs in the input

space. It is useful though to analyse the data for every individual input. Below in

Fig. 57 and Fig. 62 we provide the results for graph 9 by angle. The left figure is

a comparison between the XY, YZ, and ZX encodings, where each square represents

which encoding had the highest similarity measure. The right figure is a comparison

between the XY, YZ, ZX, and no encoding (with added barriers). Additionally, recall

that the goal of QAOA is to maximize the function in equation 236. The red dots on

each plot represent where this function is maximized for this particular graph. For

112

all results by graph, see Appendix B.

Figure 57: Graph 9 results (just en-

codings). The red dot represents

an approximate maximum of equation

236.

Figure 58: Graph 9 results (with unen-

coded circuits). The red dot represents

an approximate maximum of equation

236.

Without the addition of the unencoded circuits 22 of the maximums occur where

XY performs the best, 18 occur where YZ performs the best, and 24 occur where

ZX performs the best. Including the unencoded circuits produces a dramatically

different result: the XY covers a single maximum, the YZ covers 3 maximums, the

ZX covers 2 maximums, while the circuits without encodings performed best at 58

maximums. However, we caution that this is not exhaustive proof that no encodings

should ever be used. Indeed, 22 out of the 26 graphs had the peak lie in domain

corresponding to (γ, β) = (0.62, 0.31). It is reasonable to suspect that this is simply

an artifact of the small graphs we have used. If not, then solving the max cut problem

would become possible rather than just approximating a solution. Simply start the

search near (0.62, 0.31) and you would be guaranteed to maximize equation 236.

Unfortunately, most believe that this is not possible [76]. Although it is not known

whether quantum computers can solve NP-complete problems, the general consensus

is that they probably cannot. Of course, the lack of proofs one way or the other does

113

not deter some and this topic is an active area of research [77].

5.3.2 XY versus YZ/ZX encodings

After discussing in the last section why one pattern can probably be ignored

for these small graphs, we will now present a different pattern that we hope might

continue to larger graphs. Consider the results and associated graphs below:

Figure 59: For graph 21 XY beats out

YZ and ZX.

Figure 60: Graph 21 has no cycles.

Figure 61: For graph 22 XY loses to

YZ and ZX.

Figure 62: Graph 22 has one cycle.

From a glance, it is obvious that for graph 21, the XY encoding greatly outperforms

114

the YZ and ZX encodings. In the same way, for graph 22 the YZ and ZX encodings

outperform the XY encoding. A quick count confirms this: in graph 21 the XY

encoding performs the best for 104 of the inputs (out of 121), for graph 22 it performs

the best for 26 of the inputs. We see this type of pattern repeated throughout the

experiments where highly connected graphs see greater success with YZ and ZX

encodings while tree graphs see greater success with XY encodings.

To formalize this notion count the number of K3 subgraphs each graph has (see

Fig. 65). Next, compare the number of input angles (γ, β) for which XY has the

highest similarity versus the number of inputs for which either of YZ or ZX have the

highest similarity. This produces Fig. 63.

Figure 63: The y-axis is the number of K3 subgraphs in each graph (the x-axis). The

color is red if XY has the most input angles (γ, β) with the highest similarity and

blue otherwise.

The XY encoding only performed best on the majority of inputs for graphs without

any K3 subgraphs. The YZ or ZX encodings performed best on the smallest graphs

as well as graphs with K3 subgraphs.

What could be the cause of this behavior? Be tentatively believe it might be due

to the encoded states resulting from 3 cycles versus the encoded states resulting from

115

tree graphs. Consider the following graphs:

Figure 64: Graph 3, a graph with no

3 cycles.

Figure 65: Graph 4, theK3 graph with

a single cycle of length 3

In QAOA, these graphs implement the UC(γ) matrix (equation 238) as follows:

Figure 66: The QAOA implementation of the UC(γ) matrix from equation 238 for

graph 3.

Figure 67: The QAOA implementation of the UC(γ) matrix from equation 238 for

graph 4.

116

The implementation for graph 3 is a cascading chain of gates while the implementation

for graph 4 loops around back on itself. This pattern repeats for any implementation

of any graph, and it is this feature which we tentatively believe leads to the results

seen in Fig. 63.

Unfortunately, this behavior dissapears when using a different perspective. If

instead of counting how many input angles each encoding excels at we instead average

the similarities over all inputs, we get Fig. 68 below:

Figure 68: The y-axis is the number of K3 subgraphs in each graph (the x-axis). The

color is red if the XY encoding has a higher average similarity over the YZ and ZX

encodings (blue otherwise).

With this, we cannot say what pattern (if any) in this data may or may not continue

to larger graphs. To investigate this, one would need to experiment on graphs with

a much higher number of K3 subgraphs as well as many more tree graphs. At this

point, we are unable to continue these experiments due to the limitations of the IBMQ

compiler at optimization level 3.

117

5.4 Combing XY encoding with unencoded results

So far, the unencoded circuit has bested the encoded circuits for almost every

graph as shown in Fig. 69.

Figure 69: A comparison of the average similarities between the XY, YZ, ZX encod-

ings and no encoding (with barriers). No encoding is greater for every graph except

graph 15.

Ignoring graph 15, the average increase from the maximum average similarity of the

encoded circuits to the unencoded circuits is 0.071. However, it is possible to increase

the average similarity using an encoded circuit if we only take specific angles. Suppose

for each angle input we do the following: check which region (γ, β) lies in Fig. 70

below

118

Figure 70: When combining the XY and unencoded circuits, if an input (γ, β) is in

the green regions then use the XY encoding. If not, then use no encoding.

If a particular (γ, β) lies in any of the XY regions above, then use the XY encoding for

the QAOA circuit. If not, then do not encode the circuit. Afterwards, perform NAED

on any results from encoded circuits and combine the results of the encoded and

unencoded circuits. Doing this for every graph and computing the average similarity

gives us Fig. 71

Figure 71: The average similarity for the combined XY and unencoded circuits. After

graph 7, the combination performs better than the unencoded circuit on its own.

119

After graph 7, the combination of the XY and unencoded circuits outperforms the

unencoded circuit on its own. The average increase in similarity is 0.021.

5.5 Conclusions

Throughout these QAOA experiments we have sent over 150 million shots to the

IBMQ quantum computers, including 6 different experiments over 2 different ma-

chines. First, it is plain to see that the quantum computers have indeed gotten better

with upgrades. The initial experiments were run on ibmq poughkeepsie (quantum

volume 8) while the later experiments were run on ibmq montreal (quantum volume

128). This sizable increase in quantum volume only increased the similarity on av-

erage by 0.076. Next, we attempted to increase the average similarities using the

XY, YZ and ZX encodings. There might be some behavior regulating which of these

encodings is most desirable to use for a particular graph but further testing on much

larger graphs is needed to confirm this. Overall, the encoded circuits did not best

the unencoded circuit. This held true even if barriers were added to the unencoded

circuit to level the playing field in the compiler. However, we were able to get an

improvement through a combination of the XY encoding and the unencoded circuits.

Through a clever selection based on input angle, we were able to increase the average

similarity by 0.021 for all but the seven smallest graphs. This shows that while angle

dependent, NAED can still provide a boost over circuits run without error detection.

120

VI. Overall results, conclusions, and future work

We began this document off by defining NAED and investigating some interesting

mathematics associated with this error detection scheme. We showed that in the

strictest sense, it is impossible to encode two physical qubits to detect any possible

error and that all flawless encodings must necessarily use three physical qubits (and

provided an example of such an encoding). However, if one relaxes assumptions

slightly, then it is possible to encode two physical qubits such that the resulting

encoding can detect all possible errors except for a set of measure zero. Unfortunately,

any such encoding requires at least two or more Cx gates. In fact, any near-flawless

encoding regardless of the number of physical qubits requires at least two Cx for

implementation.

Of course, many interesting mathematical problems still exist. For example, do

there exist ”flawless” logical gates. These logical gates would have the property that

for any error that might occur in the implementation of the logical gate, the output

state is sent to the error set instead of the code set. Realistically, it seems difficult

to imagine that such a set of gates exists but this could be due to the small sizes of

the encodings investigated in this document. If such a set of logical gates does exist

it is likely that the size of the encoding is large, perhaps on the order of dozens of

physical qubits.

The first main experiment we ran was NAED on GHZ circuits. We described

generalized encodings and logical gates, and used these encodings to run five GHZ

circuits with four different sized encodings (as well as an unencoded control). Overall,

over 45 million shots were sent to the quantum computers. We found that NAED

could greatly increase the similarities of the GHZ circuit, with an improvement for

all encodings except the case where one logical qubit was encoded by five physical

qubits. These results reassured us that NAED could be a viable method for improv-

121

ing quantum circuits. In future experiments, it might be interesting to rerun this

experiment using a different encoding. Obviously, the GHZ states do not depend on

phase, so we would hypothesize that phase detection encodings would perform worse

overall.

Since phase is an integral part of quantum computing, it was necessary to test

NAED on circuits for which phase played an important role. Thus, we developed a

toy circuit with output probabilities directly dependent on an interior phase gate. We

also developed XY, YZ, and ZX encodings which provided two advantages: they were

simple to implement requiring no Cx gates and the errors that each encoding could not

detect were easy to describe. We ran our circuit for over 130 million shots using the

XY, YZ, and ZX encodings as well as an unencoded control circuit. After performing

NAED, the encoded circuits each beat the unencoded circuits at certain angles of the

input space. Although less convincing than the GHZ results, these results showed

that NAED could be used to improve circuits with phase dependence. Care should

be taken however as it seems that these encodings are highly circuit dependent. If

one wished, one could further explore these encodings and implement arbitrary U⊗U

encodings instead of I⊗I for the XY, H⊗H for the YZ, and S⊗S for the ZX. These

arbitrary encodings admit three degrees of freedom and would presumably work best

for specific angles depending on the encoding. Ideally, one would eventually be able

to infer at exactly which angles based off of the initial matrix U chosen.

The final experiment we performed was to improve the results from my masters

thesis. QAOA produces highly entangled circuits for solving combinatorial optimiza-

tion problems and originally we approximated solutions to the MCP for 26 graphs

using QAOA implemented on ibmq poughkeepsie. Continuing these experiments, we

ran the same circuits using the XY, YZ, and ZX encodings as well as two versions

of the unencoded circuit on the ibmq montreal machine. All together, over 150 mil-

122

lion shots were submitted in total. The XY encoding and YZ/ZX encodings showed

some interesting graph dependent results: the XY appears to perform better for tree

graphs while the YZ/ZX encodings appear to perform better for graphs with cycles.

Additionally, we were able to combine the XY encoding and unencoded circuit in a

particular way as to improve the overall similarity. While the results were not as

encouraging as the previous experiments, we were still able to use NAED to increase

the performance of the quantum computers. In future experiments, it would be in-

teresting to expand QAOA to larger and more complicated graphs. Of course, as the

graphs get larger the compiler begins to run into compilation issues, so it is likely

that these experiments would have to be ran at optimization level 2 or even 1.

Overall, we performed three main experiments while using the quantum computer

over 325 million times. Each experiment showed that NAED could be utilized in a

way that improved the overall performance of the quantum computer. However, the

second two experiments also showed that choosing the correct encoding is generally

circuit dependent. While interesting, more work is required to deduce how to include

these dependencies in future encodings.

123

VII. Appendix

7.1 Appendix A: Graph topologies

Figure 72: Graph 1 Figure 73: Graph 2

Figure 74: Graph 3 Figure 75: Graph 4

Figure 76: Graph 5 Figure 77: Graph 6

124

Figure 78: Graph 7 Figure 79: Graph 8

Figure 80: Graph 9 Figure 81: Graph 10

Figure 82: Graph 11 Figure 83: Graph 12

Figure 84: Graph 13 Figure 85: Graph 14

125

Figure 86: Graph 15 Figure 87: Graph 16

Figure 88: Graph 17 Figure 89: Graph 18

Figure 90: Graph 19 Figure 91: Graph 20

Figure 92: Graph 21 Figure 93: Graph 22

126

Figure 94: Graph 23 Figure 95: Graph 24

Figure 96: Graph 25 Figure 97: Graph 26

7.2 Appendix B: QAOA results by angle

Figure 98: Graph 1 results (just en-

codings). The red dot represents

an approximate maximum of equation

236.

Figure 99: Graph 1 results (with unen-

coded circuits). The red dot represents

an approximate maximum of equation

236.

127

Figure 100: Graph 2 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 101: Graph 2 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 102: Graph 3 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 103: Graph 3 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

128

Figure 104: Graph 4 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 105: Graph 4 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 106: Graph 5 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 107: Graph 5 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

129

Figure 108: Graph 6 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 109: Graph 6 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 110: Graph 7 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 111: Graph 7 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

130

Figure 112: Graph 8 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 113: Graph 8 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 114: Graph 9 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 115: Graph 9 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

131

Figure 116: Graph 10 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 117: Graph 10 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 118: Graph 11 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 119: Graph 11 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

132

Figure 120: Graph 12 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 121: Graph 12 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 122: Graph 13 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 123: Graph 13 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

133

Figure 124: Graph 14 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 125: Graph 14 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 126: Graph 15 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 127: Graph 15 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

134

Figure 128: Graph 16 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 129: Graph 16 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 130: Graph 17 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 131: Graph 17 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

135

Figure 132: Graph 18 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 133: Graph 18 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 134: Graph 19 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 135: Graph 19 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

136

Figure 136: Graph 20 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 137: Graph 20 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 138: Graph 21 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 139: Graph 21 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

137

Figure 140: Graph 22 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 141: Graph 22 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 142: Graph 23 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 143: Graph 23 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

138

Figure 144: Graph 24 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 145: Graph 24 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

Figure 146: Graph 25 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 147: Graph 25 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

139

Figure 148: Graph 26 results (just

encodings). The red dot represents

an approximate maximum of equation

236.

Figure 149: Graph 26 results (with un-

encoded circuits). The red dot rep-

resents an approximate maximum of

equation 236.

140

Bibliography

1. Paul Benioff. The computer as a physical system: A microscopic quantum me-

chanical hamiltonian model of computers as represented by turing machines.

Journal of Statistical Physics, 22(5):563–591, 1980.

2. Richard P. Feynman. Simulating physics with computers. International Journal

of Theoretical Physics, 21(6-7):467–488, 1982.

3. David Deutsch. Quantum theory, the church–turing principle and the universal

quantum computer. Proceedings of the Royal Society of London. A. Mathematical

and Physical Sciences, 400(1818):97–117, 1985.

4. David Deutsch and Richard Jozsa. Rapid solution of problems by quantum com-

putation. Proceedings of the Royal Society of London. Series A: Mathematical

and Physical Sciences, 439(1907):553–558, Dec 1992.

5. Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer. SIAM Journal on Computing,

26(5):1484–1509, 1997.

6. Clay Math Institute, https://www.claymath.org/millennium-problems, 2022.

7. Matthew Campagna, Lidong Chen, Özgür Dagdelen, Jintai Ding, Jennifer K.

Fernick, Nicolas Gisin, Donald Hayford, Thomas Jennewein, Norbert Lütkenhaus,

Michele Mosca, Brian Neill, Mark Pecen, Ray Perlner, Grégoire Ribordy, John M.

Schanck, Douglas Stebila, Nino Walenta, William Whyte, and Zhenfei Zhang.

Quantum safe cryptography and security: An introduction, benefits, enablers and

challengers. Technical report, ETSI (European Telecommunications Standards

Institute), June 2015.

141

8. Y. S. Nam and R. Blümel. Performance scaling of shor’s algorithm with a banded

quantum fourier transform. Phys. Rev. A, 86:044303, Oct 2012.

9. Alex Bocharov, Martin Roetteler, and Krysta M. Svore. Factoring with qutrits:

Shor’s algorithm on ternary and metaplectic quantum architectures. Phys. Rev.

A, 96:012306, Jul 2017.

10. Implementing shor’s algorithm on josephson charge qubits. Phys. Rev. A,

70:012319, Jul 2004.

11. Austin G. Fowler and Lloyd C. L. Hollenberg. Scalability of shor’s algorithm with

a limited set of rotation gates. Phys. Rev. A, 70:032329, Sep 2004.

12. Rolf Landauer. Is quantum mechanics useful? Ultimate Limits of Fabrication

and Measurement, page 237–240, Dec 1995.

13. Swamit S. Tannu and Moinuddin K. Qureshi. Not all qubits are created equal: A

case for variability-aware policies for nisq-era quantum computers. In Proceedings

of the Twenty-Fourth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS ’19, page 987–999, New

York, NY, USA, 2019. Association for Computing Machinery.

14. James N. Eckstein and Jeremy Levy. Materials issues for quantum computation.

MRS Bulletin, 38(10):783–789, 2013.

15. John Clarke and Frank K. Wilhelm. Superconducting quantum bits. Nature,

453(7198):1031–1042, 2008.

16. D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, and D.M.

Meekhof. Experimental issues in coherent quantum-state manipulation of trapped

atomic ions. Journal of Research of the National Institute of Standards and Tech-

nology, 103(3):259, 1998.

142

17. Jürgen Lisenfeld, Alexander Bilmes, Anthony Megrant, Rami Barends, Julian

Kelly, Paul Klimov, Georg Weiss, John M. Martinis, and Alexey V. Ustinov.

Electric field spectroscopy of material defects in transmon qubits. npj Quantum

Information, 5(1):105, Nov 2019.

18. R. Landauer. Irreversibility and heat generation in the computing process. IBM

Journal of Research and Development, 5(3):183–191, 1961.

19. Carlos Sab́ın, Borja Peropadre, Marco del Rey, and Eduardo Mart́ın-Mart́ınez.

Extracting past-future vacuum correlations using circuit qed. Phys. Rev. Lett.,

109:033602, Jul 2012.

20. C. D. Wilen, S. Abdullah, N. A. Kurinsky, C. Stanford, L. Cardani, G. D’Imperio,

C. Tomei, L. Faoro, L. B. Ioffe, C. H. Liu, A. Opremcak, B. G. Christensen, J. L.

DuBois, and R. McDermott. Correlated charge noise and relaxation errors in

superconducting qubits. Nature, 594(7863):369–373, Jun 2021.

21. Antti P. Vepsäläinen, Amir H. Karamlou, John L. Orrell, Akshunna S. Dogra, Ben

Loer, Francisca Vasconcelos, David K. Kim, Alexander J. Melville, Bethany M.

Niedzielski, Jonilyn L. Yoder, Simon Gustavsson, Joseph A. Formaggio, Brent A.

VanDevender, and William D. Oliver. Impact of ionizing radiation on supercon-

ducting qubit coherence. Nature, 584(7822):551–556, Aug 2020.

22. Antonio D. Córcoles, Jerry M. Chow, Jay M. Gambetta, Chad Rigetti, J. R.

Rozen, George A. Keefe, Mary Beth Rothwell, Mark B. Ketchen, and M. Stef-

fen. Protecting superconducting qubits from radiation. Applied Physics Letters,

99(18):181906, October 2011.

23. Asher Peres. Reversible logic and quantum computers. Phys. Rev. A, 32:3266–

3276, Dec 1985.

143

24. David DiVincenzo and Peter Shor. Fault-tolerant error correction with efficient

quantum codes. Physical Review Letters, 77(15):3260–3263, Oct 1996.

25. Daniel Gottesman. Class of quantum error-correcting codes saturating the quan-

tum hamming bound. Physical Review A, 54(3):1862–1868, Sep 1996.

26. Rainer Baumann. Quantum error correction (qec), 2003. Semesterthesis 2003.

27. E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne. Benchmarking quantum

computers: The five-qubit error correcting code. Phys. Rev. Lett., 86:5811–5814,

Jun 2001.

28. C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P. Gaebler,

D. Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown, T. M. Gatterman,

S. K. Halit, K. Gilmore, J. A. Gerber, B. Neyenhuis, D. Hayes, and R. P. Stutz.

Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X,

11:041058, Dec 2021.

29. Ming Gong, Xiao Yuan, Shiyu Wang, Yulin Wu, Youwei Zhao, Chen Zha, Shaowei

Li, Zhen Zhang, Qi Zhao, Yunchao Liu, and et al. Experimental exploration of

five-qubit quantum error-correcting code with superconducting qubits. National

Science Review, 9(1), 2021.

30. A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,

303(1):2–30, 2003.

31. A. Holmes, M. Jokar, G. Pasandi, Y. Ding, M. Pedram, and F. T. Chong. Nisq+:

Boosting quantum computing power by approximating quantum error correc-

tion. In 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA), pages 556–569, Los Alamitos, CA, USA, jun 2020. IEEE

Computer Society.

144

32. Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological

quantum memory. Journal of Mathematical Physics, 43(9):4452–4505, 2002.

33. Robert Raussendorf and Jim Harrington. Fault-tolerant quantum computation

with high threshold in two dimensions. Phys. Rev. Lett., 98:190504, May 2007.

34. Colin J Trout, Muyuan Li, Mauricio Gutiérrez, Yukai Wu, Sheng-Tao Wang,

Luming Duan, and Kenneth R Brown. Simulating the performance of a distance-

3 surface code in a linear ion trap. New Journal of Physics, 20(4):043038, apr

2018.

35. Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois,

Catherine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Jo-

hannes Herrmann, and et al. Realizing repeated quantum error correction in

a distance-three surface code. Nature, 605(7911):669–674, 2022.

36. Austin Fowler, David Wang, and Lloyd Hollenberg. Surface code quantum error

correction incorporating accurate error propagation. Quantum information and

computation, 11, 04 2010.

37. Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.

Surface codes: Towards practical large-scale quantum computation. Phys. Rev.

A, 86:032324, Sep 2012.

38. Hendrik Weimer, Markus Müller, Igor Lesanovsky, Peter Zoller, and Hans Peter

Büchler. A rydberg quantum simulator. Nature Physics, 6(5):382–388, 2010.

39. K. J. Satzinger, Y.-J Liu, A. Smith, C. Knapp, M. Newman, C. Jones, Z. Chen,

C. Quintana, X. Mi, A. Dunsworth, and et al. Realizing topologically ordered

states on a quantum processor. Science, 374(6572):1237–1241, 2021.

145

40. Han-Ning Dai, Bing Yang, Andreas Reingruber, Hui Sun, Xiao-Fan Xu, Yu-Ao

Chen, Zhen-Sheng Yuan, and Jian-Wei Pan. Four-body ring-exchange interac-

tions and anyonic statistics within a minimal toric-code hamiltonian. Nature

Physics, 13(12):1195–1200, 2017.

41. Xing-Can Yao, Tian-Xiong Wang, Hao-Ze Chen, Wei-Bo Gao, Austin G. Fowler,

Robert Raussendorf, Zeng-Bing Chen, Nai-Le Liu, Chao-Yang Lu, You-Jin Deng,

and et al. Experimental demonstration of topological error correction. Nature,

482(7386):489–494, 2012.

42. E. Knill. Quantum computing with realistically noisy devices. Nature, 434, 2005.

43. Simon J Devitt, William J Munro, and Kae Nemoto. Quantum error correction

for beginners. Reports on Progress in Physics, 76(7):076001, Jun 2013.

44. Norbert M. Linke, Mauricio Gutierrez, Kevin A. Landsman, Caroline Figgatt,

Shantanu Debnath, Kenneth R. Brown, and Christopher Monroe. Fault-tolerant

quantum error detection. Science Advances, 3(10), 2017.

45. J. F. Marques, B. M. Varbanov, M. S. Moreira, H. Ali, N. Muthusubrama-

nian, C. Zachariadis, F. Battistel, M. Beekman, N. Haider, W. Vlothuizen, and

et al. Logical-qubit operations in an error-detecting surface code. Nature Physics,

18(1):80–86, 2021.

46. IMB Quantum, https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/midcircuit-

measurement/, 2021.

47. Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation dis-

tance between high-dimensional gaussians with the same mean, 2018.

146

48. Konstantinos Georgopoulos, Clive Emary, and Paolo Zuliani. Modeling and sim-

ulating the noisy behavior of near-term quantum computers. Phys. Rev. A,

104:062432, Dec 2021.

49. William H. Gustafson. A note on matrix inversion. Linear Algebra and its Ap-

plications, 57:71–73, 1984.

50. Tzon-Tzer Lu and Sheng-Hua Shiou. Inverses of 2 × 2 block matrices. Computers

Mathematics with Applications, 43(1):119–129, 2002.

51. Farrokh Vatan and Colin Williams. Optimal quantum circuits for general two-

qubit gates. Phys. Rev. A, 69:032315, Mar 2004.

52. J. F. Marques, B. M. Varbanov, M. S. Moreira, H. Ali, N. Muthusubramanian,

C. Zachariadis, F. Battistel, M. Beekman, N. Haider, W. Vlothuizen, A. Bruno,

B. M. Terhal, and L. DiCarlo. Logical-qubit operations in an error-detecting

surface code, 2021.

53. Hongxiang Chen, Michael Vasmer, Nikolas Breuckmann, and Edward Grant. Ma-

chine learning logical gates for quantum error correction, 12 2019.

54. Fernando Pastawski and Beni Yoshida. Fault-tolerant logical gates in quantum

error-correcting codes. Phys. Rev. A, 91:012305, Jan 2015.

55. L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song,

C.-L. Zou, S. M. Girvin, L.-M. Duan, and L. Sun. Quantum error correction and

universal gate set operation on a binomial bosonic logical qubit. Nature Physics,

15(5):503–508, May 2019.

56. R. W. Hamming. Error detecting and error correcting codes. The Bell System

Technical Journal, 29(2):147–160, 1950.

147

57. Diogo Cruz, Romain Fournier, Fabien Gremion, Alix Jeannerot, Kenichi Koma-

gata, Tara Tosic, Jarla Thiesbrummel, Chun Lam Chan, Nicolas Macris, Marc-

André Dupertuis, and et al. Efficient quantum algorithms for ghz and w states,

and implementation on the ibm quantum computer. Advanced Quantum Tech-

nologies, 2(5-6):1900015, 2019.

58. Jonathan J. Burnett, Andreas Bengtsson, Marco Scigliuzzo, David Niepce, Ma-

rina Kudra, Per Delsing, and Jonas Bylander. Decoherence benchmarking of

superconducting qubits. npj Quantum Information, 5(1):54, Jun 2019.

59. Rahaf Youssef. Measuring and simulating t1 and t2 for qubits. 8 2020.

60. D Gottesman. The heisenberg representation of quantum computers. 6 1998.

61. Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits.

Phys. Rev. A, 70:052328, Nov 2004.

62. IMB Quantum, https://quantum-computing.ibm.com/, 2021.

63. Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate

optimization algorithm. 2014.

64. Seth Lloyd. Quantum approximate optimization is computationally universal.

2018.

65. Edward Farhi and Aram W Harrow. Quantum supremacy through the quantum

approximate optimization algorithm. 2016.

66. Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G. Rieffel. Quantum

approximate optimization algorithm for maxcut: A fermionic view. Phys. Rev.

A, 97:022304, Feb 2018.

148

67. Guido Pagano, Aniruddha Bapat, Patrick Becker, Katherine S. Collins, Arin-

joy De, Paul W. Hess, Harvey B. Kaplan, Antonis Kyprianidis, Wen Lin Tan,

Christopher Baldwin, Lucas T. Brady, Abhinav Deshpande, Fangli Liu, Stephen

Jordan, Alexey V. Gorshkov, and Christopher Monroe. Quantum approximate

optimization of the long-range ising model with a trapped-ion quantum simulator.

Proceedings of the National Academy of Sciences, 117(41):25396–25401, 2020.

68. Michael Streif and Martin Leib. Training the quantum approximate optimization

algorithm without access to a quantum processing unit. Quantum Science and

Technology, 5(3):034008, may 2020.

69. Wolfgang Lechner. Quantum approximate optimization with parallelizable gates.

IEEE Transactions on Quantum Engineering, 1, 02 2018.

70. Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lund-

gren, and Daniel Preda. A quantum adiabatic evolution algorithm applied to

random instances of an np-complete problem. Science, 292(5516):472–475, 2001.

71. Madita Willsch, Dennis Willsch, Fengping Jin, Hans De Raedt, and Kristel

Michielsen. Benchmarking the quantum approximate optimization algorithm.

Quantum Information Processing, 19(7), 2020.

72. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Rami

Barends, Sergio Boixo, Michael Broughton, Bob Buckley, David Buell, Brian

Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins,

William Courtney, Sean Demura, Andrew Dunsworth, and Leo Zhou. Quantum

approximate optimization of non-planar graph problems on a planar supercon-

ducting processor. 04 2020.

149

73. Michael R. Garey and David S. Johnson. Computers and intractability: A guide

to the theory of NP-completeness. FbCNIB, 1996.

74. Richard M. Karp. Reducibility among combinatorial problems. Complexity of

Computer Computations, page 85–103, 1972.

75. https://www.ibm.com/blogs/research/2019/03/power-quantum-device/, 2019.

76. Colin P. Williams. Solving np-complete problems with a quantum computer.

Texts in Computer Science, page 293–318, 2011.

77. Shaohan Hu, Peng Liu, Chun-Fu (Richard) Chen, and Marco Pistoia. Automat-

ically solving np-complete problems on a quantum computer. Proceedings of the

40th International Conference on Software Engineering: Companion Proceeed-

ings, 2018.

150

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

15–09–2022 Dissertation Mar 2020 — Sept 2022

Quantum Error Detection Without
Using Ancilla Qubits

Nicolas Guerrero, Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENP)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENP-DS-22-S-044

Air Force Research Lababoratories
Quantum Information Sciences
26 Electronic Parkway
Rome NY, 13441-4514
Email: afrl.ritq.office@us.af.mil

AFRL/RITQ

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Quantum computers are beset by errors from a variety of sources. Although quantum error correction and detection
codes have been developed since the 1990s, these codes require mid-circuit measurements in order to operate. In order to
avoid these measurements we have developed a new error detection code that only requires state collapses at the end of
the circuit, which we call no ancilla error detection (NAED). We investigate some of the mathematics behind NAED such
as which codes can detect which errors. We then ran NAED on three separate types of circuits:
Greenberger–Horne–Zeilinger circuits, phase dependent circuits, and a quantum approximate optimization algorithm
running the max cut problem. In total, we used the IBMQ quantum computers over 325 million times and were able to
show that NAED can be used to improve the performance of the quantum computers. Additionally, we present
generalized logical encodings and gates as well as proofs of the fidelity of these gates.

quantum computing (QC), quantum error correction codes (QEC), quantum error detection codes (QED), no ancilla
quantum error detection (NAED), quantum logical gates

U U U UU 171

Dr. David Weeks, AFIT/ENP

(937) 255-3636 x4561; david.weeks@afit.edu

	Quantum Error Detection Without Using Ancilla Qubits
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction, background, and literature review
	Introduction
	The early history of quantum computing
	Errors in quantum computing
	Error correction codes
	The Shor code
	The 5-qubit correction code
	Distance 3 surface correction code

	Error detection codes
	The Knill code
	Distance 2 surface code
	No ancilla error detection (NAED)

	Mathematical notation and similarity measure
	Important mathematical notation
	Similarity measure

	Mathematical foundations of NAED
	Definitions
	Logical states and encodings
	The code, error, and orthogonal sets
	Flawless Encodings
	Near-flawless encodings
	Natural representations
	Final States
	Logical Gates
	Encoding and decoding matrices
	Robust encodings
	Stable endings

	Theorems
	Theorem 1: When a state is valid
	Theorem 2: When a state is invalid
	Theorem 3: Every encoding is a robust encoding
	Theorem 4: Every encoding has a stable ending
	Theorem 5: The existence of a flawless encoding
	Theorem 6: The existence of a matrix with determinant zero
	Corollary 1: There is no flawless encoding over two qubits
	Theorem 7: Near-flawless encodings
	Theorem 8: The existence of a near-flawless encoding
	Theorem 9: Encoding a near-flawless code takes at least two controlled not gates
	Corollary 2: Two physical controlled not gates is sufficient for a near-flawless encoding

	The Bit-Flip Encoding
	Bit-flip error detection
	Encoding, logical gates, decoding, and detectable errors
	Proofs of logical gates

	An application of the bit-flip encoding
	Experimental design, results, and discussion

	Conclusion

	The XY, YZ, and ZX encodings
	Motivation
	XY, YZ, and ZX encodings
	The XY encoding
	The YZ encoding
	The ZX encoding
	General UU encodings
	Catastrophic cancellation and barriers

	Experiment design
	Results and analysis
	Conclusion

	Improving QAOA using NAED
	The quantum approximate optimization algorithm (QAOA)
	Combinatorial optimization problems
	Implementing QAOA
	The maximum cut problem (MCP)
	Review of masters thesis results

	Experiments run
	Comparing 2019 and 2022 results
	Implementing XY, YZ, and ZX encodings
	No encodings with barriers
	Failed experiments

	Results and analysis
	Analysing by angle
	XY versus YZ/ZX encodings

	Combing XY encoding with unencoded results
	Conclusions

	Overall results, conclusions, and future work
	Appendix
	Appendix A: Graph topologies
	Appendix B: QAOA results by angle

	Bibliography

