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Abstract

Well-designed experiments greatly improve test and evaluation. Efficient experiments

reduce the cost and time of running tests while improving the quality of the informa-

tion obtained. Orthogonal Arrays (OAs) and Hadamard matrices are used as designed

experiments to glean as much information as possible about a process with limited

resources. However, constructing OAs and Hadamard matrices in general is a very dif-

ficult problem. Finding Legendre pairs (LPs) results in the construction of Hadamard

matrices. This research studies the classification problem of OAs and the existence

problem of LPs. In doing so, it makes two contributions to the discipline. First,

it improves upon previous classification results of 2-symbol OAs of even-strength t

and t ` 2 columns. Second, it presents previously unknown impossible values for the

dimension of the convex hull of all feasible points to the LP problem improving our

understanding of its feasible set.
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ORTHOGONAL ARRAYS AND LEGENDRE PAIRS

I. Introduction

1.1 Motivation

Test and evaluation is critical to the Department of Defense’s success of providing

the warfighter proven combat-ready systems that are essential in accomplishing the

mission. The Department of Operational Test and Evaluation, Air Force Operational

Test and Evaluation Center, United States Army Test and Evaluation Command,

and other U.S. armed services endorse the use of design of experiments in test and

evaluation to provide a rigorous and scientific approach to test and evaluation. In-

depth discussions on design of experiments in the U.S. Air Force test community may

be found in Johnson et al. [1], Hutto and Higdon [2], and Tucker et al. [3].

A designed experiment is a test carried out to determine the effect of factors, or

input variables, each of which has several different levels, or settings, on an output

response. A full factorial design is an experiment wherein all factor and all factor

levels are tested with the response, or output variable, measured. To reduce the cost

and time of running test, a more efficient experimental design is a fractional factorial

design [4, 5]. A fractional factorial design tests only a subset of runs of a full factorial

design, where a run is a prescribed level setting of each of the factors.

Orthogonal Arrays (OAs) and Hadamard matrices are used as designed experi-

ments to glean as much information as possible about a process with limited resources.

OAs are a subclass of fractional factorial designs. The least-square estimators for dif-

ferent effects in a designed experiment are uncorrelated, hence the name orthogonal
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array. OAs used in factorial experiments can estimate the intercept parameter, all

components of main-effects, and all components of interactions bounded by a number

dependent on the parity of the strength of the orthogonal array [6, 7]. Hadamard

matrices are square matrices with entries of `1 or ´1 wherein the rows are orthog-

onal. Hadamard matrices are ideal for conducting screening experiments in which

each factor has two levels [8]. Hadamard matrices have applications in signal anal-

ysis and synthesis, error corrections in transmission of digital communication, and

cryptography [9, 10, 11].

The utility of OAs and Hadamard matrices sets the problem to construct them

and enumerate the number of distinct constructions that exist for given parameters.

The construction and enumeration of OAs and Hadamard matrices will be called the

classification problem. The construction of OAs and Hadamard matrices is in general

a very difficult problem.

Classification of OAs has found success by their relation with codes, difference

schemes, Latin squares, and finite projective geometries [6, 12, 13]. Formulating the

problem in terms of an integer linear program wherein symmetries are exploited to

apply isomorphism pruning has proved successful [14].

Construction of Hadamard matrices has been carried out by Sylvester [15], wherein

the Kronecker product was used to inductively construct Hadamard matrices. Pa-

ley [16] constructed Hadamard matrices using Galois fields. Another approach to the

construction of Hadamard matrices is the construction of Legendre pairs. The exis-

tence of a Legendre pair (LP) of odd length ℓ implies the existence of a Hadamard

matrix of size 2ℓ ` 2 [17]. The recent construction of LPs has relied on computer

searches. Fletcheret al. [18] utilized the power spectral density (PSD) criterion,

which improved exhaustive searches of LPs of lengths ℓ “ 3, 5, . . . , 45 and incom-

plete searches for ℓ “ 47, 49, 51. Turner et al. [19] used δ-modular compression and
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discovered an LP of length ℓ “ 77 and produced an exhaustive generation of LPs

of length ℓ “ 55. Elementary number-theoretic arguments and techniques that im-

proved compression have lead to the discovery of LPs of lengths ℓ “ 85, 87 [20] and

lengths ℓ “ 117, 129, 133 and 147 [21]. There are currently 10 open LP cases of length

less than 200 that have yet to be discovered or proven to not exist [20].

1.2 Research Contribution

This research studies the classification problem OAs and the existence problem of

LPs. In doing so, it makes two contributions to the discipline. First, it improves upon

previous classification results of 2-symbol OAs of even-strength t and t ` 2 columns.

Second, it presents previously unknown impossible values for the dimension of the

convex hull of all feasible points to the LP problem improving our understanding of

its feasible set.

1.3 Organization of Dissertation

This dissertation is comprised of three chapters. Chapter II improves upon re-

sults of previous researchers in the classification of 2-symbol OAs of even-strength t

and t ` 2 columns. Chapter III provides bounds on the possible dimension of the

convex hull of feasible points to the LP problem improving our understanding of its

feasible set. Chapter II was submitted to Australasian Journal of Combinatorics and

received with only minor revisions. It was resubmitted with the revisions. Chapter

III will be submitted to Discrete Optimization with a few minor revisions. Chapter

IV summarizes the results found in each chapter and discusses future research.
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II. Classification of 2-symbol orthogonal arrays of
even-strength t and t ` 2 columns up to OD-equivalence

2.1 Introduction

Throughout the paper let rns “ t1, . . . , nu. We first define the concept of an

orthogonal array (OA). Let λ ě 1, s ě 2, k ě 1, t ě 1 be integers, and t P rks. A λstˆ

k arrayD whose entries are symbols from tl1, . . . , lsu is an orthogonal array of strength

t and index λ, denoted by OApλst, k, s, tq, if each of the st symbol combinations from

tl1, . . . , lsu
t appears λ times in every λst ˆ t subarray of D.

Each of the N !k!ps!qk operations that involve permuting rows, columns and the

symbols within each column of an s-symbol Nˆk array is called an isomorphism oper-

ation. Two arrays D1 andD2 are isomorphic ifD2 can be obtained fromD1 by apply-

ing an isomorphism operation. Each isomorphism operation maps an OApλst, k, s, tq

to an OApλst, k, s, tq.

Classification of OAs up to isomorphism in general is a challenging problem. Re-

cently, there has been a renewed interest in classifying OAs [22, 23, 24]. However,

these works make heavy use of computers. On the other hand, Yamamato et al. [25]

were the first to analytically classify all OApλ2t, k, 2, tq for k “ t ` 1, t ` 2 up to

permutations of columns. Stufken and Tang [26] strengthened the results in [25]

by classifying all non-isomorphic OApλ2t, t ` 2, 2, tq analytically. Their method of

classification used J-characteristics for 2-symbol arrays.

For an N ˆ k array D “ rd1 ¨ ¨ ¨ dks with symbols from t´1, 1u, Bulutoglu and

Ryan [22] defined the column operation Ri on D by

RiD “

„

d1 d di ¨ ¨ ¨ di´1 d di di di`1 d di ¨ ¨ ¨ dk d di

ȷ

, (2.1.1)

and proved that each column operation Ri maps an OApλ2t, k, 2, tq to an OApλ2t, k, 2,
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tq if t is even. Each transformation that involves a column operation Ri and/or an

isomorphism operation is called an OD-equivalence operation [27]. Hence, for even t,

each OD-equivalence operation maps an OApλ2t, k, 2, tq to an OApλ2t, k, 2, tq.

Two arrays D1 and D2 with symbols from t´1, 1u are OD-equivalent if D2 can be

obtained from D1 by applying an OD-equivalence operation [22]. Clearly, if D1 and

D2 are isomorphic arrays, then D1 and D2 are OD-equivalent. However, D1 and D2

may be OD-equivalent without being isomorphic [22].

A set of non-OD-equivalent OApN, k, 2, tq can be used to generate a set of all

non-isomorphic OApN, k, 2, tq [22]. In fact, Bulutoglu and Ryan [22] classified all

non-isomorphic OAp160, k, 2, 4q and OAp176, k, 2, 4q for k “ 5, 6, . . . , 10 by first clas-

sifying each up to OD-equivalence. Also, it would not have been possible to obtain

the classification results up to isomorphism in Bulutoglu and Ryan [22] without first

classifying up to OD-equivalence. Furthermore, by applying OD-equivalence with the

methods in Geyer et al. [27] we have found 83 non-OD-equivalent OAp192, 9, 2, 4q after

6 months of CPU time on a 2.1 GHz processor. However, this is not a complete clas-

sification of all non-OD-equivalent OAp192, 9, 2, 4q. The OAp192, 9, 2, 4q is currently

the smallest OApN, 9, 2, 4q that has not been completely classified yet. Methods in

Geyer et al. [27] that make heavy use of OD-equivalence bring a partial classification

of non-OD-equivalent OAp192, 9, 2, 4q within computational reach. Hence, classifying

all non-OD-equivalent OApN, k, 2, tq is useful in solving the classification problem of

OApN, k, 2, tq up to isomorphism. In this paper, we improve the results of Stufken

and Tang [26] by analytically classifying all non-OD-equivalent OApλ2t, t ` 2, 2, tq

when the strength t is even.

The paper is structured as follows. Section 2.2 defines J-characteristics of 2-

symbol arrays, and describes how OD-equivalence operations act on J-characteristics

of such arrays. Section 2.3 presents the main result. Section 2.4 discusses future
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research. In Section 2.5 we provide the Theorems and Lemmas from [26] that we use

in Section 2.3 to establish the main result of the paper.

2.2 J-characteristics and OD-equivalence

Throughout this section D will denote an N ˆk array with symbols from t´1, 1u.

For ℓ Ď rks, let

rℓ “ rrℓ1, . . . , rℓks ,

where

rℓj “

$

’

&

’

%

´1 if j P ℓ,

1 otherwise.

Given an array D, let xℓ be the number of times rℓ appears as a row of D. The

frequency vector x of D is defined by

x “ rxH, x1, x2, x12, x3, . . . , x1...ks
J (2.2.1)

where xi1...ip is used for xti1,...,ipu.

We now define the J-characteristics. Let D “ rdijs be an array. For ℓ Ď rks, let

JℓpDq “

N
ÿ

i“1

ź

jPℓ

dij.

(For ℓ “ H, JℓpDq :“ N .) The JℓpDq are called the J-characteristics of D. Let

Ji1...irpDq denote Jti1,...,irupDq, then the J-vector of D is defined by

J “ rJHpDq, J1pDq, J2pDq, J12pDq, J3pDq, . . . , J1...kpDqs
J . (2.2.2)

6



We now establish the connection between the frequency vector and J-vector of an

array. A 2k full factorial array, with Yates ordering, is expressed by the 2k ˆk matrix

F “
“

rJ
H, rJ

1 , r
J
2 , r

J
12, r

J
3 , . . . , r

J
1...k

‰J
,

where ri1...ip is the shorthand notation for rti1,...,ipu. For j P rks, let hj denote the jth

column of F. Then

F “ rh1, . . . ,hks .

The Hadamard product of z and v is

z d v “ rz1v1, . . . , znvns
J

for z,v P t´1, 1un. For ℓ “ ti1, . . . , ipu Ď rks, let

hℓ “ hi1 d ¨ ¨ ¨ d hip .

Let

H “ rhH,h1,h2,h12,h3, . . . ,h1...ks , (2.2.3)

where hi1...ip is used for for hti1,...,ipu. Then H is the 2k ˆ 2k Sylvester Hadamard

matrix [28].

For ℓ Ď rks, we have

JℓpDq “

N
ÿ

i“1

ź

jPℓ

dij “
ÿ

uĎrks

ź

jPℓ

rujxu “
ÿ

uĎrks

phℓquxu “ hJ
ℓ x.

This implies J “ HJx. Since HHJ “ 2kI2k , where I2k is the 2k ˆ 2k identity matrix,

we have the following fundamental result.

7



Lemma 2.2.1. Let x,J, and H be as in equations (2.2.1), (2.2.2), and (2.2.3), then

x “ 2´kHJ.

By Lemma 2.2.1, the J-vector of an array uniquely determines its frequency vector.

The following lemma determines all OApλ2t, k, 2, tq in terms of their J-characteristics.

Lemma 2.2.2 (Stufken and Tang [26]). An array D is an OApλ2t, k, 2, tq if and only

if JℓpDq “ 0 for all ℓ Ď rks such that |ℓ| P rts.

The following result is from Stufken and Tang [26] and its generalization in Bulu-

toglu and Kaziska [29].

Lemma 2.2.3. Let D be an OApλ2t, k, 2, tq with k ě t ` 2. Then the following hold.

(i) For any ℓ Ď rks, JℓpDq “ uℓ2
t for some integer uℓ.

(ii) For any ℓ Ď rks and index λ, we have uℓ ” λ
`

|ℓ|´1
t

˘

(mod 2q.

For isomorphism operations we have the following lemma from Geyer et al. [27].

Lemma 2.2.4. Let ℓ Ď rks be such that |ℓ| ą 0. Let g be an isomorphism operation

and gD be the array obtained after g is applied to D. Then

JℓpgDq “ ˘Jℓ1pDq,

where |ℓ1| “ |ℓ|.

The operations Ri act on the J-characteristics as follows, as shown in Geyer et

al. [27].

8



Lemma 2.2.5. Let ℓ Ď rks be such that |ℓ| ą 0. Let Ri be an OD-equivalence

operation as defined in equation (2.1.1), i P rks. Then

JℓpRiDq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

JℓpDq if |ℓ| is even and i R ℓ,

JℓztiupDq if |ℓ| is even and i P ℓ,

JℓYtiupDq if |ℓ| is odd and i R ℓ,

JℓpDq if |ℓ| is odd and i P ℓ.

Unlike isomorphism operations, the Ri operations allow J-characteristics indexed

by ℓ to be mapped to J-characteristics indexed by ℓ1 with |ℓ| ‰ |ℓ1|. The Ri operations

are key to improving the results of Stufken and Tang [26]. Lemmas 2.2.4 and 2.2.5

from Geyer et al. [27] characterize the action of OD-equivalence operations on the

J-characteristics.

Lemma 2.2.6. Let ℓ Ď rks be such that |ℓ| ą 0. Let g be an OD-equivalence operation

and gD be the array obtained after g is applied to D. Then

JℓpgDq “ ˘Jℓ1pDq

for some ℓ1 Ď rks, where

|ℓ1
| “

$

’

&

’

%

|ℓ| or |ℓ| ` 1 if |ℓ| is odd,

|ℓ| or |ℓ| ´ 1 otherwise.

By using Lemma 2.2.6, Bulutoglu and Ryan [22] showed the following.

Theorem 2.2.7. Let D1 be an OApλ2t, k, 2, tq with t ě 1. Then D2 is OD-equivalent

to D1 if and only if there exists an OD-equivalence operation g such that D2 “ gD1

up to permutation of rows. Moreover, if D2 is OD-equivalent to D1, then D2 is an

9



OApλ2t, k, 2, 2tt{2uq.

By Theorem 2.2.7, if D is an OApλ2t, k, 2, tq with even t, then any array OD-

equivalent to D is an OApλ2t, k, 2, tq.

2.3 Classification of even strength OApλ2t, t`2, 2, tq up to OD-equivalence

Let D be an OApλ2t, t ` 2, 2, tq. Since k “ t ` 2, by Lemma 2.2.2, we need to

consider only k ` 1 coordinates of the J-vector of D. Let ℓj “ rksztk ` 1 ´ ju for

j P rks and ℓk`1 “ rks. The following proposition was used to classify non-isomorphic

OApλ2t, t ` 2, 2, tq for even t.

Proposition 2.3.1 (Stufken and Tang [26]). When k “ t ` 2 is even, every OD-

equivalence class of OApλ2t, t ` 2, 2, tq contains a unique array D whose J-vector

satisfies either of the following conditions:

Jℓ1pDq ď ¨ ¨ ¨ ď JℓkpDq ď ´|Jℓk`1
pDq|, (2.3.1)

Jℓ1pDq ď ¨ ¨ ¨ ď Jℓk´1
pDq ď ´|JℓkpDq|, Jℓk`1

pDq ă ´|JℓkpDq|. (2.3.2)

The following is our main lemma.

Lemma 2.3.2. When k “ t ` 2 is even, every OD-equivalence class of OApλ2t, t `

2, 2, tq contains a unique array D whose J-vector satisfies

Jℓ1pDq ď ¨ ¨ ¨ ď JℓkpDq ď ´|Jℓk`1
pDq|. (2.3.3)

Proof. Suppose that D is the array whose J-vector satisfies inequalities (2.3.2). We

show there exists a unique OD-equivalent array to D whose J-vector satisfies in-

equalities (2.3.1). Let R1 be as defined in equation (2.1.1) and let D1 “ R1D. By

Theorem 2.2.7, D1 is an OApλ2t, t` 2, 2, tq that is OD-equivalent to D. Furthermore,

10



by Lemma 2.2.5

Jℓk`1
pD1

q “ JℓkpDq, JℓkpD1
q “ Jℓk`1

pDq, and JℓjpD
1
q “ JℓjpDq

for j P rk ´ 1s. Then

Jℓ1pD1
q ď ¨ ¨ ¨ ď Jℓk´1

pD1
q ď ´|Jℓk`1

pD1
q|, JℓkpD1

q ă ´|Jℓk`1
pD1

q|.

Hence, we obtain an OD-equivalent array whose J-vector satisfies inequalities (2.3.1).

Then, by Proposition 2.3.1, any J-vector of an OApλ2t, t` 2, 2, tq satisfying inequali-

ties (2.3.3) is unique and therefore the corresponding OApλ2t, t`2, 2, tq is unique.

Lemma 2.3.2 allows the classification of non-OD-equivalent OApλ2t, k, 2, tq by find-

ing solutions in only one case, namely under inequalities (2.3.3), whereas the classifi-

cation of non-isomorphic OApλ2t, k, 2, tq requires finding all solutions in two mutually

exclusive cases, namely under either inequalities (2.3.1) or inequalities (2.3.2). This

reduction in the number of cases that need to be searched significantly simplifies the

OApλ2t, t ` 2, 2, tq classification problem.

Suppose that D is an OApλ2t, k, 2, tq whose J-vector satisfies inequalities (2.3.3).

By Lemma 2.2.3, JℓjpDq “ uj2
t, j P rk ` 1s. Then

u1 ď ¨ ¨ ¨ ď uk ď ´|uk`1|. (2.3.4)

Lemma 2.3.3. Suppose that k “ t ` 2, t is even, and λ is odd. Let

λ ` u1 ` ¨ ¨ ¨ ` uk`1 “ 4p, (2.3.5)

with p ě 0, uj P 2Z`1 such that |uj| ď λ´2 for j P rk`1s. Then the following hold.

11



(i) Each solution pu1, . . . , uk`1, pq to equation (2.3.5) under inequalities (2.3.4) de-

termines an OApλ2t, t` 2, 2, tq with J-vector given by Jℓj “ 2tuj for j P rk` 1s.

(ii) A complete set of non-OD-equivalent OApλ2t, t ` 2, 2, tq is given by collecting

the arrays obtained in (i) over all solutions to equation (2.3.5).

Proof. The proof follows from Lemma 2.3.2 and Theorem 1 in Stufken and Tang [26],

see Section 2.5.

Lemma 2.3.4. Suppose that k “ t ` 2, t is even, and λ “ 2λ˚ is even. Let

λ˚
` u1 ` ¨ ¨ ¨ ` uk`1 “ 2p, (2.3.6)

with p ě 0, uj P Z such that |uj| ď λ˚ for j P rk ` 1s. Then the following hold.

(i) Each solution pu1, . . . , uk`1, pq to equation (2.3.6) under inequalities (2.3.4) de-

termines an OApλ2t, t ` 2, 2, tq with J-vector given by Jℓj “ 2t`1uj for j P

rk ` 1s.

(ii) A complete set of non-OD-equivalent OApλ2t, t ` 2, 2, tq is given by collecting

the arrays obtained in (i) over all solutions to equation (2.3.6).

Proof. The proof follows from Lemma 2.3.2 and Theorem 2 in Stufken and Tang [26],

see Section 2.5.

Let Zra, bs and Ora, bs denote the set of integers and odd integers x such that

a ď x ď b, respectively.

Theorem 2.3.5. For even t, odd λ, and k “ t ` 2, if λ ď t ´ 1, then equation

(2.3.5) has no OApλ2t, k, 2, tq solution under inequalities (2.3.4); if λ ě t ` 1, then

equation (2.3.5) has at least one OApλ2t, k, 2, tq solution under inequalities (2.3.4),

12



and the complete set S1 of non-OD-equivalent OApλ2t, k, 2, tq solutions is given by

p P Z

„

0,
λ ´ t ´ 1

4

ȷ

,

uk`1 P O

„

´
λ ´ 4p

k ` 1
,
λ ´ 4p

k ´ 1

ȷ

,

uk P O

„

´
λ ´ 4p ` uk`1

k
, ´|uk`1|

ȷ

,

uj P O

„

´
λ ´ 4p ` uj`1 ` ¨ ¨ ¨ ` uk`1

j
, uj`1

ȷ

, j “ k ´ 1, k ´ 2, . . . , 2,

u1 “ ´pλ ´ 4p ` u2 ` ¨ ¨ ¨ ` uk`1q.

Proof. The proof follows from Lemma 2.3.3 and Lemma 7 in Stufken and Tang [26],

see Section 2.5.

Theorem 2.3.6. For even t, even λ “ 2λ˚, and k “ t ` 2, the complete set S2

of non-OD-equivalent OApλ2t, k, 2, tq as solutions to equation (2.3.6) under inequali-

ties (2.3.4) is given by

p P Z

„

0,
λ˚

2

ȷ

,

uk`1 P Z

„

´
λ˚ ´ 2p

k ` 1
,
λ˚ ´ 2p

k ´ 1

ȷ

,

uk P Z

„

´
λ˚ ´ 2p ` uk`1

k
, ´|uk`1|

ȷ

,

uj P Z

„

´
λ˚ ´ 2p ` uj`1 ` ¨ ¨ ¨ ` uk`1

j
, uj`1

ȷ

, j “ k ´ 1, k ´ 2, . . . , 2,

u1 “ ´pλ˚
´ 2p ` u2 ` ¨ ¨ ¨ ` uk`1q.

Proof. The proof follows from Lemma 2.3.4 and Lemma 9 in Stufken and Tang [26],

see Section 2.5.

For even t and s “ 2, OD-equivalence reduces the solution set to S1 for odd λ,

and S2 for even λ non-OD-equivalent OApλ2t, t ` 2, 2, tq. The sizes of S1 and S2 are
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smaller than the corresponding sizes obtained for non-isomorphic OApλ2t, t ` 2, 2, tq.

Theorems 2.3.5 and 2.3.6 were validated by comparing to the classification re-

sults obtained by the methods of Geyer et al. [27] for the following cases of OAs:

OAp4λ, 4, 2, 2q for λ P r51s, OAp16λ, 6, 2, 4q for λ P r30s, OAp64λ, 8, 2, 6q for λ P r30s,

OAp256λ, 10, 2 , 8q for λ “ 1, 3, 5, and OAp1024λ, 12, 2, 10q for λ “ 1, 3. The numbers

of non-OD-equivalent classes generated by both were in agreement.

2.4 Conclusion

In this paper we used OD-equivalence operations, a larger set of operations than

isomorphism operations, to analytically classify all non-OD-equivalent OApλ2t, t `

2, 2, tq when t is even. Future research will involve classifying OApλ2t, t ` 3, 2, tq up

to OD-equivalence for even t. We anticipate that classifying OApλ2t, t` 3, 2, tq up to

OD-equivalence for even t is more tangible than classifying up to isomorphism.

2.5 Addendum

Let

λ ` u1 ` ¨ ¨ ¨ ` uk`1 “ 4p, (2.5.1)

where p is a non-negative integer and uj P 2Z ` 1 are such that |uj| ď λ ´ 2 for

j “ 1, . . . , k ` 1. Furthermore, let

u1 ď ¨ ¨ ¨ ď uk ď ´|uk`1|, (2.5.2)

u1 ď ¨ ¨ ¨ ď uk´1 ď ´|uk|, uk`1 ď ´|uk| ´ 2. (2.5.3)

Theorem 1. Suppose that t is even and λ is odd. We then have that: (i) each solution

pu1, . . . , uk`1, pq to equation (2.5.1) under either (2.5.2) or (2.5.3) determines an

OApλ2t, t ` 2, 2, tq with J-vector given by Jℓj “ 2tuj for j “ 1, . . . , k ` 1; (ii) the
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complete set of non-isomorphic OApλ2t, t ` 2, 2, tqs is given by collecting the arrays

obtained in (i) over all the solutions to equation (2.5.1).

Let λ “ 2λ˚, where λ˚ is a non-negative integer. Let

λ˚
` u1 ` ¨ ¨ ¨ ` uk`1 “ 2p, (2.5.4)

where p is a non-negative integer and uj P Z are such that |uj| ď λ˚ for j “ 1, . . . , k`1.

Furthermore, let

u1 ď ¨ ¨ ¨ ď uk ď ´|uk`1|, (2.5.5)

u1 ď ¨ ¨ ¨ ď uk´1 ď ´|uk|, uk`1 ď ´|uk| ´ 1. (2.5.6)

Theorem 2. Suppose that t is even and λ “ 2λ˚ is also even. We then have that:

(i) each solution pu1, . . . , uk`1, pq to equation (2.5.4) under either (2.5.5) or (2.5.6)

determines an OApλ2t, t`2, 2, tq with J-vector given by Jℓj “ 2t`1uj for j “ 1, . . . , k`

1; (ii) the complete set of non-isomorphic OApλ2t, t`2, 2, tqs for even t and even λ is

given by collecting the arrays obtained in (i) over all the solutions to equation (2.5.4).

Lemma 7. For even t and odd λ, if λ ď t ´ 1, then equation (2.5.1) has no solution

under inequalities (2.5.2). If λ ě t`1, then equation (2.5.1) has at least one solution
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under inequalities (2.5.2) and the complete set S1 of solutions is given by

p P Z

„

0,
λ ´ t ´ 1

4

ȷ

,

uk`1 P O

„

´
λ ´ 4p

k ` 1
,
λ ´ 4p

k ´ 1

ȷ

,

uk P O

„

´
λ ´ 4p ` uk ` 1

k
,´|uk`1|

ȷ

,

uj P O

„

´
λ ´ 4p ` uj`1 ` ¨ ¨ ¨ ` uk`1

j
, uj`1

ȷ

, j “ k ´ 1, k ´ 2, . . . , 2,

u1 “ ´pλ ´ 4p ` u2 ` ¨ ¨ ¨ ` uk`1q.

Lemma 9. For even t, even λ “ 2λ˚, the complete set S2 of solutions to (2.5.4)

under inequalities (2.5.5) is given by

p P Z

„

0,
λ˚

2

ȷ

,

uk`1 P Z

„

´
λ˚ ´ 2p

k ` 1
,
λ˚ ´ 2p

k ´ 1

ȷ

,

uk P Z

„

´
λ˚ ´ 2p ` uk`1

k
, ´|uk`1|

ȷ

,

uj P Z

„

´
λ˚ ´ 2p ` uj`1 ` ¨ ¨ ¨ ` uk`1

j
, uj`1

ȷ

, j “ k ´ 1, k ´ 2, . . . , 2,

u1 “ ´pλ˚
´ 2p ` u2 ` ¨ ¨ ¨ ` uk`1q.
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III. The dimension of the convex hull of feasible points for
the Legendre pair problem

3.1 Introduction

A well-known problem in combinatorics is finding Hadamard matrices. AHadamard

matrix H is a n ˆ n matrix of ˘1’s satisfying HHJ “ nIn, where In is the n ˆ n

identity matrix. It is well known that for a Hadamard matrix of order n to exist, n

must be divisible by 4. It has been long conjectured (i.e., the Hadamard conjecture)

that, for each n divisible by 4, there exists a Hadamard matrix of order n.

A Hadamard matrix can be constructed by finding a solution to a system of

constraints for a pair of vectors. To define this system of constraints, let Zℓ “

t0, . . . , ℓ ´ 1u denote the integers mod ℓ. Let u,v P t´1, 1uℓ. Then pu,vq is a

Legendre pair (LP) if 1Ju “ 1Jv and

Pupjq ` Pvpjq “ ´2, @j P Zℓ ´ t0u, (3.1.1)

where Pupjq “
ř

iPZℓ
upiqupi ´ jq is the periodic autocorrelation function of u. The

problem of finding solutions to the system of constraints (3.1.1) is known as the LP

problem.

Let QZℓ be the vector space of all functions from Zℓ to Q. A circulant shift of u P

QZℓ by j P Zℓ, denoted by cju, is a transformation such that cjupiq “ upi´ jq, i P Zℓ.

The circulant matrix of u P QZℓ , denoted by Cu, is a matrix such that pj ` 1qth row
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of Cu is pcjuqJ. If pu,vq is an LP, then

H “

»

—

—

—

—

—

—

—

–

´1 ´1 1J 1J

´1 1 1J ´1J

1 1 Cv Cu

1 ´1 CJ
u ´CJ

v

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

is a p2ℓ ` 2q ˆ p2ℓ ` 2q Hadamard matrix, where 1 is the vector of all 1s of length ℓ

[17]. Hence, to construct a p2ℓ ` 2q ˆ p2ℓ ` 2q Hadamard matrix for some odd ℓ, it

suffices to find an LP of length ℓ. It is conjectured that an LP of length ℓ exists for

each odd ℓ, where this conjecture implies the Hadamard conjecture. It is shown in

Arasu et al. [17] that an LP pu,vq must satisfy

1Ju “ 1Jv “ ˘1.

In this paper, we choose an LP pu,vq to satisfy

1Ju “ 1Jv “ ´1. (3.1.2)

Let ¸ be the semidirect product as defined in Rotman [30]. Then, the group

Zℓ ¸ Zˆ
ℓ acts on u P QZℓ by pj, kqupiq “ uppj, kq´1iq for each pj, kq P Zℓ ¸ Zˆ

ℓ , i P Zℓ.

The group pZℓ ˆ Zℓq ¸ Zˆ
ℓ acts on any pair pu,vq P QZℓ ‘ QZℓ by

ppi, jq, kqqpu,vq “ ppi, kqu, pj, kqvq

for each ppi, jq, kqq P pZℓ ˆ Zℓq ¸ Zˆ
ℓ . Two pairs pu,vq, pu1,v1q are equivalent if they

are in the same orbit under the action of pZℓ ˆZℓq¸Zˆ
ℓ . If pu,vq is an LP and pu1,v1q

is equivalent to pu,vq, then pu1,v1q is also an LP [17].
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For the group pZℓ ˆ Zℓq ¸ Zˆ
ℓ and the constraints

βJ
1 u “ c1, βJ

2 v “ c2 (3.1.3)

for some c1, c2 P R implied by the integrality of the constraints (3.1.1) of the LP

problem, the non-trivial constraints

ppj, kqpβ1q ´ β1q
Ju “ 0 and ppi, kqpβ2q ´ β2q

Jv “ 0 (3.1.4)

for ppi, jq, kq P pZℓ ˆ Zℓq ¸ Zˆ
ℓ are valid for the feasible set of pairs pu,vq satisfy-

ing constraints (3.1.1). The valid equalities (3.1.4) based on pZℓ ˆ Zℓq ¸ Zˆ
ℓ put

restrictions on the dimension of the convex hull of all feasible solutions to the set of

constraints (3.1.1). It is far from clear what these restrictions would be. By using

methods of representation theory as developed by Bulutoglu [31], we establish Corol-

lary 3.1.3 which provides such restrictions for the LP problem. We also provide sets

of equality constraints of the form in equations (3.1.4) that could be satisfied by the

feasible set of non-linear constraints (3.1.1) that define an LP. Finally, by using recent

results in number theory, we show that equations (3.1.2) are the only equations of

the form as given by equations (3.1.3) that are satisfied by an LP pu,vq for ℓ “ pn

or ℓ “ pq, where p, q are distinct odd primes and n is a positive integer.

Throughout the paper, for a set of vectors S in a vector space over the field of

scalars F, SpanFpS) is the span, AffFpS) is the affine hull, and dimFpS) is the dimension

of the affine hull of the vectors in S over F. If F is not provided, then F “ R. Also,

let Conv(S) be the convex hull of the vectors in S.

Let pu0,v0q be an LP, and Fu0 “ pZℓ ¸ Zˆ
ℓ qu0 and Fv0 “ pZℓ ¸ Zˆ

ℓ qv0 be the

orbits of u0 and v0 under the action of Zℓ ¸ Zˆ
ℓ , respectively. Let F be the fea-

sible set of all pairs pu,vq satisfying constraints (3.1.1). In this chapter, we de-
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termine dimpConvpFqq, and investigate all possible values of dimpConvpFu0qq and

dimpConvpFv0qq. For each n P Zě1, let rns “ t1, . . . , nu. The following theorems and

corollary are our main results.

Theorem 3.1.1. Let ℓ be an odd positive integer. Let F be the feasible set of of all

pairs pu,vq satisfying constraints (3.1.1). If F ‰ H, then

dimpConvpFqq “ 2ℓ ´ 2.

Theorem 3.1.2. Let pu0,v0q be a Legendre pair. Then there exists U1, U2 Ď td P

rℓs : d | ℓu such that U1 X U2 “ H and

dimpConvpFu0qq “ ℓ ´ 1 ´
`
ř

dPU1
ϕ

`

l
d

˘˘

,

dimpConvpFv0qq “ ℓ ´ 1 ´
`
ř

dPU2
ϕ

`

l
d

˘˘

.
(3.1.5)

Corollary 3.1.3. Let p, q be distinct odd primes and n P Zě1. If ℓ “ pn or ℓ “ pq,

then dimpConvpFu0qq “ dimpConvpFv0qq “ ℓ ´ 1.

In Section 3.2, we present necessary background in representation theory, the

power spectral density, vanishing sums of roots of unity, and affine geometry. In

Section 3.3, we prove our main result. Section 3.4, presents recent advancements.

Section 3.5 discusses future work.

3.2 Background theory

Let G be a finite group and V be a finite dimensional vector space over a field F.

Let GLpV q be the F-automorphisms of V . An F-representation of G is a pair pρ, V q,

where ρ : G Ñ GLpV q is a homomorphism. A subspace W of V is a subrepresentation

of V if ρpgqW Ď W for all g P G. In this case, we say that W is G-stable. A represen-

tation pρ, V q of G is an irreducible representation if the only subrepresentations of V
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are SpanFp0q and V . The only fields F that we consider are Q,R, and C, the ratio-

nal, real, and complex numbers, respectively. Every representation may be assumed

unitary with respect to a complex inner product [32] which will be denoted by x¨|¨y.

We use the convention xαu|vy “ ᾱxu|vy for α P F and u,v P V . Throughout the

paper, every group G is finite, every vector space V is finite dimensional, and every

representation is unitary.

Theorem 3.2.1. [Maschke] Every unitary representation of a finite group may be

decomposed as a direct sum into orthogonal irreducible subrepresentations.

The decomposition in Theorem 3.2.1 is said to be multiplicity-free if each irre-

ducible appears only once.

The character of an F-representation pρ, V q of G is the map χρ : G Ñ F defined

by χρpgq “ Trpρpgqq, where Trpρpgqq is the trace of ρpgq. We say that the character is

an irreducible character if the character corresponds to an irreducible representation.

We may simply write the character as χ if the representation is clear from the context.

The following theorem is from Serre [32].

Theorem 3.2.2. Let pρ, V q be a C-representation of a group G. Let

V “ m1V1 k . . . k mhVh

with mi P Zě1 be a decomposition of V into irreducibles pρi, Viq with characters χi

for each i P rhs, where χi “ χρi. Then the orthogonal projection Pi of V onto

miVi “
Àmi

k“1 Vi is given by

Pi “
dimCpViq

|G|

ÿ

gPG

χipgqMρpgq.

where Mρpgq is the matrix of ρpgq in some orthonormal basis for V .
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The exponent m of a group G is the smallest nonnegative integer such that gm “ e

for all g P G. Let pρ, V q be a C-representation of a group G with exponent m. Then

ρpgqm “ id for each g P G, where id is the identity mapping on V . Therefore, the

eigenvalues of ρpgq aremth roots of unity. Throughout the paper, let ζm be a primitive

mth root of unity, where primitive means ζm has order m. Since χpgq is the trace of

ρpgq, χpgq P Qpζmq, where Qpζmq is the field extension of Q obtained by adjoining ζm.

It is well known that the automorphism group AutpQpζmqq of Qpζmq is isomorphic to

Zˆ
ℓ “ tk P Zℓ | pk,mq “ 1u, where pk,mq is the greatest common divisor of k and m.

Since χpgq P Qpζmq, there is a natural action on the characters of the representations.

The following theorem is from Bulutoglu [31].

Theorem 3.2.3. Let pρ, V q be a Q-representation of a group G with exponent m. Let

V “ W1 k ¨ ¨ ¨ k Wb

be a decomposition of V into irreducible Q-subrepresentations. Let VC,WiC be the

C-representations obtained from V,Wi by extending the field of scalars of V,Wi to C.

Let

VC “ Wp1,1q k ¨ ¨ ¨ k Wp1,r1q k ¨ ¨ ¨ k Wpb,1q k ¨ ¨ ¨ k Wpb,rbq

be a decomposition of VC into pρpi,jq,Wpi,jqq irreducible C-subrepresentations with char-

acters χρpi,jq
, where

WiC “ Wpi,1q k ¨ ¨ ¨ k Wpi,riq for i P rbs.

For each i P rbs, let Oρpi,1q
be the AutpQpζmqq-orbit of χρpi,1q

. Let Mρpgq be the matrix

of ρpgq for each g P G, with respect to the standard basis. If VC is multiplicity-free,
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then

PWi
“

dimCpWpi,1qq

|G|

ÿ

gPG

¨

˝

ÿ

χPOρpi,1q

χpgqMρpgq

˛

‚

is the orthogonal projection matrix into the ith irreducible Q-subrepresentation sub-

space ColQpPWi
q for each i P rbs.

Theorem 3.2.4. For each k P Zℓ, let χk be the irreducible character of the C-

representation of Zℓ. For each divisor d of ℓ, let Od “ tχk | pk, ℓq “ d and k P Zℓu.

Then

(i) |Od| “ ϕpℓ{dq, where ϕ is Euler’s totient function.

(ii) Od “ AutpQpζℓ{dqqχd.

Proof. Let d be a divisor of ℓ. (i) follows immediately from the definition of Euler’s

totient function. To prove (ii), note that pd, ℓq “ d implies χd P Od. Also, since

opχdp1qq “ opζdℓ q “ ℓ{pd, ℓq “ ℓ{d, χdp1q is a primitive pℓ{dqth root of unity, where

opζdℓ q is the order of ζdℓ in the group of all ℓ roots of unity. Therefore the cyclic group

generated by χdp1q contains all pℓ{dqth roots of unity. Then a pℓ{dqth root of unity

has the form pχdp1qqr for some integer r and is primitive if and only if r P Zˆ

ℓ{d because

o ppχdp1qqrq “ pℓ{dq{ppr, ℓ{dqq “ ℓ{d.

Let χs P Od. Since χsp1q is a primitive pℓ{dqth root of unity, there exists r P Zˆ

ℓ{d

such that χsp1q “ pχdp1qqr. Since AutpQpζℓ{dqq – Zˆ

ℓ{d, there exists σr P AutpQpζℓ{dqq

such that χsp1q “ σrpχdp1qq . Since the χi’s are uniquely determined by their value on

1, we have χs “ σrχd . Therefore, χs P AutpQpζℓ{dqqχd. Hence, Od Ď AutpQpζℓ{dqqχd.

Conversely, let χs P AutpQpζℓ{dqqχd. Then there exists σr P AutpQpζℓ{dqq such

that χs “ σrχd. We will show that ps, ℓq “ d. Suppose that ps, ℓq “ c. We have

ζsℓ “ χsp1q “ σrpχdp1qq “ ζrdℓ .
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Then

s ” rd pmod ℓq. (3.2.1)

Since d | ℓ and d | rd, we have d | s. Therefore, d | c. Equation (3.2.1) and c “ ps, ℓq

implies that c. Since pr, ℓ{dq “ 1, there exists m,n P Z such that mr ` nℓ{d “ 1.

Also, since mrd ` nℓ “ d, we have that c. Hence, c “ d. It follows that χs P Od.

Thus, Od “ AutpQpζℓ{dqqχd.

The standard basis

eipjq “

$

’

’

&

’

’

%

1 if j “ i,

0 otherwise.

spans QZℓ . Note that QZℓ is isomorphic to Qℓ. We further equip QZℓ with an inner

product x¨|¨y such that teiuiPZℓ
is an orthonormal basis.

The regular representation of a group G is the linear space generated by the basis

tegugPG and G acts on the basis by heg “ ehg for each h, g P G.

The following theorem is well known.

Theorem 3.2.5. Let pR,QZℓq be the regular Q-representation of Zℓ. Let pQZℓqC be

the C-representation obtained by extending the field of scalars to C. Then

pQZℓqC “
ë

iPZℓ

Vi

is the decomposition of pQZℓqC into the one-dimensional irreducible C-representations

of Zℓ, where the C-representations pρk, Vkq, k P Zℓ are given by ρkp1q : Vk Ñ Vk,

v ÞÑ ζkℓ v. Moreover, χkpiq “ Trpρkpiqq “ ζkiℓ for each k, i P Zℓ.

Theorem 3.2.6. Let pR,QZℓq be the regular Q-representation of Zℓ. Let

Pd “
1

ℓ

ÿ

iPZℓ

ÿ

χPOd

χpiqMRpiq
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for each divisor d of ℓ, where MRpiq is the matrix of Rpiq with respect to the standard

basis teiuiPZℓ
, and Od is defined in Theorem 3.2.4. Then

QZℓ “
ë

d|ℓ

ColQpPdq

is the decomposition of QZℓ into irreducible Q-subrepresentations.

Proof. Let d be a divisor of ℓ. By Theorem 3.2.4, the inner sum of Pd corresponds

to the orbit of χd under the action of AutpQpζℓ{dqq. Further, by Theorem 3.2.5

pQZℓqC is multiplicity-free. Then by Theorem 3.2.3, ColQpPdq is an irreducible Q-

subrepresentation of QZℓ . Now, by the identity ℓ “
ř

d|ℓ ϕpℓ{dq, it suffices to show

that dimQpColQpPdqq “ ϕpℓ{dq. Since R is the regular representation of Zℓ, only Rp0q

will contribute to the trace of Pd . Then

Tr pPdq “ Tr

˜

1

ℓ

ÿ

iPZℓ

ÿ

χPOd

χpiqMRpiq

¸

“
1

ℓ

ÿ

iPZℓ

ÿ

χPOd

χpiqTr
`

MRpiq

˘

“
1

ℓ

ÿ

χPOd

Tr
`

MRp0q

˘

“
1

ℓ

ÿ

χPOd

ℓ

“
ÿ

χPOd

1

“ |Od|

“ ϕ

ˆ

l

d

˙

.

The group Zℓ ¸ Zˆ
ℓ acts on Zℓ by pa, bqi “ bi ` a for each i P Zℓ and pa, bq P

Zℓ ¸Zˆ
ℓ . Then a representation pT,QZℓq of Zℓ ¸Zˆ

ℓ is given by the action on the basis

T pa, bqei “ ebi`a. We find that QZℓ has the same decomposition as in Theorem 3.2.6.
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Theorem 3.2.7. The decomposition QZℓ “
Ë

d|ℓColQpPdq is a decomposition of QZℓ

into irreducible Q-subrepresentations of Zℓ ¸ Zˆ
ℓ .

Proof. Let d be a divisor of ℓ. We have ColCpPdq “
Ë

pk,ℓq“d Vk, where the Vk are

spanned by vk “
ř

iPZℓ
ζ̄kiℓ ei. Let pa, bq P Zℓ ¸ Zˆ

ℓ . Observe

T pa, bq´1vk “
ÿ

iPZℓ

ζ̄
kpa,bqi
ℓ ei “ ζ̄kaℓ

ÿ

iPZℓ

ζ̄kbiℓ ei “ ζ̄kaℓ vbk.

Since pb, ℓq “ 1, pbk, ℓq “ d if and only if pk, ℓq “ d. Therefore, ColCpPdq is a C-

subrepresentation of Zℓ ¸ Zˆ
ℓ . Since ColQpPdq is an irreducible Q-subrepresentation

of Zℓ and Zℓ is a subgroup of Zℓ ¸Zˆ
ℓ , ColQpPdq is an irreducible Q-subrepresentation

of Zℓ ¸ Zˆ
ℓ .

Observe that QZℓ ‘QZℓ is spanned by tpei,0q, p0, eiqui,jPZℓ
. Let pL,QZℓ ‘QZℓq be

the Q-representation of pZℓ ˆZℓq ¸Zˆ
ℓ defined by Lppa, bq, nqqpei,0q “ peni`a,0q and

Lppa, bq, nqqp0, eiq “ p0, eni`bq for each ppa, bq, nq P pZℓ ˆ Zℓq ¸ Zˆ
ℓ and i P Zℓ.

Lemma 3.2.8. The maps defined by

πi : pZℓ ˆ Zℓq ¸ Zˆ
ℓ Ñ Zℓ ¸ Zˆ

ℓ

ppa1, a2q, nq ÞÑ pai, nq

i “ 1, 2, are homomorphisms.

Proof. We show that π1 : pZℓˆZℓq¸Zˆ
ℓ Ñ Zℓ¸Zˆ

ℓ is a homomorphism. The other map

is shown to be a homomorphism similarly. Let ppa, bq, nq, ppa1, b1q, n1q P pZℓ ˆZℓq¸Zˆ
ℓ .
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Then

π1pppa, bq, nqppa1, b1
q, n1

qq “ π1pppa, bq ` npa1, b1
q, nn1

qq

“ π1pppa ` na1, b ` nb1
q, nn1

qq

“ pa ` na1, nn1
q

“ pa, nqpa1, n1
q

“ π1pppa, bq, nqqπ1pppa1, b1
q, n1

qq.

Theorem 3.2.9. Let pL,QZℓ ‘QZℓq be the Q-representation of pZℓ ˆZℓq¸Zˆ
ℓ defined

above. Then

QZℓ ‘ QZℓ “
ë

d|ℓ

ColQpPdq ‘
ë

d1|ℓ

ColQpPd1 q (3.2.2)

is the decomposition into irreducible Q-subrepresentations of pZℓ ˆ Zℓq ¸ Zˆ
ℓ .

Proof. Let πi : pZℓ ˆ Zℓq ¸ Zˆ
ℓ Ñ Zℓ ¸ Zˆ

ℓ for i “ 1, 2 be the homomorphisms defined

in Lemma 3.2.8. Let pT,QZℓq be the Q-representation of Zℓ ¸ Zˆ
ℓ . Then the maps

T ˝ πi : pZℓ ˆ Zℓq ¸ Zˆ
ℓ Ñ GLpQZℓq, i “ 1, 2 are homomorphisms. Let ppa, bq, nq P

pZℓ ˆ Zℓq ¸ Zˆ
ℓ . Observe

pT ˝π1‘T ˝π2qppa, bq, nqpei,0q “ T pa, nq‘T pb, nqqpei,0q “ pT pa, nqei,0q “ peni`a,0q

and similarly pT ˝π1‘T ˝π2qppa, bq, nqp0, eiq “ p0, eni`bq. Therefore, L “ T ˝π1‘T ˝π2.

Then, L : pZℓˆZℓq¸Zˆ
ℓ Ñ GLpQZℓq‘GLpQZℓq. By Theorem 3.2.7, the representation

pT,QZℓq of Zℓ¸Zˆ
ℓ has the decomposition QZℓ “

Ë

d|ℓColQpPdq. Thus, QZℓ ‘QZℓ has

the decomposition (3.2.2) into irreducible Q-subrepresentations of pZℓ ˆZℓq¸Zˆ
ℓ .

For k P Zℓ, let vk “
ř

iPZℓ
ζ̄kiℓ ei be the basis vector for the one-dimensional C-

representation Vk of Zℓ. The vectors v0, . . . ,vℓ´1 will be called the discrete Fourier

basis. The discrete Fourier transform (DFT) of u P QZℓ is µkpuq “ xvk|uy, k P Zℓ.
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The power spectral density (PSD) of u P QZℓ is |µkpuq|2, k P Zℓ. The following

theorem states an equivalent condition that an LP must satisfy in terms of the PSD.

Theorem 3.2.10 (Fletcher et al. [18]). Let u,v P t´1, 1uℓ. Then pu,vq is an LP if

and only if

|µkpuq|
2

` |µkpvq|
2

“ 2pℓ ` 1q, for k P Zℓ ´ t0u.

We say that there is a vanishing sum of m ℓth roots of unity if there exists m ℓth

roots of unity x1, . . . , xm (not necessarily distinct) satisfying x1 ` ¨ ¨ ¨ ` xm “ 0. We

have the following result.

Theorem 3.2.11 (Lam and Leung [33]). Suppose that ℓ “ pn1
1 . . . pns

s for distinct

primes p1, . . . , ps and n1, . . . , ns P Zě1. Then there exists a vanishing sum of m ℓth

roots of unity if and only if m “ a1p1 ` ¨ ¨ ¨ ` asps for some a1, . . . , as P Zě0.

Let 0 ď m ď ℓ. We say ℓ ism-balanced if there is a vanishing sum ofm distinct ℓth

roots of unity. Since
řℓ´1

j“0 ζ
j
ℓ “ 0, ℓ is m-balanced if and only if ℓ is pℓ´mq-balanced.

Theorem 3.2.12 (Sivek [34]). Suppose that ℓ “ pn1
1 . . . pns

s for distinct primes p1, . . . , ps

and n1, . . . , ns P Zě1. Then ℓ is m-balanced if and only if m “ a1p1 ` ¨ ¨ ¨ ` asps and

ℓ ´ m “ b1p1 ` ¨ ¨ ¨ ` bsps for some a1, . . . , as, b1, . . . , bs P Zě0.

Let u P t´1, 1uℓ satisfy x1|uy “ ´1. Let J “ tj P Zℓ |upjq “ ´1u. Then µkpuq,

for k ‰ 0, has two forms

µkpuq “ ´2
ÿ

jPJ

ζkjℓ “ 2
ÿ

jRJ

ζkjℓ . (3.2.3)

Note that |J | “ pℓ ` 1q{2.

Lemma 3.2.13. Let ℓ “ pn, p an odd prime, and n P Zě1. Let u P t´1, 1uℓ satisfy

x1|uy “ ´1. Then µkpuq ‰ 0 for each k P Zℓ.
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Proof. Since µ0puq “ ´1 we need to only verify for k P rℓ ´ 1s. Suppose for a

contradiction that µkpuq “ 0 for some k P rℓ ´ 1s. By equation (3.2.3),
ř

jPJ ζ
kj
ℓ “ 0.

By Theorem 3.2.11,

ℓ ` 1

2
“ ap

for some a P Zě0. This means that p | ppℓ ` 1q{2q, a contradiction. Therefore,

µkpuq ‰ 0 for each k P Zℓ.

Lemma 3.2.14. Let ℓ “ pq, p, q distinct odd primes. Let u P t´1, 1uℓ satisfy x1|uy “

´1. Then µkpuq ‰ 0 for each k P Zℓ.

Proof. Since µ0puq “ ´1 we need to only verify for k P rℓ ´ 1s. Suppose for a

contradiction that µkpuq “ 0 for some k P rℓ ´ 1s. By equation (3.2.3),

ÿ

jPJ

ζkjℓ “
ÿ

jRJ

ζkjℓ “ 0. (3.2.4)

We proceed by considering the cases pk, ℓq “ 1, p, q. We need not consider the case

pk, ℓq “ ℓ as k ď ℓ ´ 1. Suppose that pk, ℓq “ 1. Then ζkℓ is a primitive ℓth root of

unity. Therefore, the summands in equations (3.2.4) are of distinct roots of unity.

This means ℓ is pℓ ` 1q{2-balanced. By Theorem 3.2.12,

ℓ ` 1

2
“ ap ` bq and

ℓ ´ 1

2
“ cp ` dq

for some a, b, c, d P Zě0. This means

ℓ “
ℓ ` 1

2
`

ℓ ´ 1

2
“ pa ` cqp ` pb ` dqq.

If a ` c ‰ 0 and b ` d ‰ 0, then p | pb ` dq and q | pa ` cq. Consequently,

ℓ “ pa ` cqp ` pb ` dqq ě pq ` pq “ 2ℓ,
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a contradiction. Suppose that a` c “ 0. Then a “ c “ 0 subsequently q | ppℓ` 1q{2q,

a contradiction. A similar contradiction occurs if b ` d “ 0. Therefore, µkpuq ‰ 0.

Suppose that pk, ℓq “ p. Since opζkℓ q “ ℓ{pk, ℓq “ ppqq{p “ q, ζkℓ is a primitive qth

root of unity. This means
ř

jPJ ζ
kj
ℓ “ 0 is a vanishing sum of qth roots of unity. By

Theorem 3.2.11,

ℓ ` 1

2
“ aq

for some a P Zě0 subsequently q | ppℓ`1q{2q, a contradiction. A similar contradiction

is reach in the case of pk, ℓq “ q. Therefore, µkpuq ‰ 0 for each k P Zℓ.

Lemma 3.2.15. Let V be a vector space over F. Let S Ď V . Then AffpSq ´ x is a

linear space for any x P AffpSq.

Proof. Let x P AffpSq and let W “ AffpSq ´ x. W is non-empty as 0 “ x ´ x P W .

Let w,w1 P W and α P F. Then w “
ř

i λisi ´ x,w1 “
ř

j µjsj ´ x, where λj, µj P F

and
ř

i λi “
ř

j µj “ 1. Observe

αw ` w1
“ αp

ÿ

i

λisi ´ xq `
ÿ

j

µjsj ´ x “
ÿ

i

αλisi `
ÿ

j

µjsj ´ αx ´ x

and
ÿ

i

αλi `
ÿ

j

µj ´ α “ α ` 1 ´ α “ 1.

Therefore, αw ` w1 P W which means W is a linear space.

Lemma 3.2.16. Let V be a vector space over F. Let S Ď V . Then AffFpSq “

SpanFpSq if and only if 0 P AffFpSq.

Proof. If AffpSq “ SpanpSq, then AffpSq is a linear space which means 0 P AffpSq.

Suppose now that 0 P AffpSq. By Lemma 3.2.15, AffpSq “ AffpSq´0 is a linear space.

Then since S Ď AffpSq, SpanpSq Ď AffpSq. Furthermore, since affine combinations

are linear combinations, AffpSq Ď SpanpSq. Therefore, AffpSq “ SpanpSq.
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Let pρ, V q be a unitary representation of a group G. Let S Ď V be nonempty.

Then the barycenter of S is βpSq “ p1{|S|q
ř

vPS v. The fixed space of V is V G “

tv P V | ρpgqv “ v @g P Gu. It is easy to show that V G is a subrepresentation of V .

By Theorem 3.2.1, there exists a subrepresentation orthogonal to V G. Let P be the

orthogonal projection matrix onto V G.

Lemma 3.2.17. Let pρ, V q be a unitary representation of a group G. Let x P V .

Then Px “ βpGxq.

Proof. Let u1, . . . ,uk be an orthonormal basis for V G. Then

Py “
ÿ

iPrks

xui|yyui.

for any y P V . Let S “ Gx. Then, for each i P rks and v “ rx P S for some r P G,

we have

xui|rxy “ xrui|rxy “ xui|xy.

Then

xui|βpGxqy “
1

|S|

ÿ

rxPS

xui|rxy “
1

|S|

ÿ

rxPS

xui|xy “ xui|xy.

Since βpGxq P V G,

βpGxq “
ÿ

iPrks

xui|βpGxqyui “
ÿ

iPrks

xui|xyui “ Px.

Lemma 3.2.18. Let pR,QZℓq be the regular Q-representation of Zℓ. Then the pro-

jection matrix P0 onto the fixed space of QZℓ is p1{ℓqJ, where J is the ℓˆ ℓ matrix of

all one’s.

Proof. Notice that the fixed space of V is a direct sum of copies of the trivial repre-
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sentation of Zℓ. By Theorem 3.2.2,

P0 “
1

ℓ

ÿ

jPZℓ

χ0pjqMRpjq “
1

ℓ

ÿ

jPZℓ

MRpjq “
1

ℓ
J.

3.3 Main results

We start with the proof of the first of our main results.

Proof of Theorem 3.1.1.

Proof. Let F1 “ tu P t´1, 1uℓ | Dv Q pu,vq is an LPu and F2 “ tv P t´1, 1uℓ | Du Q

pu,vq is an LPu. By symmetry, F1 “ F2. Since F ‰ H, there exists puJ,vJqJ P F .

Then u P F1 and v P F2. Let p “ βpZℓuq “ ´1{ℓ1. Then p P ConvpF1q Ď AffpF1q.

To reach the desired conclusion observe the following facts:

(i) Since F1 “ F2, SpanCpF1 ´ pq “ SpanCpF2 ´ pq.

(ii) Since both SpanCpF1 ´ pq and SpanCpF2 ´ pq are Zℓ-stable subrepresentations

of pQZℓqC orthogonal to 1, both SpanCpF1 ´ pq and SpanCpF2 ´ pq must be

an orthogonal direct sum of the irreducible C-representations V1, . . . , Vℓ´1 of

pQZℓqC.

(ii) Both SpanCpF1 ´pq and SpanCpF2 ´pq cannot be orthogonal to an irreducible

Vk for some k “ 1, . . . , ℓ ´ 1. For this would imply that the DFT of u and v

must satisfy

µkpuq “ xu|vky “ xu ´ p|vky “ 0,

similarly, µkpvq “ 0, contradicting Theorem 3.2.10.

By (i),(ii), and (iii),

SpanCpF1 ´ pq “ V1 k ¨ ¨ ¨ k Vℓ´1 and SpanCpF2 ´ pq “ V1 k ¨ ¨ ¨ k Vℓ´1.
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Let f “ βppZℓ ˆ ZℓqpuJ,vJqJq “ ´1{ℓp1J,1JqJ. Then f P ConvpFq Ď AffpFq. It is

evident that

SpanCpF ´ fq “ SpanCpF1 ´ pq ‘ SpanCpF2 ´ pq.

Then by Theorem 3.2.6, SpanQpFi ´ pq “
ë

d|ℓ
d‰ℓ

ColQpPdq for i “ 1, 2, and by fact (i),

SpanQpF ´ fq “

¨

˚

˝

ë

d|ℓ
d‰ℓ

ColQpPdq

˛

‹

‚

‘

¨

˚

˝

ë

d|ℓ
d‰ℓ

ColQpPdq

˛

‹

‚

.

Hence,

dimpConvpFq “ dimpSpanpF´fqq “ dimQpSpanQpF´fqq “ pℓ´1q`pℓ´1q “ 2ℓ´2.

The complexification of a vector space UC of U over Q is defined as UC “ CbQU .

Suppose that x¨|¨y is the inner product of V . It is plain to show that an inner product

on VC may be defined as xzbv|z1 bv1y “ zz1xv|v1y. Then the following lemma follows

immediately.

Lemma 3.3.1. Let V be an inner product space over Q and U,W subspaces of V .

Then U is orthogonal to W if and only if UC is orthogonal to WC.

Lemma 3.3.2. Let p, q be distinct odd primes and n P Zě1. Suppose that ℓ “ pn or

ℓ “ pq. Let u P t´1, 1uℓ satisfy x1|uy “ ´1 and let y “ u ` p1{ℓq1. Then

SpanQpZℓyq “
ë

d|ℓ
d‰ℓ

ColQpPdq,

where Pd is defined in Theorem 3.2.6.

Proof. Since SpanQpZℓyq is Zℓ-stable, it is a Q-subrepresentation of QZℓ . Then, by

Theorem 3.2.1, SpanQpZℓyq is an orthogonal direct sum of irreducibleQ-subrepresentations
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of QZℓ . By Theorem 3.2.6, the irreducible Q-subrepresentations of QZℓ are ColQpPdq

for each divisor d of ℓ. We first show that SpanQpZℓyq is orthogonal only to ColQpP0q.

Since ColQpP0q “ SpanQp1q, xy|1y “ 0, and the representation is unitary, we have

SpanQpZℓyq is orthogonal to ColQpP0q.

Consider now d ‰ ℓ. Since pColQpPdqqC “ ColCpPdq is spanned by vk “
ř

iPZℓ
ζ̄kiℓ ei

for k P Zℓ such that pk, ℓq “ d,

xvk|yy “ xvk|u `
1

ℓ
1y “ xvk|uy “ µkpuq.

By Lemmas 3.2.13 and 3.2.14, xy|vky ‰ 0. Since this holds for each k, by Lemma 3.3.1,

SpanQpZℓyq is not orthogonal to ColQpPdq. As this holds for each divisor d ‰ ℓ of ℓ,

we must have

SpanQpZℓyq “
ë

d|ℓ
d‰ℓ

ColQpPdq.

Corollary 3.3.3. Let ℓ and y be as in Lemma 3.3.2. Then dimQpSpanQpZℓyqq “ ℓ´1.

Proof. By Lemma 3.3.2, SpanQpZℓyq “
Ë

d|ℓ
d‰ℓ

ColQpPdq. Since dimQpColQpP0qq “ 1,

we have

dimQpSpanQpZℓyqq “ dimQpQZℓq ´ dimQpColQpP0qq “ ℓ ´ 1.

Corollary 3.3.4. Let 1K denote the orthogonal complement of SpanQp1q in QZℓ.

Then

1K
“

ë

d|ℓ
d‰ℓ

ColQpPdq

is the decomposition of 1K into irreducible subrepresentations of QZℓ.

Proof. Since QZℓ “ SpanQp1q k 1K, we have IQZℓ “ P0 ` P1K , where IQZℓ is the
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identity matrix on QZℓ . Since IQZℓ “
ř

d|ℓ Pd, we have

P1K “ IQZℓ ´ P0 “
ÿ

d|ℓ
d‰ℓ

Pd.

Therefore,

1K
“ ColQpP1Kq “ ColQp

ÿ

d|ℓ
d‰ℓ

Pdq “
ë

d|ℓ
d‰ℓ

ColQpPdq.

Here we used the fact that the Pd’s are orthogonal projection matrices that necessarily

satisfy PdPd1 “ δdd1Pd, where δdd1 is the Kronecker delta function.

Corollary 3.3.5. Let 1K be as defined in Corollary 3.3.4. Then

dimQp1K
q “ ℓ ´ 1.

Proof. Since QZℓ “ SpanQp1q k 1K, the result follows immediately.

Lemma 3.3.6. Let p, q be distinct odd primes and n P Zě1. Suppose that ℓ “ pn or

ℓ “ pq. Let u P t´1, 1uℓ satisfy x1|uy “ ´1. Then dimpAffpZℓuqq “ ℓ ´ 1.

Proof. Let y “ u ´ P0u, where P0 is the projection onto the fixed space of QZℓ . By

Lemma 3.2.18, y “ u ` p1{ℓq1. Since P0y “ P0u ´ P2
0u “ 0 and βpZℓyq “ P0y

by Lemma 3.2.17, 0 “ βpZℓyq P ConvQpZℓyq as βpZℓyq is a convex combination of

points of Zℓy. Then by Lemma 3.2.16, we have SpanQpZℓyq “ AffQpZℓyq. Observe

that

dimQpAffQpZℓuqq “ dimQpAffQpZℓuq`p1{ℓq1q “ dimQpAffQpZℓyqq “ dimQpSpanQpZℓyqq.

Then by Corollary 3.3.3,

dimpAffpZℓuqq “ dimQpAffQpZℓuqq “ dimQpSpanQpZℓyqq “ ℓ ´ 1.
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We now prove the main results.

Proof of Theorem 3.1.2.

Let dimQpAffQpFu0qq “ r1 and dimQpAffQpFv0qq “ r2. Let X1 “ pZℓ ¸ Zˆ
ℓ qu0,

X2 “ pZℓ ¸ Zˆ
ℓ qv0. Since βpXiq “ ´p1{ℓq1 for i “ 1, 2, ´p1{ℓq1 is a convex com-

bination of points of Xi. Then, ´p1{ℓq1 P AffQpFu0q and ´p1{ℓq1 P AffQpFv0q as

X1 “ Fu0 and X2 “ Fv0 . Hence,

dimQpSpanQpXi ` p1{ℓq1qq “ ri.

Since Xi and t1u are Zℓ-stable sets, SpanQpXi ` p1{ℓq1q is Zℓ-stable for i “ 1, 2.

Moreover, SpanQpXi ` p1{ℓq1q Ď 1K as each vector in Xi ` p1{ℓq1 is in 1K. Now, by

Theorem 3.2.7, there exists Ui Ď td P rℓs : d | ℓu such that

1K
“ SpanQpXi `

1

ℓ
1q k pkdPUi

ColQpPdqq .

Since dimQp1Kq “ ℓ ´ 1,

dimQpSpanQpXi `
1

ℓ
1qq “ ℓ ´ 1 ´

˜

ÿ

dPUi

ϕ

ˆ

l

d

˙

¸

“
ÿ

d|ℓ, d‰ℓ, dRUi

ϕ

ˆ

l

d

˙

for i “ 1, 2.

Now, we prove that U1 X U2 “ H. For the sake of contradiction let d1 P U1 X U2

be such that d1 ‰ ℓ. This implies that for each i “ 1, 2, SpanCpXi ` p1{ℓq1q is

orthogonal to ColCpPd1q. Also, ColCpPd1q Ă pQZℓqC and ColCpPd1q is invariant under

the action of Zℓ. Then by Theorems 3.2.1 and 3.2.5, there exists U 1 Ă Zℓ ´ t0u such

that ColCpPd1q “
Ë

iPU 1 Vi. This implies that for each i “ 1, 2, SpanCpXi ` p1{ℓq1q is
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orthogonal to an irreducible Vk for some k P rℓ ´ 1s. Then

µkpu0
q “ µkpu0

`
1

ℓ
1q “ 0,

similarly, µkpv0q “ 0, contradicting Theorem 3.2.10.

Now, equations (3.1.5) for Fu0 and Fv0 follow because

dimQpAffQpFu0qq “ dimpAffpFu0qq and dimQpAffQpFv0qq “ dimpAffpFv0qq.

Proof of Corollary 3.1.3. Since Zℓu
0 Ď Fu0 , ConvpZℓu

0q Ď ConvpFu0q. Then, by

Lemma 3.3.6,

ℓ´ 1 “ dimQpAffQpZℓu
0
qq “ dimpAffpZℓu

0
qq “ dimpConvpZℓu

0
qq ď dimpConvpFu0qq.

The result now follows from Theorem 3.1.2 as U “ H is the only possibility.

Corollary 3.3.7. Let p, q be distinct odd primes and n P Zě1. Let ℓ “ pn or ℓ “ pq.

Let pu0,v0q be an LP of length ℓ. Then the only linear constraints implied by the

integrality of the constraints (3.1.1) are of the form

1Ju0
“ ´1 and 1Jv0

“ ´1. (3.3.1)

Proof. Any other linear constraint different from constraints (3.3.1) would necessarily

imply that dimpConvpFu0qq ă ℓ ´ 1 and dimpConvpFv0qq ă ℓ ´ 1, contradicting

Corollary 3.1.3.
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3.4 Recent advancements

The work presented in this section are results that have been established recently

that will be used in continuing work for the LP problem.

Lemma 3.4.1 (Sylvester). Let a, b, n P Zě0. If pa, bq “ 1 and n ě pa ´ 1qpb ´ 1q,

then there exists integers x, y ě 0 such that n “ xa ` yb.

Suppose that ℓ “ pqm where p, q are odd primes, 3 ď p ă q and m is an odd

integer such that m ą 2. Since ℓ ą 2pp ´ 1qpq ´ 1q, we have ℓ ´ 1 ě 2pp ´ 1qpq ´ 1q,

which implies pℓ ´ 1q{2 ě pp ´ 1qpq ´ 1q. By Lemma 3.4.1, pℓ ` 1q{2 “ ap ` bq and

pℓ ´ 1q{2 “ cp ` dq for some a, b, c, d P Zě0. Hence, by Theorem 3.2.12 there exists a

J Ă Zℓ such that |J | “ pℓ`1q{2 and the corresponding µkpuq is 0 whenever k satisfies

pk, ℓq “ 1. This means that dimpConvpFu0qq ď ℓ ´ 1 ´ ϕpℓq ă ℓ ´ 1. The results

below allow us to exclude a given vector u to form an LP with another vector v.

Lemma 3.4.2. Let m,n P Z. If m ´ 2 ě 2, n ´ 2 ě 1 or m ´ 2 ě 1, n ´ 2 ě 2, then

n ´ 2 ě 2pn ´ 1q{m.

Proof. If m´2 ě 2, n´2 ě 1 or m´2 ě 1, n´2 ě 2, then pm´2qpn´2q ě 2. Adding

2pn´2q to pm´2qpn´2q ě 2 yieldsmpn´2q ě 2pn´1q, and so n´2 ě 2pn´1q{m.

Lemma 3.4.3. Let p, q be distinct odd primes. Then the quotient of 2pq ´ 1qpp ´ 1q

by division of p is at least q.

Proof. Since for any integer k, 2pq´1qpp´1q “ p2pq´1q´kqp`pkp´2pq´1qq we may

choose the smallest such k such that kp´ 2pq ´ 1q ě 0. Then k “
P

2pq ´ 1q{p
T

, where

rns is the ceiling of n. Write 2pq ´ 1qpp ´ 1q “ sp ` r, where s “ p2pq ´ 1q ´ kq and

r “ pkp´ 2pq ´ 1qq. Now, as p, q are distinct odd primes, WLOG suppose that p ě 3,

then q ě 5 ě 4. Since p´2 ě 1 and q´2 ě 2, by the above remark, q´2 ě 2pq´1q{p.

Therefore, q ´ 2 ě k. Then s ´ q “ 2pq ´ 1q ´ k ´ q “ q ´ 2 ´ k ě k ´ k “ 0.
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Note that since k ´ 1 ă 2pq ´ 1q{p, then r “ pk ´ 2pq ´ 1q ă p. Therefore, s and

r are the quotient and remainder of 2pq ´ 1qpp ´ 1q upon division by p.

Lemma 3.4.4. Let ℓ “ pαqβ, where p, q are distinct odd primes and α, β P Zě1.

Then ϕpℓq ą pℓ ´ 1q{2.

Proof. By Lemma 3.4.3, 2pq ´ 1qpp ´ 1q “ sp ` r where s ě q. Then

2ϕpℓq “ 2pq ´ 1qpp ´ 1qpα´1qβ´1

“ psp ` rqpα´1qβ´1

ě pαqβ ` rpα´1qβ´1

ą pαqβ ´ 1

“ ℓ ´ 1

and the result follows.

Theorem 3.4.5. Let ℓ “ pqm, p, q odd primes, 3 ď p ă q and m an odd integer such

that m ě 3. Then no vector u P t´1, 1uℓ satisfying µkpuq “ 0, k P Zˆ
ℓ belongs to an

LP.

Proof. Suppose for contradiction that pu,vq is an LP. Then µkpuq “ 0 implies µkpuq “

0 for k P Zˆ
ℓ . By Theorem 3.2.10,

|µkpvq|
2

“ 2pℓ ` 1q, k P Zˆ
ℓ .

Then, by Corollary 3.4.8 and Lemma 3.4.4,

ℓ´1
ÿ

k“1

|µkpvq|
2

“ pℓ ` 1qpℓ ´ 1q ă 2ϕpℓqpℓ ` 1q ď

ℓ´1
ÿ

k“1

|µkpvq|
2,

a contradiction.
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The Fourier translation of the LP problem gave us equalities and inequalities that

allowed us to exclude a vector from being an LP. The strength of Fourier analysis to

the LP problem will be a continuing study.

Lemma 3.4.6. Let u P Qℓ. Then
ř

sPZℓ
Pupsq “ p1Juq2.

Proof. Let Cu be the circulant matrix of u. Then

ÿ

sPZℓ

Pupsq “
1

ℓ
p1JCJ

uCu1q “ 1Ju1Ju “ p1Juq
2.

Lemma 3.4.7. Let u P Qℓ. Then

||µpuq||
2

“ ℓ||u||
2.

Proof. Since µ “ UJu, where U is the matrix whose columns are the discrete Fourier

basis v0, . . . ,vℓ´1,

||µpuq||
2

“
ÿ

kPZℓ

|µkpuq|
2

“ µ˚µ “ uJU˚Uu “ uJℓIℓu “ ℓ||u||
2,

where we used the fact that U˚U “ ℓIℓ, Iℓ the ℓ ˆ ℓ identity matrix.

Corollary 3.4.8. Let u P QZℓ satisfying ||u||2 “ ℓ and x1|uy “ ´1. Then

ℓ´1
ÿ

k“1

|µkpuq|
2

“ pℓ ` 1qpℓ ´ 1q.

Proof. By Lemma 3.4.7,

ℓ´1
ÿ

k“1

|µkpuq|
2

“ ||µpuq||
2

´ |µ0puq|
2

“ ℓ2 ´ 1 “ pℓ ` 1qpℓ ´ 1q.

The Ramanujan’s sum [35] is defined by cℓpnq “
ř

0ăkăℓ
pk,ℓq“1

e2πikn{ℓ. It is well known
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that for each ℓ, n P N

cℓpnq “ µ

ˆ

ℓ

pℓ, nq

˙

ϕpℓq

ϕ
´

ℓ
pℓ,nq

¯ ,

where

µpnq “

$

’

’

’

’

&

’

’

’

’

%

1 if n “ 1,

p´1qr if n “ p1 . . . pr for distinct primes p1, . . . , pr,

0 if n is divisible by some prime square

is the Möbius function.

Theorem 3.4.9. Let ℓ ą 1 and u P Qℓ. If d is a divisor of ℓ, then

ÿ

0ăkăℓ
pk,ℓq“d

|µkpuq|
2

“
ÿ

sPZℓ

c ℓ
d
psqPupsq.

Proof. First note that

ÿ

0ăkăℓ
pk,ℓq“d

ζkpj´hq
“

ÿ

0ăkăℓ
pk,ℓq“d

e
2πikpj´hq

ℓ “
ÿ

0ără ℓ
d

pr, ℓ
d

q“1

e
2πirpj´hq

ℓ
d “ c ℓ

d
pj ´ hq.

Let 1,v1, . . . ,vℓ´1 be the discrete Fourier basis. Note that vkv
˚
k “ rahjs, where

ahj “ ζkpj´hq. Then
ÿ

0ăkăℓ
pk,ℓq“d

vkv
˚
k “ rbdhjs,

where bdhj “ cℓ{dpj ´ hq. Since µkpuq “ uJvk,

|µkpuq|
2

“ µkpuqµkpuq “ puJvkqpv˚
kuq “ uJ

pvkv
˚
kqu.
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Then

ÿ

0ăkăℓ
pk,ℓq“d

|µkpuq|
2

“ uJ

¨

˚

˝

ÿ

0ăkăℓ
pk,ℓq“d

vkv
˚
k

˛

‹

‚

u

“
ÿ

h,jPZℓ

bdhjuhuj

“
ÿ

h,jPZℓ

c ℓ
d
pj ´ hquhuj

“
ÿ

s,hPZℓ

c ℓ
d
psquhuh`s

“
ÿ

sPZℓ

c ℓ
d
psq

ÿ

hPZℓ

uhuh`s

“
ÿ

sPZℓ

c ℓ
d
psqPupsq.

We now present results that examine lower bounds on the dimension of the convex

hull of feasible points to the LP problem to and utilize the results and ideas of

Ingleton [36].

Theorem 3.4.10. Let ℓ “ pn1
1 . . . pns

s where p1, . . . , ps are distinct odd primes and

n1, . . . , ns P Zě1. Then

dimpConvpFu0q ě
ÿ

jPrss

ÿ

iPrnjs

ϕppijq.

Proof. Let u P Fu0 and y “ u` p1{ℓq1. To see that ColQpPdq Ď SpanQpZℓyq for each

dj,i “ pn1
1 . . . pij . . . p

ns
s , j “ 1, . . . , s, i “ 0, . . . , nj ´ 1, of the form

p1p
n2
2 . . . pns

s , p21p
n2
2 . . . pns

s , pn1´1
1 pn2

2 . . . pns
s , . . . , pn1

1 pn2
2 . . . ps, p

n1
1 pn2

2 . . . p2s, . . . , p
n1
1 pn2

2 . . . pns´1
s .

Assume otherwise and let xy|vky “ 0 for some k such that pk, ℓq “ dj,i, where

vk “
ř

iPZℓ
ζkiℓ ei. Then by Theorem 3.2.11, pj|pℓ ` 1q{2, a contradiction. Therefore,

42



ColQpPdq Ď SpanQpZℓyq. Hence,

dimQpSpanQpZℓyqq ě
ÿ

jPrss

ÿ

iPrnjs

ϕppijq.

Let C “ Cu be the circulant matrix of u P Qℓ. Then C is non-recurrent if ℓ is the

only divisor d of ℓ such that ui “ uj whenever i ” j pmod dq. If ℓ “ pαpα1
1 . . . pαm´1

m1

where p, p1, . . . , pm´1 are distinct primes and α, α1, . . . , αm´1 P Zě1, let

τpℓ, pq “ 1 ` ϵpmqϵpαqϕppq ` ϕppαq `
ÿ

iPrm´1s

ϕpppαi
i q,

where ϵp1q “ 0 and ϵpkq “ 1 for k P Zą1

Lemma 3.4.11. (Ingleton [36]) Let ℓ “ pqβ, where p, q are distinct primes and

β P Zě1. Let C be a ℓ ˆ ℓ non-recurrent circulant matrix with entries from t´1, 1u.

Then rankpCq ě mintτpℓ, pq, τpℓ, qqu.

Note that if u P t´1, 1uℓ and x1|uy “ ´1, then C is non-recurrent. This is

because there is one more ´1 than 1’s, so that there can be no two identical rows of

C. Therefore, if pu,vq is an LP, then necessarily the circulant matrices associated

with u,v are non-recurrent.

If β ě 2, then the following lemma implies that the rank is at least τpℓ, qq.

Lemma 3.4.12. Let ℓ “ pqβ be a positive integer for distinct odd primes p, q and

β ě 2. Then τpℓ, qq ă τpℓ, pq.

Proof. Note that mn ě m ` n if and only if pm ´ 1qpn ´ 1q ě 1. Now

τpn, qq “ 1 ` ϵp2qϵpβqϕpqq ` ϕpqβq ` ϕpqpq “ 1 ` ϕpqq ` ϕpqβq ` ϕpqpq
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and

τpn, pq “ 1 ` ϕppq ` ϕppqβq.

Then

τpℓ, pq ´ τpℓ, qq “ ϕpqqpqβ´1
pϕppq ´ 1q ´ pϕppq ` 1qq ` ϕppq

“ ϕpqqpqβ´1
pp ´ 2q ´ pq ` ϕppq.

We consider two cases where p “ 3 and p ě 5. If p “ 3, then

τpℓ, pq ´ τpℓ, qq “ ϕpqqpqβ´1
´ 3q ` ϕp3q ě ϕpqqp5β´1

´ 3q ` ϕp3q ě 0.

If p ě 5, then since p ´ 2 ě 1,

qβ´1
pp ´ 2q ´ p ě qβ´1

` p ´ 2 ´ p “ qβ´1
´ 2 ě 3β´1

´ 2 ą 0

implying

τpℓ, pq ´ τpℓ, qq “ ϕpqqpqβ´1
pp ´ 2q ´ pqq ` ϕppq ą 0.

Now the following corollary follows from Lemma 3.4.12 and Theorem 3.4.10

Corollary 3.4.13. Let ℓ “ pqβ, β ě 2. Then the rank of a ℓ ˆ ℓ circulant matrix is

at least τpℓ, qq “ ϕppqq ` ϕpqq ` ϕpqβq.

The ILP

minimize ϕppq `
ÿ

iPrβs

ϕpqiq `
ÿ

iPrβs

xiϕppqiq

subject to ϕppq `
ÿ

iPrβs

ϕpqiq `
ÿ

iPrβs

xiϕppqiqě ϕppqq ` ϕpqq ` ϕpqβq

xi P t0, 1u, i P rβs

(3.4.1)
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aims to improve the lower bound τpℓ, qq.

3.5 Discussion

In this chapter we determined the dimension of the convex hull of feasible points

to the Legendre pair problem when ℓ “ pn and ℓ “ pq for p, q distinct odd primes

and n P Zě1. Future research will be the generalization of finding the possible values

this dimension for general odd ℓ. We will explore this generalization with techniques

from Section 3.4.
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IV. Concluding Remarks

In this research we studied the classification of OAs and the dimension of the

convex hull of feasible points to the LP problem. The contribution associated with

the classification of orthogonal arrays refines the work of Stufken and Tang [26] by

analytically classifying of all non-OD-equivalent OApλ2t, t ` 2, 2, tq when t is even.

The classification results obtained are significantly simpler than by classification up

to isomorphism as in Stufken and Tang [26]. The contribution associated with the

existence of LPs determines the dimension of the convex hull of feasible points to

the Legendre pair problem when ℓ “ pn and ℓ “ pq for p, q distinct odd primes and

n P Zě1 providing a better understanding of the convex hull of feasible points.

4.1 Future work

OD-equivalence operations allows for simpler classification of OApλ2t, t ` 2, 2, tq

when t is even compared to the classification carried out by isomorphism operations

alone. Future research will involve classifying OApλ2t, t`3, 2, tq up to OD-equivalence

for even t. OD-equivalence operations contain isomorphism operations because of this

we expect classifying OApλ2t, t`3, 2, tq up to OD-equivalence for even t to be possible.

The determination of the dimension of the convex hull of feasible points to the

LP problem when ℓ “ pn and ℓ “ pq has been exhausted. The natural problem

is the generalization to any odd ℓ. Possible modes of generalization are employing

techniques of Ingleton [36] and bounding the dimension from below with the intent

of obtaining equality. Another avenue is utilizing the discrete Fourier transform as in

Fletcher et al. [18] and examining other inequalities or equalities that must hold in

the new coordinate system if two vectors are to be Legendre pairs.
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Appendix A. Chapter II Matlab Code

For any even-strength d, the following Matlab scripts: S1Script, S2Script, S3Script,

and S4Script generate the complete set of solutions S1, S2, S3, and S4, respectively,

corresponding to Lemmas 8, 9, 10, and 11, respectively, of Stufken and Tang [26]. The

variables y1, y2, y3, y4, . . . , ym`2 correspond to the variables k, um`1, um, um´1, . . . , u1.

Note that S1 and S2 in this dissertation differ from that as in Stufken and Tang [26].

The code is written in Matlab R2021a. To generate the complete solution sets as

given in Theorems 2.3.5 and 2.3.6, implement scripts S1Script and S3Script.

The scripts operate as follows:

1. Specify a strength d at line 1.

2. The output of the script is a function with argument the index λ.

3. The function, with specified argument, will generate the complete set of solu-

tions pu1, . . . , um`1, kq.

A.1 S1Script

1 d=2;
2 m=d+2;
3
4 str ="[";
5 for j=m+2: -1:2
6 str=str+"y"+ num2str(j)+",";
7 end
8 strVec=str+"y"+ num2str (1) +"]";
9

10 strY =["Y1 =[]"];
11 for j=2:m+2
12
13 str="Y" + num2str(j)+"={}";
14
15 strY=[strY str];
16 end
17 strY;
18
19 strYC =["Y1", "Y2{j1}"];
20 for j=3:m+2
21

47



22 str="Y" + num2str(j)+"{j1 ,j2";
23 for i=3:j-1
24 str=str+",j"+ num2str(i);
25 end
26 str=str +"}";
27 strYC=[ strYC str];
28 end
29 strYC;
30
31 strLoop =[];
32 for j=1:(m+2)
33
34 str="for j"+ num2str(j)+"=1: size ("+ strYC(j)+",2)";
35 strLoop =[strLoop , str];
36
37 end
38 strLoop;
39
40 strVar =[];
41 for j=1:m+2
42 str="y"+ num2str(j)+"="+ strYC(j)+"(j"+ num2str(j)+")";
43 strVar =[strVar , str];
44 end
45 strVar;
46
47 ub=["( lambda -d-1)/4", "(lambda -4*y1)/(m-1)", "-abs(y2)"];
48
49 for j=4:m+1
50 str="y"+ num2str(j-1);
51 ub=[ub , str];
52
53 end
54 ub;
55
56 lb=["0", "-(lambda -4*y1)/(m+1)", "-(lambda -4*y1+y2)/m"];
57
58 for j=4:m+1
59 str="-(lambda -4*y1+y2";
60 for i=3:(j-1)
61 str=str +"+y"+ num2str(i);
62 end
63 str=str +") /("+ (m+3-j)+")";
64 lb=[lb ,str];
65 end
66
67 for j=4:m+2
68 str="-(lambda -4*y1+y2";
69 for i=3:m+1
70 str=str +"+y"+ num2str(i);
71 end
72 str=str +")";
73 end
74 lb=[lb ,str];
75
76 %fileName =" lambda "+ num2str(lambda)+"k"+ num2str(m)+"t"+ num2str(

d)+"S1.m";
77 fileName ="k"+ num2str(m)+"t"+ num2str(d)+"S1.m";
78 fileID=fopen(fileName ,’w’);
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79
80 fprintf(fileID ," function S=k"+ num2str(m)+"t"+ num2str(d)+"S1(

lambda)\n");
81 fprintf(fileID , "if mod(lambda ,2) ==0\ nerror(’lambda must be

odd ’)\nend\n");
82 fprintf(fileID ,"d="+d+";\n m=d+2;\n");
83
84
85
86 fprintf(fileID , strY (1)+ ";\n" );
87
88 fprintf(fileID ," lb="+lb(1) +";\n"+" ub="+ub(1) +";\n");
89
90 fprintf(fileID ,strYC (1) +"=[];\ nn=ceil(lb);\n while n<=ub\n

"+strYC (1) +"=["+ strYC (1)+",n];\nn=n+1;\ nend\n");
91 fprintf(fileID ," clearvars n lb ub;\n");
92
93 for j=2:m+1
94 fprintf(fileID , strY(j)+ ";\n" );
95
96 for i=1:j-1
97 fprintf(fileID ,strLoop(i)+"\n");
98 end
99
100 for i=1:j-1
101 fprintf(fileID ," "+ strVar(i)+";\n");
102 end
103 fprintf(fileID ," lb="+lb(j)+";\n"+" ub="+ub(j)+";\n");
104
105 fprintf(fileID ,strYC(j)+"=[];\n n=ceil(lb);\ nwhile n<=ub\

nif mod(n,2) ==1\n"+ strYC(j)+"=["+ strYC(j)+",n];\nn=n
+1;\ nelse\nn=n+1;\ nend\nend\n");

106
107 for i=1:j-1
108 fprintf(fileID ,"end\n");
109 end
110 fprintf(fileID ," clearvars n lb ub;\n");
111 end
112
113
114 fprintf(fileID ,strY(m+2) +";\n");
115
116 for j=1:m+1
117 fprintf(fileID ,strLoop(j)+"\n");
118 end
119
120 for j=1:m+1
121 fprintf(fileID ,strVar(j)+";\n");
122 end
123
124 fprintf(fileID ,strYC(m+2) +"="+lb(m+2) +";\n");
125
126 for j=1:m+1
127 fprintf(fileID ,"end\n");
128 end
129
130 fprintf(fileID ,"S=[];\n");
131
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132 for j=1:m+2
133 fprintf(fileID ,strLoop(j)+"\n");
134 end
135 for j=1:m+2
136 fprintf(fileID ,strVar(j)+";\n");
137 end
138
139 fprintf(fileID ,"S=[S;"+ strVec +"];\n");
140
141 for j=1:m+2
142 fprintf(fileID ,"end\n");
143 end
144
145 fprintf(fileID ,"end");
146 fclose(fileID);

A.2 S2Script

1 d=2;
2 m=d+2;
3
4 str ="[";
5 for j=m+2: -1:2
6 str=str+"y"+ num2str(j)+",";
7 end
8 strVec=str+"y"+ num2str (1) +"]";
9

10 per =[[1 3 2], 4:m+2];
11
12 strY =["Y1 =[]"];
13 for j=2:m+2
14
15 str="Y" + num2str(j)+"={}";
16
17 strY=[strY str];
18 end
19 strY=strY(per)
20
21
22 strYC =["Y1", "Y3{j1}", "Y2{j1 ,j2}"];
23 for j=4:m+2
24
25 str="Y" + num2str(j)+"{j1 ,j2 ,j3";
26 for i=4:j-1
27 str=str+",j"+ num2str(i);
28 end
29 str=str +"}";
30 strYC =[strYC str];
31 end
32 strYC
33
34
35 strVar =["y1=Y1(j1)", "y3=Y3{j1}(j2)", "y2=Y2{j1 ,j2}(j3)"];
36 for j=4:m+2
37 str="y"+ num2str(j)+"="+ strYC(j)+"(j"+ num2str(j)+")";
38 strVar =[strVar , str];
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39 end
40 strVar
41
42 strLoop =[];
43 for j=1:(m+2)
44
45 str="for j"+ num2str(j)+"=1: size ("+ strYC(j)+",2)";
46 strLoop =[strLoop , str];
47
48 end
49 strLoop
50
51 ub=["( lambda -d-3)/4", "(lambda -4*y1 -2)/(m-1)", "-abs(y3) -2",

"-abs(y3)"];
52
53 for j=5:m+1
54 str="y"+ num2str(j-1);
55 ub=[ub , str];
56
57 end
58 ub
59
60 lb=["0", "-(lambda -4*y1 -2)/(m+1)", "(m-1)*abs(y3)-y3 -(lambda

-4*y1)", "-(lambda -4*y1+y2+y3)/(m-1)"];
61
62 for j=5:m+1
63 str="-(lambda -4*y1+y2+y3";
64 for i=4:(j-1)
65 str=str +"+y"+ num2str(i);
66 end
67 str=str +") /("+ (m+3-j)+")";
68 lb=[lb ,str];
69 end
70
71 for j=5:m+2
72 str="-(lambda -4*y1+y2+y3";
73 for i=4:m+1
74 str=str +"+y"+ num2str(i);
75 end
76 str=str +")";
77 end
78 lb=[lb ,str]
79
80 fileName ="k"+ num2str(m)+"t"+ num2str(d)+"S2.m";
81 fileID=fopen(fileName ,’w’);
82
83 fprintf(fileID ," function S=k"+ num2str(m)+"t"+ num2str(d)+"S2(

lambda)\n");
84 fprintf(fileID , "if mod(lambda ,2) ==0\ nerror(’lambda must be

odd ’)\nend\n");
85
86 fprintf(fileID ,"d="+d+";\n m=d+2;\n");
87
88
89
90 fprintf(fileID , strY (1)+ ";\n" );
91
92 fprintf(fileID ," lb="+lb(1) +";\n"+" ub="+ub(1) +";\n");
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93
94 fprintf(fileID ,strYC (1) +"=[];\ nn=ceil(lb);\n while n<=ub\n

"+strYC (1) +"=["+ strYC (1)+",n];\nn=n+1;\ nend\nclearvars
n lb ub;\n");

95
96
97 for j=2:m+1
98 fprintf(fileID , strY(j)+ ";\n" );
99
100 for i=1:j-1
101 fprintf(fileID ,strLoop(i)+"\n");
102 end
103
104 for i=1:j-1
105 fprintf(fileID ," "+ strVar(i)+";\n");
106 end
107 fprintf(fileID ," lb="+lb(j)+";\n"+" ub="+ub(j)+";\n");
108
109 fprintf(fileID ,strYC(j)+"=[];\n n=ceil(lb);\ nwhile n<=ub\

nif mod(n,2) ==1\n"+ strYC(j)+"=["+ strYC(j)+",n];\nn=n
+1;\ nelse\nn=n+1;\ nend\nend\n");

110
111 for i=1:j-1
112 fprintf(fileID ,"end\n");
113 end
114 fprintf(fileID ," clearvars n lb ub;\n");
115 end
116
117
118 fprintf(fileID ,strY(m+2) +";\n");
119
120 for j=1:m+1
121 fprintf(fileID ,strLoop(j)+"\n");
122 end
123
124 for j=1:m+1
125 fprintf(fileID ,strVar(j)+";\n");
126 end
127
128 fprintf(fileID ,strYC(m+2) +"="+lb(m+2) +";\n");
129
130 for j=1:m+1
131 fprintf(fileID ,"end\n");
132 end
133
134 fprintf(fileID ,"S=[];\n");
135
136 for j=1:m+2
137 fprintf(fileID ,strLoop(j)+"\n");
138 end
139 for j=1:m+2
140 fprintf(fileID ,strVar(j)+";\n");
141 end
142
143 fprintf(fileID ,"S=[S;"+ strVec +"];\n");
144
145 for j=1:m+2
146 fprintf(fileID ,"end\n");
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147 end
148
149 fprintf(fileID ,"end");
150
151 fclose(fileID);

A.3 S3Script

1 d=2;
2 m=d+2;
3
4 str ="[";
5 for j=m+2: -1:2
6 str=str+"y"+ num2str(j)+",";
7 end
8 strVec=str+"y"+ num2str (1) +"]";
9

10 strY =["Y1 =[]"];
11 for j=2:m+2
12
13 str="Y" + num2str(j)+"={}";
14
15 strY=[strY str];
16 end
17 strY
18
19 strYC =["Y1", "Y2{j1}"];
20 for j=3:m+2
21
22 str="Y" + num2str(j)+"{j1 ,j2";
23 for i=3:j-1
24 str=str+",j"+ num2str(i);
25 end
26 str=str +"}";
27 strYC =[strYC str];
28 end
29 strYC
30
31 strLoop =[];
32 for j=1:(m+2)
33
34 str="for j"+ num2str(j)+"=1: size ("+ strYC(j)+",2)";
35 strLoop =[strLoop , str];
36
37 end
38 strLoop
39
40 strVar =[];
41 for j=1:m+2
42 str="y"+ num2str(j)+"="+ strYC(j)+"(j"+ num2str(j)+")";
43 strVar =[strVar , str];
44 end
45 strVar
46
47 ub=[" lambdaE /2", "(lambdaE -2*y1)/(m-1)", "-abs(y2)"];
48
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49 for j=4:m+1
50 str="y"+ num2str(j-1);
51 ub=[ub, str];
52
53 end
54 ub;
55
56 lb=["0", "-(lambdaE -2*y1)/(m+1)", "-(lambdaE -2*y1+y2)/m"];
57
58 for j=4:m+1
59 str="-(lambdaE -2*y1+y2";
60 for i=3:(j-1)
61 str=str+"+y"+ num2str(i);
62 end
63 str=str+") /("+ (m+3-j)+")";
64 lb=[lb,str];
65 end
66
67 for j=4:m+2
68 str="-(lambdaE -2*y1+y2";
69 for i=3:m+1
70 str=str +"+y"+ num2str(i);
71 end
72 str=str+")";
73 end
74 lb=[lb,str];
75
76 fileName ="k"+ num2str(m)+"t"+ num2str(d)+"S3.m";
77 fileID=fopen(fileName ,’w’);
78
79 fprintf(fileID ," function S=k"+ num2str(m)+"t"+ num2str(d)+"S3(

lambda)\n");
80 fprintf(fileID , "if mod(lambda ,2) ==1\ nerror(’lambda must be

even ’)\nend\n");
81 fprintf(fileID ," lambdaE=lambda /2;\nd="+d+";\n m=d+2;\n");
82
83 for j=1:m+1
84 fprintf(fileID , strY(j)+ ";\n" );
85 for i=1:j-1
86 fprintf(fileID ,strLoop(i)+"\n");
87 end
88 for i=1:j-1
89 fprintf(fileID ," "+ strVar(i)+";\n");
90 end
91 fprintf(fileID ," lb="+lb(j)+";\n"+" ub="+ub(j)+";\n");
92
93 fprintf(fileID ,strYC(j)+"=[];\n n=ceil(lb);\n while n<=ub\

n"+ strYC(j)+"=["+ strYC(j)+",n];\nn=n+1;\ nend\n");
94 for i=1:j-1
95 fprintf(fileID ,"end\n");
96 end
97 fprintf(fileID ," clearvars n lb ub;\n");
98 end
99

100 fprintf(fileID ,strY(m+2) +";\n");
101
102 for j=1:m+1
103 fprintf(fileID ,strLoop(j)+"\n");
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104 end
105
106 for j=1:m+1
107 fprintf(fileID ,strVar(j)+";\n");
108 end
109
110 fprintf(fileID ,strYC(m+2) +"="+lb(m+2) +";\n");
111
112 for j=1:m+1
113 fprintf(fileID ,"end\n");
114 end
115
116 fprintf(fileID ,"S=[];\n");
117
118 for j=1:m+2
119 fprintf(fileID ,strLoop(j)+"\n");
120 end
121 for j=1:m+2
122 fprintf(fileID ,strVar(j)+";\n");
123 end
124
125 fprintf(fileID ,"S=[S;"+ strVec +"];\n");
126
127 for j=1:m+2
128 fprintf(fileID ,"end\n");
129 end
130
131 fprintf(fileID ,"end");
132 fclose(fileID);

A.4 S4Script

1 d=2;
2 m=d+2;
3
4 str ="[";
5 for j=m+2: -1:2
6 str=str+"y"+ num2str(j)+",";
7 end
8 strVec=str+"y"+ num2str (1) +"]";
9

10 per =[[1 3 2], 4:m+2];
11
12 strY =["Y1 =[]"];
13 for j=2:m+2
14
15 str="Y" + num2str(j)+"={}";
16
17 strY=[strY str];
18 end
19 strY=strY(per);
20
21
22 strYC =["Y1", "Y3{j1}", "Y2{j1 ,j2}"];
23 for j=4:m+2
24
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25 str="Y" + num2str(j)+"{j1 ,j2 ,j3";
26 for i=4:j-1
27 str=str+",j"+ num2str(i);
28 end
29 str=str +"}";
30 strYC=[ strYC str];
31 end
32 strYC;
33
34
35 strVar =["y1=Y1(j1)", "y3=Y3{j1}(j2)", "y2=Y2{j1 ,j2}(j3)"];
36 for j=4:m+2
37 str="y"+ num2str(j)+"="+ strYC(j)+"(j"+ num2str(j)+")";
38 strVar =[strVar , str];
39 end
40 strVar;
41
42 strLoop =[];
43 for j=1:(m+2)
44
45 str="for j"+ num2str(j)+"=1: size ("+ strYC(j)+",2)";
46 strLoop =[strLoop , str];
47
48 end
49 strLoop;
50
51 ub=["( lambdaE -1)/2", "(lambdaE -2*y1 -1)/(m-1)", "-abs(y3) -1",

"-abs(y3)"];
52
53 for j=5:m+1
54 str="y"+ num2str(j-1);
55 ub=[ub , str];
56
57 end
58 ub;
59
60 lb=["0", "-(lambdaE -2*y1 -1)/(m+1)", "(m-1)*abs(y3)-y3 -(lambdaE

-2*y1)", "-(lambdaE -2*y1+y2+y3)/(m-1)"];
61
62 for j=5:m+1
63 str="-(lambdaE -2*y1+y2+y3";
64 for i=4:(j-1)
65 str=str +"+y"+ num2str(i);
66 end
67 str=str +") /("+ (m+3-j)+")";
68 lb=[lb ,str];
69 end
70
71 for j=5:m+2
72 str="-(lambdaE -2*y1+y2+y3";
73 for i=4:m+1
74 str=str +"+y"+ num2str(i);
75 end
76 str=str +")";
77 end
78 lb=[lb ,str];
79
80 fileName ="k"+ num2str(m)+"t"+ num2str(d)+"S4.m";
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81 fileID=fopen(fileName ,’w’);
82
83 fprintf(fileID ," function S=k"+ num2str(m)+"t"+ num2str(d)+"S4(

lambda)\n");
84 fprintf(fileID , "if mod(lambda ,2) ==1\ nerror(’lambda must be

even ’)\nend\n");
85 fprintf(fileID ," lambdaE=lambda /2;\nd="+d+";\n m=d+2;\n");
86
87 fprintf(fileID , strY (1)+ ";\n" );
88
89 fprintf(fileID ," lb="+lb(1) +";\n"+" ub="+ub(1) +";\n");
90
91 fprintf(fileID ,strYC (1) +"=[];\ nn=ceil(lb);\n while n<=ub\n"+

strYC (1) +"=["+ strYC (1)+",n];\nn=n+1;\ nend\nclearvars n lb
ub;\n");

92
93
94 for j=2:m+1
95 fprintf(fileID , strY(j)+ ";\n" );
96
97 for i=1:j-1
98 fprintf(fileID ,strLoop(i)+"\n");
99 end
100
101 for i=1:j-1
102 fprintf(fileID ," "+ strVar(i)+";\n");
103 end
104 fprintf(fileID ," lb="+lb(j)+";\n"+" ub="+ub(j)+";\n");
105
106 fprintf(fileID ,strYC(j)+"=[];\n n=ceil(lb);\ nwhile n<=ub\n

"+strYC(j)+"=["+ strYC(j)+",n];\nn=n+1;\ nend\n");
107
108 for i=1:j-1
109 fprintf(fileID ,"end\n");
110 end
111 fprintf(fileID ," clearvars n lb ub;\n");
112 end
113
114
115 fprintf(fileID ,strY(m+2) +";\n");
116
117 for j=1:m+1
118 fprintf(fileID ,strLoop(j)+"\n");
119 end
120
121 for j=1:m+1
122 fprintf(fileID ,strVar(j)+";\n");
123 end
124
125 fprintf(fileID ,strYC(m+2) +"="+lb(m+2) +";\n");
126
127 for j=1:m+1
128 fprintf(fileID ,"end\n");
129 end
130
131 fprintf(fileID ,"S=[];\n");
132
133 for j=1:m+2
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134 fprintf(fileID ,strLoop(j)+"\n");
135 end
136 for j=1:m+2
137 fprintf(fileID ,strVar(j)+";\n");
138 end
139
140 fprintf(fileID ,"S=[S;"+ strVec +"];\n");
141
142 for j=1:m+2
143 fprintf(fileID ,"end\n");
144 end
145
146 fprintf(fileID ,"end");
147 fclose(fileID);

A.5 OA generation and verification

1 %Specify number of factors k
2 k=4
3
4 %Initialize solution u=(u_1 ,u_2 ,u_3 ,u_4 ,u_5)
5
6 %Just an example of using S3Script to generate solutions
7 %(u_1 ,u_2 ,u_3 ,u_4 ,u_5 ,p)
8 lambda =4;
9 X=k4t2EvenLambdaS3(lambda)

10
11
12 %Here we choose the solution for Example 4 in Appendix B.
13 u=X(1,1:end -1);
14
15 %Create full factorial 2^k x k
16 F=ff2n(k);
17
18 %Write in Yates ordering
19 I=k: -1:1;
20 Yates=F(:,I);
21 Yates=-2* Yates+1
22
23 %Construct J-vector
24 L=ones(k,k)-eye(k);
25
26
27 x=k-1: -1:0;
28 y=2.^x;
29
30 li=L*y’+1;
31 li=[li; 2^k];
32
33
34
35
36 %Construct the J-vector
37 J=zeros (1,2^k);
38
39 J(1)=2^t*lambda;
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40
41 %If lambda is odd
42 %J(li)=2^t*u;
43
44 %If lambda is even
45 J(li)=2^(t+1)*u;
46
47
48 H=hadamard (2^k);
49
50 %Construct the frequency vector
51 x=2^(-k)*H*J’
52 I=find(x)
53 size(I,1);
54
55
56 %Construct the orthogonal array
57 OA=[];
58 for i=1: size(I,1)
59 s=I(i);
60 for j=1:x(s)
61 OA=[OA; Yates(s,:)];
62 end
63 end
64 OA
65
66 %Verify OA is an orthogonal array of strength t
67
68 columns =1:k;
69
70 for j=0:2^k
71 C=nchoosek(columns ,j);
72
73 for i=1: size(C,1)
74 l=C(i,:);
75 A=OA(:,l);
76 d=prod(A,2);
77 sum(d);
78 if sum(d)~=0
79 l
80 sum(d)
81 end
82
83 end
84 end
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Appendix B. Chapter II Examples

Example 1. Consider the 4 ˆ 2 arrays X,Y and Z
»

—

—

—

—

—

—

—

–

1 1

´1 1

1 ´1

´1 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

X

»

—

—

—

—

—

—

—

–

´1 ´1

1 ´1

´1 1

1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Y

»

—

—

—

—

—

—

—

–

1 ´1

1 1

´1 ´1

´1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Z.

Since X,Y , and Z are full factorials, they are OAp4, 2, 2, 2qs. Observe that Y is

obtained by permuting levels in both columns ofX, while Z is obtained by permuting

both columns of X and permuting levels within the the first column of X.

Since

trows of Xu “ trows of Y u “ trows of Zu,

X,Y , and Z are isomorphic.

Example 2. Consider the following OAp4, 2, 2, 2qs X and Y

»

—

—

—

—

—

—

—

–

1 1

´1 1

1 ´1

´1 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

X

»

—

—

—

—

—

—

—

–

1 1

´1 ´1

1 ´1

´1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Y .

Note that Y “ R1pXq. Since trows of Xu “ trows of Y u, X and Y are OD-

equivalent.

Example 3. Consider the OAp4, 2, 2, 2q X
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»

—

—

—

—

—

—

—

–

1 1

´1 1

1 ´1

´1 ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

X.

Observe that @ℓ Ď r2s Q 1 ď |ℓ| ď 2, Jℓ “ 0,

Jt1u “ 1 ` p´1q ` 1 ` p´1q “ 0,

Jt2u “ 1 ` 1 ` p´1q ` p´1q “ 0,

Jt1,2u “ p1qp1q ` p´1qp1q ` p1qp´1q ` p´1qp´1q “ 0.

Let us verify this by the equation J “ HJx. Since X is a full factorial, x “ 1. Then

J “ HJx “

»

—

—

—

—

—

—

—

–

1 1 1 1

1 ´1 1 ´1

1 1 ´1 ´1

1 ´1 ´1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

1

1

1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

4

0

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

in agreement with above.

The next example will construct an OA from the solution set as given in Theo-

rem 2.3.6.

Example 4. Consider OAp4λ, 4, 2, 2q when λ “ 4. The three non-OD-equivalent so-

lutions are pu1, u2, u3, u4, u5, pq “ p´1,´1, 0, 0, 0, 0q, p´2, 0, 0, 0, 0, 0q, and p0, 0, 0, 0, 0, 1q.

Let us construct the OA to the particular solution pu1, u2, u3, u4, u5, pq “ p´1,´1, 0, 0, 0, 0q.

Since λ is even, the J-characteristics are Jℓj “ 2t`1uj “ 8uj, j “ 1, . . . , 5. Then, the

J-vector is

J “ rJℓ1 , Jℓ2 , Jℓ3 , Jℓ4 , Jℓ5s “ r´8,´8, 0, 0, 0s
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To determine the frequency vector x, we need need the full J-vector of all 16 coordi-

nates. As we are using Yates ordering, the full J-vector is

J “ rJH, J1, J2, J12, J3, J13, J23, J123, J4, J14, J24, J124, J34, J134, J234, J1234s
J ,

where J12 means Jt1,2u, similarly for the other coordinates. Since ℓ1 “ t1, 2, 3u, ℓ2 “

t1, 2, 4u, ℓ3 “ t1, 3, 4u, ℓ4 “ t2, 3, 4u and ℓ5 “ t1, 2, 3, 4u,

J “ r16, 0, 0, 0, 0, 0, 0,´8, 0, 0, 0,´8, 0, 0, 0, 0s
J .

By Lemma 2.2.1, x “ 2´kHJ “ 2´4HJ, where

H “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
` ´ ` ´ ` ´ ` ´ ` ´ ` ´ ` ´ ` ´
` ` ´ ´ ` ` ´ ´ ` ` ´ ´ ` ` ´ ´
` ´ ´ ` ` ´ ´ ` ` ´ ´ ` ` ´ ´ `
` ` ` ` ´ ´ ´ ´ ` ` ` ` ´ ´ ´ ´
` ´ ` ´ ´ ` ´ ` ` ´ ` ´ ´ ` ´ `
` ` ´ ´ ´ ´ ` ` ` ` ´ ´ ´ ´ ` `
` ´ ´ ` ´ ` ` ´ ` ´ ´ ` ´ ` ` ´
` ` ` ` ` ` ` ` ´ ´ ´ ´ ´ ´ ´ ´
` ´ ` ´ ` ´ ` ´ ´ ` ´ ` ´ ` ´ `
` ` ´ ´ ` ` ´ ´ ´ ´ ` ` ´ ´ ` `
` ´ ´ ` ` ´ ´ ` ´ ` ` ´ ´ ` ` ´
` ` ` ` ´ ´ ´ ´ ´ ´ ´ ´ ` ` ` `
` ´ ` ´ ´ ` ´ ` ´ ` ´ ` ` ´ ` ´
` ` ´ ´ ´ ´ ` ` ´ ´ ` ` ` ` ´ ´
` ´ ´ ` ´ ` ` ´ ´ ` ` ´ ` ´ ´ `

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and `,´ mean 1,´1, respectively. Then

x “ r0, 2, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 2s
J .
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The 24 ˆ 4 full factorial array, with Yates ordering, F, as given on page 7, is

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

` ` ` `
´ ` ` `
` ´ ` `
´ ´ ` `
` ` ´ `
´ ` ´ `
` ´ ´ `
´ ´ ´ `
` ` ` ´
´ ` ` ´
` ´ ` ´
´ ´ ` ´
` ` ´ ´
´ ` ´ ´
` ´ ´ ´
´ ´ ´ ´

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Therefore, up to a row permutation, the OA given by pu1, u2, u3, u4, u5, pq “

p´1,´1, 0, 0, 0, 0q is

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´ ` ` `
´ ` ` `
` ´ ` `
` ´ ` `
` ` ´ `
´ ` ´ `
` ´ ´ `
´ ´ ´ `
` ` ` ´
´ ` ` ´
` ´ ` ´
´ ´ ` ´
` ` ´ ´
` ` ´ ´
´ ´ ´ ´
´ ´ ´ ´

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Appendix C. Chapter III Examples

Example 1. The regular C-representation of Z3 is V “ SpanCteiuiPZℓ
with the

homomorphism

R : Z3 Ñ GLpV q

acting on the basis as Rpjqei ÞÑ ei`j, i, j P Z3.

There are three irreducible C-subrepresentations pRk, Vkq, k P Z3 of V. For a fixed

k, the homomorphism acts as follows

Rkpjq : Vk Ñ Vk

v ÞÑ ζjkv

where ζ “ e2πi{3. Each Vk “ SpanCtvku, where vk “
ř

jPZ3
ζ
jk
ej, k P Z3.

Example 2. Continuing Example 1, the group Z3 has three characters, χ0, χ1 and

χ2. By definition, χkpiq “ TrpRkpjqq “ Trp
“

ζjk
‰

q “ ζjk, j, k P Z3. For a fixed i P Z3,

consider the sum Si “ χ1piq ` χ2piq “ ζ i ` ζ2i. If i “ 0, then S0 “ 2. For i ‰ 0, since

1 ` ζ ` ζ2 “ 0, S1 “ S2 “ ´1. Note that the sum Si is always rational for i P Z3.

Example 3. Let ℓ “ 3. Since the only divisors of 3 are 1 and 3, by Theorem 3.2.6,

the regular Q-representation of Z3 is

QZ3 “ ColQpP1q k ColQpP3q.

We calculate P1. By definition, P1 “ 1
3

ř

iPZ3

ř

χPO1
χpiqMRpiq. Since p1, 3q “

p2, 3q “ 1, O1 “ tχ1, χ2u. Also, the matrix MRpiq in the standard basis e0, e1, e2 is
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MRp0q “

»

—

—

—

—

–

1 0 0

0 1 0

0 0 1

fi

ffi

ffi

ffi

ffi

fl

, MRp1q “

»

—

—

—

—

–

0 0 1

1 0 0

0 1 0

fi

ffi

ffi

ffi

ffi

fl

, MRp2q “

»

—

—

—

—

–

0 1 0

0 0 1

1 0 0

fi

ffi

ffi

ffi

ffi

fl

.

Therefore,

P1 “
1

3

ÿ

iPZ3

ÿ

χPO1

χpiqMRpiq

“
1

3

ÿ

iPZ3

´

χ1piq ` χ2piq
¯

MRpiq

“
1

3

´´

χ1p0q ` χ2p0q

¯

MRp0q `

´

χ1p1q ` χ2p1q

¯

MRp1q `

´

χ1p2q ` χ2p2q

¯

MRp2q

¯

“
1

3

`

2MRp0q ´ MRp1q ´ MRp2q

˘

“
1

3

»

—

—

—

—

–

2 ´1 ´1

´1 2 ´1

´1 ´1 2

fi

ffi

ffi

ffi

ffi

fl

.

A similar calculation gives

P3 “
1

3

»

—

—

—

—

–

1 1 1

1 1 1

1 1 1

fi

ffi

ffi

ffi

ffi

fl

.

Since dimQpColQpP1qq “ TrpP1q “ 2, ColQpP1q is a two-dimensional irreducible

Q-subrepresentation of QZ3 , similarly ColQpP3q is a one-dimensional irreducible Q-

subrepresentation of QZ3 .
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