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Abstract 

Big data has become a common and normal practice for any organization.  Most 

statistical tests and methods are fully developed for univariate data, and as such, a 

common approach to account for multiple variables is to perform projections or 

reductions in order to invoke a hypothesis test in univariate space.  But when inference is 

required for multivariate data, these reductions to a univariate space risk information and 

interpretability loss.  One of the most commonly used statistical tests to determine 

differences among data features is the Kolmogorov Smirnov (KS) test based upon the 

cumulative probability distributions of features, however, there are limitations in its 

current implementations.  The purpose of this research is to develop a modern approach 

and theoretical extensions to the multivariate KS test that seeks to improve statistical 

power and incorporate correlation inherent in multivariate data.  Specifically, this 

dissertation 1) derives a modified test that extends the KS test for 2 dimensions and into 

m-dimensions, 2) derives the small sample critical values for the 2 and 3 dimensional KS 

test that are not reliant on sample size simulations or correlation between variables, 3) 

extends large sample estimations and current KS implementations to larger sample sizes, 

and 4) provides sample size and power calculations in order to enable experimental 

design with respect to testing for differences in distributions.  Through extensive 

simulation, we demonstrate for 2 and 3 dimensional data that our new modified 

multidimensional KS test generally has more power to detect differences than other 

methods for smaller sample sizes and comparable power for larger sample sizes (n=100 



v 

and larger) and maintains desirable statistical properties.  Furthermore, we demonstrate 

that our revised critical values and methods improve and extend current implementations 

of the KS test to sample sizes upwards of n = 5000.  Finally, we demonstrate how to 

compute critical values for implementations of our method to any size dimensional data 

and provide power and sample size criterion for designing studies using 2 and 3 

dimensional distributions.  These results enable statistical testing of multidimensional 

features, irrespective of correlation, thus improving our ability to understand large data 

sets for rapid and efficient decision making and analysis. 
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MODERN APPROACHES AND THEORETICAL EXTENSIONS TO THE 

MULTIVARIATE 

KOLMOGOROV SMIRNOV TEST 

 

1. Introduction 

1.1. General Issue 

Big data has become a common and normal practice for any organization.  There are 

many methods for mining information or creating statistical and machine learning models to 

answer any question imaginable.  When trying to understand features and their underlying 

random variables we have many statistical measures of information that can capture and 

summarize different characteristics to compare them against another dataset or against a 

theoretical distribution.  From distance measures to probabilistic measures, the issue is that most 

of these measures are univariate and do not account for the relationship between the features.  

Statistical tests and multivariate hypothesis testing are falling behind the available quantity of 

features in many datasets. 

 

1.2. Motivation 

In statistics, a test of hypothesis revolves around testing a population parameter against 

either a hypothetical value or a parameter from a different population.  Most statistical tests and 

methods are fully developed for univariate data, and as such, a common approach to account for 

multiple variables is to perform projections or reductions in order to invoke a hypothesis test in 

univariate space.  But when inference is required for multivariate data, these reductions to a 

univariate space risk information loss and interpretability.   

Examples in common analytical and predictive methodologies where this could become a 

problem are in decision tree algorithms (tree splitting criteria), topological data analysis or 
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clustering algorithms; in such methods, the need to compare groups of data with respect to 

several variables is very important.  Simple univariate tests to see if, for instance, the means of 

continuous random variables are statistically different from a hypothetical value, or from each 

other, is not sufficient to capture all of the information the groups of data might contain.  Further, 

mathematical projections of continuous random variables to a univariate space may provide a 

means for inference, but disparate variable patterns may be masked when conducting variable 

reduction leading to increases in the type II (or possibly type I) error.  

Most of the methods used to find similarity of continuous random variables within 

datasets, between datasets or against a theoretical distribution fall into two categories, i.e., 

mathematical distances and probabilistic measures [1].  A common factor among these measures 

is that they are usually univariate and therefore do not consider the correlation between variables 

within each group.  Many studies and algorithms have addressed the multivariate implications by 

performing dimensionality reduction processes on the dataset such as principal component 

analysis (PCA) or linear discriminant analysis (LDA).  Once the data is projected to a univariate 

or independent bivariate space, the same univariate algorithms can be used to compute the 

mathematical distances and probabilistic measures [2].  However, information may be lost and 

interpretability of the new space might be impossible. 

There is a need to expand these univariate measurements to the multivariate space while 

correctly deriving their hypothesis tests, corresponding critical values and theory, instead of 

reducing the dimensionality of the data and performing a univariate test.  There have been some 

multivariate implementations that extend these measures, but they may be lacking in theory, 

estimations or attempt to account for correlation with ad hoc adjustments and corrections.  

Ideally, as we expand univariate measures into multiple dimensions, the measurements should be 
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more representative of the multivariate data, with more accurate hypothesis testing and without 

losing interpretability or data information. 

 

1.3. Air Force Impact 

One of the five strategic capabilities that the Air Force Science and Technology Strategy 

2030 emphasizes is the “Rapid, Effective Decision-Making” ([3]).  Some of the technological 

opportunities for this strategy include machine learning and machine-based reasoning, data 

fusion and visualization.  There are many techniques and methods that fall inside these 

technological opportunities including topological data analysis and statistical hypothesis testing.  

The Air Force Research Laboratory Airman Systems Directorate (AFRL/RH) has applied these 

techniques to various large dataset including Air Force suicide data as well as COVID-19 data.  

The goal of these analyses was to visualize, interpret and provide insight into the feature space of 

the data in order to better predict the phenomenon of interest and allow leadership to make fast 

and informed decisions.  One of the tools used to provide insight into these feature spaces was 

the one-dimensional Kolmogorov Smirnov test which was used univariately across all 

continuous features to score and compare the topological decomposition of the data.  However, 

predictors of the phenomenon of interest are likely correlated and this univariate application was 

lacking at times in discriminatory power.  The work in this dissertation extends the 

nonparametric Kolmogorov Smirnov test into multiple dimensions and provides higher 

discriminatory power than existing methods, allowing for multiple continuous features to be 

tested simultaneously and to account for correlation between them.   
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1.4. The Kolmogorov Smirnov Test 

The 1-dimensional Kolmogorov Smirnov (1D KS) test is a nonparametric and 

distribution free test based upon the maximum distance between two Cumulative Distribution 

Functions (CDFs).  This test is known to be one of the most important of the general goodness of 

fit tests after the chi-square goodness of fit test [4].  Modern applications of this test seek to 

extend and utilize this test for multivariate distributions.  In 1983, Peacock extended the 1D KS 

test into two dimensions [5], but was unable to create a table of derived critical values due to the 

computational infeasibility of the combinatorics, therefore, Peacock estimated the asymptotic 

critical values empirically by fitting a curve to simulated data and deriving a correction for small 

samples.  He found that these critical values were similar to the 1D KS test with the addition of 

an offset.  In 1987, Gosset expanded the KS to three dimensions (using the same methodology of 

Peacock) as well as derived new asymptotic equations to estimate the critical values for both the 

2D and 3D KS tests, thereby updating and seemingly improving on the 2D KS asymptotic 

equation developed by Peacock [6].  Furthermore, both Peacock and Gosset extended the one 

sample (1S) 2D KS test to two samples by looking at the maximum distance between two 

Empirical Cumulative Distribution Functions (ECDFs) and using the same 1D KS test 

standardization.  Nevertheless, the computational burden of the multi-dimensional KS test as 

developed by both Peacock and Gosset is significant due to a reliance on evaluating maximum 

distances at every possible location where the ECDFs change, or jump, in probability.  This is 

why in 1987 Fasano and Franceschini proposed a method of evaluating the max distances only at 

the observed data points (a subset of the data grid considered by Peacock’s test) in order to 

address the computational time issue.  Fasano and Franceschini claim that there is minor 

difference in power between Peacock’s method and their method when data is uncorrelated and 
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that their method has higher power when data is highly correlated [7], but offered no proof.  As a 

result, unlike the evaluation method used by Peacock, the evaluation method of Fasano and 

Franceschini must account for correlation when deriving the null distribution in order to compute 

the correct critical values based on correlation (see table of critical values in the appendix of [7]).  

Other multivariate KS methods have been developed by transforming and projecting the data to 

the univariate space before computing the maximum distance [8], however, these methods will 

not be considered in this work due to the potential loss of information and interpretability. 

There are several limitations in the current literature for the method derived by Peacock 

and extended by Gosset: 1) when computing the maximum distance at a particular location, not 

all directions (approaching the point from the “left” or “right” for both x and y) were considered 

and therefore, not all distances as a result of the jumps in the empirical CDFs are considered, 2) 

derived calculations for small sample critical values were not computed and instead a 

transformation from small sample to large was generated using simulated data, and 3) the 

asymptotic equations proposed are not mathematically derived, but fitted to (what is now 

considered) small samples of simulated data.  With respect to the latter limitation, Peacock’s 

largest sample size was 50 with 5,000 repetitions, while Gosset’s, although not explicitly stated, 

appears to be on the same order of magnitude as Peacock.  On the other hand, Fasano and 

Franceschini generated tables of critical values (with various degrees of correlation) and 

developed a generalized formula for computing the critical values using simulated data with 

sample sizes as large as 5,000 with 500 repetitions.  However, the critical values generated by 

Fasano and Franceschini only apply to their method given that, as a subset of the locations 

evaluated in Peacock’s work, it generates a different distribution.  The work in this dissertation 
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seeks to overcome these limitations and generate a methodology to apply the KS test not only to 

small and large samples, but to 2, 3, and m-dimensional data.   

 

1.5. Research Objectives 

The purpose of this research is to develop a modern approach and theoretical extensions 

to the multivariate (KS) test that seeks to capture the true maximum distance between an ECDF 

and a theoretical CDF.  This research will focus on 1) developing a new approach to the 

multivariate KS test by deriving a modified test that extends the original 1S 2D KS test approach 

proposed by Peacock for both 2 dimensions and into m-dimensions, 2) mathematically deriving 

the small sample critical values for the 1S 2D KS test that are not reliant on sample size 

simulations or correlation between variables, and 3) comparing the performance of this new 

method against similar approaches for both ECDF evaluations (locations and directions).  

Achieving these objectives will lead to better understanding of best practices and sample size 

recommendation for the KS test.  Furthermore, reaching these objectives will lead to an approach 

for this statistical test that results in higher power for the multivariate KS test and an extended 

table of critical values for the original 2D KS method. 
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2. Background 

2.1. Background and Method 

Before developing the new theoretical extensions and modern approach to conducting the 

KS test in multiple dimensions, we begin by briefly discussing the history of the 1S/2S 1D KS 

test as well as necessary assumptions and requirements.  Furthermore, we will be reviewing the 

current extensions into multiple dimensions for the KS test, mainly Peacock’s approach (the 

original extension) and Fasano and Franceschini’s modifications of Peacock. 

 

2.2. One Dimensional (1D) KS Test 

The 1D KS test was first introduced to compare sample data against a theoretical null 

distribution (known as the one sample KS test).  This nonparametric test uses a statistic based 

upon the maximum distance between estimates of a Cumulative Distribution Function (CDF) 

from the empirical CDF (ECDF) generated by the data and a theoretical CDF with the goal of 

testing whether the sample of data follows (is the same as) the theoretical distribution.  The null 

hypothesis (𝐻0) for the test states that there is no difference in distribution between the sample 

and theoretical distributions (see Equation ( 2.1 )).  While the alternative (𝐻𝑎) states that the 

sample and theoretical distributions are different (see Equation  ( 2.2 )).   

 𝐻0: 𝐹𝑛(𝑥) = 𝐹(𝑥)  
( 2.1 ) 

 𝐻𝑎 : 𝐹𝑛(𝑥) ≠ 𝐹(𝑥)  
( 2.2 ) 

The one sample (1S) 1D KS test was first developed by Kolmogorov in 1933 [4], [9] and 

its statistic is given in Equation ( 2.3 ):  

 𝐷𝑛
(1)

= 𝑠𝑢𝑝
𝑥

|𝐹𝑛(𝑥) − 𝐹(𝑥)|  ( 2.3 ) 
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where 𝐹𝑛(𝑥) is the ECDF of a univariate random variable X, n references the sample size for the 

single sample of observed data, and 𝐹(𝑥) is the theoretical (null) CDF.  The superscript (1) in 

the statistic denotes the dimension of the test data. 

Historically, the CDF and ECDF of a distribution, 𝐹(𝑥) and 𝐹𝑛(𝑥) respectively, as used 

in Equation ( 2.3 ), is defined as 𝑃(𝑋 ≤ 𝑥) and therefore, has the following properties: 1) right 

continuity, 2) non-decreasing function, and 3) lim𝑥→−∞ 𝐹(𝑥) = 0 and lim𝑥→∞ 𝐹(𝑥) = 1.  In 

addition to these properties, 𝐹(𝑥) is smooth and continuous everywhere and therefore 

lim𝑥→𝑎 𝐹(𝑥) exists for all 𝑎 ∈ ℝ, meaning that approaching a point a from the “right” or the 

“left” achieves the same value.  On the other hand, 𝐹𝑛(𝑥), since it is a discretized estimate of the 

CDF for the random variable, will contain jumps as data is observed and therefore, will have 

different values as you approach a point a from the “left” (denoted here as 𝑥−) and the “right” 

(usually denoted as 𝑥+, or here simply as x).  Due to this discontinuity, it is necessary to evaluate 

not just Equation ( 2.3 ), but also Equation ( 2.4 ) in order to capture both distances in the ECDF: 

 𝐷𝑛
(1)

= 𝑠𝑢𝑝
𝑥

|𝐹𝑛(𝑥−) − 𝐹(𝑥)|, ( 2.4 )
 

where represents approaching the ECDF from the left.   

Soon after the one sample 1D KS test was developed, in 1939 Smirnov extended this test 

to two samples establishing the commonly known name of the Kolmogorov-Smirnov (KS) test 

which (perhaps confusingly) refers to both the 1S and the 2S versions of this test for differences 

in CDFs based on maximum distances [10].  Equation ( 2.5 ) provides the test statistic for the 2S 

version of the KS test, which has the modified null hypothesis 𝐻0: 𝐹𝑛1
(𝑥) =  𝐺𝑛2

(𝑦)  and with 

the alternative hypothesis of 𝐻𝑎: 𝐹𝑛1
(𝑥) ≠  𝐺𝑛2

(𝑦). 

 𝐷𝑛
(1)

= 𝑠𝑢𝑝
𝑥,𝑦

|𝐹𝑛1
(𝑥) − 𝐺𝑛2

(𝑦)| ∀ 𝑥 = 𝑦 ( 2.5 )
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where 𝐹𝑛1
(𝑥) is the ECDF estimated from the first sample of data for one random variable, X, 

with sample size 𝑛1, and 𝐺𝑛2
(𝑥) is the ECDF estimated from the second sample of data for the 

second random variable, Y with sample size 𝑛2.  Notice that for the two-sample case there is no 

need to evaluate when the ECDFs approach from the left, given that we assume that observations 

between the samples are unique (being continuous random variables) and therefore, the distance 

estimated by 𝑠𝑢𝑝
𝑥,𝑦

|𝐹𝑛1
(𝑥) − 𝐺𝑛2

(𝑦)| should be captured by the previous jump in 𝐺𝑛2
(𝑦) or 

𝐹𝑛1
(𝑥). 

Furthermore, Smirnov developed a table of critical values needed for the 2D 1S test [10], 

[11].  Other tables of critical values for various levels of 𝛼, sample sizes and inverse tables have 

been generated by various authors [12]–[14].  To generate the exact critical values for this test, 

one needs to develop the distribution of the test statistic in Equation ( 2.5 ) (the two sample KS 

distribution) based on the specific sample sizes, 𝑛1 and 𝑛2.  In other words, one needs to look at 

all possible orderings for the specified sample sizes and calculate the KS critical value. For 

example, with samples of size 2 (observed from random variable X) and 3 (observed from 

random variable Y) one would need to find the max distances between the CDFs for all 10 

orderings of these two sample sizes in order to build the two sample KS distribution and 

calculate, then, the probabilities associated with each possible maximum distance.  This becomes 

computationally quite difficult as sample size increases which is why Kolmogorov in his original 

paper [9], as well as others, also developed the limiting distribution for the test statistic (see 

Equation ( 2.6 ) ): 

 
𝑃(𝑍𝑛

(1)
≤ 𝑧) = 1 − 2 ∑(−1)𝑘−1

∞

𝑘=1

ⅇ−2𝑘2𝑧2
 

( 2.6 )
 



28 

where 𝑍𝑛
(1)

= √𝑛𝐷𝑛
(1)

  , 𝑛 is the number of observations (for two samples 𝑛 =
𝑛1𝑛2

𝑛1+𝑛2
) and  

superscript stands for the dimension of the test data.  Kolmogorov [9], [15] and Smirnov [10], 

[16] separately and with different approaches derived Equation ( 2.6 ), but it was Feller [17] that 

unified and solidified the derivation of the limiting distribution for the KS statistic.  Doob [18] 

provided a heuristic approach to the proof while more recently it has been presented and 

explained by Vrbik [19]).  On the other hand, it was Birnbaum [12] who tabulated the critical 

values of the KS statistic.   

The KS limiting distribution provided in Equation ( 2.7 ) is commonly used for large 

sample sizes, which approximates the infinite sum from Equation ( 2.6 ). 

 𝑃(𝑍𝑛
(1)

≤ 𝑧) = 2ⅇ−2𝑧2
 ( 2.7 )

 

One of the comments made by Vrbik [16] and Marsaglia [19], [20] is the accuracy of 

Equation ( 2.7 ) for small samples, given that the limiting distribution is reached after the sample 

size is well over a thousand observations.  Several corrections to Equation ( 2.7 ) have been 

made to improve the probability estimates for smaller samples, the latest corrections being [21]–

[23] (see Equation ( 2.8 ) ):  

 
𝑃(𝑍𝑛

(1)
≤ 𝑧) = 1 − 2 ∑(−1)𝑘−1

∞

𝑘=1

ⅇ
−2𝑘2(𝑧+

1

6√𝑛
+

𝑧−1
4𝑛 )

2

 
( 2.8 )

 

Peacock [5] took a different approach for correcting the small sample accuracy issues by creating 

a correction (𝛿𝑛
(1)

) based on a ratio of critical values between standardized and large sample 

critical values.  Peacock treated the large sample critical values as the asymptotic ones, which he 

referred to as , the standardized distance which we know to be 𝑍𝑛
(1)

=  √𝑛𝐷𝑛
(1)

.  When fitting 

a set of critical values based on sample size, 𝛼 and using Equation ( 2.9 ).  Peacock determined 
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the best fit line to be 0.2𝑛−0.6.  This function was based only on sample size and by solving for 

𝑧∞
(1)

, one can correct any standardized distance (see Equation ( 2.10 ) ) in order to use the large 

sample critical values regardless of sample size.  This correction was not derived but instead 

approximated using Birnbaum tabulated results [5].   

 
𝛿𝑛

(1)
= 1 −

𝑧𝑛
(1)

𝑧∞
(1)

 
( 2.9 )

 

 
𝑧∞

(1)
=

𝑧𝑛
(1)

1 − 0.2𝑛−0.6
 

( 2.10 )
 

 

2.3. 2D and 3D KS Test – Peacock’s Implementation 

Before introducing Peacock’s extensions to the 1S 2D KS test, we will introduce a 

common nomanclature that will be used across all different methods and dimensions of the test 

throughout this document.  Similar to the 1D case, 𝐷𝑛,𝑚𝑒𝑡ℎ𝑜𝑑
(2)

 refers to the KS test statistic for 

sample size n, “method” will be the two letter initial of the various methods presented in the next 

two sections, and the superscript (2) represents the number of  dimensions for the random 

variable(s) of interest.  Furthermore, 𝐷𝑛,𝑚𝑒𝑡ℎ𝑜𝑑
(2)𝐼

 specifies the cumulation ordering (in this case, I).  

For the 2D KS test, there are a total of four cumulation orderings represented by roman numerals 

which coincide with the quadrants in the cartesian plane: I – 𝑋 ≥ 𝑥, 𝑌 ≥ 𝑦, II – 𝑋 ≤ 𝑥, 𝑌 ≥ 𝑦, III 

– 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 and IV – 𝑋 ≥ 𝑥, 𝑌 ≤ 𝑦.  Moving forward we will refer to these as orientations (a 

detailed explanation of these orientations is provided in section 3.1).  Finally, 𝐷𝑛,𝑚𝑒𝑡ℎ𝑜𝑑
(2)𝐼++

 apart 

from specifying the dimension and orientation, also specifies the approaching direction for the 

evaluation point, for x and y respectively, i.e., whether the evaluation point is approached from 

the positive or negative horizontal (x) and positive or negative vertical (y) direction. 
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In 1983, Peacock extended the 1S 1D KS test to 2D by looking at the maximum distance 

of the 2D CDFs for bivariate random variables [5].  Although the definition was not stated, 

Peacock, as well as other authors, appear to rely on the standard extended defintition for the CDF 

of a 2D random variable given by  𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) which is orientation III.  However, many 

authors recognized that there is no fixed way to order 2D data, and therefore considered the 

cumulation in both the x and y directions by looking at the following cumulations in each 

orientation (𝑋 > 𝑥, 𝑌 > 𝑦), (𝑋 < 𝑥, 𝑌 > 𝑦), (𝑋 < 𝑥, 𝑌 < 𝑦), and (𝑋 > 𝑥, 𝑌 < 𝑦).  The original 

cumulations that Peacock proposed had no equalities when describing the quadrants to 

cummulate, but when Gosset summarized the work he added equalities consistent with the 

standard extended defintition for the CDF of a 2D random variable given by 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) 

(see Equation ( 2.11 ) ).  This is most relevant for small samples given that as sample size 

increases the difference in the estimates of the probabilities when using sample data between 

using equalities and inequalities will be 
1

𝑛
.  In this work we will continue with the equalities 

when referencing these earlier works and refer to this method with the equalities as the Partial 

Orientation method.    

 (𝑋 > 𝑥, 𝑌 > 𝑦), (𝑋 ≤ 𝑥, 𝑌 > 𝑦), (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦), and  (𝑋 > 𝑥, 𝑌 ≤ 𝑦) 
( 2.11 )

 

It is important to recognize that the Partial Orientation method uses a combination of 

equalities and inequalities for each orientation creating the following method to evaluate the 

maximum difference of the CDFs at all four orientations and evaluated at all possible locations, 

creating the following test statistic in Equation ( 2.12 ): 

 𝐷𝑛,𝑝𝑔
(2)

= max (𝐷𝑛,𝑝𝑔
(2)𝐼

, 𝐷𝑛,𝑝𝑔
(2)𝐼𝐼

, 𝐷𝑛,𝑝𝑔
(2)𝐼𝐼𝐼

, 𝐷𝑛,𝑝𝑔
(2)𝐼𝑉

) ( 2.12 )
 

where 𝐷𝑛,𝑝𝑔
(2)

 represents the test statistic, ‘pg’ represents the method Partial Orientation Grid, and: 
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 𝐷𝑛,𝑝𝑔
(2)𝐼 = (𝐷𝑛,𝑔

(2)𝐼−−), 𝐷𝑛,𝑝𝑔
(2)𝐼𝐼 = (𝐷𝑛,𝑔

(2)𝐼𝐼−+), 𝐷𝑛,𝑝𝑔
(2)𝐼𝐼𝐼 = (𝐷𝑛,𝑔

(2)𝐼𝐼𝐼++), 

 𝐷𝑛,𝑝𝑔
(2)𝐼𝑉 = (𝐷𝑛,𝑔

(2)𝐼𝑉+−) 

( 2.13 )
 

the “p” for Partial Orientation method in the subscript represents the direction that is used for 

each orientation and for example:  

 𝐷𝑛,𝑔
(2)𝐼𝐼𝐼++ = sup

𝑎𝑙𝑙 𝑥,𝑦
|𝐹𝑛

(2)𝐼𝐼𝐼(𝑥+, 𝑦+) − 𝐹(2)𝐼𝐼𝐼(𝑥, 𝑦)| ( 2.14 )
 

where 𝐹𝑛
(2)𝐼𝐼𝐼(𝑥+, 𝑦+) is the ECDF in orientation III with direction (𝑥+, 𝑦+) and 𝐹(2)𝐼𝐼𝐼(𝑥, 𝑦) is 

the theoretical CDF in the specific orientation.  The “g” for grid in the subscript represents the 

evaluation location for the supremum, in this case all x, y.  To find the true maximum difference 

we would have to evaluate 𝐷𝑛,𝑝𝑔
(2)

 everywhere in the cartesian plane, but it is sufficient to only 

look at the locations where the ECDF changes (the grid created by the (𝑥, 𝑦) pairs: 

(𝑥𝑖, 𝑦𝑗) ∀ 𝑖, 𝑗 = 1, … , 𝑛 where 𝑛 is the sample size).  Figure 2.1 shows an example of the 

Figure 2.1: 1S 2D KS Test Evaluation Location 
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locations where Peacock evaluates the ECDF.  The four blue dots represent the sample data, 

while the green crosses represent all the evaluation locations.  Therefore, the number of 

computations needed to compute 𝐷𝑛,𝑝𝑔
(2)

 totals 4𝑛2 (4 for each direction and 𝑛2 for the grid 

generated by the data of size 𝑛).  As mentioned earlier, we will refer to this approach as Partial 

Orientation Grid method, where partial orientation refers to the types of cumulation in each 

orientation with specific directions (see Equations ( 2.12 ) and ( 2.13 )) while “grid” represents 

the evaluation locations (the 4𝑛2 locations created by the (𝑥, 𝑦) pairs: (𝑋𝑖, 𝑌𝑗) ∀ 𝑖, 𝑗 = 1, … , 𝑛). 

In order to perform the hypothesis test for the test statistic 𝐷𝑛,𝑝𝑔
(2)

 (see Equation ( 2.12 ) ), 

Peacock developed a table of critical values for sample sizes ranging from 3 to 50 observations 

(see table in [5]).  Furthermore, an asymptotic equation for the test was fitted to the simulation 

data (see Equation ( 2.15 ) ): 

 𝑃(𝑍∞
(2)

> 𝑧) = 2ⅇ−2(𝑧−0.5)2
, ( 2.15 )

 

where 𝑍∞
(2)

 , similar to the 1D case, represents what Peacock calls the asymptotic standarized 

distance of 𝐷𝑛,𝑝𝑔
(2)

, which requires a correction 

 
𝛿𝑝𝑔

(2)
= 1 −

𝑧𝑛,𝑝𝑔
(2)

𝑧∞
(2) = 0.53𝑛−0.9, ( 2.16 )

 

where 𝑍𝑛,𝑝𝑔
(2)

= √𝑛𝐷𝑛,𝑝𝑔
(2)

 (for the two samples 2D test, the only difference is that 𝑛 =
𝑛1𝑛2

𝑛1+𝑛2
 ). 

The main limitation with Peacock’s approach is that he relied on  simulated data to 

estimate his asymptotic equations, with the largest simulation sample of data being 50 with only 

5,000 repetitions.  Furthermore, to ensure adequate fit of the asymptotic equation, Peacock only 

fit the asmpytotic equation to the range of 𝛼 values from 0 – 0.2 which could limit the total 

accuracy of the general fit especially for large 𝛼 values, albeit focusing the fit of the asymptotic  
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equation in the range of commonly used 𝛼 values.  Due to all the constraints of the fit of the 

asymptotic equation by Peacock in 1983; Gosset, using the same 1S 2D KS test approach as 

Peacock, fitted his own asymptotic Equation ( 2.17 ) to his simulation to generate a different 

asymptotic equation for the 1S 2D KS test [6]: 

 𝑃(𝑍∞,𝑝𝑔
(2)

> 𝑧) = 2ⅇ−2.5(𝑧−0.63)2
 ( 2.17 )

 

Although not explicitly stated, it seems that Gosset might have had more simulations and/or 

larger sample sizes when fitting his asymptotic equation. 

These two fitted asymptotic equations (see Equations ( 2.15 ) and ( 2.17 )) are remarkably 

similar, but there are slight differences that can be seen in Figure 2.2, mainly the shape of the 

curve and the differences for higher 𝛼 values.  Specifically, we can see that Gosset has higher 

𝑧∞
(1)

 values than Peacock for 𝛼 values greater than 0.2 while for 𝛼 values between 0.2 and 0.05 

Gosset is only slighly higher and below 0.05 Peacock has slighly higher values.  These 

differences point to the bigger issue of fitting the estimated distribution of a test statistic using 

simulated data.   

In addition to correcting the asymptotic equation of Peacock, Gosset extended the 2D KS 

test to 3 dimensions by following the same methods as Peacock, but considering all eight 

Figure 2.2: Peacock and Gosset Asymptotic Equations 
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orientations, which represent the 8 quadrants of the cartesian coordinates in 3 dimensions defined 

by: I – 𝑋 ≥ 𝑥, 𝑌 ≥ 𝑦, 𝑍 ≤ 𝑧, II – 𝑋 ≤ 𝑥, 𝑌 ≥ 𝑦, 𝑍 ≤ 𝑧, III – 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≤ 𝑧,  IV – 𝑋 ≥

𝑥, 𝑌 ≤ 𝑦, V – 𝑋 ≥ 𝑥, 𝑌 ≥ 𝑦, 𝑍 ≥ 𝑧, VI – 𝑋 ≤ 𝑥, 𝑌 ≥ 𝑦, 𝑍 ≥ 𝑧, VII – 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≥ 𝑧, and 

VIII – 𝑋 ≥ 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≥ 𝑧. Gosset followed his same logic to determine the equalities and 

inequalities in each orientation (see Equation ( 2.18 ) ).   

 (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≤ 𝑧), (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦, 𝑍 > 𝑧), (𝑋 ≤ 𝑥, 𝑌 > 𝑦, 𝑍 ≤ 𝑧), 

(𝑋 > 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≤ 𝑧), (𝑋 ≤ 𝑥, 𝑌 > 𝑦, 𝑍 > 𝑧), (𝑋 > 𝑥, 𝑌 ≤ 𝑦, 𝑍 > 𝑧), 

(𝑋 > 𝑥, 𝑌 > 𝑦, 𝑍 ≤ 𝑧), (𝑋 > 𝑥, 𝑌 > 𝑦, 𝑍 > 𝑧)  

( 2.18 )
 

Furthermore, similar to the 2D test, we now must consider approaching x, y, and z from 

the “left: or the “right” directions (for example (𝑥+, 𝑦−, 𝑧+) approaching x and z from the “right” 

direction and y from the “left” direction).  The proposed 3D test follows the same approach as 

Peacock where only one combination of approaching direction per orientation/quadrant is used 

(with equalities as seen in Equation ( 2.18 ) ), that is, not all directions in all orientations are 

considered.  The statistic is defined in Equation ( 2.19 ): 

 𝐷𝑛,𝑝𝑔
(3)

= 𝑚𝑎𝑥( 𝐷𝑛,𝑝𝑔
(3)𝐼  , 𝐷𝑛,𝑝𝑔

(3)𝐼𝐼  , 𝐷𝑛,𝑝𝑔
(3)𝐼𝐼𝐼  , 𝐷𝑛,𝑝𝑔

(3)𝐼𝑉 , 𝐷𝑛,𝑝𝑔
(3)𝑉 , 𝐷𝑛,𝑝𝑔

(3)𝑉𝐼  , 𝐷𝑛,𝑝𝑔
(3)𝑉𝐼𝐼  , 𝐷𝑛,𝑝𝑔

(3)𝑉𝐼𝐼𝐼  )  ( 2.19 )
 

where 𝐷𝑛,𝑝𝑔
(3)

 represents the test statistic, and: 

 𝐷𝑛,𝑝𝑔
(3)𝐼 = (𝐷𝑛,𝑔

(3)𝐼−−+), 𝐷𝑛,𝑔
(3)𝐼𝐼 = (𝐷𝑛,𝑔

(3)𝐼𝐼+−+), 𝐷𝑛,𝑝𝑔
(3)𝐼𝐼𝐼 = (𝐷𝑛,𝑔

(3)𝐼𝐼𝐼+++), 

 𝐷𝑛,𝑝𝑔
(3)𝐼𝑉 = (𝐷𝑛,𝑔

(3)𝐼𝑉−++), 𝐷𝑛,𝑝𝑔
(3)𝑉 = (𝐷𝑛,𝑔

(3)𝑉−−−),  𝐷𝑛,𝑝𝑔
(3)𝑉𝐼 = (𝐷𝑛,𝑔

(3)𝑉𝐼+−−), 

 𝐷𝑛,𝑝𝑔
(3)𝑉𝐼𝐼 = (𝐷𝑛,𝑔

(3)𝑉𝐼𝐼++−), 𝑎𝑛𝑑 𝐷𝑛,𝑔
(3)𝑉𝐼𝐼𝐼 = (𝐷𝑛,𝑔

(3)𝑉𝐼𝐼𝐼−+−) 

( 2.20 )
 

where the roman numeral represents the orientation in 3D as seen in Equation ( 2.18 ) and for 

example: 
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 𝐷𝑛,𝑔
(3)𝐼𝐼𝐼+++ = sup

𝑎𝑙𝑙 𝑥,𝑦,𝑧
|𝐹𝑛

(3)𝐼𝐼𝐼(𝑥+, 𝑦+, 𝑧+) − 𝐹(3)𝐼𝐼𝐼(𝑥, 𝑦, 𝑧)|, ( 2.21 )
 

where 𝐹𝑛
(3)𝐼𝐼𝐼(𝑥+, 𝑦+, 𝑧+) is the ECDF in orientation   with direction (𝑥+, 𝑦+, 𝑧+) and 

𝐹(3)𝐼𝐼𝐼(𝑥, 𝑦, 𝑧) is the theoretical CDF in the specific orientation.  For both the 2D and 3D cases, 

Gosset used the grid approach for evaluating the CDFs, that is, he calculated the maximum 

distance at all locations where the CDFs change, namely, the 3D grid generated by 

, where  is the sample size, causing the number of computations needed 

to run the test in 3D to be 8n3.  We can quickly see how this grid approach becomes 

computationally intense as the number of dimensions (and the sample size) increases.  The same 

procedure for standarizing the 2D case was applied here: 𝑍𝑛,𝑝𝑔
(3)

= √𝑛𝐷𝑛,𝑝𝑔
(3)

 (for the two sample 

case 𝑛 =  
𝑛1𝑛2

𝑛1+𝑛2
 ). 

 Gosset also developed an associated asymptotic equation (see Equation ( 2.22 ) ) for the 

distribution of the test statistic for the 1S 3D KS test, a correction for small samples (see 

Equation ( 2.23 ) ) and a table of critical values (see [6]).  These solutions were developed using 

simulated data with largest sample size of data being n = 100 replicated 5,000 times. 

 𝑃(𝑍∞,𝑝𝑔
(3)

> 𝑧) ≅ 2ⅇ−3(𝑧−1.05)2
 ( 2.22 )

 

 
𝛿𝑝𝑔

(3)
= 1 −

𝑧𝑛,𝑝𝑔
(3)

𝑧∞,𝑝𝑔
(3)

= 0.75𝑛−0.9 
( 2.23 )

 

 

2.4. 2D and 3D KS Test Fasano and Franceschini Implementation 

Several years after Peacock developed the extension to the 1S and 2S 2D KS test, Fasano 

and Franceschini [7] determined that it was sufficient to estimate the maximum distance using 

only values computed at locations where data was observed:   where  is the 
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sample size, rather than at all grid locations.  Referencing Figure 2.1, we see all the locations the 

grid method evaluates to find the maximum distance which includes all 16 locations marked with 

data and +’s.  Fasano and Franceschini, instead of evaluating at all grid locations, focused only 

on locations where the data is located (4 data points in Figure 2.1).  Thus, Fasano and 

Franceschini used the same definitions for the maximum distances from which to estimate the 

CDFs, calculated from the locations and directions as defined in Peacock’s work, but restricted 

the evaluation locations.  The original work by Fasano and Franceschini used the same 

orientations and directions as Peacock, namely, (𝑋 > 𝑥, 𝑌 > 𝑦), (𝑋 < 𝑥, 𝑌 > 𝑦),

(𝑋 < 𝑥, 𝑌 < 𝑦), and (𝑋 > 𝑥, 𝑌 < 𝑦) but again, when summarized by Gosset, the equalities were 

introduced into these expressions (see Equation ( 2.11 ) ).  The work presented here will maintain 

the equalities and refer to this method as Partial Orientation Sample with the test statistic defined 

as Equation ( 2.24 ):   

 𝐷𝑛,𝑝𝑠
(2)

= max (𝐷𝑛,𝑝𝑠
(2)𝐼 , 𝐷𝑛,𝑝𝑠

(2)𝐼𝐼 , 𝐷𝑛,𝑝𝑠
(2)𝐼𝐼𝐼 , 𝐷𝑛,𝑝𝑠

(2)𝐼𝑉) ( 2.24 )
 

where 𝐷𝑛,𝑝𝑠
(2)

 represents the test statistic, ‘ps’ represents the Partial Orientation Sample method, 

and: 

 𝐷𝑛,𝑝𝑠
(2)𝐼 = (𝐷𝑛,𝑠

(2)𝐼−−), 𝐷𝑛,𝑝𝑠
(2)𝐼𝐼 = (𝐷𝑛,𝑠

(2)𝐼𝐼−+), 𝐷𝑛,𝑝𝑠
(2)𝐼𝐼𝐼 = (𝐷𝑛,𝑠

(2)𝐼𝐼𝐼++), 

 𝐷𝑛,𝑝𝑠
(2)𝐼𝑉 = (𝐷𝑛,𝑠

(2)𝐼𝑉+−) 

( 2.25 )
 

the “p” for Partial Orientation method in the subscript represents the direction that is used for 

each orientation and for example:  

 𝐷𝑛,𝑠
(2)𝐼𝐼𝐼++ = sup

(𝑥𝑖,𝑦𝑖) ∀ 𝑖=1,…,𝑛
|𝐹𝑛

(2)𝐼𝐼𝐼(𝑥+, 𝑦+) − 𝐹(2)𝐼𝐼𝐼(𝑥, 𝑦)| ( 2.26 )
 

where 𝐹𝑛
(2)𝐼𝐼𝐼(𝑥+, 𝑦+) is the ECDF in orientation III with direction (𝑥+, 𝑦+) and 𝐹(2)𝐼𝐼𝐼(𝑥, 𝑦) is 

the theoretical CDF in the specific orientation.  The “s” for sample in the subscript represents the 
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evaluation location for the supremum, in this case only locations where observations are present: 

(𝑋𝑖 , 𝑌𝑖) ∀ 𝑖 = 1, … , 𝑛.   

The one change of restricting the evaluation locations, that according to Fasano and 

Franceschini has similar performance and power as the original method, causes a substantial 

decrease in the number of evaluations required to find the maximum distance from 4n2 to 4n.  

For simplicity, this method of evaluation will be referred to as Partial Orientation Sample (and 

annotated in the statistic as “ps”) where, partial orientation refers to the type of cumulation used 

in each orientation while sample represents the restricted evaluation locations proposed by 

Fasano and Franceschini.   

 As an aside, Fasano and Franceschini claimed that to perform the 2S 2D KS test, the only 

two things that needed to change were to use 𝑛 =  
𝑛1𝑛2

𝑛1+𝑛2
  and take the average of the maximum 

distance when calculating the test statistic using the data observed in sample 1 (𝐷𝑛,𝑝𝑠
(2)

)
1
  and 

sample 2 (𝐷𝑛,𝑝𝑠
(2)

)
2
: 𝑍𝑛,𝑝𝑠

(2)
= √𝑛

(𝐷𝑛,𝑝𝑠
(2)

)
1

+(𝐷𝑛,𝑝𝑠
(2)

)
2

2
 . 

In addition to the 2D implementation of the method developed by Fasano and 

Franceschini, they extended their method to 3D which follows the same implementation and 

definitions as the 2D case but for 3 variables, with the only difference being the evaluation 

locations which now consist of , not the grid of all 𝑛3 locations, but only the 

n locations where data is observed.  The test statistic 𝐷𝑛,𝑝𝑠
(3)

 is the same as Equations ( 2.19 ) and ( 

2.20 ) with the difference that instead of “grid” the statistic uses “sample” meaning that, for 

instance, Equation ( 2.21 ) changes to Equation ( 2.27 ) (limiting the supremum). 

 𝐷𝑛,𝑠
(3)𝐼𝐼𝐼+++ = sup

(𝑥𝑖,𝑦𝑖,𝑧𝑖) ∀ 𝑖=1,…,𝑛
|𝐹𝑛

(3)𝐼𝐼𝐼(𝑥+, 𝑦+, 𝑧+) − 𝐹(3)𝐼𝐼𝐼(𝑥, 𝑦, 𝑧)|, ( 2.27 )
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The main limitation with both the 2D and 3D Partial Orientation Sample methods is that, 

due to the restricted evalution locations, correlation needs to be considered when generating the 

critical values or using the tables provided in [7], this is because when Fasano and Franceschini 

tried to show sufficiently distribution free property using various well known distributions for 

their method, they noticed that the test statistic null distribution for highly correlated data did not 

have the same distribution as the null distribution for non-correlated distributions.  Furthermore, 

similar to Peacock’s and Gosset’s derivation of critical values, Fasano and Franceschini used 

their simulated data (in their case up to sample size 5,000 with 500 repetitions) to generate their 

critical value tables and formulas.  Using the 1S 2D KS tables generated by Fasano and 

Franceschini, Press and Teukolsky created an asymptotic equation (see Equation ( 2.28 ) and 

generated  the 2D KS test algorithm that is most often used in various open source codes [24].  

The asymptotic equation that Press and Teukolsky developed uses the 1D KS test equation, 

where 𝑍𝑛,𝑝𝑠
(2)

 is defined as √𝑛𝐷𝑛.𝑝𝑠
(2)

, scaled by the correlation and sample size (see Equation           

( 2.25 ) ). 

 
𝑃(𝑍𝑛,𝑝𝑠

(2)
> 𝑧) = 𝑄𝐾𝑆(

√𝑛𝐷𝑛,𝑝𝑠
(2)

1 + √(1 + 𝑟2) (. 25 −
. 75

√𝑛
)

) 
( 2.28 )

 

where  and  (the estimated coefficient of correlation). 

 

2.5. Current Software Implementations 

There are several 1S and 2S 2D KS test implementations in various software, however, 

there is no consistency among the implementations and furthermore, when computing critical 

values or p-values, different equations and methods have been coded into the software functions 
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providing different results.  Table 2.1 shows a summary of current software implementations as 

well as the main differences between these implementations.  Most notably, there is an 

inconsistency when cummulating the data in each orientation which will affect the maximum 

distance.  For instance, when computing the maximum distance at a point, some implementations 

use all equalities to count the number of observations in a quadrant, some only use inequalities 

and others split the point across all orientation equally (1/4 each).  Furthermore, there are 

different implementations to computing the critical values used to conduct the hypothesis test, 

some use the asymptotic equations presented in the literature, while also allowing a bootstrap 

implementation.  The bootstrap implementation allows the user to input the number of iterations 

with which to sample the data (with replacement) to generate a p-value.  Only the software 

implementations by Gabinou and Syrte follow the original method of Fasano and Franceschini as 

provided in their original paper, while the Matlab and R implementations have some differences 

that affect the test statistic.   
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Table 2.1: Summary of 2D KS Test Software Implementation 

 Python Gabinou [25] Python Syrte [26] Matlab [27], [28] R [29], [30] 

Partial Orientation 

Method 

    

  Grid 1S - - - - 

  Grid 2S - - available available 

  Sample 1S available - - - 

  Sample 2S available available available available 

Method used to 

calculate critical values 

Equation ( 2.28 ) 

(Press) 

Equation ( 2.28 ) 

(Press) or bootstrap 

Equation ( 2.15 ) 

(Peacock) and ( 2.28 ) 

(Press) 

Equation ( 2.15 ) 

(Peacock) and  ( 2.28 ) 

(Press) or bootstrap 

comments 1.  Does not use 

equalities when 

calculating CDFs. 

2.  For 2S tests, 

(max D 

from sample 1 and 

sample 2) 

1.  For 2S test

 (max D 

from sample 1 and 

sample 2) 

1.  Does not use 

equalities when 

calculating CDFs. 

2.  Subtracts 1 from 

sample 2 when 

computing the 

quadrants 

1.  0.25 is added to 

every orientation 

cumulation where data 

is observed (instead of 

counting it only for 

quadrant III) 

- Indicates method for conducting the KS test is not available in the software 
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3. 1S Multivariate KS Test Orientation Method 

In this chapter we will introduce a more complete method for calculating the maximum 

difference between CDFs.  Prior to discussing the method, it is necessary to discuss our 

definition of a multi-dimensional CDF given that it is not as simple as in the case of a single 

random variable in which probability is cumulated in one dimension (along the x axis). 

 

3.1. Multivariate Cumulative Distribution Functions 

In comparison to building the 1-dimensional CDF, higher dimensions require us to look 

at not just the cumulation of probability in one dimension, but in the other dimensions as well.  

Therefore, when building the CDF in two or more dimensions, an orientation is required to 

cumulate probabilities.  It is conceivable that probability cumulates differently depending on the 

orientation.  For a 2-dimensional, bivariate random variable, there is a total of four orientations 

defined for all 𝑥, 𝑦 ∈  ℝ:  

1) as orientation  with CDF defined as ,  

2) as orientation  with CDF defined as ,  

3) as orientation  with CDF defined as , and  

4) as orientation  with CDF defined as .   

The most common and well accepted definition of the 2-dimensional CDF is orientation 

 which defines a joint CDF for two continuous random variables  and  as seen in Equation ( 

3.1 ): 

 

𝐹𝑋𝑌(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) =  ∫ ∫ 𝑓𝑋𝑌(𝑢, 𝑣)𝑑𝑢 𝑑𝑣

𝑥

−∞

𝑦

−∞

 
( 3.1 )
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where is the continuous joint probability density function.  Table 3.1 shows the 

properties that satisfy the definition of the 2-dimensional CDF by orientation which extend from 

the 1-dimensional case.  The nomanclature used here, attemps to follow the notation of limits 

and continuity commonly seen in statistics textbooks where, for example, for a fixed point 

(𝑥0, 𝑦0) in ℝ2 approaching from the “right” in the x direction is represented by superscript “+” 

resulting in: 𝑥0
+. 

 

Table 3.1: Properties that satisfy the definition of the 2-dimensional CDF
 

 Orientation I Orientation II Orientation III Orientation IV 

j     

  

 

 

 

 

 

 

 

 

1.1 – 

Boundaries 
 

        

1.2 – 

Boundaries 
 

        

1.3 – 

Boundaries 
 

 
 

 
 

 
 

 
 

2 - 

Nondecreasing 

Within a given orientation (I, II, III or IV), 𝐹𝑋𝑌
∗ (𝑥, 𝑦) is a nondecreasing 

function of x and y, for −∞ < 𝑥, 𝑦 < ∞. 

3 - Range 
The range of 𝐹𝑋𝑌(𝑥, 𝑦) is between 0 and 1, since 𝐹𝑋𝑌(𝑥, 𝑦) is a 

probability.   

  
        

4 - right 

continuous at 

𝑥 = 𝑥0 and 𝑦 =
𝑦0 within 

orientation 

 

        

* is either I, II, III, or IV 
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One of the consequences of defining the CDF for each orientation is that at a fixed point (𝑥0, 𝑦0) 

in  ℝ2, the sum of all four CDFs at each orientation will always add up to 1 (under continuity), 

meaning at point (𝑥0, 𝑦0):  𝐹𝑋𝑌
𝐼 (𝑥0, 𝑦0) + 𝐹𝑋𝑌

𝐼𝐼 (𝑥0, 𝑦0) + 𝐹𝑋𝑌
𝐼𝐼𝐼(𝑥0, 𝑦0) + 𝐹𝑋𝑌

𝐼𝑉(𝑥0, 𝑦0) = 1, but only 

in some situations will all orientations equal each other, e.g., for symmetric distributions in both 

x and y such as 𝐵𝑉𝑁(𝟎, 𝑰) at (0, 0).  In fact, the cumulated probability of the CDFs from a 

bivariate standard Normal distribution (𝐵𝑉𝑁(𝟎, 𝑰)) are different depending on the orientation 

(Figure 3.1).  For example, looking at the point (𝑥, 𝑦) = (1,1) in Figure 3.1, there are four 

different CDF values depending on the orientation (see Table 3.2).  Similarly, consider a set of 

10 observations drawn from a 𝐵𝑉𝑁(𝟎, 𝑰).  Even though we have now discretized a continuous 

distribution (we have a finite sample) we can still use the definition of a CDF to estimate the 

Figure 3.1: CDF orientations with red vertical line at (1,1) 
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CDF, through the ECDF, by observing the proportion of data points observed according to the 

orientation definition.  However, because the data sample is finite, the ECDF is a step function 

containing discontinuities, but maintaining the properties of a CDF (see Figure 3.2).  As a 

consequence of the discontinuity along with the property of right continuity within an orientation 

the sum of all for orientations at a point (𝑥0, 𝑦0): 𝐹𝑋𝑌
𝐼 (𝑥0, 𝑦0) + 𝐹𝑋𝑌

𝐼𝐼 (𝑥0, 𝑦0) + 𝐹𝑋𝑌
𝐼𝐼𝐼(𝑥0, 𝑦0) +

𝐹𝑋𝑌
𝐼𝑉(𝑥0, 𝑦0) will not necessarily be equal to 1 for the ECDF.  When we compare the CDF and the 

ECDF across orientations we can see how the cumulated probability compared across the 

orientations varies greatly between 0.0256 and 0.7088 for the CDF and 0.1 to 0.6 for the ECDF 

(see Table 3.2) although within orientation these values differ by no more than about 0.1.  

Clearly, the larger the number of observations drawn, the closer the ECDF values will be to the 

CDF values within an orientation, but major differences in cumulated probability will remain 

when comparing across orientations. 

 

Table 3.2: CDF and ECDF values by orientation for (𝑥, 𝑦) = (1,1) using a BVN(0,I) (CDF) 

and a single sample of 10 random draws from a BVN(0,I) (ECDF) 

Orientation CDF ECDF 

 0.0256 0.1 

 0.1337 0.2 

 0.7088 0.6 

 0.1333 0.2 
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3.2. 1-sample 2-dimensional KS Test Orientation Method 

The 1-sample 2-dimensional Kolmogorov Smirnov (1S 2D KS) test statistic, like the 1D 

test statistic, is calculated as the maximum distance between the ECDF estimated from a sample 

of data and the appropriate null hypothesis based continuous CDF.  However, as demonstrated in 

Figure 3.1 and Figure 3.2, these vary by orientation.  Therefore, for the 1S 2D KS test using the 

Orientation method, all four orientations are evaluated in order to compute the maximum 

difference within each orientation and then the maximum of these four differences.  Furthermore, 

Figure 3.2: ECDF for 10 observations drawn from a  with red 

vertical line at (1,1). 
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like the 1S 1D case, when evaluating the ECDF at a given location where there is a data point, 

(𝑥, 𝑦),  it is necessary to evaluate the location from every direction: , ,  

and .  These evaluations are demonstrated for a simple example in Figure 3.3 for a 

ECDF calculated within a single orientation (III) and for a sample of three data points.  In this 

example, at point we see 3 possible values of the ECDF for one orientation: , 

 and .  Therefore, following the same notation as we 

did for Partial Orientation Grid method, we define the Orientation Grid method and the 

corresponding test statistic for the 1S 2D KS test as seen in Equation ( 3.2 ): 

 𝐷𝑛,𝑜𝑔
(2)

= max (𝐷𝑛,𝑜𝑔
(2)𝐼 , 𝐷𝑛,𝑜𝑔

(2)𝐼𝐼 , 𝐷𝑛,𝑜𝑔
(2)𝐼𝐼𝐼 , 𝐷𝑛,𝑜𝑔

(2)𝐼𝑉) ( 3.2 )
 

where 𝐷𝑛,𝑜𝑔
(2)

 is the test statistic, “og” represents the Orientation Grid method, and for example: 

 𝐷𝑛,𝑜𝑔
(2) 𝐼 = max (𝐷𝑛,𝑔

(2)𝐼++, 𝐷𝑛,𝑔
(2)𝐼+−, 𝐷𝑛,𝑔

(2)𝐼−+, 𝐷𝑛,𝑔
(2)𝐼−−) ( 3.3 )

 

where the “o” for Orientation method in the subscript represents the direction that is used for 

each orientation (all four directions), and for example: 

 𝐷𝑛,𝑔
(2)𝐼++ = sup

𝑎𝑙𝑙 𝑥,𝑦
|𝐹𝑛

(2)𝐼(𝑥+, 𝑦+) − 𝐹(2)𝐼(𝑥, 𝑦)| ( 3.4 )
 

where 𝐹𝑛
(2)𝐼(𝑥+, 𝑦+) is the ECDF in orientation I with direction (𝑥+, 𝑦+) and 𝐹(2)𝐼(𝑥, 𝑦) is the 

theoretical CDF in orientation I.  Similar to the proposed method by Peacock, and denoted by the 

“g” subscript, we can narrow our evaluation locations to the grid generated by the 2D dataset: 

(𝑋𝑖, 𝑌𝑗) ∀ 𝑖, 𝑗 = 1, … , 𝑛 where  is the sample size.  Therefore, the number of computations 

needed to compute the test statistic 𝐷𝑛,𝑜𝑔
(2)

 totals .  As mentioned earlier, we will refer to this 

method as the 1S 2D KS test Orientation Grid method, where orientation refers to computing the 
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maximum distance from all four orientations and all four directions, while grid as previously 

defined, consists of the evaluation locations (the grid generated by the 2D dataset).   

 

 

 When comparing the test statistic of the Orientation method against the Partial 

Orientation method (Peacock’s method with equalities as proposed by Gosset) we can see how 

one is a subset of the other.  If we combine Equation ( 3.2 ) and ( 3.3 ) from the Orientation 

method we get Equation ( 3.5 ).  On the other hand, if we combine Equation ( 2.12 ) and ( 2.13 ) 

we get Equation ( 3.6 ) which is the maximum of four of the sixteen total distances that the 

Orientation method calculates. 

 𝐷𝑛,𝑜𝑔
(2)

= max (𝐷𝑛,𝑔
(2)𝐼++, 𝐷𝑛,𝑔

(2)𝐼+ −, 𝐷𝑛,𝑔
(2)𝐼− +, 𝐷𝑛,𝑔

(2)𝐼−−, …, 

𝐷𝑛,𝑔
(2)𝐼𝑉++, 𝐷𝑛,𝑔

(2)𝐼𝑉+−, 𝐷𝑛,𝑔
(2)𝐼𝑉−+, 𝐷𝑛,𝑔

(2)𝐼𝑉−−) 

 

( 3.5 )
 

 

Figure 3.3: Orientation III CDF for 3 points (1,1), (2,3), and (3,2) 
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 𝐷𝑛,𝑝𝑔
(2)

= max (𝐷𝑛,𝑔
(2)𝐼−−, 𝐷𝑛,𝑔

(2)𝐼𝐼− +, 𝐷𝑛,𝑔
(2)𝐼𝐼𝐼++, 𝐷𝑛,𝑔

(2)𝐼𝑉+ −) ( 3.6 )
 

Table 3.3: Summary of 1S 2D KS Test Methods 

 2D KS Test Methods 

Orientation method Partial Orientation method 

E
v
al

u
at

io
n
 L

o
ca

ti
o
n
s 

Grid  -All 4 orientations: 𝐷𝑛,𝑜𝑔
(2)𝐼

, 𝐷𝑛,𝑜𝑔
(2)𝐼𝐼

, 𝐷𝑛,𝑜𝑔
(2)𝐼𝐼𝐼

, 𝐷𝑛,𝑜𝑔
(2)𝐼𝑉

 

 

-All 4 directions per orientation: 
(𝑥+, 𝑦+), (𝑥+, 𝑦−), (𝑥−, 𝑦+), 𝑎𝑛𝑑 (𝑥−, 𝑦−)  

 

-Evaluates at the grid generated by the data 

 

-Number of evaluations: 16n2  

-All 4 orientations: 𝐷𝑛,𝑝𝑔
(2)𝐼

, 𝐷𝑛,𝑝𝑔
(2)𝐼𝐼

, 𝐷𝑛,𝑝𝑔
(2)𝐼𝐼𝐼

, 𝐷𝑛,𝑝𝑔
(2)𝐼𝑉

 

 

- 1 direction per orientation: 𝐼 −
(𝑥−, 𝑦−), 𝐼𝐼 − (𝑥−, 𝑦+), 𝐼𝐼𝐼 −
(𝑥+, 𝑦+), 𝑎𝑛𝑑 𝐼𝑉 − (𝑥+, 𝑦−) 

 

-Evaluates at the grid generated by the data 

 

- Number of evaluations: 4n2   

Sample -All 4 orientations: 𝐷𝑛,𝑜𝑠
(2)𝐼 , 𝐷𝑛,𝑜𝑠

(2)𝐼𝐼 , 𝐷𝑛,𝑜𝑠
(2)𝐼𝐼𝐼 , 𝐷𝑛,𝑜𝑠

(2)𝐼𝑉
 

 

-All 4 directions per orientation: 
(𝑥+, 𝑦+), (𝑥+, 𝑦−), (𝑥−, 𝑦+), 𝑎𝑛𝑑 (𝑥−, 𝑦−)  

 

-Evaluates at data (observed) 

 

- Number of evaluations: 16n  

-All 4 orientations: 𝐷𝑛,𝑝𝑠
(2)𝐼 , 𝐷𝑛,𝑝𝑠

(2)𝐼𝐼 , 𝐷𝑛,𝑝𝑠
(2)𝐼𝐼𝐼 , 𝐷𝑛,𝑝𝑠

(2)𝐼𝑉
 

 

- 1 direction per orientation: 𝐼 −
(𝑥−, 𝑦−), 𝐼𝐼 − (𝑥−, 𝑦+), 𝐼𝐼𝐼 −
(𝑥+, 𝑦+), 𝑎𝑛𝑑 𝐼𝑉 − (𝑥+, 𝑦−) 

 

-Evaluates at data (observed) 

 

- Number of evaluations: 4n 

 

Similar to how Fasano and Franceschini limited the number of evaluation locations but 

maintained the same method to finding the maximum as Peacock (therefore creating what we are 

refering to Partial Orientation Sample), we can also limit the evaluation locations of the 

Orientation Grid method creating Orientation Sample (“os”).  The Orientation Sample method 

considers all four orientations and all four directions, but only evaluates the maximum distance 

in places were data is observed, decreasing the number of evaluations to 16n.  Table 3.3 

summarizes all four methods and what process and evaluation locations each one uses.  As we 

can see, the complete method is Orientation Grid, while all others are a subset of this complete 

method.   
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The following simple example (see Figure 3.4 for data, and Table 3.4 for computations) 

shows all the computations needed to calculated 𝐷𝑛,𝑜𝑔
(2)

 for a sample size 𝑛 = 3 drawn from a 

𝐵𝑉𝑁(𝟎, 𝑰) compared against a continuous 𝐵𝑉𝑁(𝟎, 𝑰).  Given that Orientation Sample, Partial 

Orientation Grid/Sample methods are a subset of the Orientation Grid method by displaying all 

calculations from the Orientation Grid we can see what information each method captures.  

Looking at the whole table and finding the maximum difference at each orientation and direction 

equates to the Orientation Grid method, while Partial Orientation Grid would only look at the 

maximum difference in the blue shaded cells.  Both sample methods (Orientation and Partial 

Orientation) would only look at the first three rows (the points where data was observed, shaded 

grey).  Using Orientation Grid the maximum distance would be 0.725, while Partial Orientation 

Grid would have a maximum distance of 0.528.  On the other hand, Orientation Sample equals 

0.560 while Partial Orientation Sample equals 0.48.  This example accentuates the difference in 

methods and the amount of information that each captures.  As sample size increases, we 

conjecture that the Grid methods and the Sample methods will converge given that the size of the 

Figure 3.4: 1S 2D KS Test Data Example 
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step in the ECDF will get smaller and smaller and the grid method data locations would be well 

approximated by the sample method data locations, this claim is supported by Figure 3.5, which 

shows the null distribution (drawn from a 𝐵𝑉𝑁(𝟎, 𝑰) ) of all four methods for sample size 50 and 

1,000.  These figures were generated using seaborn in Python along with the kernel density 

function which scales the y axis to ensure that the area under the curve is equal to 1.  The details 

on simulation procedures are explained later in the chapter.   

 

 

 

 

 

 

Figure 3.5: 1S 2D KS Test Statistic Probability Distributions by Methods with 10,000 
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Table 3.4: 1S 2D KS Test Computations for Example 

 

Locations 

 

 

  

Difference 
 

  

Difference 
 

  

Difference 
 

  

Difference −  + +  + −  + +  + −  + +  + −  + +  + 

−  − +  − −  − +  − −  − +  − −  − +  − 

[-0.78 

1.07] 
0.19 0.33 0.67 0.15 0.48 0.03 0.00 0.33 0.03 0.30 0.67 0.33 0.67 0.34 0.00 0.11 0.00 0.33 0.11 0.22 

   0.33 0.33 0.15 0.15   0.00 0.00 0.03 0.03   0.33 0.33 0.34 0.34   0.00 0.00 0.11 0.11 

[-1.28 -

1.33] 
0.01 0.00 0.33 0.01 0.32 0.09 0.00 0.33 0.09 0.24 0.08 0.00 0.33 0.08 0.25 0.82 0.67 1.00 0.15 0.18 

   0.00 0.00 0.01 0.01   0.00 0.00 0.09 0.09   0.00 0.00 0.08 0.08   0.67 0.67 0.15 0.15 

[0.13 0.86] 0.44 0.33 0.67 0.11 0.22 0.11 0.33 0.67 0.23 0.56 0.36 0.00 0.33 0.36 0.03 0.09 0.00 0.33 0.09 0.25 

   0.33 0.33 0.11 0.11   0.33 0.33 0.23 0.23   0.00 0.00 0.36 0.36   0.00 0.00 0.09 0.09 

[-1.28 

0.86] 
0.08 0.00 0.33 0.08 0.25 0.02 0.00 0.00 0.02 0.02 0.73 0.33 0.67 0.39 0.06 0.18 0.67 0.67 0.49 0.49 

   0.00 0.33 0.08 0.25   0.00 0.00 0.02 0.02   0.00 0.33 0.73 0.39   0.33 0.33 0.16 0.16 

[-1.28 

1.07] 
0.09 0.00 0.33 0.09 0.25 0.01 0.00 0.00 0.01 0.01 0.77 0.67 1.00 0.11 0.23 0.13 0.33 0.33 0.21 0.21 

   0.00 0.33 0.09 0.25   0.00 0.00 0.01 0.01   0.33 0.67 0.44 0.11   0.00 0.00 0.13 0.13 

[-0.78 -

1.33] 
0.02 0.33 0.33 0.31 0.31 0.20 0.33 0.67 0.14 0.47 0.07 0.00 0.00 0.07 0.07 0.71 0.33 0.67 0.38 0.04 

   0.00 0.00 0.02 0.02   0.00 0.33 0.20 0.14   0.00 0.00 0.07 0.07   0.33 0.67 0.38 0.04 

[-0.78 

0.86] 
0.18 0.33 0.33 0.16 0.16 0.04 0.00 0.33 0.04 0.29 0.63 0.33 0.33 0.30 0.30 0.15 0.33 0.67 0.18 0.52 

   0.33 0.33 0.16 0.16   0.00 0.33 0.04 0.29   0.00 0.00 0.63 0.63   0.00 0.33 0.15 0.18 

[ 0.13 -

1.33] 
0.05 0.33 0.33 0.28 0.28 0.50 0.67 1.00 0.17 0.50 0.04 0.00 0.00 0.04 0.04 0.41 0.00 0.33 0.41 0.08 

   0.00 0.00 0.05 0.05   0.33 0.67 0.17 0.17   0.00 0.00 0.04 0.04   0.00 0.33 0.41 0.08 

[0.13 1.07] 0.47 0.67 1.00 0.20 0.53 0.08 0.33 0.33 0.26 0.26 0.39 0.00 0.33 0.39 0.05 0.06 0.00 0.00 0.06 0.06 

   0.33 0.67 0.14 0.20   0.00 0.00 0.08 0.08   0.00 0.33 0.39 0.05   0.00 0.00 0.06 0.06 

*grey cells – sample methods, blue cells – Partial Orientation methods, red cell – maximum difference 
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3.3. Simulation Procedures 

The procedure for gathering the simulated data is as follows and applies to all simulations 

unless otherwise specified.  First, draw n samples from a specified theoretical distribution with 

appropriate parameters (most simulations were run using the Bivariate Normal distribution).  

Second, run the KS test method comparing the ECDF against the appropriate continuous CDF 

distribution.  Repeat this process 10,000 times, with the following random seeds: seed 0 for the 

first 1,000, seed 1 for the second 1,000 up to seed 9 for the last 1,000 repetitions.  All simulations 

and analyses were conducted on Python 3.7.9 using numpy 1.20.3 to generate the random data.  

Apart from the acceptable machine error, some rounding error was introduced when computing 

the CDF.  In order to not compute double integrals for each data point and for each repetition in 

the 2D analyses, a file was created with all the 𝐵𝑉𝑁(𝟎, 𝑰) CDF values for each orientation where 

x and y ranged from -6 to +6 (rounded to two decimal places).  This additional rounding error 

was introduced when looking for the CDF value in that the data point being evaluated was 

rounded to two decimal places in order to retrieve the saved file containing the CDF values.  A 

simplified version of the Python code is available in the appendix with all four methods (without 

the computational time improvements such as retrieving the CDF values from the saved file).  

These simulations were used to validate properties and assumptions of the 2D KS methods, 

compare the methods and to perform power analysis and sample size recommendations. 

 

3.4. Properties of Orientation Method 

In this section we will discuss several properties and assumptions of the Orientation 

method such as exchangability and independence of each orientation, as well as the distribution 
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free property of the multi-dimensional test.  These properties and assumptions are crucial for the 

mathematical derivation of the critical values. 

 

3.4.1. Orientation Decomposition of the 1S 2D KS Test 

In order to show that the Orientation Grid method has four iid orientations we can look at 

each orientation that make up 𝐷𝑛,𝑜𝑔
(2)

.  Each orientation has the same four operations (all four 

directions per orientation) and therefore they are all identical, which is something that both 

Partial Orientation methods do not have given that a different direction is used for each 

orientation.  On the other hand, by considering the maximum difference in each orientation, it is 

clear that the maximum occuring in one orientation will not affect the probability of finding the 

max in any other orientation, therefore we can argue that each orientation is independent (note 

that directions within an orientation are not independent).  Furthermore, these claims were 

justified after running a simulation using 𝐵𝑉𝑁(𝟎, 𝑰) for the null distribution in which the 

maximum distance for random samples of size n=10 in each orientation was estimated 

separately.  The distributions of the maximum distances for each orientation and each method is 

plotted in Figure 3.6.  Only test statistic distributions for the Orientation methods (grid and 

sample) maintain the same distribution across all four orientations (I, II, III, and IV) while both 

Partial Orientation methods (grid and sample) do not.  Even though both Orientation methods 

have this property, the Orientation Sample method fails to be sufficiently distribution free as 

shown in the next section, which will leave us with only one method that satisfies all 

requirements.  An interesting consequence of the Partial Orientation methods, is that by defining 

orientation III as 𝑃(𝑥 ≤ 𝑋, 𝑦 ≤ 𝑌) means that the probability of the maximum being reached in 
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this orientation is larger than the other orientations (see Figure 3.6 the green curve “orientation 

III” in both Partial Orientation methods).   

 

 

3.4.2. Distribution Free  

Both Peacock [5] and Fasano and Franceschini [7] address the issue of the 1S 2D KS test 

being distribution free.  In the 1-dimensional case, this property is inherited given that the 

ordering is not affected by one-to-one transformations [6], but this is not the case for the 2-

dimensional case where ordering can happen in the x or the y direction.  In his paper, Peacock 

shows that the 1S 2D case is sufficiently distribution free (except for high correlated data) by 

performing the KS test several times with each time having the ECDF drawn from a different 

Figure 3.6: 1S 2D KS Distribution Decomposition of Orientations for n = 10 
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distribution, while Fasano and Franceschini show that the statistic is sufficiently distribution free 

if the correlation coefficient is considered (tables of critical values based on correlation can be 

found in their paper).  In a similar fashion, given that the 1S 2D KS test is not inherintely 

distribution free, we test the idea of sufficiently distribution free properties by drawing from a 

speficied distribution and compare against the same theoretical distribution.   

Figure 3.7 shows the 1S 2D KS test for sample of size 10 with 10,000 repeptitions, when 

sample distributions include 𝐵𝑉𝑁(𝟎, 𝑰), two independent 𝑈(0,1), two independent 

𝑔𝑎𝑚𝑚𝑎(2,2), a 𝐵𝑉𝑁(𝟎, [ 1 . 5
. 5 1

]) and a 𝐵𝑉𝑁(𝟎, [
1 . 9
. 9 1

]).  Based on our simulation, we can 

claim that all methods appear to be sufficiently distribution free when the correlation of the data 

 

Figure 3.7: Null distribution for different probability distributions for n = 10 (10,000 repetitions) 

BVSN = 𝐵𝑉𝑁(𝟎, 𝑰), Uniforms = two independent , Gammas = two independent 

𝑔𝑎𝑚𝑚𝑎(2,2),  , Rho .5 = 𝐵𝑉𝑁(𝟎, [ 1 . 5
. 5 1

]) , Rho .9 =  𝐵𝑉𝑁(𝟎, [
1 . 9
. 9 1

]).   
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is not extremely high.  On the other hand, only the Orientation Grid method is sufficiently 

distribution free regardless of the correlation, even for highly correlated data.  This allows us to 

use the Orientation Grid method to detect differences in distribution without computing the 

sample correlation and require different critical values based on the correlation.  Furthermore, 

even if the data is highly correlated, we can rest assured that no additional error or variability 

will be introduced to the critical values. 

 

3.4.3. Orientation Method Null Distribution  

Now that we have shown that only the Orientation Grid method appears to have both 

properties of independent and identically distributed (iid) and distribution free, this section will 

explore the null distribution of the Orientation Grid method.  By sampling from a 𝐵𝑉𝑁(𝟎, 𝑰) for 

sample sizes ranging from 3-2,000 and comparing against a continuous 𝐵𝑉𝑁(𝟎, 𝑰) to compute 

the maximum difference in the CDFs, repeated 10,000 times, we can generate a smooth 

distribution for the distance 𝐷𝑛,𝑜𝑔 
(2)

 while this is not the mathematical derivation, it provides us 

Figure 3.8: 1S 2D KS test Orientation Grid Z distance 
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with an understanding of the behavior of the null distribution as sample size increases.  After 

standarizing the distance to 𝑍𝑛,𝑜𝑔
(2)

= √𝑛𝐷𝑛,𝑜𝑔
(2)

 we see in Figure 3.8 that the distribution of this 

standarized distance shifts as sample size increases, but maintains a similar shape.  Even for 

sample size 2,000 there is no clear proof that we have reached the asymptotic distribution of the 

1S 2D KS test.  Therefore, fitting the asymptotic equation to our simulation will limit the 

generalization of the equation and prevent us from using it for samples larger than what was used 

as the asymptotic limit (similar to what Peacock and Gosset did).  In the next section, we will 

show a method for mathematically deriving the critical values for small sample and comment on 

the difficulty of deriving the asymptotic equation. 

 

3.5. Orientation Grid Analysis 

Now that we have established the Orientation Grid 2D KS test, its properties and how to 

perform its simulations, we can begin to estimate the critical values and evaluated the power of 

this test.  In this section, we will show a derivation for the critical values for the 2D KS test, 

explore the simulated critical values and determine a correction for large sample (similar to 

Peacock’s approach) and finally compare the power of the Orientation Grid method using 

derived, simulated critical values and large sample simulated critical values with correction. 

 

3.5.1. Orientation Grid Derived Critical Values 

This section follows closely the 1D KS test derivation presented in [4], [17], [19] with the 

understanding that even though we are still looking for a one-dimensional maximum distance, 

our observations now lie on a surface instead of a line and we have 𝑛2 evaluation locations.  We 

will assume independence (no correlation) between X and Y given we are deriving the null 
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distribution.  Furthermore, we have shown previously that orientations in this method are iid.  

Thus, without loss of generality, we can focus on a single orientation; we will use orientation III.  

The goal is to find the maximum in Equation ( 3.7 ), we focus on Equation ( 3.10 ) and once we 

have the distribution of one of the orientations, we can find the marginal pdf of 𝑌𝑛,  seen in 

Equation ( 3.8 ). 

 𝑃(𝐷𝑛,𝑜𝑔
(2)

> 𝑑) = max (𝑃(𝐷𝑛,𝑜𝑔
(2)𝐼 ), 𝑃(𝐷𝑛,𝑜𝑔

(2)𝐼𝐼), 𝑃(𝐷𝑛,𝑜𝑔
(2)𝐼𝐼𝐼), 𝑃(𝐷𝑛,𝑜𝑔

(2)𝐼𝑉))  ( 3.7 )
 

 𝑌𝑛 = 𝑋(𝑛) = max(𝑋1, … , 𝑋𝑛) = 𝑛𝑓𝑥(𝑦1)[𝐹𝑥(𝑦1)]𝑛−1 ( 3.8 )
 

where . 

We start by defining our random variable as seen in Equation ( 3.9 ): 

 𝑇𝑖𝑖′ = 𝑛2(𝐹𝑒(𝑑𝑖𝑖′ ) − 𝑑𝑖𝑖′) ( 3.9 )
 

where 𝐹𝑒(𝑑𝑖𝑖′) is the ECDF, , , and given independence 

𝑛2(𝐹𝑒(𝑑𝑖𝑖′ ))  represents the number of observations where 𝑥 ≤ 𝑋𝑖 and 𝑦 ≤ 𝑌𝑖′. 

Consider the sample space of all possible .  Let  and  be the 

events where  reaches a fixed integer J or -J respectively (  does not reach either J or -J with 

probability 0).   

𝑃(𝐷𝑛,𝑜𝑔
(2)𝐼𝐼𝐼 > 𝑑) =  ∑ ∑ 𝑃(𝐴𝑖𝑖′)

𝑛−1

𝑖′=1

𝑛−1

𝑖=1

+ ∑ ∑ 𝑃(𝐵𝑖𝑖′)

𝑛−1

𝑖′=1

𝑛−1

𝑖=1

 

( 3.10 )
 

 

Using the formula of total probability , we can write the 

 for any  between 1 and  

 
𝑃(𝑇𝑘𝑘′ = 𝐽) = ∑ ∑ 𝑃(𝐴𝑖𝑖′)

𝑛−1

𝑖′=1

𝑃(𝑇𝑘𝑘′ = 𝐽|𝐴𝑖𝑖′) +

𝑛−1

𝑖=1

∑ ∑ 𝑃(𝐵𝑖𝑖′)

𝑛−1

𝑖′=1

𝑃(𝑇𝑘𝑘′ = 𝐽|𝐵𝑖𝑖′)

𝑛−1

𝑖=1

 
( 3.11 )

 

And for -J: 
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𝑃(𝑇𝑘𝑘′ = −𝐽) = ∑ ∑ 𝑃(𝐴𝑖𝑖′)

𝑛−1

𝑖′=1

𝑃(𝑇𝑘𝑘′ = −𝐽|𝐴𝑖𝑖′) +

𝑛−1

𝑖=1

∑ ∑ 𝑃(𝐵𝑖𝑖′)

𝑛−1

𝑖′=1

𝑃(𝑇𝑘𝑘′ = −𝐽|𝐵𝑖𝑖′)

𝑛−1

𝑖=1

 
( 3.12 )

 

With a similar logic as the 1D case where the probabilities correspond to a binomial experiment 

(either  reached J or it did not), the probability of success now corresponds to  with  

trials.  We can represent the following probabilities as binomial distributions:   

 𝑃(𝑇𝑘𝑘′ = 𝐽) =  𝔹𝑘𝑘′+𝐽
𝑛2

(
𝑘𝑘′

𝑛2
) ( 3.13 )

 

 𝑃(𝑇𝑘𝑘′ = 𝐽|𝐴𝑖𝑖′) =   𝔹
𝑘𝑘′−𝑖𝑖′
𝑛2−𝑖𝑖′−𝐽(

𝑘𝑘′ − 𝑖𝑖′

𝑛2 − 𝑖𝑖′
) ( 3.14 )

 

 𝑃(𝑇𝑘𝑘′ = 𝐽|𝐵𝑖𝑖′) =   𝔹
𝑘𝑘′−𝑖𝑖′+2𝐽
𝑛2−𝑖𝑖′+𝐽 (

𝑘𝑘′ − 𝑖𝑖′

𝑛2 − 𝑖𝑖′
) ( 3.15 )

 

Using ( 3.13 ), ( 3.14 ), and ( 3.15 ) and substituting into ( 3.11 ), similar process for ( 3.12 ): 

 
𝔹𝑘𝑘′+𝐽

𝑛2

(
𝑘𝑘′

𝑛2
) = ∑ ∑ 𝑃(𝐴𝑖𝑖′)

𝑛−1

𝑖′=1

 𝔹
𝑘𝑘′−𝑖𝑖′
𝑛2−𝑖𝑖′−𝐽(

𝑘𝑘′ − 𝑖𝑖′

𝑛2 − 𝑖𝑖′
)

𝑛−1

𝑖=1

+ ∑ ∑ 𝑃(𝐵𝑖𝑖′)

𝑛−1

𝑖′=1

 𝔹
𝑘𝑘′−𝑖𝑖′+2𝐽
𝑛2−𝑖𝑖′+𝐽

𝑛−1

𝑖=1

(
𝑘𝑘′ − 𝑖𝑖′

𝑛2 − 𝑖𝑖′
) 

( 3.16 ) 

 

 
𝔹𝑘𝑘′−𝐽

𝑛2

(
𝑘𝑘′

𝑛2
) = ∑ ∑ 𝑃(𝐴𝑖𝑖′)

𝑛−1

𝑖′=1

 𝔹
𝑘𝑘′−𝑖𝑖′−2𝐽
𝑛2−𝑖𝑖′−𝐽 (

𝑘𝑘′ − 𝑖𝑖′

𝑛2 − 𝑖𝑖′
)

𝑛−1

𝑖=1

+ ∑ ∑ 𝑃(𝐵𝑖𝑖′)

𝑛−1

𝑖′=1

 𝔹
𝑘𝑘′−𝑖𝑖′
𝑛2−𝑖𝑖′+𝐽

𝑛−1

𝑖=1

(
𝑘𝑘′ − 𝑖𝑖′

𝑛2 − 𝑖𝑖′
) 

( 3.17 )
 

Using ( 3.16 ) and ( 3.17 ) we can create a  system of linear equations with  

unknowns.  Solving the system of equation for  and  provides us with the values 

necessary to solve Equation ( 3.10 ).  The issue in the 2D case that is not present in the 1D case is 

the fact that regardless of sample size, the matrix is singular with an infinite number of solutions.  

In practice, given that we are only interested in the sum of the solution, the free variables of the 

solution of system of equations cancel each other and still provide a numerical solution.  For 

example, if the solution was [
. 23

. 4 − 𝑥3

𝑥3

] where 𝑥3 is the free variable, then the sum will still 

provide a numerical answer.  Therefore, it is sufficient to solve the system of equations using a 

least-square algorithm to solve for 𝐴𝒙 = 𝐵.  Figure 3.9 shows the solution of the system of 
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equations for various sample sizes after we convert from the J values to 𝐷𝑛 using 𝐷𝑛,𝑜𝑔
(2)

= √𝑛
𝐽

𝑛2.  

The number of blue points represents the converted J integer values starting with 𝐽 = 1 and 

increases as sample size increases.  To standardize 𝐷𝑛,𝑜𝑔
(2)

 we can use the transformation of 

𝑍𝑛,𝑜𝑔
(2)

= √𝑛𝐷𝑛,𝑜𝑔
(2)

.   

 

 

Once the distribution of one orientation is solved and standardized, we can fit an 

exponential/Gaussian equation such as Equation ( 3.18 ) or a variation of the logistic regression 

equation such as Equation ( 3.19 ) in order to provide a functional form that can be used to 

estimate the probabilities.  We will be focusing on the exponential fit because even though the 

Figure 3.9: Binomial derivation of raw D distance for 2D KS test 
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logistic fit is a better fit for the whole curve, including the boundaries (see Figure 3.11) it fails to 

fit properly when we calculate the marginal pdf using the logistic fit, mainly, the derivative of 

the logistic equation fails to maintain the desired shape in order to fit with the simulated null 

distribution.  Furthermore, the exponential fit has additional merit given that the form is 

remarkably similar to the 1D case, and was mathematically derived. 

 𝐹(𝑥) = 2 ⅇ−2(𝑥−𝑏)2
 ( 3.18 )

 

  
𝐹(𝑥) = 𝑐 +

1

(1 + ⅇ−𝑎(𝑥−𝑏))𝑡
 

( 3.19 )
 

 

 

 

Figure 3.10: Standardized 1S 2D KS distance of Binomial derivation and exponential fitted 
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Even though the exponential fit is not the best fit for the whole CDF of one orientation, when we 

focus on functional 𝛼 values of interest, e.g., α < 0.2, we get a root mean square error ranging 

from 0.0001 – 0.0003 for the various sample sizes (see Figure 3.10).  Because we are using 

𝑃(𝑍𝑛 > 𝑧)  as the 𝐹𝑥(𝑦1) for the marginal pdf which is 1 − 𝑃(𝑍𝑛 ≤ 𝑧) the derivative of the 

𝐹𝑥(𝑦1)  (the pdf 𝑓𝑥(𝑦1)) will be negative.  Using this fit we, find the marginal pdf of the four 

orientations 𝑃(𝑍𝑛 > 𝑧) by using Equation ( 3.8 ) where 𝐹𝑥(𝑦1) = 2 ⅇ−2(𝑥−𝑏)2
: 

 𝑃(𝑍𝑛,𝑜𝑔
(2)

> 𝑧) = 4(−1)(−4(𝑥 − 𝑏))ⅇ−2(𝑥−𝑏)2
[1 − ⅇ−2(𝑥−𝑏)2

]
3

= 16(𝑥 − 𝑏)ⅇ−2(𝑥−𝑏)2
[1 − ⅇ−2(𝑥−𝑏)2

]
3
 

( 3.20 )
 

 

 

 

Figure 3.11: Standardized KS distance of Binomial derivation and Logistic fitted equation 
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Table 3.5: 1S 2D KS Test Critical Values from derived solution using exponential fit 

n/ α 0.01 0.05 0.1 0.2 

10 1.95 1.77 1.67 1.57 

20 1.99 1.81 1.72 1.61 

30 2.01 1.83 1.73 1.62 

40 2.02 1.84 1.74 1.63 

50 2.02 1.84 1.74 1.64 

100 2.03 1.85 1.76 1.65 

   

We can see in Table 3.5 various derived critical values using the method outlined above with the 

exponential fit (for a more comprehensive list of sample sizes see Table 7.1 in the appendix).   

 

 

3.5.2. Orientation Grid Simulated Critical Values 

 Another approach for finding the critical values of the Orientation Grid method, is to use 

our null simulated distribution and finding the appropriate cutoff x-value that provides the 

desired 𝛼.  Table 3.6 shows a few of the critical values based on our simulated null distribution 

(for a more comprehensive list of sample sizes please see Table 7.2 in the appendix).  When we 

compare these values to the derived critical values, we can see that the average difference 

between all the values in both tables is less than 0.044 with a maximum difference of 0.14 for 

Table 3.6: 1S 2D KS Test Critical Values for Orientation Grid from Simulation 

n/ α 0.01 0.05 0.1 0.2 

10 1.95 1.73 1.62 1.49 

20 2.03 1.79 1.67 1.54 

30 2.06 1.80 1.69 1.56 

40 2.05 1.83 1.71 1.58 

50 2.09 1.86 1.73 1.60 

100 2.17 1.92 1.81 1.67 

1000 2.70 2.45 2.32 2.17 

2000 3.04 2.77 2.64 2.50 

5000 3.70 3.44 3.30 3.14 
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sample size 100 and 𝛼 of 0.01.  The distribution of 𝑃(𝑍𝑛,𝑜𝑔
(2)

> 𝑧) for both derived and simulated 

curves can be seen in Figure 3.12.  For sample sizes 20, 30, 40, and 50 the derived and simulated 

distributions are very close to each other for 𝛼 values of less than 0.1.   

 

 

Figure 3.12: 1S 2D KS Test Orientation Grid Method Derived (using exponential fit) vs 

Simulated 
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For 𝛼 values greater than 0.1 the difference is much larger and as 𝛼 increases so will the 

difference given that the derived values used a fitted equation to only 𝛼 values less than 0.2.  On 

the other hand, for sample size 100 there are larger differences between the derived and the 

simulated critical values, the simulated values should have fairly small variability, but the error 

that is introduced by fitting an equation to the J values from solving the system of equations 

might be compounded as we increase sample size.  

 Similarly, for sample of size 10 there seems to be a larger error between the two curves 

with a maximum difference of 0.08.  It is possible that this error is due to the exponential fit for 

the derived critical values (smaller number of possible J values) but also from the simulation due 

to the variability in the maximum distance for small samples.  To address the question of 

variability for small sample sizes, we looked at 10 Orientation Grid method simulated null 

distributions with 10,000 repetitions each, found the critical values for 𝛼 values of interest and 

compared against the derived critical value.  As we can see in Figure 3.13, the boxplots represent 

the 10 samples, while the blue dot represents the derived critical value.  The variability of the 

simulated null distribution is minimal, but when compared to the derived critical values we see 

an inconsistent small error.  It is important to note that when rounding to two decimal places, the 

error that is introduced by the estimation, equation fitting, machine precision is present, but 

minimal.  Further, when examining the scale of the plots in Figure 3.13, it can be seen that the 

error between the estimates (median simulated value and derived critical value) is generally no 

larger than about 0.05.  Nevertheless, mathematically deriving the critical values for one 

orientation and finding the marginal pdf of all orientations (maximum of the four random 

variables) by using the fitted equation of one orientation (using the 𝛼 values of interest) provides 
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us with an accurate method for calculating critical values for small sample sizes.  Errors and 

improvement in the derived values rely heavily on the fitted functions to the derived values. 

 

 

 

Figure 3.13: 1S 2D KS Test Orientation Grid Method Derived and Simulated (10,000 

repetitions 10 times) Critical Values for Various Sample Sizes 



67 

 

3.5.3. Large Sample and Correction 

Solving the system of equations for the derived solution of critical values for sample sizes 

larger than 100 becomes computationally infeasible, furthermore simulating all sample sizes 

between 100 to 5,000 could take on the order of years (especially if we want to have 10,000 

repetitions per sample size).  However, as shown in Figure 3.8, the critical values do not 

converge for values of less than 5,000 and therefore, there is a need to develop a correction so 

that the large sample critical value can be used regardless of sample size.  The largest sample in 

this research is 5,000 with 10,000 repetitions, but we infer that even with that sample size, we 

believe we have not reached the asymptotic distribution for the 1S 2D KS test (see Figure 3.14 

for a graph of the simulated critical values for the null distribution based on sample size).  But 

given the computation burden of running this test for large samples (for sample size 5000, the 

test takes several hours to complete one iteration of the test for a single sample and the 

computational time continues to grow exponentially), if there is a need for the distribution of  

Figure 3.14: 1S 2D KS Orientation Grid Method Standardized Null 

Distribution Critical Values 
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larger samples to be computed, we are confident that less repetitions are sufficient to still achieve 

high fidelity of the critical values.  To prove this claim, we separated the sample from  into 

10 equal sub-samples (1,000 each).  The critical values achieved by these sub-samples are close 

to each other with the largest difference being 0.1.  Figure 3.15 shows the boxplot of the 10 sub-

samples for specified 𝛼 values.  Regardless, using the sample sizes available to us, we can still 

find a correction and use the large sample critical values to perform the test of hypothesis up to a 

sample size of 5000.   

Using a similar delta method as Peacock [5], we can find the correction (see Equation      

( 3.21 ) ) needed to shift any statistic to large sample and utilize the large sample critical values:   

 
𝛿𝑜𝑔

(2)
= 1 −

𝑧𝑛,𝑜𝑔
(2)

𝑧∞,𝑜𝑔
(2)

 
( 3.21 )

 

where 𝑧∞,𝑜𝑔
(2)

 represents the hypothetical asymptotic critical values (in our case, sample of size 

5,000).  Therefore, any sample can be corrected to the large sample approximation by 

implementing Equation ( 3.22 ):  

Figure 3.15: Variability of critical values for n=2,000 with 1,000 

sub-samples computed each of 10 times 
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𝑍∞,𝑜𝑔

(2)
=

𝑍𝑛,𝑜𝑔
(2)

1 + 𝛿𝑜𝑔 
(2)

 
( 3.22 )

 

Before we can use Equation ( 3.22 ), we sought to find the relationship of 𝛿𝑜𝑔
(2)

 to sample 

size by fitting an exponential equation to the critical values of 0.2, 0.1, 0.05, 0.01 for sample 

sizes 50, 100, 300, 500, 1000, 2000 and used the critical values from sample size 5,000 as 𝑧∞,𝑜𝑔
(2)

.  

Figure 3.16 shows the fitted equation to the critical values based on the four 𝛼 values (sample 

size 5,000 is not included because delta would be zero).  Using the fitted Equation ( 3.22 ) and    

( 3.23 ) we can correct any sample size. 

 𝛿𝑜𝑔
(2)

= 0.43ⅇ−0.0005(𝑛−165.71) ( 3.23 )
 

Although these equations extend the 2D KS test from a sample size of 2000 to 5000, the 

limitation with this method (same limitation Peacock and Gosset had) is that this method will 

only be accurate for sample sizes smaller than 5,000 (2,000 using Peacock and Gosset 

Figure 3.16: 1S 2D KS Orientation Grid Delta ratio fitted equation for 

𝜶 values: 0.2, 0.1, 0.05, 0.01 using null distribution from BVN(0,I) 
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equations).  For larger sample sizes, these equations will require updates so as to avoid additional 

error with unknown magnitude.   

 

3.5.4. Orientation Grid Power Comparison between Critical Values 

We have now established three separate ways to run the test of hypothesis for the 1S 2D 

KS test Orientation Grid method: 1) using derived critical values, 2) using simulated critical 

values or 3) using large sample critical values with a correction.  In this section we will explore 

how well each of these three critical value methods are able to detect differences in the mean, 

variance, and correlation shifts for a sample distribution by estimating statistical power from 

various shifts in either the means, variances, or correlation.  Assuming 𝛼 = 0.05, the Orientation 

Grid 1S 2D KS test was conducted using all three critical value methods for several sample sizes 

(n = 10, 30, 50 and 100).  The null distribution was assumed to be BVN(0,I).    To determine the 

power to detect differences in means, 10,000 draws for each sample size were used to conduct 

Figure 3.17: 1S 2D KS test Orientation Grid mean power α 0.05 for the three critical value methods 
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the KS test assuming the following vector of means [
𝜇
𝜇]  where 𝜇 = 0, … 2 by 0.1 increments.  

Similarly, to determine the power to detect differences in variances, draws from a BVN with 

mean vector of [
0
0

]and variance/covariance matrices of  [𝜎2 0
0 𝜎2

] where 𝜎 = 1, … ,3 by 0.1 

increments.  Finally, to determine the power in detecting differences in correlation, means and 

variances for the BVN were fixed to 0 and 1.0 respectively for each variable, however, 

correlations were varied as [
1 𝜌
𝜌 1

] where 𝜌 = −1, … ,1 by 0.1 increments.  First, we will 

examine power of the Orientation Grid 1S 2D Orientation Grid KS test for shifts in means, then 

variances, and finally correlation. 

 

Table 3.7: 1S 2D KS test Orientation Grid achieving power 𝛼 = 0.05 for the three critical 

value methods 

Sample Size Simulated Derived 
Large 

Sample 

10 0.05 0.04 0.02 

30 0.05 0.04 0.04 

50 0.05 0.06 0.05 

100 0.05 0.08 0.06 

 

As we can see in Figure 3.17, all three ways to compute the critical values provide similar 

power, but only the simulated critical values truly achieve 𝛼 for the null distribution (this makes 

sense given that the simulated critical values came from the simulated null distribution see Table 

3.7).  For smaller sample sizes, the simulated critical values provide higher power than either 

derived or the large sample with correction critical values.  Further, the large sample with 

correction provide the lowest power at smaller sample sizes (n = 10), however, as sample size 

increases, the difference between the three critical value methods gets smaller (for a complete 

table of power values please see the appendix).   
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Similar trends were observed for detecting standard deviation shifts and correlation shifts 

(see Figure 3.18 and Figure 3.19 for power curves).  Only the simulated critical values achieve 

𝛼, while all three methods get closer to one another as sample size increases.  Differences in the 

detectable differences assuming a power of 0.80 or higher were much greater between the three 

critical value methods for n=10; there was about a difference of 0.60 between what the simulated 

critical value could detect and what the large sample with correction could detect  for variances 

when n = 10.  Fewer differences were seen for sample sizes of n = 30 or larger in variances.  

Detecting only a difference in correlation was difficult for n = 10, which never achieved 

adequate power (Figure 3.5.4.3).   

 

 

Furthermore, the large sample size with correction method provided lower power than 

either other critical value method except when n = 100, however, even this sample size showed 

higher power with the derived values.   Given that we are usually concerned with power of 0.8 or  

Figure 3.18: 1S 2D KS test Orientation Grid standard deviation power 𝜶 = 0.05 for the three critical 

value methods 
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higher we can see that especially for small samples (size 10 and 30) the simulated critical values 

have higher or remarkably similar power to the other two methods, therefore, when possible, the 

simulated critical values should be used for the test of hypothesis.   

 

 

3.6. Orientation Sample Analysis 

In contrast to Orientation Grid method, Orientation Sample is unable to use the derived 

critical values, and to fully utilize the large sample with a correction, correlation would need to 

be considered given that the null distribution is not robust against changes in correlation (refer 

back to Figure 3.7 where the 1S 2D KS test when sampling from a distribution with high 

correlation provides a different null distribution).  Therefore, this section will focus on the 

Orientation Sample method and its simulated critical values, as well as large sample with 

correction (knowing that this large sample method has issues for very high correlation, but not 

Figure 3.19: 1S 2D KS test Orientation Grid correlation power α 0.05 for the three critical value 

methods 
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terribly biased for moderate and low correlation).  Furthermore, we will analyze the power of 

both critical values and provide recommendations.  Finally, a detailed power comparison 

between Orientation Sample and Orientation Grid will be presented to determine overall 

performance and provide recommendations. 

 

Table 3.8:1S 2D KS Test Critical Values for Orientation Sample from Simulation  

n/ α 0.01 0.05 0.1 0.2 

10 1.73 1.49 1.38 1.24 

20 1.78 1.54 1.42 1.29 

30 1.80 1.55 1.45 1.31 

40 1.82 1.59 1.46 1.33 

50 1.84 1.61 1.49 1.35 

100 1.91 1.67 1.56 1.42 

1000 2.43 2.18 2.04 1.90 

2000 2.77 2.49 2.36 2.22 

5000 3.40 3.13 3.00 2.85 

 

 

3.6.1. Orientation Sample Simulated Critical Values 

The Orientation Sample critical values were computed in a similar fashion to Orientation 

Grid critical values.  The same algorithm and random seed procedure was used for drawing the 

sample data as specified in Section 3.3, the only difference is that the evaluation location was 

limited to only places where data was observed per the “sample” procedure.  Table 3.8 shows a 

few of the simulated critical values computed for the Orientation Sample method.  As expected, 

when compared with the Orientation Grid critical (see Table 3.6 and Table 3.8) values they are 

all shifted left (smaller) which is a consequence of limiting the evaluation locations: the 

maximum might not be captured and could occur in one of the jumps where data is not observed.  
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More importantly, though, is the effect these different values have on power and in maintaining 

𝛼.   

 

3.6.2. Orientation Sample Large Sample Critical Values 

Using the same procedure as seen in Orientation Grid large sample, we can find the best 

exponential fit for a set of Orientation Sample critical values and then apply Equation ( 3.22 ) to 

correct any sample size less than 5,000 and use the critical values from the large sample 

simulation.  In addition to the sample size restriction, because this is the sample method and 

correlation was not considered, this correlation and critical values only apply to hypothesis 

testing that compares a sample against a null distribution with no correlation.  Figure 3.20 and 

Equation ( 3.24 ) show the exponential fit/equation needed for the correction.   

 𝛿𝑜𝑠
(2)

= 0.47ⅇ−0.0005(𝑛−114.81) ( 3.24 )
 

 

 

Figure 3.20: 1S 2D KS Orientation Sample Delta ratio fitted equation 

for 𝜶 values: 0.2, 0.1, 0.05, 0.01 using null distribution from BVN(0,I) 
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3.6.3. Orientation Sample Power Comparison between Critical Values 

Comparisons between the two critical value methods for the Orientation Sample method 

resulted in similar patterns in power as for the Orientation Grid method when detecting 

differences in the mean, variance and correlation.  As we can see in Figure 3.21, Figure 3.22, and 

Figure 3.23 the simulated critical values provide more power for small samples than the large  

 sample critical values.  Furthermore, the simulated values achieve 𝛼 when there is no correction 

to larger sample, but error is no greater than .02 (see Table 3.9). 

 

 

 

Table 3.9: 1S 2D KS test Orientation Sample achieving power  𝛼 = 0.05 for the two critical value 

methods 

Sample Size Simulated 
Large 

Sample 

10 0.05 0.03 

30 0.05 0.04 

50 0.05 0.05 

100 0.05 0.06 

Figure 3.21: 1S 2D KS test Orientation Sample mean power 𝜶 = 0.05 for the two critical value 

methods 
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It is clear that for sample sizes of 100 or greater, the large sample critical value is more 

than adequate to detect power and the methods are similar at a sample size of 50.   

 

 

 

Figure 3.23: 1S 2D KS test Orientation Sample correlation power 𝜶 = 0.05 for the two critical value 

methods 

Figure 3.22: 1S 2D KS test Orientation Sample standard deviation power 𝜶 = 0.05 for the two 

critical value methods 
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3.6.4. Power Comparison between Orientation Grid and Sample 

Now that we have established the best critical values to use for both the Orientation Grid 

and Sample method, comparisons in power were made between the Orientation Grid and 

Orientation Sample methods.  For both methods, the simulated values had better performance for 

small samples and maintained 𝛼 (by design) for the null distribution.  Comparing the power of 

each method to detect a mean difference, Orientation Grid has higher power for small samples (n 

= 10, 30) and performs almost identically for larger samples (see Figure 3.24).  For sample of 

size 10, we can detect mean difference of 0.85 with power of 0.82 for the Orientation Grid 

method, while Orientation Sample does not achieve 0.80 power to detect a mean difference of 

0.85 (power = 0.77).  On the other hand, the power difference for sample of size 100 is less than 

0.01 for all differences in the means, making the methods comparable with respect to power, 

although Orientation Grid tends to be the higher power.   

 

 

When trying to detect differences in standard deviation, however, the Orientation Grid 

method maintains higher power for all sample sizes (Figure 3.25).  Especially for small samples 

(n = 10), the Orientation Grid method eventually achieves a power of 0.8, and much earlier than 

the Orientation Sample method which does not achieve 0.80 power even when standard 

Figure 3.24: 1S 2D KS test Orientation Grid and Sample mean power 𝜶 = 0.05 
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deviation is three times higher than the null standard deviation (see  Figure 3.25).  For sample of 

size 10, we can detect a standard deviation difference of 2.6 to achieve a power of 0.8 for the 

grid method, while the sample method only has power of 0.57.  Large differences still persist in 

that Orientation Grid method can detect smaller shifts in standard deviation at higher power 

consistently more so than Orientation Grid method up to n = 100.   

 

 

In contrast, when trying to detect differences in correlation, the Orientation Sample has 

higher power across all sample sizes although differences are minimal at larger sample sizes (see 

Figure 3.26).  Regardless, both methods have a challenging time detecting correlation changes of 

less than 0.5 and will require larger sample sizes to achieve an acceptable power level. 

 

Figure 3.26: 1S 2D KS test Orientation Grid and Sample correlation power 𝜶 = 0.05 

Figure 3.25: 1S 2D KS test Orientation Grid and Sample standard deviation power 𝜶 = 0.05 
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In conclusion, Orientation Grid method has higher power to detect differences in means 

and standard deviations especially for small sample, while Orientation Sample has slightly 

higher power for detecting correlation changes, but both methods will require quite large samples 

to detect slight changes in correlation.  In general, for samples less than 100, Orientation Grid 

method is a more powerful method overall, even though it requires 16𝑛2 instead of 16𝑛, the 

computational burden is justified due to its better performance. 

 

3.7. Comparing All Four Methods 

This section will focus on comparing the power of the orientation and Partial Orientation 

Grid methods as well as the orientation and Partial Orientation Sample methods.  Furthermore, 

we will analyze computational time to provide recommendations on benefits and drawbacks of 

these methods. 

 

3.7.1. Grid Methods  

There are two grid methods that we will be comparing: Orientation and Partial 

Orientation.  Recall that the main difference between these two methods is that the Orientation 

Grid method evaluates the ECDP using all the directions to approach a data point in 2D (4 total 

directions) while Partial Orientation grid uses a subset of those directions to approach a data 

point. 

3.7.1.1. Partial Orientation Grid 

Before we can compare the two grid methods, we must first determine which set of 

critical values for Partial Orientation Grid is the best and appropriate set to use.  Given that this 

was the original extension to multiple dimensions for the KS test, we now have five different sets 
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of critical values: 1) the original Peacock critical values, 2) the original Peacock large sample 

critical values with correction, 3) the Gosset large sample critical values with correction, 4) our 

own simulated critical values, and finally 5) our large sample critical values with correction. 

 

 

As previously stated, both large sample critical values for Peacock and Gosset cannot be 

used for sample sizes greater than 100 due to their equation and correction being fitted to 

samples less than or equal to 100.  In Figure 3.27 we can see how for sample size 100, our own 

simulated data matches very closely to the asymptotic equations proposed by Peacock and 

Gosset, but as we increase sample size, the simulation values are increasing.  Therefore, we 

could make the argument that what Peacock and Gosset call the asymptotic equation, even 

though lacks in number of repetitions, are fairly accurate for only sample size 100 (their 

correspoding corrections from small sample lack data points as well as repetitions).  Furthemore, 

we believe it is no longer accurate to consider them asymptotic equations given that even for 

sample size of 5,000 the null distribution has not converged to the theoretical and unknown 

Figure 3.27: 1S 2D KS Test Partial Orientation Grid for various samples (10,000 repetitions) 
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asymptotic distribution, however, we do recognize that prior to our simulation including a 

sample size of 5000, these were the best estimates available. 

 

Table 3.10: 1S 2D KS Test Critical Values for Partial Orientation Grid from Simulation  

n/ α 0.01 0.05 0.1 0.2 

10 1.82 1.58 1.47 1.33 

20 1.93 1.67 1.55 1.41 

30 1.96 1.69 1.58 1.45 

40 1.98 1.74 1.61 1.48 

50 2.02 1.77 1.65 1.51 

100 2.11 1.87 1.74 1.6 

1000 2.67 2.43 2.3 2.14 

2000 3.02 2.76 2.63 2.48 

5000 3.68 3.42 3.29 3.13 

 

 

3.7.1.2.  Partial Orientation Grid Simulated and Large Sample Critical Values 

 Based on the lack of sample sizes and repetitions used by Peacock and Gosset, we have 

extended their work by using sample sizes ranging from 10 to 5,000 with 10,000 replications to 

accurately depic the 1S 2D KS test null distribution.  Using the same simulation method and 

random seeds as stated previously, we computed the critical values found in Table 3.10 while a 

more complete list can be found in Table 7.4 in the appendix.  Using these values and the same 

procedure as shown previously to find the correction needed for large sample we found the 

exponential fit for the correction to large sample as graphed in Figure 3.28 and provided in  

Equation ( 3.25 ).  This fit is based on the selected 𝛼 values (0.01, 0.05, 0.1, and 0.2) and sample 

sizes (50, 100, 300, 500, and 1000).  In the next section we will compare the simulated critical 

values against the large sample critical values with correction.   
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 𝛿𝑜𝑠,𝑟𝑎𝑡𝑖𝑜
(2)

= 0.458ⅇ−0.0005(𝑛−101.37) ( 3.25 )
 

 

 

3.7.1.3. Partial Orientation Grid Power Comparison between Critical Values 

For this comparison we will be using our own simulated critical values as well as the 

large sample critical values with correction.  The other critical value methods will not be 

considered based on the significant shortcomings stated in the previous section.  When trying to 

detect differences in the mean, Figure 3.29 shows that the simulated critical values have higher 

power for small samples, comparable power for larger samples (n = 100) and also achieve 𝛼 for 

the null distribution (see Table 3.11).  Similar to trying to detect differences in the standard 

deviation, the simulated critical values have  a much larger power for small sample when 

compared to the large sample critical values with the proper correction, is the only method to 

achieve 0.80 power in less than a three times difference in standard deviations and has 

comparable power for a sample size of n = 100  (see Figure 3.30).   

Figure 3.28: 1S 2D KS Partial Orientation Grid Delta ratio fitted 

equation for 𝜶 values: 0.2, 0.1, 0.05, 0.01 using null distribution from 

BVN(0,I) 
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Finally, for detecting correlation, simulated values have higher power in general up 

through sample sizes of 50, although smaller sample sizes (n = 10, 30) were unable to achieve a 

Figure 3.29: 1S 2D KS test Partial Orientation Grid mean power 𝜶 = 0.05 for the two critical value 

methods 

Figure 3.30: 1S 2D KS test Partial Orientation Grid standard deviation power 𝜶 = 0.05 for the two 

critical value methods 
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power of at least 0.8.  Further, larger samples have remarkably similar power regardless of which 

critical values we use (see Figure 3.31).  Therefore, based on this analysis we can conclude that, 

when possible, the simulated critical values should be used for hypothesis testing, but for 

samples larger than 100 both sets of critical values have remarkably similar power to detect 

differences in mean, standard deviation and correlation.   

 

 

 

 

 

Table 3.11: 1S 2D KS test Partial Orientation Grid achieving power   𝛼 = 0.05 for the two 

critical value methods 

Sample Size Simulated 
Large 
Sample 

10 0.05 0.01 

30 0.05 0.03 

50 0.05 0.04 

100 0.05 0.05 

Figure 3.31: 1S 2D KS test Partial Orientation Grid correlation power 𝜶 = 0.05 for the two critical 

value methods 
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3.7.1.4. Power Comparison between Orientation and Partial Orientation Grid 

The final comparison for the grid methods is to compare the Orientation Grid method 

using its simulated critical values and the Partial Orientation Grid method using its simulated 

critical values.  The results are similar to what has been seen previously where, Orientation Grid 

method has higher or similar power as the Partial Orientation Grid.  When trying to detect 

differences in the mean, we see that for small samples Orientation Grid has much higher power 

than Partial Orientation Grid and slightly higher power for large sample sizes (see Figure 3.33).     

 

 

For example, for 𝑛 = 10 Orientation Grid method can detect differences in the mean with at least 

80 percent power of 0.85 mean difference, while Partial Orientation Grid for the same power can 

only detect a 1.1 mean difference.  Comparable results, albeit not as drastic, can be seen when  

Figure 3.33: 1S 2D KS Test Grid Methods Mean Power 𝜶 = 0.05 

Figure 3.32: 1S 2D KS Test Grid Methods Standard Deviation Power 𝜶 = 0.05 
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comparing power for differences in standard deviation when sample size is small (see Figure 

3.36).  For example, for n = 10, Orientation Grid method can detect a difference in the standard 

deviations of 2.6 with at least 80 percent power, while Partial Orientation Grid for the same 

power can only detect a difference of 2.9.  For the larger sample sizes, power is comparable 

between Orientation and Partial Orientation Grid.  Similarly, when examining the power for 

detecting differences in correlation, power is almost identical between Orientation and Partial 

Orientation methods (see Figure 3.34).  Furthermore, given that for small sample we are unable 

to achieve a power of at least 80 percent, we can conclude that to detect small correlation 

changes an exceptionally large sample will be needed regardless of the method.   

In conclusion, when we compare the grid methods, we find that the Orientation Grid 

using the simulated critical values has an overall higher power especially for small samples 

compared against the Partial Orientation Grid when we use our own simulated critical values.  If 

the sample size is large and computational time is of significant importance, then using Partial 

Orientation Grid would provide comparable results (but if computational time is that important at 

that point, we might recommend one of the sample methods for large samples).   

 

 

Figure 3.34: 1S 2D KS Test Grid Methods Correlation Power 𝜶 = 0.05 
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3.7.2. Orientation and Partial Orientation Sample Methods 

Now that we have established best practices for the grid methods, we can now look at the 

sample methods and compare the power associated with Orientation Sample and Partial 

Orientation Sample.   

 

3.7.2.1. Compare Orientation Sample and Partial Orientation Sample 

When comparing the sample methods, we can see that Orientation Sample has higher 

power when detecting mean and correlation differences, but less power when detecting 

differences in standard deviation.  For example, when n = 10, Orientation Sample method can 

detect differences in the mean with at least 80 percent power of 0.85 difference, while Partial 

Orientation Sample for the same power can only detect 1.05 difference (see  

Figure 3.35).    In contrast, for detecting differences in the standard deviation, Partial 

Orientation Sample has higher power than Orientation Sample (see Figure 3.36).  We believe this 

is a consequence of the different maximum distances each method can capture when the sample 

has high variance, combined with the inherited variability of the variance for small samples.  

Furthermore, for small sample sizes variability is higher and less detectable when we account for 

all four directions per orientation.  Regardless, when sample size is large, the differences are 

 

Figure 3.35: 1S 2D KS Test Sample Methods Mean Power 𝜶 = 0.05 
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minimal.  Finally, when looking at differences in the correlation, it is interesting to note that 

Orientation Sample has higher power for negative correlation whereas power is comparable 

between Orientation Sample and Partial Orientation Sample for positive correlation.  Again, 

though, as sample size increased, differences in power became smaller, further, larger samples 

are still likely necessary to detect more minor differences in correlation (see Figure 3.37).   

 

 

 

 

 

 

 

Figure 3.36: 1S 2D KS Test Sample Methods Standard Deviation Power 𝜶 = 0.05 

Figure 3.37: 1S 2D KS Test Sample Methods Correlation Power 𝜶 = 0.05 
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3.8. Power Summary 

In addition to comparing power, it is important to consider computation time of each 

method, especially when the sample size is in the thousands.  This was the original concern of 

Fasano and Franceschini when looking at the original Peacock 2D KS implementation.  As we 

can see in Figure 3.38, Orientation Grid method grows significantly faster than all other 

methods.  This performance is relative to the device being used, in this case an intel i7 10th gen 

@ 1.30 GHz with 16.0 GB RAM Windows 11 machine was used, as well as the performance 

improvements of the code  (saving the CDF values of the 𝐵𝑉𝑁(𝟎, 𝑰) instead of computing the 

double integrals).  Regardless Figure 3.38 shows how quickly both grid methods become 

infeasible compared to the sample methods.  Of course, this is only when running 10,000 

repetitions or more, but if the critical values are available then running one instance of 

Orientation Grid even for large sample would only take a few minutes.   

 

Figure 3.38: Computation time (seconds) for 1S 2D KS test based 

on sample size 
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In conclusion, after doing pair comparisons between these methods, if computational 

time is not a significant issue and sample size is less than 100 then the method with the most 

power is Orientation Grid with reasonable computational time.  Furthermore, using the simulated 

critical values provides accurate power while still achieving 𝛼 for the null distribution.  

Complete power analysis tables of values for all four methods using the simulated critical values 

can be found in the appendix, for 𝛼 values of:  

0.2 – Table 8.19, Table 8.23, and Table 8.27, 

0.1 – Table 8.20, Table 8.24, and Table 8.28, 

0.05 – Table 8.21, Table 8.25, and Table 8.29, 

0.01 – Table 8.22, Table 8.26, and Table 8.30 

for mean, standard deviation and correlation respectively. 

On the other hand, if Partial Orientation Grid method needs to be used, we have corrected 

and extended the table of critical values as well as provide a correction to large sample that is 

accurate up to sample size 5,000 (original paper only reached sample size 100).  Finally, if 

computational time is of the outmost importance, then for small sample the Orientation Sample 

method would be the proper method to use (especially when trying to detect differences in the 

mean) while Partial Orientation Sample would be reasonable when trying to detect differences in 

the variance. 
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4. 1S multi-dimensional KS Test Orientation Grid Method 

In this section we will discuss the natural extension from 2D to 3D and then to m-

dimensions.  Similar to the 1S 2D KS test, the definition of the multi-dimensional CDF is the 

same, except the number of orientations increases exponentially.  For example, in 3D there are 8 

possible orientations (the 8 quadrants generated by the x, y and z axis); for m-dimensions we 

have 2𝑚 orientations. 

 

4.1. 3D Orientation Grid Method 

In higher dimensions building the CDF can become difficult to name the orientations, but 

nevertheless, the same logic applies with a total number of orientations equal to 2𝑚 where m is 

the dimensions.  Furthermore, the properties from the table of properties for the 2D CDF (see 

Table 3.1) would hold for higher dimensions when extending the Orientation method. 

 

Table 4.1: 3D CDF Definition 

Orientation Limits 

𝐹𝑋𝑌𝑍
𝐼 (𝑥, 𝑦, 𝑧) = 𝑃(𝑋 ≥ 𝑥, 𝑌 ≥ 𝑦, 𝑍 ≤ 𝑧) (𝑥 → −∞, 𝑦 → −∞, 𝑧 → +∞) 

𝐹𝑋𝑌𝑍
𝐼𝐼 (𝑥, 𝑦, 𝑧) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≥ 𝑦, 𝑍 ≤ 𝑧) (𝑥 → +∞, 𝑦 → −∞, 𝑧 → +∞) 

𝐹𝑋𝑌𝑍
𝐼𝐼𝐼 (𝑥, 𝑦, 𝑧) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≤ 𝑧) (𝑥 → +∞, 𝑦 → +∞, 𝑧 → +∞) 

𝐹𝑋𝑌𝑍
𝐼𝑉 (𝑥, 𝑦, 𝑧) = 𝑃(𝑋 ≥ 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≤ 𝑧) (𝑥 → −∞, 𝑦 → +∞, 𝑧 → +∞) 

𝐹𝑋𝑌𝑍
𝑉 (𝑥, 𝑦, 𝑧) = 𝑃(𝑋 ≥ 𝑥, 𝑌 ≥ 𝑦, 𝑍 ≥ 𝑧) (𝑥 → −∞, 𝑦 → −∞, 𝑧 → −∞) 

𝐹𝑋𝑌𝑍
𝑉𝐼 (𝑥, 𝑦, 𝑧) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≥ 𝑦, 𝑍 ≥ 𝑧) (𝑥 → +∞, 𝑦 → −∞, 𝑧 → −∞) 

𝐹𝑋𝑌𝑍
𝑉𝐼𝐼 (𝑥, 𝑦, 𝑧) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≥ 𝑧) (𝑥 → +∞, 𝑦 → +∞, 𝑧 → −∞) 

𝐹𝑋𝑌𝑍
𝑉𝐼𝐼𝐼(𝑥, 𝑦, 𝑧) = 𝑃(𝑋 ≥ 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≥ 𝑧) (𝑥 → −∞, 𝑦 → +∞, 𝑧 → −∞) 
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For the 1-sample 3-dimensional Kolmogorov Smirnov (1S 3D KS) test, similar to the 1D 

and 2D tests, the goal is to find the maximum 1D distance between an ECDF and a continuous 

CDF in 3D.  Given that the CDF is now defined in three dimensions, we must consider all eight 

orientations as defined in Table 4.1.  Apart from evaluating all 8 orientations, we need to 

evaluate all 8 directions as well: 

 (𝑥+, 𝑦+, 𝑧+), (𝑥+, 𝑦+, 𝑧−), (𝑥+, 𝑦−, 𝑧+), (𝑥−, 𝑦+, 𝑧+), (𝑥+ , 𝑦−, 𝑧−), (𝑥−, 𝑦+, 𝑧−), (𝑥−, 𝑦−, 𝑧+), (𝑥−, 𝑦−, 𝑧−) . 

Therefore, the 1S 3D KS test is defined in ( 4.1 ): 

 𝐷𝑛.𝑜𝑔
(3)

= max (𝐷𝑛.𝑜𝑔
(3)𝐼

, 𝐷𝑛.𝑜𝑔
(3)𝐼𝐼

, 𝐷𝑛.𝑜𝑔
(3)𝐼𝐼𝐼

, 𝐷𝑛.𝑜𝑔
(3)𝐼𝑉

, 𝐷𝑛.𝑜𝑔
(3)𝑉

, 𝐷𝑛.𝑜𝑔
(3)𝑉𝐼

, 𝐷𝑛.𝑜𝑔
(3)𝑉𝐼𝐼

, 𝐷𝑛.𝑜𝑔
(3)𝑉𝐼𝐼𝐼

) ( 4.1 )
 

where for example: 

 𝐷𝑛.𝑜𝑔
(3)𝐼

= max (𝐷𝑛.𝑜𝑔
(3)𝐼+++

, 𝐷𝑛.𝑜𝑔
(3)𝐼++−

, 𝐷𝑛.𝑜𝑔
(3)𝐼+−+

, … , 𝐷𝑛.𝑜𝑔
(3)𝐼−−−

) ( 4.2 )
 

and for example: 

 𝐷𝑛.𝑜
(3)𝐼+++

= sup
𝑎𝑙𝑙 𝑥,𝑦,𝑧

|𝐹𝑛
(3)𝐼(𝑥+, 𝑦+, 𝑧+) − 𝐹(3)𝐼(𝑥+, 𝑦+, 𝑧+)| ( 4.3 )

 

where 𝐹𝑛
(3)𝐼(𝑥+, 𝑦+, 𝑧+) is the 3D ECDF in orientation I with direction (𝑥+, 𝑦+, 𝑧+) and 

𝐹(3)𝐼(𝑥+, 𝑦+, 𝑧+) is the theoretical 3D CDF in orientation I.  For the grid method, the evaluation 

locations become all places where the 3D ECDF changes value: (𝑋𝑖, 𝑌𝑗 , 𝑍𝑘) ∀ 𝑖, 𝑗, 𝑘 = 1, … , 𝑛  

where n is the sample size.  Therefore, the number of compuations needed to compute 𝐷𝑛,𝑜𝑔
(3)

 

totals 64𝑛3.  In comparison, the 3D Orientation Sample method would only be evaluated for: 

(𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) ∀ 𝑖 = 1, … , 𝑛 providing 64𝑛 computations. 
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4.1.1. Orientation Decomposition of the 1S 3D KS Test 

Similar to the 2D Orientation Grid method, in order to show that the 3D Orientation Grid 

method has eight iid orientations we can look at each orientation that make up 𝐷𝑛,𝑜𝑔
(3)

.  A similar 

argument about the iid nature can be made where each of the eight orientations has the same four 

operations (all four directions per orientation) and the maximum occuring in one orientation will 

not affect the probability of finding the maximum in any of the other seven orientations.  

Furthermore, these claims were justified after running a simulation using 𝐵𝑉𝑁(𝟎, 𝑰) for the null 

distribution in which the maximum distance for random samples of size n = 10 in each 

orientation was estimated separately.  The distributions of the maximum distances for each 

orientation and each method is plotted in Figure 4.1.  Only test statistic distributions for the 

Figure 4.1: 1S 3D KS Distribution Decomposition of Orientations for n = 10 
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Orientation methods (grid and sample) maintain the same distribution across all eight 

orientations (I, II, III, IV, V, VI, VII, VIII).  On the other hand, the orientation sample has a 

shape that does not align with the Kolmogorov distribution which has been consistent in the 1D 

and 2D case.  

 

4.1.2. 1S 3D Orientation Grid Critical Values 

Similar to the derivation for the 1S 2D case we define our random variable as 

 𝑇𝑖𝑖′𝑖′′ = 𝑛3(𝐹𝑒(𝑑𝑖𝑖′𝑖′′ ) −  𝑑𝑖𝑖′𝑖′′ ) ( 4.4 )
 

where , , and given independence, 𝑛3(𝐹𝑒(𝑑𝑖𝑖′𝑖′′ )) 

represents the number of observations where . 

Considering the sample space of all possible .  Let 

 and  be the event where  reaches a fixed integer J or -J respectively (if  does 

not reach either J or -J then its probability is 0).  Using the formula of total probability 

, we can write the  for any  between 1 and 

 

 
𝑃(𝑇𝑘𝑘′𝑘′′ = 𝐽) = ∑ ∑ ∑ 𝑃(𝐴𝑖𝑖′𝑖′′ )𝑃(𝑇𝑘𝑘′𝑘′′ = 𝐽|𝐴𝑖𝑖′𝑖′′)

𝑛−1

𝑖′′=1

𝑛−1

𝑖′=1

𝑛−1

𝑖=1

+ ∑ ∑ ∑ 𝑃(𝐵𝑖𝑖′𝑖′′ )𝑃(𝑇𝑘𝑘′𝑘′′ = 𝐽|𝐵𝑖𝑖′𝑖′′)

𝑛−1

𝑖′′=1

𝑛−1

𝑖′=1

𝑛−1

𝑖=1

 ( 4.5 )
 

And for -J: 

 
𝑃(𝑇𝑘𝑘′𝑘′′ = −𝐽) = ∑ ∑ ∑ 𝑃(𝐴𝑖𝑖′𝑖′′ )𝑃(𝑇𝑘𝑘′𝑘′′ = −𝐽|𝐴𝑖𝑖′𝑖′′ )

𝑛−1

𝑖′′=1

𝑛−1

𝑖′=1

𝑛−1

𝑖=1

+ ∑ ∑ ∑ 𝑃(𝐵𝑖𝑖′𝑖′′)𝑃(𝑇𝑘𝑘′𝑘′′ = −𝐽|𝐵𝑖𝑖′𝑖′′ )

𝑛−1

𝑖′′=1

𝑛−1

𝑖′=1

𝑛−1

𝑖=1

 ( 4.6 )
 

 

With a similar logic as the 1D and 2D case where the probabilities correspond to a binomial 

experiment (either 𝑇𝑖𝑖′𝑖′′ reached J or it did not) but where the probability of success now 
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corresponds to 
𝑘𝑘′𝑘′′

𝑛3  with 𝑛3 trials, we can represent the following probabilities as binomial 

distributions:   

 𝑃(𝑇𝑘𝑘′𝑘′′ = 𝐽) =  𝔹𝑘𝑘′𝑘′′+𝐽
𝑛3

(
𝑘𝑘′𝑘′′

𝑛3
) ( 4.7 )

 

 

 
𝑃(𝑇𝑘𝑘′𝑘′′ = 𝐽|𝐴𝑖𝑖′𝑖′′ ) =   𝔹

𝑘𝑘
′
𝑘

′′
−𝑖𝑖′𝑖′′

𝑛3−𝑖𝑖′𝑖′′−𝐽
(
𝑘𝑘′𝑘′′ − 𝑖𝑖′𝑖′′

𝑛3 − 𝑖𝑖′𝑖′′
) 

( 4.8 )
 

 

 
𝑃(𝑇𝑘𝑘′𝑘′′ = 𝐽|𝐵𝑖𝑖′𝑖′′) =  𝔹

𝑘𝑘
′
𝑘

′′
−𝑖𝑖′𝑖′′+2𝐽

𝑛3−𝑖𝑖′𝑖′′+𝐽
(
𝑘𝑘

′
𝑘

′′
− 𝑖𝑖′𝑖′′

𝑛3 − 𝑖𝑖′𝑖′′
) 

( 4.9 )
 

Using Equations ( 4.7 ),( 4.8 ) and ( 4.9 ) and substituting into Equations ( 4.5 ) and ( 4.6 ) we 

get: 

 
𝔹𝑘𝑘′𝑘′′+𝐽

𝑛3

(
𝑘𝑘′𝑘′′

𝑛3
) = ∑ ∑ ∑ 𝑃(𝐴𝑖𝑖′𝑖′′) 𝔹

𝑘𝑘′𝑘′′−𝑖𝑖′𝑖′′
𝑛3−𝑖𝑖′𝑖′′−𝐽 (

𝑘𝑘′𝑘′′ − 𝑖𝑖′𝑖′′

𝑛3 − 𝑖𝑖′𝑖′′
)

𝑛−1

𝑖′′=1

𝑛−1

𝑖′=1

𝑛−1

𝑖=1

+ ∑ ∑ ∑ 𝑃(𝐵𝑖𝑖′𝑖′′) 𝔹
𝑘𝑘′𝑘′′−𝑖𝑖′𝑖′′+2𝐽
𝑛3−𝑖𝑖′𝑖′′+𝐽 (

𝑘𝑘′𝑘′′ − 𝑖𝑖′𝑖′′

𝑛3 − 𝑖𝑖′𝑖′′
)

𝑛−1

𝑖′′=1

𝑛−1

𝑖′=1

𝑛−1

𝑖=1

 

( 4.10 )
 

 

 
𝔹𝑘𝑘′𝑘′′+𝐽

𝑛3

(
𝑘𝑘′𝑘′′

𝑛3
) = ∑ ∑ ∑ 𝑃(𝐴𝑖𝑖′𝑖′′) 𝔹

𝑘𝑘′𝑘′′−𝑖𝑖′𝑖′′−2𝐽
𝑛3−𝑖𝑖′𝑖′′−𝐽 (

𝑘𝑘′𝑘′′ − 𝑖𝑖′𝑖′′

𝑛3 − 𝑖𝑖′𝑖′′
)

𝑛−1

𝑖′′=1

𝑛−1

𝑖′=1

𝑛−1

𝑖=1

+ ∑ ∑ ∑ 𝑃(𝐵𝑖𝑖′𝑖′′) 𝔹
𝑘𝑘′𝑘′′−𝑖𝑖′𝑖′′
𝑛3−𝑖𝑖′𝑖′′+𝐽

(
𝑘𝑘′𝑘′′ − 𝑖𝑖′𝑖′′

𝑛3 − 𝑖𝑖′𝑖′′
)

𝑛−1

𝑖′′=1

𝑛−1

𝑖′=1

𝑛−1

𝑖=1

 

( 4.11 )
 

 

Using Equation ( 4.10 ) and ( 4.11 ) we can create a 2(𝑛 − 1)3 system of linear equations with 

2(𝑛 − 1)3  unknowns.  Solving the system of equations 𝑨𝑥 = 𝒃 using the least squares method 

and summing x, we can find the probability associated with J.  To transform the J values to the 

raw distance: 𝐷𝑛,𝑜𝑔
(3)

= √𝑛2 𝐽

𝑛3 , and to standardized the raw distance: 𝑍𝑛,𝑜𝑔
(3)

= √𝑛𝐷𝑛,𝑜𝑔
(3)

.  These 
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solutions are for one orientation; therefore, we must use the Equation ( 3.8 ) to find the marginal 

pdf which equals 𝑃(𝐷𝑛,𝑜𝑔
(3)

> 𝑑).   

 𝑌𝑛 = 𝑋(𝑛) = max(𝑋1, … , 𝑋𝑛) = 𝑛𝑓𝑥(𝑦1)[𝐹𝑥(𝑦1)]𝑛−1 ( 3.5.2 )
 

where . 

 Fitting an exponential equation with the form seen in Equation ( 4.12 ) (using two 

parameters for a more flexible fit), we get the exponential equations and fit seen in Figure 4.2.  

In order to convert the J values to D we use 𝐷𝑛,𝑜𝑔
(3)

= √𝑛2 𝐽

𝑛3 and to standardize 𝐷𝑛,𝑜𝑔
(3)

 we can use 

the standard transformation of  𝑍𝑛,𝑜𝑔
(3)

= √𝑛𝐷𝑛,𝑜𝑔
(3)

. 

Using that form of the exponential fit on the standarized and converted J values, we can find the 

marginal pdf using Equation ( 4.13 ).   

 𝑦 = 2ⅇ−𝑏(𝑥−𝑐)2
 ( 4.12 )

 

 𝑌𝑛 = 𝑛((−1)(−𝑏(𝑥 − 𝑐)))2ⅇ−𝑏(𝑥−𝑐)2
[1 − 2ⅇ−𝑏(𝑥−𝑐)2

]
𝑛−1

  ( 4.13 )
 

Similar to the 2D case, given that we are working with 𝑃(𝑍𝑛 > 𝑧)  as the 𝐹𝑥(𝑦1) there is an extra 

negative sign for the derivative of 𝐹𝑥(𝑦1) which is incorporated into Equation ( 4.13 ). 

 

Figure 4.2: Standardized 1S 3D KS distance of Binomial derivation and exponential fitted 
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The critical values that result from this method when compared to the simulated data for 

the 1S 3D KS test null distribution seem to have bias associated with it.  Looking at Figure 4.3 

we can see that the derived (orange line) and the simulated (blue line) have a similar shape, but 

are off each other by a small margin.  Multiplying the derived values by √𝑛3
 provides the green 

line which is close and follows the simulated values.  Table 4.2 shows the critical values for 

various 𝛼 values for the standardized derived values as well as the standardized derived values 

with correction. 

 

Table 4.2: 1S 3D KS Test Critical Values for Various 𝛼 Values from Derived and Derived w/ 

correction 

 n/ α  0.01 0.05 0.1 0.2 

Derived 
10 2.03 1.82 1.71 1.60 

20 2.10 1.89 1.79 1.68 

      

w/ 
correction 

10 2.12 1.92 1.83 1.73 

20 2.22 2.03 1.93 1.84 

 

Figure 4.3: 1S 3D KS Test Derived (using exponential fit) vs Simulated 
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On the other hand, Table 4.3 shows the simulated critical values for all four methods 

when drawing n samples from a BVN(0,I) and find the maximum difference in the CDFs against 

a theoretical BVN(0,I) repeated 10,000 times.   

 

Table 4.3: 1S 3D KS Test Critical Values for Various 𝛼 Values from Simulation 

n 

𝛼 = 0.2 𝛼 = 0.1 

Orientation Partial Orientation Orientation Partial Orientation 

Grid Sample Grid Sample Grid Sample Grid Sample 

10 1.76 1.30 1.57 1.12 1.88 1.42 1.70 1.24 

20 1.83 1.34 1.68 1.21 1.96 1.46 1.81 1.33 

30 1.86 1.36 1.73 1.25 1.99 1.48 1.86 1.39 

40 1.90 1.39 1.78 1.30 2.02 1.52 1.91 1.43 

50 1.91 1.40 1.81 1.32 2.05 1.53 1.94 1.45 

 

n 

𝛼 = 0.05 𝛼 = 0.01 

Orientation Partial Orientation Orientation Partial Orientation 

Grid Sample Grid Sample Grid Sample Grid Sample 

10 1.99 1.53 1.81 1.35 2.17 1.73 2.02 1.57 

20 2.07 1.57 1.92 1.44 2.27 1.79 2.14 1.67 

30 2.10 1.59 1.97 1.49 2.32 1.84 2.20 1.73 

40 2.13 1.63 2.02 1.55 2.34 1.84 2.23 1.76 

50 2.16 1.64 2.04 1.56 2.37 1.87 2.26 1.78 

 

 

4.2. 1S 3D KS Test Power Analysis 

Using the simulated critical values for all four methods we can see in Figure 4.4 and 

Table 4.4 the power each of the four methods when detecting differences in the mean.  Overall, 

Orientation Grid method has more power with significant higher power for small samples.  For 

example, for n = 10, Orientation Grid method can detect a difference in the mean of 0.8 with at 

least 80 percent power, while Orientation Sample method for the same mean difference can only 

achieve 70 percent power. On the other hand, when trying to detect that same mean difference 
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(0.8) both Partial Orientation methods have less than 60 percent power.  For n = 30 we start to 

see closer power between the methods, but it is still clear that Orientation Grid outperforms all 

the other three methods. 

 

 

Table 4.4: 1S 3D KS test four methods power curves for mean shift for 𝛼 = 0.05 using simulated 

critical values 

  
  
mean 

Sample size 10 Sample size 20 Sample size 30 

Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

0.2 0.09 0.08 0.03 0.06 0.15 0.13 0.06 0.10 0.22 0.19 0.11 0.15 

0.4 0.26 0.20 0.07 0.14 0.52 0.44 0.29 0.37 0.74 0.66 0.54 0.59 

0.6 0.56 0.43 0.21 0.31 0.90 0.82 0.72 0.77 0.99 0.97 0.94 0.95 

0.8 0.83 0.70 0.49 0.57 0.99 0.98 0.97 0.97 1.00 1.00 1.00 1.00 

1 0.97 0.89 0.78 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

 

Figure 4.4: 1S 3D KS Test Sample Methods Mean Power 𝜶 = 0.05 
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4.3. Multi-Dimensional Method 

The generalization to the 1S m-dimensional (mD) KS test follows from the 2D and 3D 

cases, where we examine 2𝑚 orientations and 2𝑚 directions per orientations where m is the 

number of dimensions; with the 1S mD KS test defined in Equation ( 4.14 ): 

 𝐷𝑛.𝑜𝑔
(𝑚)

= max (𝐷𝑛.𝑜𝑔
(𝑚)𝐼

, 𝐷𝑛.𝑜𝑔
(𝑚)𝐼𝐼

, … , 𝐷𝑛.𝑜𝑔
(𝑚)2𝑚

) ( 4.14 )
 

where for example: 

 𝐷𝑛.𝑜𝑔
(𝑚)𝐼

= max (𝐷𝑛.𝑜𝑔
(𝑚)𝐼++...+

, 𝐷𝑛.𝑜𝑔
(𝑚)𝐼++...+−

, 𝐷𝑛.𝑜𝑔
(𝑚)𝐼++...−+

, … , 𝐷𝑛.𝑜𝑔
(𝑚)𝐼−−...−

) ( 4.15 )
 

and for example: 

 𝐷𝑛.𝑜𝑔
(𝑚)𝐼++...+

= sup
𝑎𝑙𝑙 𝑥1,𝑥2,…,𝑥2𝑝

|𝐹𝑛
(𝑚)𝐼(𝑥1

+, 𝑥2
+, … , 𝑥2𝑚

+ ) − 𝐹(𝑚)𝐼(𝑥1
+, 𝑥2

+, … , 𝑥2𝑚
+ )| ( 4.16 )

 

where 𝐹𝑛
(𝑚)𝐼(𝑥1

+, 𝑥2
+, … , 𝑥2𝑚

+ ) is the mD ECDF in orientation I with direction (𝑥1
+, 𝑥2

+, … , 𝑥2𝑚
+ ) 

and 𝐹(𝑚)𝐼(𝑥1
+, 𝑥2

+, … , 𝑥2𝑚
+ ) is the theoretical mD CDF in orientation I.  For the grid method our 

evaluation locations become (𝑋1,𝑖1
, 𝑋2,𝑖2

, … , 𝑋2𝑝 ,𝑖2𝑚 ) ∀ 𝑖1, 𝑖2, … , 𝑖2𝑚 = 1, … , 𝑛  where n is the 

sample size.  Therefore, the number of compuations needed to compute 𝐷𝑛,𝑜𝑔
(𝑚)

 totals 2𝑚2𝑚𝑛𝑚.  

In comparison the mD Orientation Sample method would only be evaluated: 

(𝑋1,𝑖 , 𝑋2,𝑖 , … , 𝑋2𝑝 ,𝑖) ∀ 𝑖 = 1, … , 𝑛 providing us with 2𝑚2𝑚𝑛 computations.  This extension to 

multivariate space can be applied to any of the other 3 methods discussed: Orientation Sample, 

Partial Orientation Grid and Partial Orientation Sample by modifying either the evaluation 

location or the subset of directions from which to approach a point. 
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4.4. mD Orientation Grid Critical Values 

Using the same derivation as the 2D and 3D cases.  Let 𝑘𝑡𝑜𝑡𝑎𝑙 = ∏ 𝑘𝑚
𝑝
𝑚=1  and 𝑖𝑡𝑜𝑡𝑎𝑙 =

∏ 𝑖𝑚
𝑝
𝑚=1  then: 

 
𝔹𝑘𝑡𝑜𝑡𝑎𝑙+𝐽

𝑛𝑝
(

𝑘𝑡𝑜𝑡𝑎𝑙

𝑛𝑝
) = ∑ … ∑ 𝑃(𝐴𝑖𝑡𝑜𝑡𝑎𝑙

) 𝔹𝑘𝑡𝑜𝑡𝑎𝑙−𝑖𝑡𝑜𝑡𝑎𝑙

𝑛3−𝑖𝑡𝑜𝑡𝑎𝑙−𝐽
(

𝑘𝑡𝑜𝑡𝑎𝑙 − 𝑖𝑡𝑜𝑡𝑎𝑙

𝑛𝑝 − 𝑖𝑡𝑜𝑡𝑎𝑙
)

𝑛−1

𝑖𝑝=1

𝑛−1

𝑖1=1

+ ∑ … ∑ 𝑃(𝐵𝑖𝑡𝑜𝑡𝑎𝑙
) 𝔹𝑘𝑡𝑜𝑡𝑎𝑙−𝑖𝑡𝑜𝑡𝑎𝑙+2𝐽

𝑛𝑝−𝑖𝑡𝑜𝑡𝑎𝑙+𝐽
(

𝑘𝑡𝑜𝑡𝑎𝑙 − 𝑖𝑡𝑜𝑡𝑎𝑙

𝑛𝑝 − 𝑖𝑡𝑜𝑡𝑎𝑙
)

𝑛−1

𝑖𝑝=1

𝑛−1

𝑖1=1

 

( 4.17 )
 

 

 
𝔹𝑘𝑡𝑜𝑡𝑎𝑙+𝐽

𝑛𝑝
(

𝑘𝑡𝑜𝑡𝑎𝑙

𝑛𝑝
) = ∑ … ∑ 𝑃(𝐴𝑖𝑡𝑜𝑡𝑎𝑙

) 𝔹𝑘𝑡𝑜𝑡𝑎𝑙−𝑖𝑡𝑜𝑡𝑎𝑙−2𝐽
𝑛3−𝑖𝑡𝑜𝑡𝑎𝑙−𝐽

(
𝑘𝑡𝑜𝑡𝑎𝑙 − 𝑖𝑡𝑜𝑡𝑎𝑙

𝑛𝑝 − 𝑖𝑡𝑜𝑡𝑎𝑙
)

𝑛−1

𝑖𝑝=1

𝑛−1

𝑖1=1

+ ∑ … ∑ 𝑃(𝐵𝑖𝑡𝑜𝑡𝑎𝑙
) 𝔹𝑘𝑡𝑜𝑡𝑎𝑙−𝑖𝑡𝑜𝑡𝑎𝑙

𝑛𝑝−𝑖𝑡𝑜𝑡𝑎𝑙+𝐽
(

𝑘𝑡𝑜𝑡𝑎𝑙 − 𝑖𝑡𝑜𝑡𝑎𝑙

𝑛𝑝 − 𝑖𝑡𝑜𝑡𝑎𝑙
)

𝑛−1

𝑖𝑝=1

𝑛−1

𝑖1=1

 

( 4.18 )
 

Equations ( 4.17 ) and ( 4.18 ) are the only equations needed to build the  2(𝑛 − 1)𝑚 system of 

linear equations with 2(𝑛 − 1)𝑚  unknowns.  Solving the system of equations 𝑨𝑥 = 𝒃 using the 

least squares method and summing x, we can find the probability associated with J.  Following a 

similar pattern to the 2D and 3D case, in order to convert the J values to 𝐷𝑛
(𝑚)

= (√𝑛)
𝑚−1 𝐽

𝑛𝑚 

with the standardization 𝑍𝑛
(𝑚)

=  √𝑛𝐷𝑛
(𝑚)

.  Just like for the 3D case, a correction of √𝑛𝑚
 might be 

required. 
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5. 2-Sample 2-dimensions KS Test Orientation Method 

5.1. Chapter Overview 

The purpose of this chapter is to show how the 2S 2D KS Orientation Grid method is 

equivalent to the 2S 2D KS Partial Orientation Grid method.  This is a consequence of having 

two samples that have jumps/discontinuities and evaluating the grid generated for all the 

observations (both sample 1 and sample 2). 

Up to this point, we have discussed the 1 sample case in detail (see Figure 3.3 to see the 

sample CDF for orientation III) where we have observations from one sample and we compare 

against a theoretical, continuous distribution.  On the other hand, for the two-sample case there is 

no theoretical distribution.  Instead, we compare against another ECDF from a second sample.  

Figure 5.1 shows two ECDFs for orientation III where sample one (blue) has three points: (1, 1), 

(2, 3) and (3, 2) and sample two (red) has two points: (1.5, 1.5) and (4, 3.5).  Similar to the one-

sample case, this figure shows the need to not only search for the maximum where data is 

observed, but also where the ECDFs change. 

Figure 3.3: Orientation III CDF for 3 points (1,1), (2,3), and (3,2) 
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5.2. Theorem I 

Theorem I : The 2S 2D KS distance from the Orientation Grid method (𝐷𝑛,𝑜𝑔
(2)

) is equivalent to 

the 2S 2D KS distance from the Partial Orientation Grid method (𝐷𝑛,𝑜𝑠
(2)

) for any two random 

samples. 

 

Proof : 

Let (XN, 𝑌𝑁) = {(𝑥𝑁1, 𝑦𝑁1), … , (𝑥𝑁𝑛 , 𝑦𝑁𝑛)} be the samples from the bivariate sample 1 

with size n, and (XM, 𝑌𝑀) = {(𝑥𝑀1, 𝑦𝑀1), … , (𝑥𝑀𝑛 , 𝑦𝑀𝑛)}  be the samples from the bivariate 

sample 2 with size m.  Furthermore, let 𝐴𝑖 be the unique joint values from 𝑋𝑁 and 𝑋𝑀, and 

similarly 𝐵𝑗 be the unique joint values from 𝑌𝑁 and 𝑌𝑀,  where 𝑖, 𝑗 = 1, … , (𝑛 + 𝑚) then the grid 

where the 2S 2D KS test will be evaluated consists of (𝐴𝑖, 𝐵𝑗) ∀ 𝑖, 𝑗 = 1, … , (𝑛 + 𝑚).  Using the 

Figure 5.1: Orientation III CDF for two ECDFs 
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definition of the 2S 2D KS test Orientation Grid method where the test statistic 𝐷𝑛,𝑚
(2)

 is defined 

in Equation ( 5.1 ): 

 𝐷𝑛,𝑚
(2)

= max (𝐷𝑛,𝑚
(2)𝐼 , 𝐷𝑛,𝑚

(2)𝐼𝐼 , 𝐷𝑛,𝑚
(2)𝐼𝐼𝐼 , 𝐷𝑛,𝑚

(2)𝐼𝑉) ( 5.1 )
 

where for example: 

 𝐷𝑛,𝑚
(2) 𝐼 = max (𝐷𝑛,𝑚

(2)𝐼++, 𝐷𝑛,𝑚
(2)𝐼+−, 𝐷𝑛,𝑚

(2)𝐼−+, 𝐷𝑛,𝑚
(2)𝐼−−) ( 5.2 )

 

and for example: 

 𝐷𝑛,𝑚
(2)𝐼++ = sup

𝑎𝑙𝑙 𝑥,𝑦
|𝐹𝑁

(2)𝐼(𝑥+, 𝑦+) − 𝐹𝑀
(2)𝐼(𝑥+, 𝑦+)| ( 5.3 )

 

Without loss of generality, we will focus on orientation III and show that 𝐷𝑛,𝑚
(2)𝐼𝐼𝐼+−, 𝐷𝑛,𝑚

(2)𝐼𝐼𝐼−+,

𝐷𝑛,𝑚
(2)𝐼𝐼𝐼−−

 are always captured by 𝐷𝑛,𝑚
(2)𝐼𝐼𝐼++

 (which is the definition of 𝐷𝑛,𝑚
(2) 𝐼

 for Partial 

Orientation Grid method see Equation ( 2.13 ) as the 1-sample equivalent) at the same evaluation 

location or adjacent evaluation locations.  The trivial cases occur when the first point is observed 

when cumulating which causes 𝐷𝑛,𝑚
(2)𝐼𝐼𝐼+− = 𝐷𝑛,𝑚

(2)𝐼𝐼𝐼−+ =  𝐷𝑛,𝑚
(2)𝐼𝐼𝐼−− = 0 as well as the last point 

cumulated which causes 𝐷𝑛,𝑚
(2)𝐼𝐼𝐼++ = 0.   

There are two additional scenarios to consider.  First, consider an evaluation location in 

(𝐴𝑖, 𝐵𝑗) where an observation is seen, then 𝐹𝑁
(2)𝐼𝐼𝐼(𝑥𝑖

+, 𝑦𝑗
+) =

𝑘1

𝑛
 and 𝐹𝑀

(2)𝐼𝐼𝐼(𝑥𝑖
+, 𝑦𝑗

+) =
𝑘2

𝑚
 where 

𝑘1

𝑛
 and 

𝑘2

𝑚
 are the proportions at the specified point for each sample.  Given that the samples come 

from continuous distributions, we cannot have another observation equal in either 𝑥𝑖 or 𝑦𝑗, 

therefore there are two options: either (𝑥𝑖−1 , 𝑦𝑗−1) has an observation or (𝑥𝑖−1 , 𝑦𝑗+1) has an 

observation.  There is no need to consider (𝑥𝑖+1 , 𝑦𝑗−1) and (𝑥𝑖+1 , 𝑦𝑗+1) because we are looking 

at orientation III.  Therefore, 
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𝐷𝑛,𝑚
(2)𝐼𝐼𝐼++(𝑥𝑖−1, 𝑦𝑗−1) = |𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖−1
+ , 𝑦𝑗−1

+ ) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖−1

+ , 𝑦𝑗−1
+ )| = |

𝑘1 − 1

𝑛
−

𝑘2 − 1

𝑚
 | 

If we evaluate the other three directions at (𝑥𝑖, 𝑦𝑗) they will all equal 𝐷𝑛,𝑚
(2)𝐼𝐼𝐼++(𝑥𝑖−1, 𝑦𝑗−1): 

𝐷𝑛,𝑚
(2)𝐼𝐼𝐼+−(𝑥𝑖, 𝑦𝑗) = |𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖
+, 𝑦𝑗

−) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖

+, 𝑦𝑗
−)| = |

𝑘1 − 1

𝑛
−

𝑘2 − 1

𝑚
 | 

𝐷𝑛,𝑚
(2)𝐼𝐼𝐼−+(𝑥𝑖, 𝑦𝑗) = |𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖
−, 𝑦𝑗

+) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖

−, 𝑦𝑗
+)| = |

𝑘1 − 1

𝑛
−

𝑘2 − 1

𝑚
 | 

𝐷𝑛,𝑚
(2)𝐼𝐼𝐼−−(𝑥𝑖, 𝑦𝑗) = |𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖
−, 𝑦𝑗

−) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖

−, 𝑦𝑗
−)| = |

𝑘1 − 1

𝑛
−

𝑘2 − 1

𝑚
 | 

Second, consider an evaluation location in (𝐴𝑖, 𝐵𝑗) where there is no observation.  Then there are 

two cases: 1) (𝑥𝑖−1, 𝑦𝑗) and (𝑥𝑖, 𝑦𝑗−1) are the evaluation locations with observations (sample 1 

and sample 2 in that order) or 2) (𝑥𝑖+1, 𝑦𝑗) and (𝑥𝑖, 𝑦𝑗−1) are the evaluation locations with 

observations (sample 1 and sample 2 in that order).  The same logic applies if the observations 

are from the same sample or the order is inverted. 

 For case 1) 

𝐷𝑛,𝑚
(2)𝐼𝐼𝐼+−(𝑥𝑖, 𝑦𝑗) = |𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖
+, 𝑦𝑗

−) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖

+, 𝑦𝑗
−)| = |

𝑘1 − 1

𝑛
−

𝑘2

𝑚
 | = 𝐷𝑛,𝑚

(2)𝐼𝐼𝐼++(𝑥𝑖, 𝑦𝑗−1) 

𝐷𝑛,𝑚
(2)𝐼𝐼𝐼−+(𝑥𝑖, 𝑦𝑗) = |𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖
−, 𝑦𝑗

+) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖

−, 𝑦𝑗
+)| = |

𝑘1

𝑛
−

𝑘2 − 1

𝑚
 | = 𝐷𝑛,𝑚

(2)𝐼𝐼𝐼++(𝑥𝑖−1, 𝑦𝑗) 

𝐷𝑛,𝑚
(2)𝐼𝐼𝐼−−(𝑥𝑖, 𝑦𝑗) = |𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖
−, 𝑦𝑗

−) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖

−, 𝑦𝑗
−)| = |

𝑘1 − 1

𝑛
−

𝑘2 − 1

𝑚
 |

= 𝐷𝑛,𝑚
(2)𝐼𝐼𝐼++(𝑥𝑖−1, 𝑦𝑗−1) 

Same logic can be used to show case 2, where: 

𝐷𝑛,𝑚
(2)𝐼𝐼𝐼+−(𝑥𝑖, 𝑦𝑗) = |𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖
+, 𝑦𝑗

−) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖

+, 𝑦𝑗
−)| =  |

𝑘1

𝑛
−

𝑘2

𝑚
 | = 𝐷𝑛,𝑚

(2)𝐼𝐼𝐼++(𝑥𝑖, 𝑦𝑗−1)  
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𝐷𝑛,𝑚
(2)𝐼𝐼𝐼−+(𝑥𝑖, 𝑦𝑗) = |𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖
−, 𝑦𝑗

+) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖

−, 𝑦𝑗
+)| = |

𝑘1 − 1

𝑛
−

𝑘2

𝑚
 |

=  𝐷𝑛,𝑚
(2)𝐼𝐼𝐼++(𝑥𝑖−1, 𝑦𝑗−1) 

𝐷𝑛,𝑚
(2)𝐼𝐼𝐼−−(𝑥𝑖, 𝑦𝑗) = |𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖
−, 𝑦𝑗

−) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖

−, 𝑦𝑗
−)|  = |

𝑘1 − 1

𝑛
−

𝑘2

𝑚
 |

=  𝐷𝑛,𝑚
(2)𝐼𝐼𝐼++(𝑥𝑖−1, 𝑦𝑗−1) 

We know that 𝐷𝑛,𝑚
(2)𝐼𝐼𝐼++(𝑥𝑖−1, 𝑦𝑗−1) exists given that (𝑥𝑖, 𝑦𝑗) is not the first point seen in this 

orientation. 

Q.E.D. 

In the next section we provide a small sample example where we show how the additional 

directions in the Orientation method are unnecessary given the repetitions. 

 

5.3. Example with Table 

The following example shows (see Figure 5.2 for data sets) how  𝐷𝑛,𝑚
(2)𝐼𝐼𝐼++

 is sufficient to 

find the maximum distance for orientation III, and how the other directions are simply 

-1.00

-0.50

0.00

0.50

1.00

1.50

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

y 
ax

is

x axis

Sample 1

Sample 2

Figure 5.2: 2S 2D KS example data sets 
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repetitions.  Similar computations would be done for the other orientations with same results.  To 

highlight the repetitions (see Table 5.1), looking at point (1.74, 1.0) and the shaded cells as well 

as the shaded cells from (0.3, 1.0), (0.3, 0.51), and (0.74, 0.51) we see how (𝑥𝑖
+, 𝑦𝑗

+) captures all 

the distances. 

 

Table 5.1: 2S 2D KS Test Computations Orientation III 

  
|𝐹𝑁

(2)𝐼𝐼𝐼(𝑥𝑖, 𝑦𝑗) − 𝐹𝑀
(2)𝐼𝐼𝐼(𝑥𝑖, 𝑦𝑗)| 

x y (𝑥𝑖
+, 𝑦𝑗

+) (𝑥𝑖
+, 𝑦𝑗

−) (𝑥𝑖
−, 𝑦𝑗

+) (𝑥𝑖
−, 𝑦𝑗

−) 

-0.49 -0.84 0.33 0.00 0.00 0.00 

1.43 -0.84 0.33 0.00 0.33 0.00 

0.30 -0.84 0.33 0.00 0.33 0.00 

-1.28 -0.84 0.00 0.00 0.00 0.00 

0.74 -0.84 0.33 0.00 0.33 0.00 

-0.49 1.32 0.17 0.17 0.50 0.50 

1.43 1.32 0.00 0.33 0.33 0.33 

0.30 1.32 0.17 0.17 0.17 0.17 

-1.28 1.32 0.50 0.50 0.00 0.00 

0.74 1.32 0.33 0.33 0.17 0.17 

-0.49 1.00 0.17 0.17 0.50 0.50 

1.43 1.00 0.33 0.67 0.33 0.67 

0.30 1.00 0.17 0.17 0.17 0.17 

-1.28 1.00 0.50 0.50 0.00 0.00 

0.74 1.00 0.33 0.67 0.17 0.17 

-0.49 0.22 0.17 0.33 0.50 0.00 

1.43 0.22 0.17 0.33 0.17 0.33 

0.30 0.22 0.17 0.33 0.17 0.33 

-1.28 0.22 0.50 0.00 0.00 0.00 

0.74 0.22 0.17 0.33 0.17 0.33 

-0.49 0.51 0.17 0.17 0.50 0.50 

1.43 0.51 0.67 0.17 0.67 0.17 

0.30 0.51 0.17 0.17 0.17 0.17 

-1.28 0.51 0.50 0.50 0.00 0.00 

0.74 0.51 0.67 0.17 0.17 0.17 
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5.4. Summary 

The proof and example in this section show how the 2S 2D KS test Orientation Grid 

method is equal to the 2S 2D KS test Partial Orientation Grid method, and therefore, it is 

unnecessary to perform 16𝑛2 operations and it is sufficient to only perform the 4𝑛2 operations 

from the Partial Orientation Grid method.  The implication of this equivalence between methods 

is that the critical values computed for the Orientation Grid method are only valid for the 1S case 

and the mathematical derivation cannot be done given that we would not have iid for the random 

variables from each orientation.  Further, the critical values extended for the Partial Orientation 

Grid are valid and extend current implementations of the 2S 2D KS test . 

 

  



110 

6. Conclusions and Future Work 

In this section we will summarize the results of our work, as well as discuss 

recommendations on when each KS method and implementation is appropriate to use.  

Furthermore, we will discuss the direction of this research and future derivations and 

implementation of this work. 

 

6.1. Contributions of Research 

We have shown how the 1S 2D KS test Orientation Grid method generally is more 

powerful than any of the other three methods examined, especially for sample sizes less than 30.  

Furthermore, this is the only method of the four that maintains the following properties: 1) is 

sufficiently distribution free even for highly correlated data, 2) the maximum distance for each of 

the orientations distributions are independent and identically distributed, and 3) captures the true 

maximum distance between two distributions.  Furthermore, the Orientation Grid method is the 

only method that is robust against high correlation, and does not require additional computations 

or critical values based on correlation.  Last but not least, power tables for the mean, standard 

deviation and correlation are available for all four 1S 2D KS test methods for various samples.  

The only potential drawback of the Orientation Grid method is potentially the computational 

time, which grows exponentially as sample size and dimension increase. 

If the original extension proposed by Peacock (Partial Orientation Grid) must be used 

(with equalities), we have extended the table of critical values up to 5,000 (all with 10,000 

repetitions for the simulation).  Furthermore, we have presented a new correction to the large 

sample which will allow the use of the large sample critical values for any sample size less than 

5,000. 
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Further, we demonstrated that the 2S 2D KS Orientation Grid method is equivalent to the 

2S 2D KS partial Orientation Grid method and therefore, there is no need to complete all 16𝑛2 

computations (where 𝑛 = 𝑛1 + 𝑛2), that is, the Orientation Grid method does not capture 

additional information lost when conducting the 2S KS test. 

Finally, we have computed power tables for sample size calculations to be used in 

designing experiments testing for differences in distributions when considering differences in the 

means, variances, or correlations of the variables.  These are the first extensive tables for all 

three critical value methods for 1S 2D KS tests. 

 

6.2. Significance of Research 

This extension to multiple dimensions for the KS test will allow us to perform test of 

hypothesis to see if there are differences in distribution for multivariate datasets without having 

to do dimensionality reduction, projections or some sort of univariate hypothesis test with a 

weighted average.  Further, the addition of the Orientation Grid method provides a more 

powerful test for 1S 2D and 3D applications with power curves that can be used to design studies 

and plan sample sizes in addition to being invariant to correlation in the features being examined. 

 

6.3. Recommendations for Future Research 

One of the main difficulties of these four methods, especially as dimensions get larger, is 

the infeasibility of computing the critical values.  Therefore, there is a need to explore alternate 

methods such as advanced numerical methods to solve for the derived critical values and the 

accuracy of bootstrapping the KS test in high dimensions and comparing against hypothesis test 

with known critical values.  Furthermore, the optimal bootstrapping sample size and sample size 
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recommendations would need to be researched, such extensions include appropriately estimating 

and accounting for the correlation among features within the dataset.  Along the same lines, the 

need to fix the multivariate convolution for the mathematical derivation of the critical values is a 

great next step that would allow us to determine the asymptotic equation for the multivariate KS 

test as well as the correction needed to large sample that would apply to any sample size.  Once 

the multivariate convolution is solved, any dimension of the KS test would have an asymptotic 

equation.  Of course, there would be a need to test the power of the hypothesis test using this 

asymptotic equation and determining at what sample size do we converge to the equation.  

Lastly, completing power and sample size tables for smaller sample sizes in the 1S 3D KS test 

would be useful for advanced experimental design. 
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7. Appendix A: 1S 2D KS Test Methods Critical Values 

Table 7.1: 1S 2D KS Test Critical Values for Orientation Grid from Derived 

Solution 

n\ α 0.01 0.05 0.1 0.2  n\ α 0.01 0.05 0.1 0.2 

3 1.82 1.65 1.55 1.44  18 1.99 1.81 1.71 1.6 

4 1.87 1.69 1.6 1.49  19 1.99 1.81 1.71 1.6 

5 1.9 1.72 1.63 1.52  20 1.99 1.81 1.72 1.61 

6 1.91 1.74 1.64 1.53  21 1.99 1.82 1.72 1.61 

7 1.92 1.75 1.65 1.54  22 1.99 1.82 1.72 1.61 

8 1.94 1.76 1.66 1.55  23 1.99 1.82 1.72 1.61 

9 1.95 1.77 1.67 1.56  24 2.00 1.82 1.72 1.61 

10 1.95 1.77 1.67 1.57  25 2.00 1.82 1.72 1.61 

11 1.96 1.78 1.68 1.57  26 2.00 1.82 1.73 1.62 

12 1.96 1.79 1.69 1.58  27 2.00 1.82 1.73 1.62 

13 1.97 1.79 1.69 1.58  28 2.00 1.83 1.73 1.62 

14 1.97 1.79 1.7 1.59  29 2.00 1.83 1.73 1.62 

15 1.98 1.8 1.7 1.59  40 2.02 1.84 1.74 1.63 

16 1.98 1.8 1.71 1.6  50 2.02 1.84 1.74 1.64 

17 1.98 1.8 1.71 1.6  100 2.03 1.85 1.76 1.65 
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Table 7.2: 1S 2D KS Test Critical Values for Orientation Grid from Simulation 

n\ α 0.01 0.05 0.1 0.2   n\ α 0.01 0.05 0.1 0.2 

3 1.61 1.52 1.46 1.37   30 2.06 1.80 1.69 1.56 

4 1.74 1.60 1.51 1.39   31 2.03 1.81 1.69 1.57 

5 1.81 1.64 1.55 1.43   32 2.05 1.82 1.70 1.57 

6 1.84 1.66 1.56 1.44   33 2.07 1.83 1.70 1.57 

7 1.89 1.69 1.58 1.46   34 2.06 1.83 1.70 1.57 

8 1.92 1.70 1.60 1.47   35 2.06 1.82 1.71 1.57 

9 1.92 1.72 1.61 1.49   36 2.07 1.82 1.70 1.57 

10 1.95 1.73 1.62 1.49   37 2.07 1.83 1.71 1.57 

11 1.96 1.73 1.63 1.49   38 2.06 1.83 1.71 1.58 

12 1.97 1.74 1.64 1.51   39 2.07 1.83 1.71 1.58 

13 1.98 1.75 1.64 1.51   40 2.05 1.83 1.71 1.58 

14 1.96 1.75 1.64 1.51   41 2.08 1.84 1.72 1.58 

15 2.00 1.76 1.64 1.52   42 2.09 1.85 1.72 1.58 

16 2.01 1.77 1.65 1.52   43 2.08 1.85 1.72 1.59 

17 2.00 1.76 1.65 1.53   44 2.08 1.85 1.73 1.59 

18 2.03 1.78 1.67 1.53   45 2.07 1.84 1.72 1.59 

19 2.02 1.79 1.67 1.54   46 2.09 1.85 1.72 1.59 

20 2.03 1.79 1.67 1.54   47 2.09 1.86 1.73 1.59 

21 2.02 1.78 1.66 1.54   48 2.09 1.86 1.74 1.59 

22 2.04 1.79 1.67 1.54   49 2.06 1.85 1.73 1.60 

23 2.03 1.80 1.68 1.55   50 2.09 1.86 1.73 1.60 

24 2.02 1.80 1.69 1.55   100 2.17 1.92 1.81 1.67 

25 2.05 1.80 1.68 1.55   200 2.26 2.03 1.90 1.76 

26 2.03 1.80 1.69 1.56   300 2.37 2.09 1.97 1.83 

27 2.05 1.81 1.69 1.56   500 2.47 2.22 2.10 1.95 

28 2.05 1.81 1.69 1.56   1000 2.70 2.45 2.32 2.17 

29 2.05 1.80 1.69 1.56   2000 3.04 2.77 2.64 2.50 

            5000 3.70 3.44 3.30 3.14 
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Table 7.3: 1S 2D KS Test Critical Values for Orientation Sample from Simulation 

n\ α 0.01 0.05 0.1 0.2   n\ α 0.01 0.05 0.1 0.2 

3 1.56 1.42 1.32 1.18   30 1.80 1.55 1.45 1.31 

4 1.62 1.42 1.32 1.20   31 1.79 1.56 1.45 1.32 

5 1.64 1.44 1.33 1.21   32 1.82 1.57 1.46 1.33 

6 1.66 1.45 1.35 1.22   33 1.83 1.58 1.46 1.33 

7 1.68 1.47 1.36 1.23   34 1.83 1.58 1.45 1.33 

8 1.70 1.48 1.37 1.24   35 1.82 1.58 1.47 1.33 

9 1.71 1.48 1.37 1.25   36 1.82 1.57 1.46 1.33 

10 1.73 1.49 1.38 1.24   37 1.85 1.58 1.46 1.33 

11 1.72 1.51 1.38 1.25   38 1.82 1.58 1.47 1.33 

12 1.74 1.50 1.39 1.25   39 1.82 1.59 1.48 1.34 

13 1.75 1.51 1.39 1.26   40 1.82 1.59 1.46 1.33 

14 1.76 1.52 1.40 1.26   41 1.82 1.60 1.48 1.34 

15 1.76 1.53 1.41 1.28   42 1.84 1.59 1.48 1.35 

16 1.78 1.53 1.41 1.27   43 1.83 1.60 1.48 1.34 

17 1.76 1.52 1.40 1.28   44 1.82 1.60 1.50 1.35 

18 1.78 1.54 1.42 1.29   45 1.86 1.60 1.47 1.34 

19 1.75 1.54 1.42 1.28   46 1.85 1.60 1.48 1.35 

20 1.78 1.54 1.42 1.29   47 1.85 1.61 1.49 1.35 

21 1.76 1.54 1.42 1.29   48 1.85 1.61 1.49 1.35 

22 1.80 1.54 1.42 1.29   49 1.82 1.59 1.48 1.35 

23 1.79 1.55 1.43 1.29   50 1.84 1.61 1.49 1.35 

24 1.79 1.55 1.44 1.30   100 1.91 1.67 1.56 1.42 

25 1.79 1.55 1.43 1.31   200 2.01 1.77 1.65 1.51 

26 1.79 1.56 1.45 1.31   300 2.11 1.84 1.71 1.57 

27 1.79 1.56 1.45 1.31   500 2.20 1.97 1.84 1.69 

28 1.82 1.56 1.45 1.31   1000 2.43 2.18 2.04 1.90 

29 1.80 1.56 1.46 1.32   2000 2.77 2.49 2.36 2.22 

            5000 3.40 3.13 3.00 2.85 
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Table 7.4: 1S 2D KS Test Critical Values for Partial Orientation Grid from Simulation 

n\ α 0.01 0.05 0.1 0.2   n\ α 0.01 0.05 0.1 0.2 

3 1.56 1.40 1.30 1.16   30 1.96 1.69 1.58 1.45 

4 1.65 1.44 1.33 1.21   31 1.93 1.71 1.59 1.45 

5 1.68 1.50 1.39 1.25   32 1.94 1.72 1.60 1.46 

6 1.71 1.51 1.40 1.27   33 1.99 1.73 1.60 1.47 

7 1.76 1.53 1.42 1.29   34 1.98 1.73 1.60 1.46 

8 1.77 1.56 1.45 1.31   35 1.96 1.73 1.61 1.47 

9 1.79 1.57 1.46 1.32   36 1.98 1.72 1.60 1.47 

10 1.82 1.58 1.47 1.33   37 1.97 1.74 1.61 1.47 

11 1.82 1.60 1.47 1.35   38 1.98 1.73 1.61 1.47 

12 1.84 1.60 1.49 1.35   39 1.97 1.73 1.62 1.48 

13 1.85 1.62 1.50 1.36   40 1.97 1.74 1.61 1.48 

14 1.83 1.62 1.51 1.36   41 1.98 1.76 1.62 1.48 

15 1.86 1.63 1.52 1.38   42 1.99 1.75 1.63 1.49 

16 1.88 1.64 1.52 1.38   43 1.98 1.76 1.63 1.49 

17 1.88 1.65 1.53 1.39   44 2.00 1.75 1.64 1.50 

18 1.90 1.66 1.54 1.40   45 1.99 1.75 1.64 1.49 

19 1.90 1.66 1.54 1.41   46 2.02 1.76 1.63 1.49 

20 1.93 1.67 1.55 1.41   47 2.01 1.77 1.64 1.50 

21 1.90 1.66 1.55 1.41   48 1.98 1.76 1.64 1.50 

22 1.92 1.68 1.56 1.42   49 1.99 1.76 1.64 1.50 

23 1.92 1.68 1.56 1.42   50 2.02 1.77 1.65 1.51 

24 1.91 1.68 1.57 1.43   100 2.11 1.87 1.74 1.60 

25 1.93 1.69 1.57 1.43   200 2.20 1.98 1.86 1.71 

26 1.94 1.69 1.58 1.44   300 2.32 2.05 1.93 1.79 

27 1.96 1.70 1.58 1.45   500 2.43 2.19 2.07 1.92 

28 1.95 1.70 1.58 1.45   1000 2.67 2.43 2.29 2.14 

29 1.95 1.70 1.59 1.45   2000 3.02 2.76 2.63 2.48 

            5000 3.68 3.42 3.29 3.13 
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Table 7.5: 1S 2D KS Test Critical Values for Partial Orientation Sample from Simulation 

n\ α 0.01 0.05 0.1 0.2   n\ α 0.01 0.05 0.1 0.2 

3 1.44 1.23 1.10 0.99   30 1.72 1.47 1.36 1.23 

4 1.45 1.25 1.14 1.00   31 1.71 1.48 1.36 1.23 

5 1.52 1.28 1.17 1.04   32 1.71 1.49 1.38 1.24 

6 1.52 1.30 1.19 1.05   33 1.75 1.50 1.38 1.24 

7 1.55 1.32 1.20 1.07   34 1.76 1.49 1.37 1.24 

8 1.57 1.34 1.22 1.08   35 1.73 1.50 1.39 1.25 

9 1.58 1.35 1.23 1.10   36 1.73 1.50 1.38 1.24 

10 1.58 1.36 1.24 1.11   37 1.76 1.50 1.38 1.24 

11 1.61 1.37 1.26 1.11   38 1.74 1.50 1.39 1.26 

12 1.62 1.39 1.26 1.13   39 1.74 1.52 1.40 1.25 

13 1.63 1.40 1.27 1.13   40 1.74 1.51 1.39 1.25 

14 1.62 1.40 1.27 1.14   41 1.75 1.51 1.39 1.26 

15 1.63 1.41 1.29 1.15   42 1.78 1.52 1.40 1.26 

16 1.69 1.42 1.30 1.16   43 1.76 1.52 1.41 1.27 

17 1.66 1.42 1.30 1.17   44 1.74 1.53 1.41 1.27 

18 1.67 1.44 1.31 1.18   45 1.78 1.53 1.40 1.27 

19 1.66 1.43 1.31 1.18   46 1.79 1.53 1.41 1.28 

20 1.67 1.45 1.32 1.18   47 1.78 1.53 1.41 1.28 

21 1.68 1.43 1.32 1.19   48 1.77 1.54 1.42 1.28 

22 1.69 1.45 1.33 1.19   49 1.76 1.53 1.41 1.28 

23 1.70 1.46 1.33 1.20   50 1.78 1.54 1.42 1.28 

24 1.69 1.45 1.34 1.20   100 1.85 1.63 1.51 1.36 

25 1.70 1.46 1.34 1.21   200 1.97 1.73 1.61 1.46 

26 1.70 1.47 1.35 1.22   300 2.07 1.81 1.68 1.54 

27 1.71 1.48 1.35 1.22   500 2.16 1.94 1.81 1.66 

28 1.72 1.48 1.36 1.23   1000 2.40 2.16 2.02 1.87 

29 1.71 1.47 1.37 1.23   2000 2.75 2.47 2.35 2.20 

            5000 3.39 3.12 2.99 2.84 
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8. Appendix B: Power Tables 

Table 8.1: 1S 2D KS test Orientation Grid method for 3 critical values power curves for mean shift for 𝛼 = 0.01 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

0 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.03 0.02 

0.1 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.05 0.05 0.06 0.11 0.10 

0.2 0.02 0.02 0.02 0.06 0.08 0.08 0.13 0.16 0.17 0.31 0.46 0.43 

0.3 0.05 0.05 0.04 0.17 0.21 0.22 0.36 0.43 0.44 0.75 0.86 0.84 

0.4 0.09 0.09 0.08 0.37 0.43 0.44 0.68 0.74 0.75 0.97 0.99 0.99 

0.5 0.15 0.15 0.13 0.62 0.67 0.68 0.90 0.93 0.93 1.00 1.00 1.00 

0.6 0.24 0.24 0.22 0.83 0.86 0.87 0.98 0.99 0.99 1.00 1.00 1.00 

0.7 0.37 0.37 0.34 0.95 0.96 0.96 1.00 1.00 1.00 1.00 1.00 1.00 

0.8 0.51 0.51 0.47 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

0.9 0.65 0.65 0.62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.77 0.77 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.1 0.86 0.86 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.2 0.93 0.93 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.3 0.97 0.97 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.4 0.99 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.2: 1S 2D KS test Orientation Grid method for 3 critical values power curves for mean shift for 𝛼 = 0.05 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

0 0.05 0.04 0.02 0.05 0.04 0.04 0.05 0.06 0.05 0.05 0.08 0.06 

0.1 0.06 0.05 0.03 0.09 0.08 0.06 0.10 0.11 0.10 0.18 0.23 0.18 

0.2 0.09 0.07 0.05 0.20 0.18 0.16 0.30 0.32 0.29 0.57 0.64 0.58 

0.3 0.15 0.13 0.09 0.41 0.38 0.35 0.61 0.63 0.59 0.91 0.94 0.92 

0.4 0.24 0.21 0.15 0.66 0.62 0.59 0.86 0.87 0.85 0.99 1.00 0.99 

0.5 0.36 0.32 0.24 0.85 0.83 0.81 0.98 0.98 0.97 1.00 1.00 1.00 

0.6 0.50 0.45 0.37 0.96 0.95 0.94 1.00 1.00 1.00 1.00 1.00 1.00 

0.7 0.64 0.59 0.50 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

0.8 0.77 0.73 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.9 0.86 0.83 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.93 0.91 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.1 0.97 0.96 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.2 0.99 0.98 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.3 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.3: 1S 2D KS test Orientation Grid method for 3 critical values power curves for mean shift for 𝛼 = 0.1 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

0 0.10 0.07 0.04 0.10 0.08 0.06 0.10 0.10 0.07 0.10 0.13 0.09 

0.1 0.12 0.09 0.05 0.15 0.13 0.10 0.19 0.18 0.14 0.27 0.31 0.24 

0.2 0.17 0.13 0.08 0.31 0.27 0.22 0.44 0.42 0.36 0.68 0.74 0.66 

0.3 0.25 0.20 0.13 0.53 0.49 0.44 0.74 0.73 0.67 0.96 0.97 0.95 

0.4 0.36 0.30 0.21 0.76 0.72 0.68 0.93 0.92 0.90 1.00 1.00 1.00 

0.5 0.50 0.43 0.32 0.91 0.89 0.86 0.99 0.99 0.98 1.00 1.00 1.00 

0.6 0.64 0.57 0.46 0.98 0.97 0.96 1.00 1.00 1.00 1.00 1.00 1.00 

0.7 0.77 0.71 0.60 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

0.8 0.86 0.82 0.73 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.9 0.93 0.90 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.97 0.95 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.1 0.99 0.98 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.2 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.3 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.4: 1S 2D KS test Orientation Grid method for 3 critical values power curves for mean shift for 𝛼 = 0.2 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

0 0.20 0.13 0.07 0.20 0.15 0.10 0.20 0.17 0.12 0.20 0.22 0.14 

0.1 0.22 0.15 0.08 0.27 0.21 0.15 0.32 0.27 0.21 0.42 0.44 0.33 

0.2 0.29 0.21 0.12 0.45 0.38 0.30 0.59 0.54 0.46 0.81 0.83 0.75 

0.3 0.39 0.30 0.19 0.68 0.61 0.53 0.84 0.81 0.76 0.98 0.98 0.97 

0.4 0.52 0.42 0.29 0.86 0.82 0.76 0.97 0.96 0.94 1.00 1.00 1.00 

0.5 0.65 0.56 0.42 0.96 0.94 0.91 1.00 0.99 0.99 1.00 1.00 1.00 

0.6 0.78 0.69 0.56 0.99 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 

0.7 0.87 0.81 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.8 0.93 0.89 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.9 0.97 0.95 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.99 0.98 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.1 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.2 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.5: 1S 2D KS test Orientation Grid method for 3 critical values power curves for STDev shift for 𝛼 = 0.01 

STDev Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

1 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.03 0.02 

1.1 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.06 0.05 

1.2 0.02 0.02 0.02 0.04 0.05 0.05 0.06 0.08 0.08 0.11 0.22 0.19 

1.3 0.03 0.03 0.03 0.08 0.10 0.11 0.14 0.19 0.19 0.34 0.51 0.47 

1.4 0.05 0.05 0.05 0.15 0.18 0.19 0.29 0.36 0.37 0.66 0.81 0.78 

1.5 0.08 0.08 0.07 0.25 0.29 0.30 0.48 0.56 0.56 0.89 0.95 0.94 

1.6 0.11 0.11 0.09 0.37 0.43 0.44 0.67 0.74 0.75 0.97 0.99 0.99 

1.7 0.14 0.14 0.12 0.50 0.56 0.57 0.82 0.87 0.87 1.00 1.00 1.00 

1.8 0.18 0.18 0.16 0.62 0.68 0.69 0.91 0.94 0.94 1.00 1.00 1.00 

1.9 0.23 0.23 0.20 0.73 0.78 0.79 0.96 0.98 0.98 1.00 1.00 1.00 

2 0.27 0.27 0.25 0.82 0.86 0.87 0.99 0.99 0.99 1.00 1.00 1.00 

2.1 0.32 0.32 0.29 0.88 0.91 0.92 1.00 1.00 1.00 1.00 1.00 1.00 

2.2 0.37 0.37 0.34 0.93 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 

2.3 0.41 0.41 0.38 0.96 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

2.4 0.45 0.45 0.42 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.49 0.49 0.46 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

2.6 0.53 0.53 0.50 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.7 0.57 0.57 0.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.8 0.60 0.60 0.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.9 0.63 0.63 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.66 0.66 0.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.6: 1S 2D KS test Orientation Grid method for 3 critical values power curves for STDev shift for 𝛼 = 0.05 

STDev Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

1 0.05 0.04 0.02 0.05 0.04 0.04 0.05 0.06 0.05 0.05 0.08 0.06 

1.1 0.06 0.05 0.03 0.08 0.06 0.06 0.08 0.09 0.07 0.11 0.15 0.11 

1.2 0.09 0.07 0.04 0.14 0.12 0.11 0.17 0.19 0.16 0.32 0.40 0.33 

1.3 0.12 0.10 0.07 0.25 0.22 0.19 0.34 0.37 0.33 0.65 0.73 0.67 

1.4 0.17 0.14 0.10 0.38 0.35 0.32 0.56 0.59 0.53 0.89 0.93 0.90 

1.5 0.22 0.19 0.13 0.54 0.51 0.47 0.74 0.77 0.73 0.98 0.99 0.98 

1.6 0.28 0.25 0.18 0.68 0.65 0.61 0.88 0.89 0.87 1.00 1.00 1.00 

1.7 0.35 0.30 0.23 0.79 0.76 0.73 0.95 0.96 0.94 1.00 1.00 1.00 

1.8 0.41 0.37 0.28 0.88 0.86 0.83 0.98 0.99 0.98 1.00 1.00 1.00 

1.9 0.47 0.43 0.34 0.93 0.91 0.90 1.00 1.00 0.99 1.00 1.00 1.00 

2 0.53 0.48 0.39 0.96 0.95 0.94 1.00 1.00 1.00 1.00 1.00 1.00 

2.1 0.58 0.53 0.44 0.98 0.98 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

2.2 0.64 0.59 0.49 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

2.3 0.68 0.64 0.54 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

2.4 0.72 0.68 0.59 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.76 0.72 0.63 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.6 0.79 0.76 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.7 0.82 0.79 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.8 0.85 0.82 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.9 0.87 0.84 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.89 0.87 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.7: 1S 2D KS test Orientation Grid method for 3 critical values power curves for STDev shift for 𝛼 = 0.1 

STDev Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

1 0.10 0.07 0.04 0.10 0.08 0.06 0.10 0.10 0.07 0.10 0.13 0.09 

1.1 0.12 0.09 0.05 0.14 0.11 0.09 0.15 0.14 0.11 0.18 0.22 0.16 

1.2 0.16 0.12 0.07 0.23 0.19 0.15 0.29 0.28 0.23 0.46 0.51 0.42 

1.3 0.21 0.17 0.10 0.37 0.31 0.26 0.49 0.48 0.42 0.77 0.82 0.74 

1.4 0.27 0.22 0.14 0.53 0.47 0.41 0.71 0.70 0.64 0.95 0.96 0.94 

1.5 0.34 0.28 0.19 0.68 0.62 0.56 0.86 0.85 0.81 0.99 1.00 0.99 

1.6 0.42 0.35 0.25 0.80 0.75 0.70 0.95 0.94 0.91 1.00 1.00 1.00 

1.7 0.48 0.42 0.30 0.88 0.85 0.81 0.98 0.98 0.97 1.00 1.00 1.00 

1.8 0.55 0.49 0.37 0.94 0.92 0.89 1.00 1.00 0.99 1.00 1.00 1.00 

1.9 0.61 0.54 0.43 0.97 0.96 0.94 1.00 1.00 1.00 1.00 1.00 1.00 

2 0.66 0.60 0.49 0.99 0.98 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

2.1 0.71 0.66 0.54 0.99 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 

2.2 0.76 0.71 0.59 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

2.3 0.80 0.75 0.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.4 0.83 0.78 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.86 0.82 0.72 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.6 0.88 0.85 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.7 0.90 0.87 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.8 0.92 0.89 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.9 0.93 0.91 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.94 0.92 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.8: 1S 2D KS test Orientation Grid method for 3 critical values power curves for STDev shift for 𝛼 = 0.2 

STDev Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

1 0.20 0.13 0.07 0.20 0.15 0.10 0.20 0.17 0.12 0.20 0.22 0.14 

1.1 0.23 0.16 0.09 0.25 0.19 0.14 0.27 0.23 0.17 0.32 0.34 0.24 

1.2 0.29 0.20 0.12 0.36 0.30 0.22 0.44 0.40 0.32 0.63 0.66 0.54 

1.3 0.35 0.26 0.16 0.53 0.45 0.36 0.66 0.62 0.53 0.89 0.90 0.83 

1.4 0.43 0.32 0.22 0.68 0.61 0.52 0.84 0.81 0.74 0.98 0.99 0.97 

1.5 0.50 0.40 0.27 0.81 0.75 0.67 0.94 0.92 0.88 1.00 1.00 1.00 

1.6 0.58 0.47 0.34 0.90 0.85 0.79 0.98 0.97 0.95 1.00 1.00 1.00 

1.7 0.64 0.54 0.41 0.95 0.92 0.88 1.00 0.99 0.99 1.00 1.00 1.00 

1.8 0.70 0.61 0.48 0.98 0.96 0.94 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 0.76 0.66 0.53 0.99 0.98 0.97 1.00 1.00 1.00 1.00 1.00 1.00 

2 0.81 0.72 0.59 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

2.1 0.84 0.77 0.65 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

2.2 0.88 0.80 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.3 0.90 0.84 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.4 0.92 0.87 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.94 0.89 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.6 0.95 0.91 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.7 0.96 0.93 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.8 0.97 0.94 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.9 0.98 0.95 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.98 0.96 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.9: 1S 2D KS test Orientation Grid method for 3 critical values power curves for correlation shift for 𝛼 = 0.01 

Rho Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

-1.00 0.08 0.08 0.05 0.51 0.55 0.57 0.97 1.00 1.00 1.00 1.00 1.00 

-0.90 0.05 0.05 0.04 0.21 0.26 0.27 0.51 0.65 0.65 1.00 1.00 1.00 

-0.80 0.03 0.03 0.03 0.12 0.16 0.17 0.30 0.41 0.41 0.83 0.95 0.94 

-0.70 0.03 0.03 0.02 0.08 0.10 0.11 0.18 0.25 0.26 0.55 0.74 0.71 

-0.60 0.02 0.02 0.02 0.05 0.07 0.07 0.11 0.16 0.16 0.32 0.50 0.46 

-0.50 0.02 0.02 0.01 0.03 0.04 0.05 0.06 0.09 0.10 0.17 0.30 0.28 

-0.40 0.02 0.02 0.01 0.02 0.03 0.03 0.04 0.06 0.06 0.09 0.17 0.15 

-0.30 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.09 0.08 

-0.20 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.05 0.04 

-0.10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.03 0.03 

0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.03 0.02 

0.10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.03 0.03 

0.20 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.05 0.04 

0.30 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.09 0.08 

0.40 0.02 0.02 0.01 0.02 0.03 0.03 0.04 0.06 0.06 0.09 0.17 0.15 

0.50 0.02 0.02 0.01 0.03 0.04 0.05 0.06 0.10 0.10 0.17 0.30 0.28 

0.60 0.02 0.02 0.02 0.05 0.07 0.07 0.11 0.16 0.16 0.32 0.50 0.47 

0.70 0.03 0.03 0.02 0.08 0.10 0.11 0.18 0.26 0.26 0.55 0.75 0.71 

0.80 0.03 0.03 0.03 0.12 0.16 0.17 0.30 0.41 0.41 0.83 0.95 0.94 

0.90 0.05 0.05 0.04 0.21 0.26 0.27 0.51 0.65 0.65 1.00 1.00 1.00 

1.00 0.08 0.08 0.06 0.50 0.56 0.56 0.97 1.00 1.00 1.00 1.00 1.00 
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Table 8.10: 1S 2D KS test Orientation Grid method for 3 critical values power curves for correlation shift for 𝛼 = 0.05 

Rho Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

-1.00 0.23 0.18 0.14 0.84 0.81 0.81 1.00 1.00 1.00 1.00 1.00 1.00 

-0.90 0.15 0.12 0.09 0.54 0.50 0.46 0.88 0.90 0.86 1.00 1.00 1.00 

-0.80 0.12 0.10 0.07 0.38 0.34 0.31 0.64 0.67 0.62 0.99 1.00 0.99 

-0.70 0.10 0.08 0.05 0.27 0.24 0.22 0.45 0.48 0.43 0.88 0.93 0.89 

-0.60 0.08 0.07 0.04 0.20 0.17 0.15 0.31 0.33 0.29 0.67 0.76 0.68 

-0.50 0.07 0.06 0.04 0.14 0.12 0.11 0.21 0.23 0.20 0.45 0.54 0.46 

-0.40 0.06 0.05 0.03 0.11 0.09 0.08 0.14 0.16 0.13 0.28 0.35 0.29 

-0.30 0.06 0.04 0.03 0.08 0.07 0.06 0.09 0.10 0.09 0.17 0.22 0.17 

-0.20 0.05 0.04 0.03 0.07 0.06 0.05 0.06 0.07 0.06 0.10 0.14 0.10 

-0.10 0.05 0.04 0.02 0.06 0.05 0.04 0.05 0.06 0.05 0.06 0.09 0.07 

0.00 0.05 0.04 0.02 0.05 0.04 0.03 0.05 0.06 0.04 0.05 0.08 0.06 

0.10 0.05 0.04 0.02 0.06 0.05 0.04 0.05 0.06 0.05 0.06 0.09 0.07 

0.20 0.05 0.04 0.02 0.06 0.05 0.05 0.07 0.07 0.06 0.10 0.14 0.10 

0.30 0.06 0.04 0.03 0.08 0.07 0.06 0.09 0.10 0.09 0.17 0.23 0.17 

0.40 0.06 0.05 0.03 0.11 0.09 0.08 0.14 0.16 0.13 0.28 0.36 0.29 

0.50 0.07 0.06 0.04 0.14 0.12 0.11 0.21 0.23 0.20 0.45 0.55 0.46 

0.60 0.08 0.07 0.04 0.20 0.17 0.15 0.31 0.33 0.29 0.66 0.76 0.68 

0.70 0.10 0.08 0.05 0.27 0.24 0.22 0.45 0.47 0.43 0.88 0.93 0.89 

0.80 0.12 0.10 0.07 0.37 0.34 0.31 0.63 0.66 0.62 0.99 1.00 0.99 

0.90 0.15 0.12 0.09 0.54 0.50 0.46 0.88 0.89 0.87 1.00 1.00 1.00 

1.00 0.23 0.18 0.13 0.84 0.82 0.80 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.11: 1S 2D KS test Orientation Grid method for 3 critical values power curves for correlation shift for 𝛼 = 0.1 

Rho Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

-1.00 0.33 0.24 0.18 0.98 0.97 0.85 1.00 1.00 1.00 1.00 1.00 1.00 

-0.90 0.25 0.20 0.13 0.73 0.66 0.57 0.98 0.98 0.93 1.00 1.00 1.00 

-0.80 0.21 0.16 0.10 0.55 0.48 0.40 0.83 0.82 0.73 1.00 1.00 1.00 

-0.70 0.18 0.14 0.08 0.41 0.36 0.29 0.64 0.63 0.54 0.96 0.98 0.94 

-0.60 0.16 0.12 0.07 0.32 0.27 0.21 0.48 0.47 0.38 0.81 0.86 0.78 

-0.50 0.14 0.10 0.06 0.24 0.20 0.16 0.35 0.34 0.27 0.61 0.68 0.57 

-0.40 0.12 0.09 0.05 0.18 0.15 0.12 0.26 0.25 0.19 0.41 0.48 0.38 

-0.30 0.11 0.08 0.04 0.15 0.12 0.09 0.19 0.18 0.13 0.27 0.32 0.24 

-0.20 0.10 0.08 0.04 0.12 0.10 0.07 0.13 0.13 0.09 0.17 0.21 0.15 

-0.10 0.10 0.07 0.04 0.11 0.08 0.06 0.11 0.10 0.08 0.11 0.14 0.10 

0.00 0.10 0.07 0.04 0.10 0.08 0.06 0.10 0.10 0.07 0.10 0.13 0.09 

0.10 0.10 0.07 0.04 0.11 0.08 0.06 0.11 0.10 0.07 0.11 0.14 0.10 

0.20 0.10 0.08 0.04 0.12 0.09 0.07 0.13 0.13 0.09 0.17 0.21 0.15 

0.30 0.11 0.08 0.05 0.15 0.12 0.09 0.19 0.18 0.13 0.27 0.32 0.24 

0.40 0.13 0.09 0.05 0.19 0.15 0.12 0.26 0.25 0.19 0.41 0.48 0.38 

0.50 0.14 0.10 0.06 0.24 0.20 0.15 0.35 0.34 0.27 0.61 0.68 0.58 

0.60 0.16 0.12 0.07 0.32 0.27 0.21 0.49 0.47 0.39 0.81 0.87 0.78 

0.70 0.18 0.14 0.08 0.41 0.36 0.29 0.64 0.63 0.54 0.96 0.98 0.94 

0.80 0.21 0.16 0.10 0.55 0.48 0.40 0.83 0.82 0.73 1.00 1.00 1.00 

0.90 0.26 0.20 0.13 0.74 0.66 0.57 0.98 0.98 0.93 1.00 1.00 1.00 

1.00 0.34 0.24 0.18 0.98 0.96 0.87 1.00 1.00 1.00 1.00 1.00 1.00 

 



129 

Table 8.12: 1S 2D KS test Orientation Grid method for 3 critical values power curves for correlation shift for 𝛼 = 0.2 

Rho Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated Derived 

Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

Simulated Derived 
Large 
Sample 

-1.00 0.51 0.38 0.24 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 

-0.90 0.43 0.31 0.19 0.91 0.84 0.72 1.00 1.00 0.99 1.00 1.00 1.00 

-0.80 0.37 0.26 0.16 0.76 0.67 0.54 0.95 0.92 0.85 1.00 1.00 1.00 

-0.70 0.32 0.23 0.13 0.62 0.53 0.40 0.83 0.78 0.67 0.99 1.00 0.98 

-0.60 0.29 0.20 0.11 0.50 0.41 0.31 0.68 0.62 0.52 0.94 0.95 0.88 

-0.50 0.26 0.18 0.10 0.40 0.33 0.24 0.54 0.48 0.38 0.80 0.82 0.70 

-0.40 0.24 0.16 0.09 0.33 0.26 0.18 0.42 0.36 0.28 0.62 0.64 0.50 

-0.30 0.22 0.15 0.08 0.27 0.21 0.14 0.32 0.28 0.21 0.44 0.47 0.34 

-0.20 0.21 0.14 0.07 0.23 0.17 0.11 0.26 0.22 0.15 0.31 0.33 0.22 

-0.10 0.20 0.13 0.07 0.20 0.15 0.10 0.22 0.18 0.12 0.22 0.24 0.16 

0.00 0.20 0.13 0.07 0.20 0.15 0.10 0.20 0.16 0.12 0.20 0.22 0.14 

0.10 0.20 0.13 0.07 0.20 0.15 0.10 0.21 0.18 0.12 0.22 0.24 0.16 

0.20 0.21 0.14 0.07 0.23 0.17 0.11 0.26 0.21 0.15 0.31 0.33 0.23 

0.30 0.22 0.14 0.08 0.27 0.20 0.14 0.32 0.27 0.21 0.44 0.47 0.34 

0.40 0.24 0.16 0.09 0.33 0.25 0.18 0.42 0.36 0.28 0.61 0.65 0.50 

0.50 0.26 0.18 0.10 0.40 0.32 0.24 0.54 0.48 0.38 0.80 0.83 0.70 

0.60 0.29 0.20 0.11 0.50 0.41 0.31 0.68 0.62 0.52 0.94 0.95 0.88 

0.70 0.32 0.23 0.13 0.62 0.52 0.41 0.83 0.77 0.67 0.99 1.00 0.98 

0.80 0.36 0.26 0.16 0.76 0.66 0.54 0.95 0.92 0.85 1.00 1.00 1.00 

0.90 0.42 0.31 0.19 0.91 0.84 0.72 1.00 1.00 0.99 1.00 1.00 1.00 

1.00 0.49 0.38 0.24 1.00 0.99 0.97 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.13: 1S 2D KS test Orientation Sample method for 2 critical values power curves 

for Mean shift for 𝛼 = 0.05 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated 

Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

0.0 0.05 0.03 0.05 0.04 0.05 0.05 0.05 0.06 

0.1 0.06 0.03 0.09 0.07 0.11 0.11 0.17 0.20 

0.2 0.09 0.05 0.20 0.17 0.30 0.30 0.56 0.59 

0.3 0.15 0.09 0.41 0.36 0.60 0.60 0.91 0.92 

0.4 0.22 0.15 0.64 0.59 0.86 0.85 0.99 1.00 

0.5 0.33 0.24 0.84 0.81 0.97 0.97 1.00 1.00 

0.6 0.45 0.35 0.95 0.93 1.00 1.00 1.00 1.00 

0.7 0.58 0.48 0.99 0.99 1.00 1.00 1.00 1.00 

0.8 0.72 0.61 1.00 1.00 1.00 1.00 1.00 1.00 

0.9 0.83 0.74 1.00 1.00 1.00 1.00 1.00 1.00 

1.0 0.90 0.84 1.00 1.00 1.00 1.00 1.00 1.00 

1.1 0.95 0.91 1.00 1.00 1.00 1.00 1.00 1.00 

1.2 0.98 0.95 1.00 1.00 1.00 1.00 1.00 1.00 

1.3 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 

1.4 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.14: 1S 2D KS test Orientation Sample method for 2 critical values power curves 

for Standard Deviation shift for 𝛼 = 0.05 

STDev Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated 

Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

1.0 0.05 0.03 0.05 0.04 0.05 0.05 0.05 0.06 

1.1 0.06 0.03 0.07 0.05 0.07 0.07 0.09 0.10 

1.2 0.07 0.04 0.11 0.09 0.14 0.14 0.26 0.29 

1.3 0.09 0.05 0.19 0.15 0.27 0.27 0.57 0.59 

1.4 0.11 0.07 0.29 0.25 0.45 0.45 0.84 0.86 

1.5 0.14 0.09 0.41 0.36 0.64 0.64 0.97 0.97 

1.6 0.18 0.12 0.55 0.49 0.81 0.81 1.00 1.00 

1.7 0.22 0.15 0.67 0.62 0.90 0.90 1.00 1.00 

1.8 0.26 0.18 0.77 0.73 0.96 0.96 1.00 1.00 

1.9 0.30 0.21 0.85 0.81 0.99 0.99 1.00 1.00 

2.0 0.34 0.25 0.91 0.88 1.00 1.00 1.00 1.00 

2.1 0.38 0.28 0.94 0.92 1.00 1.00 1.00 1.00 

2.2 0.42 0.32 0.96 0.95 1.00 1.00 1.00 1.00 

2.3 0.46 0.35 0.98 0.97 1.00 1.00 1.00 1.00 

2.4 0.50 0.38 0.99 0.99 1.00 1.00 1.00 1.00 

2.5 0.54 0.42 0.99 0.99 1.00 1.00 1.00 1.00 

2.6 0.57 0.45 1.00 0.99 1.00 1.00 1.00 1.00 

2.7 0.61 0.48 1.00 1.00 1.00 1.00 1.00 1.00 

2.8 0.64 0.51 1.00 1.00 1.00 1.00 1.00 1.00 

2.9 0.67 0.54 1.00 1.00 1.00 1.00 1.00 1.00 

3.0 0.70 0.56 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.15: 1S 2D KS test Orientation Sample method for 2 critical values power curves 

for Correlation shift for 𝛼 = 0.05 

Rho Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated 

Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

-1.0 0.49 0.37 1.00 1.00 1.00 1.00 1.00 1.00 

-0.9 0.23 0.15 0.68 0.61 0.96 0.96 1.00 1.00 

-0.8 0.16 0.10 0.47 0.40 0.75 0.75 1.00 1.00 

-0.7 0.12 0.07 0.32 0.27 0.53 0.53 0.92 0.93 

-0.6 0.10 0.06 0.23 0.19 0.36 0.36 0.71 0.74 

-0.5 0.08 0.05 0.16 0.13 0.25 0.25 0.49 0.51 

-0.4 0.07 0.04 0.12 0.09 0.16 0.16 0.30 0.33 

-0.3 0.06 0.04 0.09 0.07 0.11 0.11 0.18 0.19 

-0.2 0.05 0.03 0.07 0.05 0.07 0.07 0.10 0.11 

-0.1 0.05 0.03 0.06 0.04 0.05 0.05 0.07 0.07 

0.0 0.05 0.03 0.05 0.04 0.05 0.05 0.05 0.06 

0.1 0.05 0.03 0.06 0.04 0.05 0.05 0.07 0.07 

0.2 0.05 0.03 0.07 0.05 0.07 0.07 0.10 0.11 

0.3 0.06 0.04 0.09 0.07 0.11 0.11 0.18 0.20 

0.4 0.07 0.04 0.12 0.09 0.16 0.16 0.30 0.33 

0.5 0.08 0.05 0.16 0.13 0.25 0.25 0.49 0.52 

0.6 0.10 0.06 0.23 0.19 0.36 0.36 0.71 0.74 

0.7 0.12 0.07 0.32 0.27 0.53 0.52 0.92 0.93 

0.8 0.16 0.10 0.47 0.40 0.74 0.74 1.00 1.00 

0.9 0.22 0.15 0.69 0.61 0.96 0.96 1.00 1.00 

1.0 0.47 0.37 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.16: 1S 2D KS test Partial Orientation Grid method for 2 critical values power 

curves for Mean shift for 𝛼 = 0.05 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated 

Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

0.0 0.05 0.01 0.05 0.03 0.05 0.04 0.05 0.05 

0.1 0.04 0.01 0.06 0.03 0.07 0.06 0.13 0.14 

0.2 0.03 0.01 0.12 0.07 0.21 0.18 0.48 0.50 

0.3 0.05 0.01 0.28 0.19 0.51 0.45 0.87 0.88 

0.4 0.09 0.03 0.50 0.39 0.79 0.75 0.99 0.99 

0.5 0.14 0.05 0.74 0.63 0.95 0.94 1.00 1.00 

0.6 0.22 0.09 0.90 0.83 0.99 0.99 1.00 1.00 

0.7 0.34 0.16 0.98 0.95 1.00 1.00 1.00 1.00 

0.8 0.47 0.25 1.00 0.99 1.00 1.00 1.00 1.00 

0.9 0.62 0.37 1.00 1.00 1.00 1.00 1.00 1.00 

1.0 0.74 0.50 1.00 1.00 1.00 1.00 1.00 1.00 

1.1 0.84 0.64 1.00 1.00 1.00 1.00 1.00 1.00 

1.2 0.91 0.76 1.00 1.00 1.00 1.00 1.00 1.00 

1.3 0.96 0.85 1.00 1.00 1.00 1.00 1.00 1.00 

1.4 0.98 0.92 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 0.99 0.96 1.00 1.00 1.00 1.00 1.00 1.00 

1.6 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 

1.7 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.17: 1S 2D KS test Partial Orientation Grid method for 2 critical values power 

curves for Standard Deviation shift for 𝛼 = 0.05 

STDev Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated 

Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

1.0 0.05 0.01 0.05 0.03 0.05 0.04 0.05 0.05 

1.1 0.06 0.02 0.08 0.04 0.08 0.06 0.10 0.11 

1.2 0.09 0.03 0.14 0.08 0.17 0.14 0.29 0.31 

1.3 0.12 0.04 0.24 0.15 0.33 0.29 0.62 0.64 

1.4 0.16 0.06 0.38 0.26 0.55 0.49 0.87 0.88 

1.5 0.21 0.08 0.53 0.39 0.73 0.69 0.98 0.98 

1.6 0.26 0.11 0.67 0.53 0.87 0.83 1.00 1.00 

1.7 0.31 0.15 0.78 0.66 0.94 0.93 1.00 1.00 

1.8 0.37 0.18 0.86 0.77 0.98 0.97 1.00 1.00 

1.9 0.43 0.22 0.92 0.85 0.99 0.99 1.00 1.00 

2.0 0.49 0.27 0.96 0.91 1.00 1.00 1.00 1.00 

2.1 0.53 0.31 0.98 0.95 1.00 1.00 1.00 1.00 

2.2 0.58 0.35 0.99 0.97 1.00 1.00 1.00 1.00 

2.3 0.63 0.40 1.00 0.99 1.00 1.00 1.00 1.00 

2.4 0.67 0.44 1.00 0.99 1.00 1.00 1.00 1.00 

2.5 0.70 0.48 1.00 1.00 1.00 1.00 1.00 1.00 

2.6 0.74 0.52 1.00 1.00 1.00 1.00 1.00 1.00 

2.7 0.77 0.56 1.00 1.00 1.00 1.00 1.00 1.00 

2.8 0.79 0.60 1.00 1.00 1.00 1.00 1.00 1.00 

2.9 0.81 0.63 1.00 1.00 1.00 1.00 1.00 1.00 

3.0 0.84 0.66 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.18: 1S 2D KS test Partial Orientation Grid method for 2 critical values power 

curves for Correlation shift for 𝛼 = 0.05 

Rho Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation Orientation Orientation Orientation 

  
Simulated 

Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

Simulated 
Large 
Sample 

-1.0 0.17 0.06 0.83 0.69 1.00 1.00 1.00 1.00 

-0.9 0.13 0.04 0.55 0.39 0.89 0.82 1.00 1.00 

-0.8 0.10 0.03 0.38 0.25 0.65 0.57 0.99 0.99 

-0.7 0.09 0.02 0.28 0.17 0.47 0.39 0.87 0.89 

-0.6 0.07 0.02 0.20 0.12 0.32 0.26 0.65 0.67 

-0.5 0.07 0.02 0.15 0.08 0.22 0.18 0.44 0.46 

-0.4 0.06 0.02 0.11 0.06 0.15 0.11 0.26 0.28 

-0.3 0.06 0.01 0.08 0.04 0.10 0.08 0.16 0.17 

-0.2 0.05 0.01 0.07 0.03 0.07 0.05 0.09 0.10 

-0.1 0.05 0.01 0.06 0.03 0.05 0.04 0.06 0.06 

0.0 0.05 0.01 0.06 0.03 0.05 0.04 0.05 0.05 

0.1 0.05 0.01 0.06 0.03 0.05 0.04 0.06 0.06 

0.2 0.06 0.01 0.07 0.04 0.07 0.05 0.09 0.10 

0.3 0.06 0.01 0.09 0.05 0.10 0.08 0.15 0.17 

0.4 0.07 0.02 0.11 0.06 0.15 0.12 0.27 0.29 

0.5 0.07 0.02 0.15 0.08 0.22 0.17 0.43 0.46 

0.6 0.08 0.03 0.20 0.12 0.32 0.26 0.65 0.67 

0.7 0.10 0.03 0.27 0.17 0.46 0.39 0.87 0.88 

0.8 0.12 0.04 0.39 0.25 0.65 0.57 0.99 0.99 

0.9 0.15 0.06 0.55 0.39 0.89 0.81 1.00 1.00 

1.0 0.24 0.10 0.91 0.72 1.00 1.00 1.00 1.00 
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Table 8.19: 1S 2D KS test four methods power curves for mean shift for 𝛼 = 0.01 using simulated critical values 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

 Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

 Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

0.1 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.03 0.03 0.02 0.02 0.06 0.06 0.04 0.05 

0.2 0.02 0.02 0.01 0.01 0.06 0.06 0.03 0.04 0.13 0.12 0.07 0.09 0.31 0.31 0.25 0.28 

0.3 0.05 0.04 0.01 0.02 0.17 0.17 0.09 0.11 0.36 0.35 0.24 0.28 0.75 0.75 0.68 0.71 

0.4 0.09 0.07 0.02 0.03 0.38 0.37 0.24 0.27 0.68 0.66 0.56 0.58 0.97 0.97 0.95 0.96 

0.5 0.15 0.13 0.04 0.06 0.62 0.61 0.46 0.50 0.90 0.89 0.83 0.84 1.00 1.00 1.00 1.00 

0.6 0.25 0.21 0.07 0.10 0.83 0.81 0.70 0.72 0.98 0.98 0.96 0.97 1.00 1.00 1.00 1.00 

0.7 0.38 0.31 0.13 0.16 0.95 0.94 0.88 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.8 0.51 0.43 0.21 0.25 0.99 0.99 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.9 0.66 0.56 0.32 0.36 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.78 0.69 0.45 0.49 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.1 0.87 0.80 0.59 0.62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.2 0.93 0.88 0.72 0.73 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.3 0.97 0.94 0.82 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.4 0.99 0.97 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 1.00 0.99 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.6 1.00 1.00 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.7 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.20: 1S 2D KS test four methods power curves for mean shift for 𝛼 = 0.05 using simulated critical values 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

 Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

 Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

0.1 0.06 0.06 0.03 0.04 0.09 0.09 0.06 0.06 0.11 0.11 0.07 0.09 0.18 0.17 0.13 0.15 

0.2 0.10 0.09 0.03 0.05 0.20 0.20 0.12 0.14 0.30 0.31 0.21 0.25 0.57 0.56 0.49 0.51 

0.3 0.16 0.15 0.05 0.07 0.41 0.40 0.28 0.31 0.61 0.60 0.50 0.53 0.91 0.91 0.87 0.88 

0.4 0.25 0.22 0.08 0.11 0.66 0.64 0.50 0.54 0.86 0.86 0.79 0.81 0.99 0.99 0.99 0.99 

0.5 0.37 0.33 0.14 0.18 0.85 0.84 0.74 0.76 0.98 0.97 0.95 0.96 1.00 1.00 1.00 1.00 

0.6 0.50 0.45 0.22 0.27 0.96 0.95 0.90 0.91 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 

0.7 0.64 0.58 0.33 0.38 0.99 0.99 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.8 0.77 0.72 0.47 0.51 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.9 0.87 0.82 0.61 0.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.93 0.90 0.74 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.1 0.97 0.95 0.84 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.2 0.99 0.98 0.91 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.3 1.00 0.99 0.96 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.4 1.00 1.00 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.21: 1S 2D KS test four methods power curves for mean shift for 𝛼 = 0.1 using simulated critical values 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

 Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

 Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

0.1 0.12 0.11 0.07 0.09 0.16 0.15 0.11 0.12 0.18 0.19 0.13 0.15 0.27 0.27 0.22 0.24 

0.2 0.17 0.16 0.08 0.10 0.31 0.30 0.20 0.23 0.43 0.43 0.32 0.37 0.68 0.68 0.62 0.64 

0.3 0.25 0.23 0.10 0.13 0.54 0.52 0.39 0.43 0.73 0.73 0.63 0.66 0.96 0.95 0.93 0.94 

0.4 0.36 0.33 0.16 0.20 0.76 0.75 0.63 0.66 0.93 0.92 0.87 0.89 1.00 1.00 1.00 1.00 

0.5 0.50 0.46 0.23 0.29 0.91 0.90 0.83 0.85 0.99 0.99 0.98 0.98 1.00 1.00 1.00 1.00 

0.6 0.64 0.58 0.35 0.40 0.98 0.97 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.7 0.77 0.71 0.48 0.52 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.8 0.86 0.82 0.62 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.9 0.93 0.90 0.75 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.97 0.95 0.84 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.1 0.99 0.98 0.92 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.2 1.00 0.99 0.96 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.3 1.00 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.4 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.22: 1S 2D KS test four methods power curves for mean shift for 𝛼 = 0.2 using simulated critical values 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

 Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

 Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

0.1 0.23 0.22 0.16 0.18 0.27 0.27 0.20 0.22 0.32 0.32 0.25 0.27 0.42 0.42 0.36 0.38 

0.2 0.29 0.28 0.16 0.19 0.46 0.45 0.33 0.36 0.59 0.59 0.49 0.52 0.81 0.81 0.76 0.77 

0.3 0.39 0.38 0.20 0.24 0.68 0.66 0.54 0.58 0.85 0.84 0.77 0.78 0.98 0.98 0.97 0.97 

0.4 0.52 0.50 0.27 0.33 0.87 0.85 0.76 0.79 0.97 0.96 0.94 0.95 1.00 1.00 1.00 1.00 

0.5 0.66 0.62 0.38 0.44 0.96 0.96 0.91 0.92 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 

0.6 0.78 0.74 0.51 0.56 0.99 0.99 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.7 0.87 0.84 0.65 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.8 0.93 0.91 0.77 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.9 0.97 0.96 0.86 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.99 0.98 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.1 1.00 0.99 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.2 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.23: 1S 2D KS test four methods power curves for standard deviation shift for 𝛼 = 0.01 using simulated critical values 

STDev Sample 10 Sample 30 Sample 50 Sample 100 

 Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

 Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

1.1 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 

1.2 0.02 0.02 0.02 0.02 0.04 0.03 0.04 0.03 0.05 0.04 0.05 0.05 0.11 0.10 0.11 0.11 

1.3 0.04 0.02 0.03 0.03 0.08 0.05 0.08 0.07 0.14 0.11 0.13 0.12 0.34 0.29 0.34 0.32 

1.4 0.06 0.03 0.05 0.05 0.15 0.10 0.14 0.12 0.29 0.22 0.26 0.24 0.65 0.59 0.65 0.63 

1.5 0.08 0.04 0.07 0.06 0.25 0.17 0.23 0.20 0.47 0.38 0.44 0.41 0.88 0.84 0.88 0.87 

1.6 0.11 0.06 0.10 0.08 0.38 0.27 0.35 0.31 0.67 0.56 0.63 0.59 0.97 0.96 0.97 0.97 

1.7 0.15 0.08 0.13 0.11 0.50 0.38 0.48 0.42 0.81 0.72 0.78 0.75 1.00 0.99 1.00 1.00 

1.8 0.19 0.10 0.16 0.14 0.63 0.49 0.60 0.54 0.91 0.85 0.89 0.86 1.00 1.00 1.00 1.00 

1.9 0.23 0.12 0.20 0.17 0.74 0.60 0.71 0.65 0.96 0.92 0.95 0.93 1.00 1.00 1.00 1.00 

2 0.28 0.15 0.24 0.20 0.83 0.70 0.80 0.74 0.99 0.96 0.98 0.97 1.00 1.00 1.00 1.00 

2.1 0.33 0.17 0.28 0.23 0.89 0.78 0.87 0.81 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 

2.2 0.37 0.20 0.32 0.26 0.93 0.84 0.92 0.87 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

2.3 0.41 0.23 0.36 0.29 0.96 0.89 0.95 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.4 0.46 0.26 0.40 0.32 0.98 0.93 0.97 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.50 0.29 0.45 0.35 0.99 0.95 0.98 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.6 0.54 0.32 0.48 0.39 0.99 0.97 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.7 0.57 0.34 0.52 0.42 1.00 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.8 0.61 0.37 0.56 0.44 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.9 0.64 0.40 0.59 0.47 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.67 0.42 0.62 0.49 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.24: 1S 2D KS test four methods power curves for standard deviation shift for 𝛼 = 0.05 using simulated critical values 

STDev Sample 10 Sample 30 Sample 50 Sample 100 

 Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

 Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

1.1 0.06 0.06 0.06 0.06 0.08 0.06 0.08 0.07 0.08 0.07 0.08 0.08 0.11 0.09 0.10 0.10 

1.2 0.09 0.07 0.09 0.08 0.14 0.11 0.14 0.13 0.17 0.14 0.17 0.17 0.31 0.26 0.30 0.29 

1.3 0.13 0.09 0.12 0.11 0.25 0.18 0.24 0.21 0.34 0.27 0.33 0.32 0.64 0.56 0.62 0.60 

1.4 0.17 0.11 0.16 0.14 0.38 0.28 0.37 0.33 0.56 0.46 0.54 0.51 0.89 0.84 0.88 0.86 

1.5 0.23 0.14 0.21 0.18 0.54 0.41 0.53 0.46 0.74 0.65 0.73 0.69 0.98 0.97 0.98 0.97 

1.6 0.29 0.18 0.26 0.22 0.68 0.54 0.67 0.60 0.88 0.81 0.87 0.84 1.00 1.00 1.00 1.00 

1.7 0.35 0.22 0.31 0.27 0.79 0.66 0.78 0.71 0.95 0.91 0.94 0.93 1.00 1.00 1.00 1.00 

1.8 0.42 0.25 0.37 0.31 0.88 0.77 0.86 0.81 0.98 0.96 0.98 0.97 1.00 1.00 1.00 1.00 

1.9 0.48 0.29 0.42 0.36 0.93 0.85 0.92 0.88 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 

2 0.53 0.33 0.48 0.41 0.96 0.90 0.96 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.1 0.59 0.37 0.53 0.46 0.98 0.94 0.98 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.2 0.64 0.42 0.58 0.50 0.99 0.96 0.99 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.3 0.68 0.46 0.62 0.54 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.4 0.73 0.50 0.67 0.58 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.76 0.54 0.70 0.62 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.6 0.80 0.57 0.73 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.7 0.83 0.60 0.76 0.69 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.8 0.85 0.64 0.79 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.9 0.87 0.67 0.81 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.89 0.70 0.83 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.25: 1S 2D KS test four methods power curves for standard deviation shift for 𝛼 = 0.1 using simulated critical values 

STDev Sample 10 Sample 30 Sample 50 Sample 100 

 Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

 Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

1.1 0.13 0.11 0.12 0.12 0.14 0.12 0.14 0.14 0.15 0.13 0.15 0.15 0.18 0.16 0.18 0.18 

1.2 0.16 0.13 0.16 0.15 0.23 0.18 0.22 0.21 0.28 0.24 0.27 0.27 0.46 0.39 0.45 0.43 

1.3 0.22 0.16 0.20 0.19 0.37 0.28 0.35 0.32 0.49 0.41 0.47 0.45 0.77 0.70 0.76 0.74 

1.4 0.28 0.19 0.25 0.23 0.53 0.41 0.51 0.46 0.70 0.61 0.69 0.66 0.95 0.92 0.94 0.94 

1.5 0.35 0.23 0.31 0.28 0.68 0.54 0.66 0.60 0.86 0.79 0.84 0.82 0.99 0.99 0.99 0.99 

1.6 0.42 0.27 0.38 0.33 0.80 0.68 0.78 0.73 0.94 0.90 0.93 0.92 1.00 1.00 1.00 1.00 

1.7 0.49 0.32 0.44 0.38 0.88 0.78 0.87 0.82 0.98 0.96 0.98 0.97 1.00 1.00 1.00 1.00 

1.8 0.55 0.36 0.51 0.44 0.94 0.86 0.93 0.89 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 

1.9 0.61 0.41 0.57 0.49 0.97 0.91 0.96 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 0.67 0.46 0.62 0.54 0.99 0.95 0.98 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.1 0.72 0.51 0.67 0.58 0.99 0.97 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.2 0.76 0.55 0.71 0.63 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.3 0.80 0.59 0.75 0.67 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.4 0.83 0.63 0.79 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.86 0.67 0.82 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.6 0.88 0.70 0.85 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.7 0.90 0.73 0.87 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.8 0.92 0.76 0.89 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.9 0.93 0.78 0.91 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.94 0.81 0.92 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.26: 1S 2D KS test four methods power curves for standard deviation shift for 𝛼 = 0.2 using simulated critical values 

STDev Sample 10 Sample 30 Sample 50 Sample 100 

 Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

 Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

1 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

1.1 0.23 0.21 0.23 0.23 0.25 0.23 0.25 0.25 0.27 0.25 0.26 0.26 0.32 0.29 0.32 0.31 

1.2 0.29 0.24 0.27 0.27 0.37 0.31 0.36 0.34 0.45 0.39 0.44 0.42 0.63 0.58 0.63 0.61 

1.3 0.35 0.28 0.34 0.32 0.53 0.43 0.52 0.48 0.67 0.58 0.66 0.62 0.89 0.85 0.89 0.87 

1.4 0.43 0.32 0.41 0.37 0.69 0.58 0.67 0.63 0.84 0.76 0.83 0.80 0.98 0.97 0.98 0.98 

1.5 0.50 0.37 0.48 0.43 0.81 0.71 0.79 0.76 0.94 0.89 0.93 0.91 1.00 1.00 1.00 1.00 

1.6 0.58 0.42 0.55 0.49 0.90 0.81 0.88 0.85 0.98 0.96 0.98 0.97 1.00 1.00 1.00 1.00 

1.7 0.64 0.47 0.61 0.55 0.95 0.89 0.94 0.91 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 

1.8 0.71 0.53 0.67 0.61 0.98 0.94 0.97 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.9 0.76 0.58 0.73 0.66 0.99 0.97 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 0.81 0.62 0.77 0.71 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.1 0.85 0.66 0.81 0.75 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.2 0.88 0.71 0.84 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.3 0.90 0.75 0.87 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.4 0.92 0.78 0.89 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.94 0.81 0.92 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.6 0.95 0.83 0.93 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.7 0.96 0.86 0.94 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.8 0.97 0.88 0.95 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.9 0.98 0.90 0.96 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 0.98 0.91 0.97 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.27:  1S 2D KS test four methods power curves for correlation shift for 𝛼 = 0.01 using simulated critical values 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

  Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

-1 0.08 0.22 0.05 0.10 0.52 0.83 0.44 0.75 0.96 1.00 0.96 1.00 1.00 1.00 1.00 1.00 

-0.9 0.05 0.07 0.03 0.03 0.21 0.31 0.21 0.22 0.50 0.66 0.52 0.54 1.00 1.00 1.00 1.00 

-0.8 0.04 0.05 0.03 0.02 0.13 0.18 0.12 0.11 0.30 0.39 0.31 0.31 0.83 0.90 0.84 0.87 

-0.7 0.03 0.03 0.02 0.01 0.08 0.11 0.08 0.07 0.17 0.23 0.18 0.17 0.54 0.63 0.55 0.58 

-0.6 0.02 0.02 0.02 0.01 0.05 0.07 0.05 0.04 0.10 0.13 0.10 0.09 0.31 0.37 0.32 0.33 

-0.5 0.02 0.02 0.01 0.01 0.03 0.04 0.03 0.03 0.06 0.08 0.06 0.05 0.17 0.20 0.18 0.18 

-0.4 0.02 0.01 0.01 0.01 0.02 0.03 0.02 0.02 0.04 0.05 0.04 0.03 0.09 0.10 0.09 0.09 

-0.3 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.04 0.05 0.04 0.04 

-0.2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 

-0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 

0.2 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 

0.3 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.04 0.05 0.04 0.06 

0.4 0.02 0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.04 0.05 0.04 0.05 0.09 0.10 0.09 0.12 

0.5 0.02 0.02 0.02 0.03 0.03 0.04 0.03 0.05 0.06 0.08 0.06 0.08 0.17 0.20 0.17 0.22 

0.6 0.02 0.02 0.02 0.03 0.05 0.07 0.05 0.07 0.11 0.13 0.11 0.14 0.32 0.37 0.32 0.40 

0.7 0.03 0.03 0.03 0.04 0.08 0.11 0.08 0.11 0.18 0.23 0.18 0.24 0.54 0.62 0.55 0.66 

0.8 0.04 0.05 0.03 0.06 0.13 0.18 0.13 0.18 0.30 0.39 0.31 0.40 0.82 0.90 0.83 0.92 

0.9 0.05 0.07 0.05 0.09 0.21 0.31 0.21 0.32 0.51 0.66 0.52 0.66 1.00 1.00 1.00 1.00 

1 0.08 0.22 0.08 0.24 0.50 0.84 0.50 0.87 0.97 1.00 0.98 1.00 1.00 1.00 1.00 1.00 
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Table 8.28:  1S 2D KS test four methods power curves for correlation shift for 𝛼 = 0.05 using simulated critical values 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

  Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

-1 0.23 0.49 0.17 0.23 0.84 1.00 0.83 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

-0.9 0.16 0.22 0.12 0.10 0.55 0.68 0.55 0.54 0.88 0.96 0.89 0.92 1.00 1.00 1.00 1.00 

-0.8 0.13 0.16 0.10 0.07 0.38 0.46 0.38 0.34 0.64 0.75 0.65 0.66 0.99 1.00 0.99 0.99 

-0.7 0.10 0.12 0.08 0.05 0.28 0.32 0.28 0.22 0.45 0.53 0.46 0.45 0.88 0.91 0.87 0.88 

-0.6 0.09 0.10 0.07 0.05 0.20 0.22 0.20 0.16 0.31 0.37 0.32 0.30 0.66 0.71 0.65 0.66 

-0.5 0.07 0.08 0.07 0.05 0.14 0.16 0.15 0.11 0.21 0.25 0.22 0.20 0.44 0.48 0.44 0.43 

-0.4 0.07 0.07 0.06 0.04 0.11 0.11 0.11 0.08 0.14 0.16 0.15 0.13 0.27 0.30 0.27 0.25 

-0.3 0.06 0.06 0.06 0.04 0.08 0.09 0.08 0.06 0.09 0.11 0.10 0.08 0.16 0.18 0.16 0.15 

-0.2 0.06 0.05 0.05 0.05 0.07 0.07 0.06 0.05 0.07 0.07 0.07 0.06 0.09 0.10 0.09 0.08 

-0.1 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.05 

0 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

0.1 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.07 

0.2 0.06 0.05 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.09 0.10 0.09 0.10 

0.3 0.06 0.06 0.06 0.07 0.08 0.09 0.08 0.10 0.10 0.11 0.10 0.12 0.16 0.17 0.16 0.19 

0.4 0.07 0.07 0.06 0.08 0.11 0.12 0.11 0.13 0.14 0.16 0.15 0.18 0.27 0.30 0.27 0.31 

0.5 0.08 0.08 0.07 0.09 0.14 0.16 0.15 0.18 0.21 0.25 0.21 0.27 0.44 0.48 0.44 0.50 

0.6 0.09 0.10 0.08 0.11 0.20 0.23 0.20 0.24 0.31 0.36 0.31 0.38 0.66 0.71 0.66 0.73 

0.7 0.10 0.12 0.10 0.13 0.27 0.32 0.27 0.34 0.45 0.53 0.46 0.55 0.88 0.91 0.87 0.92 

0.8 0.13 0.16 0.12 0.17 0.37 0.47 0.38 0.48 0.64 0.75 0.65 0.77 0.99 1.00 0.99 1.00 

0.9 0.16 0.22 0.15 0.23 0.54 0.68 0.54 0.70 0.88 0.96 0.88 0.97 1.00 1.00 1.00 1.00 

1 0.23 0.47 0.24 0.44 0.84 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.29:  1S 2D KS test four methods power curves for correlation shift for 𝛼 = 0.1 using simulated critical values 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

  Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

-1 0.33 0.63 0.29 0.37 0.98 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

-0.9 0.26 0.33 0.23 0.17 0.74 0.84 0.75 0.74 0.98 1.00 0.98 0.98 1.00 1.00 1.00 1.00 

-0.8 0.21 0.25 0.19 0.13 0.56 0.63 0.57 0.52 0.83 0.89 0.82 0.83 1.00 1.00 1.00 1.00 

-0.7 0.18 0.20 0.16 0.11 0.42 0.47 0.43 0.37 0.64 0.71 0.64 0.63 0.96 0.98 0.96 0.97 

-0.6 0.16 0.17 0.14 0.10 0.32 0.35 0.32 0.27 0.48 0.53 0.48 0.45 0.81 0.85 0.82 0.82 

-0.5 0.14 0.14 0.13 0.09 0.25 0.26 0.24 0.20 0.35 0.38 0.35 0.32 0.61 0.64 0.62 0.61 

-0.4 0.13 0.13 0.12 0.09 0.19 0.20 0.19 0.15 0.25 0.28 0.25 0.22 0.41 0.44 0.43 0.41 

-0.3 0.11 0.11 0.11 0.09 0.15 0.15 0.15 0.12 0.18 0.20 0.18 0.16 0.27 0.28 0.27 0.25 

-0.2 0.11 0.10 0.11 0.10 0.12 0.12 0.12 0.11 0.13 0.14 0.13 0.12 0.17 0.17 0.17 0.15 

-0.1 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.09 0.11 0.11 0.10 0.10 0.11 0.12 0.11 0.11 

0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

0.1 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.12 0.11 0.12 0.12 0.13 

0.2 0.10 0.10 0.11 0.12 0.12 0.12 0.12 0.13 0.13 0.14 0.13 0.15 0.17 0.17 0.17 0.19 

0.3 0.11 0.11 0.11 0.13 0.15 0.15 0.15 0.17 0.18 0.20 0.18 0.21 0.27 0.28 0.27 0.31 

0.4 0.13 0.13 0.12 0.14 0.19 0.20 0.19 0.22 0.25 0.28 0.25 0.30 0.41 0.44 0.42 0.47 

0.5 0.14 0.14 0.13 0.17 0.25 0.26 0.24 0.29 0.35 0.38 0.35 0.41 0.61 0.64 0.62 0.68 

0.6 0.16 0.17 0.15 0.19 0.32 0.35 0.32 0.38 0.48 0.53 0.47 0.55 0.81 0.85 0.82 0.87 

0.7 0.18 0.20 0.17 0.23 0.42 0.47 0.42 0.50 0.64 0.71 0.63 0.73 0.96 0.98 0.97 0.98 

0.8 0.21 0.25 0.21 0.28 0.55 0.63 0.55 0.66 0.83 0.89 0.82 0.91 1.00 1.00 1.00 1.00 

0.9 0.26 0.33 0.24 0.36 0.74 0.84 0.73 0.86 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 

1 0.35 0.63 0.36 0.62 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 8.30: 1S 2D KS test four methods power curves for correlation shift for 𝛼 = 0.2 using simulated critical values 

Mean Sample 10 Sample 30 Sample 50 Sample 100 

  Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation Orientation 
Partial 

Orientation 

  Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample Grid Sample 

-1 0.51 0.83 0.48 0.62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

-0.9 0.43 0.52 0.42 0.31 0.91 0.96 0.92 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

-0.8 0.37 0.42 0.36 0.25 0.76 0.83 0.76 0.73 0.95 0.98 0.96 0.96 1.00 1.00 1.00 1.00 

-0.7 0.32 0.35 0.32 0.21 0.63 0.68 0.63 0.57 0.83 0.88 0.83 0.82 1.00 1.00 1.00 1.00 

-0.6 0.29 0.31 0.29 0.20 0.51 0.54 0.51 0.45 0.68 0.73 0.69 0.65 0.94 0.96 0.94 0.94 

-0.5 0.26 0.28 0.26 0.19 0.41 0.43 0.41 0.35 0.54 0.58 0.54 0.50 0.80 0.83 0.81 0.80 

-0.4 0.24 0.24 0.24 0.19 0.33 0.34 0.33 0.28 0.42 0.44 0.42 0.38 0.62 0.65 0.63 0.60 

-0.3 0.22 0.22 0.22 0.19 0.27 0.28 0.27 0.23 0.33 0.33 0.33 0.29 0.44 0.46 0.45 0.43 

-0.2 0.21 0.21 0.21 0.19 0.23 0.24 0.23 0.21 0.26 0.27 0.26 0.23 0.31 0.32 0.32 0.29 

-0.1 0.20 0.21 0.20 0.19 0.21 0.21 0.21 0.20 0.22 0.22 0.21 0.20 0.22 0.23 0.23 0.22 

0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

0.1 0.20 0.21 0.20 0.21 0.21 0.21 0.21 0.22 0.22 0.22 0.21 0.23 0.22 0.23 0.22 0.24 

0.2 0.21 0.21 0.21 0.22 0.23 0.24 0.23 0.26 0.26 0.27 0.26 0.28 0.31 0.32 0.32 0.34 

0.3 0.22 0.22 0.21 0.24 0.27 0.28 0.28 0.30 0.33 0.33 0.32 0.36 0.44 0.46 0.45 0.49 

0.4 0.24 0.24 0.23 0.27 0.33 0.34 0.33 0.38 0.42 0.44 0.42 0.47 0.61 0.65 0.63 0.68 

0.5 0.26 0.28 0.25 0.30 0.41 0.43 0.41 0.47 0.54 0.57 0.54 0.60 0.80 0.83 0.82 0.85 

0.6 0.29 0.31 0.28 0.34 0.50 0.54 0.51 0.58 0.69 0.72 0.68 0.75 0.94 0.96 0.94 0.97 

0.7 0.32 0.35 0.31 0.39 0.63 0.67 0.62 0.71 0.83 0.88 0.84 0.90 0.99 1.00 1.00 1.00 

0.8 0.37 0.42 0.34 0.45 0.77 0.82 0.76 0.86 0.95 0.98 0.96 0.98 1.00 1.00 1.00 1.00 

0.9 0.42 0.53 0.39 0.55 0.91 0.96 0.91 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1 0.49 0.83 0.54 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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9. Appendix C: 1S 2D KS Test Code 

Simplified Python code for reference, contains all four methods: Orientation Grid/sample 

and Partial Orientation Grid/sample. 

# Necessary imports 

import numpy as np 
import scipy  as sp 

 

 
def FuncQuads_1s_2d(x, y, dist_func): 

  """ 

  Computes the double integrals (CDF value) for the specified bivariate distribution function 

  using the coordinates (x,y) and the limits for x and y of -6 to 6. 
 

  Args: 

    x (): the x coordinate for calculating the CDF value. 
    y (): the y coordinate for calculating the CDF value. 

    dist_func (): the pdf of a bivariate distribution function to compute the double integral (CDF 

value). 
 

  Returns: a tuple object (LL, LH, HL, HH) with the four values associated with each orientation 

    of the CDF.  For example, LL as the double integral from negative infinity to x, y. 

 
  """ 

  xlim = [-6, 6] 

  ylim = [-6, 6] 
  point = [x, y] 

  LL = sp.integrate.dblquad(dist_func, np.amin(xlim), point[0], 

          lambda x: np.amin(ylim), 
          lambda x: point[1])[0] 

  LH = sp.integrate.dblquad(dist_func, np.amin(xlim), point[0], 

          lambda x: point[1], 

          lambda x: np.amax(ylim))[0] 
  HL = sp.integrate.dblquad(dist_func, point[0], np.amax(xlim), 

          lambda x: np.amin(ylim), 

          lambda x: point[1])[0] 
  HH = 1 - LL - LH - HL #Due to continuity we know that the sum of each orientation equals 1 

  return (LL, LH, HL, HH) 

 

 
############################################################################## 

######  1 sample 2D KS Orientation Grid/sample 

 
def ks2d1s_orientation_grid(xx, yy, dist_func): 

  """ 



149 

  Computes the 1 sample 2 dimensional Kolmogorov-Smirnov test Orientation Grid methods 
  for the specified theoretical distribution (dist_func) 

 

  Args: 

    xx (): The x values of the samples. 
    yy (): The y values of the samples. 

    dist_func (): the pdf of a bivariate distribution function to compute the double integral (CDF 

value). 
 

  Returns: the raw distance d from computing the 1 sample 2 dimensional Kolmogorov-Smirnov 

test Orientation Grid method 
 

  """ 

  iterate_x = np.unique(xx) 

  iterate_y = np.unique(yy) 
  d = -1 

  for x in iterate_x: 

    for y in iterate_y: 
    d = orientation_computations(d, x, y, xx, yy, dist_func) 

  return d 

 
 

def ks2d1s_orientation_sample(xx, yy, dist_func): 

  """ 

  Computes the 1 sample 2 dimensional Kolmogorov-Smirnov test Orientation Sample methods 
  for the specified theoretical distribution (dist_func) 

 

  Args: 
    xx (): The x values of the samples. 

    yy (): The y values of the samples. 

    dist_func (): the pdf of a bivariate distribution function to compute the double integral (CDF 

value). 
 

  Returns: the raw distance d from computing the 1 sample 2 dimensional Kolmogorov-Smirnov 

test Orientation Sample method 
 

  """ 

  d = -1 
  for i in range(len(xx)): 

    x = xx[i] 

    y = yy[i] 

    d = orientation_computations(d, x, y, xx, yy, dist_func) 
  return d 

 

 
def orientation_computations(d, x, y, xx, yy, dist_func): 

  """ 

  Computes the 1 sample 2 dimensional Kolmogorov-Smirnov test for a specified point (x,y) 
  for all 4 orientations and all 4 directions 
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  for the specified theoretical distribution (dist_func). 
 

  Args: 

    d (): the current maximum distance d. 

    x (): the x coordinate for calculating the ECDF value. 
    y (): the y coordinate for calculating the ECDF value. 

    xx (): The x values of the samples. 

    yy (): The y values of the samples. 
    dist_func (): the pdf of a bivariate distribution function to compute the double integral (CDF 

value). 

 
  Returns: the raw distance d from computing the maximum distance using Orientation method 

for the specified point (x,y) 

 

  """ 
  cLL, cLH, cHL, cHH = FuncQuads_1s_2d(x, y, dist_func) 

  n = len(xx) 

  # Orientation LL 
  ix1 = np.less_equal(xx, x) 

  ix2 = np.less_equal(yy, y) 

  fpp2 = np.sum(ix1 & ix2) / n 
  ix1 = np.less_equal(xx, x) 

  ix2 = np.less(yy, y) 

  fpm2 = np.sum(ix1 & ix2) / n 

  ix1 = np.less(xx, x) 
  ix2 = np.less_equal(yy, y) 

  fmp2 = np.sum(ix1 & ix2) / n 

  ix1 = np.less(xx, x) 
  ix2 = np.less(yy, y) 

  fmm2 = np.sum(ix1 & ix2) / n 

  d = np.maximum(d, np.abs(cLL - fpp2)) 

  d = np.maximum(d, np.abs(cLL - fpm2)) 
  d = np.maximum(d, np.abs(cLL - fmp2)) 

  d = np.maximum(d, np.abs(cLL - fmm2)) 

  # Orientation LH 
  ix1 = np.less_equal(xx, x) 

  ix2 = np.greater_equal(yy, y) 

  fpp2 = np.sum(ix1 & ix2) / n 
  ix1 = np.less_equal(xx, x) 

  ix2 = np.greater(yy, y) 

  fpm2 = np.sum(ix1 & ix2) / n 

  ix1 = np.less(xx, x) 
  ix2 = np.greater_equal(yy, y) 

  fmp2 = np.sum(ix1 & ix2) / n 

  ix1 = np.less(xx, x) 
  ix2 = np.greater(yy, y) 

  fmm2 = np.sum(ix1 & ix2) / n 

  d = np.maximum(d, np.abs(cLH - fpp2)) 
  d = np.maximum(d, np.abs(cLH - fpm2)) 
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  d = np.maximum(d, np.abs(cLH - fmp2)) 
  d = np.maximum(d, np.abs(cLH - fmm2)) 

  # Orientation HL 

  ix1 = np.greater_equal(xx, x) 

  ix2 = np.less_equal(yy, y) 
  fpp2 = np.sum(ix1 & ix2) / n 

  ix1 = np.greater_equal(xx, x) 

  ix2 = np.less(yy, y) 
  fpm2 = np.sum(ix1 & ix2) / n 

  ix1 = np.greater(xx, x) 

  ix2 = np.less_equal(yy, y) 
  fmp2 = np.sum(ix1 & ix2) / n 

  ix1 = np.greater(xx, x) 

  ix2 = np.less(yy, y) 

  fmm2 = np.sum(ix1 & ix2) / n 
  d = np.maximum(d, np.abs(cHL - fpp2)) 

  d = np.maximum(d, np.abs(cHL - fpm2)) 

  d = np.maximum(d, np.abs(cHL - fmp2)) 
  d = np.maximum(d, np.abs(cHL - fmm2)) 

  # Orientation HH 

  ix1 = np.greater_equal(xx, x) 
  ix2 = np.greater_equal(yy, y) 

  fpp2 = np.sum(ix1 & ix2) / n 

  ix1 = np.greater_equal(xx, x) 

  ix2 = np.greater(yy, y) 
  fpm2 = np.sum(ix1 & ix2) / n 

  ix1 = np.greater(xx, x) 

  ix2 = np.greater_equal(yy, y) 
  fmp2 = np.sum(ix1 & ix2) / n 

  ix1 = np.greater(xx, x) 

  ix2 = np.greater(yy, y) 

  fmm2 = np.sum(ix1 & ix2) / n 
  d = np.maximum(d, np.abs(cHH - fpp2)) 

  d = np.maximum(d, np.abs(cHH - fpm2)) 

  d = np.maximum(d, np.abs(cHH - fmp2)) 
  d = np.maximum(d, np.abs(cHH - fmm2)) 

  return d 

 
 

############################################################################## 

######  1 sample 2D KS Partial Orientation Grid/sample 

def ks2d1s_partial_grid(xx, yy, dist_func): 
  """ 

  Computes the 1 sample 2 dimensional Kolmogorov-Smirnov test Partial Orientation Grid 

methods 
  for the specified theoretical distribution (dist_func). 

 

  Args: 
    xx (): The x values of the samples. 
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    yy (): The y values of the samples. 
    dist_func (): the pdf of a bivariate distribution function to compute the double integral (CDF 

value). 

 

  Returns: the raw distance d from computing the 1 sample 2 dimensional Kolmogorov-Smirnov 
test Partial Orientation Grid method 

 

  """ 
  iterate_x = np.unique(xx) 

  iterate_y = np.unique(yy) 

  d = -1 
  for x in iterate_x: 

    for y in iterate_y: 

    d = partial_computations(d, x, y, xx, yy, dist_func) 

  return d 
 

 

def ks2d1s_partial_sample(xx, yy, dist_func): 
  """ 

  Computes the 1 sample 2 dimensional Kolmogorov-Smirnov test Partial Orientation Sample 

methods 
  for the specified theoretical distribution (dist_func). 

 

  Args: 

    xx (): The x values of the samples. 
    yy (): The y values of the samples. 

    dist_func (): the pdf of a bivariate distribution function to compute the double integral (CDF 

value). 
 

  Returns: the raw distance d from computing the 1 sample 2 dimensional Kolmogorov-Smirnov 

test Partial Orientation Sample method 

 
  """ 

  d = -1 

  for i in range(len(xx)): 
    x = xx[i] 

    y = yy[i] 

    d = partial_computations(d, x, y, xx, yy, dist_func) 
  return d 

 

 

def partial_computations(d, x, y, xx, yy, dist_func): 
  """ 

  Computes the 1 sample 2 dimensional Kolmogorov-Smirnov test for a specified point (x,y) 

  for all 4 orientations and one direction 
  for the specified theoretical distribution (dist_func). 

 

  Args: 
    d (): the current maximum distance d. 
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    x (): the x coordinate for calculating the ECDF value. 
    y (): the y coordinate for calculating the ECDF value. 

    xx (): The x values of the samples. 

    yy (): The y values of the samples. 

    dist_func (): the pdf of a bivariate distribution function to compute the double integral (CDF 
value). 

 

  Returns: the raw distance d from computing the maximum distance using Partial Orientation 
method for the specified point (x,y) 

 

  """ 
  cLL, cLH, cHL, cHH = FuncQuads_1s_2d(x, y, dist_func) 

  n = len(xx) 

  # Orientation LL 

  ix1 = np.less_equal(xx, x) 
  ix2 = np.less_equal(yy, y) 

  fpp2 = np.sum(ix1 & ix2) / n 

  d = np.maximum(d, np.abs(cLL - fpp2)) 
  # Orientation LH 

  ix1 = np.less_equal(xx, x) 

  ix2 = np.greater(yy, y) 
  fpm2 = np.sum(ix1 & ix2) / n 

  d = np.maximum(d, np.abs(cLH - fpm2)) 

  # Orientation HL 

  ix1 = np.greater(xx, x) 
  ix2 = np.less_equal(yy, y) 

  fmp2 = np.sum(ix1 & ix2) / n 

  d = np.maximum(d, np.abs(cHL - fmp2)) 
  # Orientation HH 

  ix1 = np.greater(xx, x) 

  ix2 = np.greater(yy, y) 

  fmm2 = np.sum(ix1 & ix2) / n 
  d = np.maximum(d, np.abs(cHH - fmm2)) 

  return d  
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