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Abstract

Current fatigue life modeling techniques with respect to defects emphasize the

dependence on the defect size with respect to fatigue life, but does not account for

the effects of where a defect might be located. This research outlines a process

to include defect location into the model analysis for a more precise prediction of

the number of cycles to failure and where the finial failure could occur within a

component. The focus is on a turbine blade structure using IN718 subjected to a pure

vibratory load. The basic model predicts component life using a stress map from the

frequency analysis of the developed Finite Element Model (FEM) and synthetically

generated defect sizes and location. Test specimens printed in IN718 are used to

create experimental data to validate the model parameters, defect distributions, and

predictions. The proposed results will be a map denoting the critical locations that

may cause failure and predictions of fatigue life when both defect size and location

are taken into consideration.
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FINITE FATIGUE LIFE PREDICTION OF ADDITIVELY MANUFACTURED

AIRCRAFT ENGINE TURBINE BLADE FOR INTERNAL DEFECT SIZE AND

LOCATION

I. Introduction

1.1 Overview

Understanding how Additive Manufacturing (AM) defects impact fatigue life is

vital to inspecting and certifying AM components in a high vibration environment

such as a turbine engine. Literature demonstrated that defects such as voids, sur-

face roughness, residual stress, and grain structure all impact the fatigue life in AM

components [3, 4, 8, 14]. Each of these characteristics can be mitigated through opti-

mized process control during the print or through post-processing steps. Some of the

major process control steps are: laser scan speed, laser power, laser spot size, over-

lap between passes, and layer thickness. Modifications of these and other processing

parameters impact the quantity and size of porous defect in the print [14, 15]. The

impacts of residual stress and grain structure are mitigated through heat treatment

processes [16,17]. Surface roughness is mitigated through surface treatments such as

polishing or machining, and the quantity and size of internal voids may be reduced

through Hot Isostatic Press (HIP) [18].

Despite all of the developments into mitigating flaws, AM processes continue to

exhibit defects that limit the fatigue life [3,14,19,20]. Methods have been developed

to predict the fatigue limit strength for a structure with respect to defect size [21,22].

Recently the infinite life models have been extended to estimate finite life in the
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presence of homogeneous uni-axial load cases [4, 11, 14]. To extend the finite life

modeling to real world applications, a simulation process was developed to link the

complex stress environments, such as the vibratory loading seen in a turbine engine,

of a printed part with the finite life model. The final result was a method that drove

damage tolerant design requirements based on the desired component life to define

inspection criteria and critical locations to monitor.

By including an understanding of the defect formation process and a method to

predict defect formations and their locations, the inverse problem can also be solved

where the life of a part can be predicted by applying defect size and location data

against the finite life model to determine the remaining life. To measure defects in an

AM component, the popular method is Computed Tomography (CT) scans [14,19,23].

The CT scans directly measure the flaws in a part after manufacture. The process is

valid for individual prints or as a statistical representation for consecutive print jobs

which do not experience any anomalies [24].

1.2 Additive Manufacturing Applications

AM is gaining traction in the aerospace industry to create complex parts [25].

The largest challenge for using AM components in aircraft or spacecraft is the cer-

tification process [24, 26]. The AM process is currently viewed as a rapid prototype

manufacturing process. However, by understanding how the AM process interacts

with component design and loading, there is opportunity to create simplified certifi-

cation processes for applications such as disposable hardware, temporary repairs, or

satellites. In cases such as these, the environment that causes fatigue failure is limited

in duration, allowing relaxed design criteria to meet the mission.

AM designs have been created and optimized for many different space applications

from thrusters [27] and micro pumps [28] to chassis [29, 30] and support structures
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[31–33]. There has been a lot of focus on the benefits AM brings to the space industry

such as mass savings, multi-functional integration, part reduction, and reduced buy

to fly costs to name a few [27, 29, 33–35]. However, very little has been published on

fatigue life assessments due to AM defects.

One limitation for application of AM built components is certification due to de-

fects inherent in the manufacturing process. While defect free AM parts are ideal for

long life applications, often short design life systems are capable of meeting mission

requirements despite generated defects. Accepting the realities of AM defects require

the understanding that defects will impact the fatigue life [36, 37]. Previous works

predicted a maximum design stress based on the maximum defect size and the in-

finite life El-Haddad model [32, 38]. The predicted maximum stresses created very

conservative load estimates, buying back on the uncertainty risks associated with AM

properties at the cost of extra mass.

On the aircraft front, significant weight savings are being achieved through op-

timization of wing spars [39]. Another application that will benefit from modeling

fatigue life in the presence of defects are AM turbine blades. Turbine blades are

complicated to machine using traditional manufacturing processes, but are relatively

simple to print using AM processes. The AM process allows for quick manufacturing

of novel designs for testing or to quickly build replacement parts to extend system

life. This proposed research will extend the finite life models created under uni-axial,

simple stress conditions where defect size is the driving constraint to predict the com-

ponent life under a complex multi-axis stress environment which is driven by potential

size and location of defects. One common alloy family used in manufacturing turbine

blades are the nickel-based superalloys which includes Inconel 718 (IN718). IN718 is

a popular material in the turbine engine industry due to its high corrosion and fatigue

resistance. IN718 also maintains its strength at temperatures up to approximately
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1600◦F [40] enabling it to survive through engine operation environments [41].

1.3 Research Objectives

This research has:

1. (RO-1) Developed a finite fatigue life simulation that links defect size and loca-

tion data with a Finite Element Model (FEM) to predict when a part will fail.

If given a target life, the model is capable of predicting the critical regions of

interest where failure due to internal defects is most likely to occur.

2. (RO-2) Performed a shaker table failure test on the printed components lever-

aging the 20 kilo pound shaker at the AFRL/RQTI Turbine Engine Fatigue

Facility. Identified the size and location of the defect that caused failure.

3. (RO-3) Compared the finite fatigue life predicted results with the experimental

test results. Analyzed the predictive quality of the finite fatigue life model and

adjusted life prediction methodologies to better account for observed phenom-

ena.

1.4 Contributions

1. Advanced the state of the art in modeling finite fatigue life with respect to

defects by linking FEM outputs with defect dependent fatigue life modeling to

incorporate defect location data (RO-1) (Chapter IV).

2. Advanced FEM techniques to encompass physical variations in the geometry of

AM parts by a statistical study of deviations in printed components in relation-

ship to the “as designed” geometry (RO-1) (Chapter III).
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3. Developed a prediction technique for finite life components under complex stress

states based on a modified El-Haddad finite life fatigue model and defect size/lo-

cation data (RO-1) (Chapters IV & VI).

4. Developed criteria for identifying inspection criteria and critical failure locations

in complex geometries (RO-1) (Chapters IV & VI).

5. Experimentally linked vibration fatigue life results with failure defect sizes and

locations (RO-2) (Chapters IV & V).

6. Validated the finite fatigue life modeling predictions through experimental vibration-

based bending tests (RO-3) (Chapter V).

1.5 Air Force Impacts

The Air Force Science and Technology Strategy 2030 listed five strategic capabili-

ties. One of them was “Complexity, Unpredictability, and Mass” which cites additive

manufacturing as a technological opportunity to advance. The strategy called for an

augmentation of high-end platforms with low-end, inexpensive systems [42]. AM pro-

cesses demonstrated the potential to diminish the dependence on expensive long lead

hardware by enabling the quick manufacture of a part when it is needed [24]. The AM

process reduces machining time for complex systems and enables joined functionality

of parts to reduce the total system part count through changes in design limitations

and manufacturing capabilities. Currently these benefits are countered by the higher

defect generation, leading to a more complex part verification process [10].

NASA recognized the strengths that AM brings to space, but are concerned with

the safe implementation of this rapidly changing technology [24]. The NASA Stan-

dard for Additively Manufactured Spaceflight Hardware by Laser Powder Bed Fusion

in Metals in 2017 offered a conservative approach to requirements allowing the use
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of AM in the spaceflight industry, while accounting for the development of defects in

every component. The NASA standard required multiple witness samples to describe

the potential defect population in an AM part process. Due to a lack of feedback con-

trol in current Laser Powder Bed Fusion (LPBF) systems, variability in the control,

and lack of understanding of production failure methods, NASA also included peri-

odic sampling to ensure that production parts are still acceptable [24]. The NASA

standard required that all parts are subject to Non-Destructive Evaluation (NDE)

for surface and volumetric defects, leaving it to design subject matter experts to de-

fine the inspection sensitivity and boundaries. The NDE is currently accomplished

through techniques such as CT scans.

The Turbine Engine Structural Integrity Program (ENSIP) MIL-HDBK-1783B

documented general requirements that need to be evaluated for the acquisition of

turbine engines. ENSIP requirements ensured that the engine has the appropriate

structural properties to perform the design mission for the required design service

life [43]. Among the requirements was an initial flaw size requirement. The program

suggested various flaw sizes that should be detected based on material, type of flaw,

and inspection method used along with the reliability and confidence level for the de-

tection of defects. The rationale was to establish the probable flaw size that can exist

in a part to apply damage tolerance criteria. In the discussion of NDE techniques,

ENSIP briefly discussed the use of Radiographic Inspection, of which CT scanning

is a subset, to detect flaws at any depth in a metallic part. The process was listed

as expensive, which was deemed a major disadvantage. CT scanning is a time in-

tensive process which requires a skilled, trained technician to interpret the data and

determine the best processing settings to highlight material voids and minimize scan

artifacts.

ENSIP also established damage tolerant designs. The concept behind damage
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tolerant design was to assure mission life in the presence of a defect. The damage

tolerant design requirements specified detecting a crack two times the critical crack

size as calculated from models such as the El-Haddad infinite life model. The El-

Haddad model describes the transfer from defect free fatigue life predictions to the

point where crack growth dominates fatigue life. The point of transition was defined

as the critical crack length. [22]. ENSIP continued to specify that a component

must be capable of surviving for at least two inspection cycles in the presence of a

crack twice the critical crack length. The El-Haddad model has been modified to

allow for arbitrary defect size/shape [8] and has been modified to predict finite life

based on the defect size and cycle stress ratio [11]. RO-1 was designed to extend the

modified El-Haddad model to include the effects of defect location in a multi-axis

stress environment on the predicted design life of a component. RO-2 supplied the

test data to quantify the predictive capabilities of an improved model.

1.6 Experimental Breakdown

The tasks required to perform the research broke down into three major categories.

First, the modeling and simulation work which involved building the FEM and finite

fatigue life model. The FEM was used to generate the stress and frequency analysis

for the component of interest. The finite fatigue life model generated a fatigue life

prediction based on the applied stress range and the defect size. Applied together,

the models allowed for prediction of allowable defect sizes and locations for a given

desired life and a life prediction based on the size and location of defects found in the

part.

The second category was the creation and experimentation of the physical com-

ponents. CT scanning proved in-feasible due to the combination of material density,

geometry, and total volume to inspect. Instead, inspection of the experimental frac-
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ture surfaces provided data on defect size and location formation. Surface scans of

the test components generated the distribution of geometry variations that can be ex-

pected between the designed part and final AM processing. Performing a sine sweep

on each component determined the optimal frequency to apply for each sample when

the components were tested to failure with a steady single axis vibration excitation.

Due to the complex geometry of the components, a uni-axial vibration test generated

multi-axial stresses.

The third category of effort was applying results of the physical testing to validate

the developed models. In addition to accounting for the statistical variations from the

build process, samples were built to characterize the material properties generated in

from this AM build. Samples for tension test and fatigue crack growth were printed

along with the turbine blades parts to characterize the expected responses and to

ensure that the processes applied in this research were consistent material properties

from literature.
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II. Literature Review

2.1 Overview

There are four primary elements that need to be established to model the ex-

pected fatigue life for an AM structure with respect to defect size and location: a

Finite Element Model (FEM), a defect generation and distribution, material fatigue

properties, and a fatigue life defect model.

Chapter II Reviews the literature associated with each topic. Section 2.2 discusses

the relationship between FEMs and AM. This section also reviews FEMs used in

literature for fatigue life testing as well as literature related to turbine blade modeling

and load cases. Section 2.3 covers the creation of and the applicable mitigation

steps for deformations due to the Additive Manufacturing (AM) process, as well

as how to measure internal defects without destroying the test specimen. Section

2.4 discusses traditional fatigue life modeling and how AM processes can distort

the material trends. Finally, section 2.5 walks through the creation of fatigue life

estimates based on defects found on a component. Starting with infinite life modeling,

modifications are developed to account for AM defects. The infinite life model is

modified to enable finite fatigue life predictions which is the starting point for this

research.

2.2 Finite Element Modeling (FEM)

Additive Manufacturing (AM) is an enabling technology to produce complex com-

ponents designed from structural topology optimization of FEMs [44–46]. Highly

efficient models generated from optimization solutions have been successfully pro-

duced and applied in many disciplines including the aerospace and medical fields.

One example in the aerospace field is an optimized bracket arm for a satellite. The
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bracket was designed for the minimum mass solution [32]. In the medical field, AM

processes have been studied for bone implants. By scanning the bone geometries to

be replaced, Finite Element Models (FEMs) have been optimized for minimum mass

with constraints on the surface and required loads [47–49].

For fatigue modeling, an FEM is generally used to predict the maximum applied

stresses along the principal axis based on the loading case of interest. Developing an

FEM requires a geometry, load case, and mesh. Section 2.2.1 discusses open source

turbine blade research in the realms of fatigue testing and AM creation. Section 2.2.2

briefly discusses turbine blade vibrational testing. Section 2.2.3 talks about the mesh

types that have been used for vibration and fatigue modeling. Section 2.2.4 reviews

the need to characterize the applied material properties and exact geometry of the

AM print to improve the accuracy of an FEM representation.

2.2.1 FEM Geometry

The geometry of interest for this research is a turbine blade. Figure 1 is the turbine

blade geometry being applied in this research. This geometry was previously used to

characterize damping effects of enclosed pockets in the print design to quantify AM

damping characteristics [50]. The same geometry, without internal pockets, will be

applied for the fatigue life research with respect to process generated defects.

Due to the proprietary nature of turbine blades, there is not very much literature

on fatigue life or testing procedures associated with operational turbine blades. The

Air Force became interested in engine failure analysis in 1968, when two new engine

designs failed on the test stands after thousands of hours of testing. These failures

prompted the development of ENSIP to regulate the development and testing of

engine designs [51].

Chinese researchers have been working on modeling Combined Cycle Fatigue
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Figure 1. Printed turbine blade from IN718. This geometry was used to test damping
of intentional voids in the blade. The same geometry will be applied for fatigue life in
the presence of manufacturing defects.

(CCF) to account for simultaneous High Cycle Fatigue (HCF) and Low Cycle Fa-

tigue (LCF). A variety of nickel-based superalloys such as single crystal SRR99 [52]

and DZ125 [53] have been studied. None of these turbine blade studies involve Addi-

tive Manufacturing or defect-based modeling.

Oak Ridge National Labs (ORNL) has printed turbine blade structures in recent

research to evaluate the printability of a new nickel-based superalloy [54]. The use

of a turbine blade structure was to demonstrate printability of a long thin part (Fig.

2). The nickel-based superalloys are a popular family of materials for turbine blades

due to the ability to maintain their high strength at elevated temperatures and the

high corrosion and fatigue resistance [41].

The blade geometry to be tested in this research is a non-proprietary blade design

created by AFRL for research studies as seen in Figure 3. This blade design has

previously been used by Goldin with the addition of pockets of un-fused powder

inside the blade to study AM unique damping opportunities [50].
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Figure 2. Printed turbine blade sample from ORNL using a new variation of nickel-
based superalloy [1].

12



Figure 3. Research turbine blade of interest.
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2.2.2 FEM Loading

High frequency vibrational inputs compose the majority of external excitation

forces experienced by a turbine blade during operations. In a real-world system, there

are several different frequencies associated with the engine configuration. However,

there is typically one frequency that dominates the excitation. Therefore, frequency

testing of turbine blades traditionally only apply a mono-frequency excitation force

[55].

2.2.3 FEM Meshing

After identifying the geometry, a computer model of the part is analyzed using

the FEM software of choice and the load case is applied. The computer model could

come from the Computer Aided Design (CAD) file used to generate the printed part,

or it could come from a scan of the part after manufacture. To account for part

deformation and inaccuracies in the print geometry, this research will apply both

methods to capture deviations in the printing process. The load case of interest is

applied to the FEM to capture the minimum and maximum stresses in the part,

generating the stress range seen at any given location.

To create an FEM, the element mesh type needs to be defined. There are four com-

mon element types used in literature [10, 56–58] for vibration and fatigue modeling:

linear hexahedron (Lin Hex), quadratic hexahedron (Quad Hex), linear tetrahedral

(Lin Tet), and quadratic tetrahedral (Quad Tet). Below are a few examples of each

type used in similar research.

Chudzik [56] performed roller bearing fatigue predictions with a Lin Hex mesh with

170 thousand elements. Romano et al. [57] modeled a pre-notched, printed tensile test

bar with a Quad Hex mesh with 23 thousand elements to model the fatigue life at the

stress concentration point. At the same time Romano et al. [10] modeled a complex
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AM support structure using 900 thousand Lin Tet elements looking at probability of

failure due to extremely large defects. Finally, Huynh et al. [58] modeled AM micro

trusses under tension fatigue testing using a Quad Tet with 10.5 million elements (14

million nodes).

Each element type has different strengths and deficiencies and must be studied to

determine the best for any given application. The research here will perform a conver-

gence study to identify the best mesh type and number of elements to appropriately

capture the geometry of interest.

2.2.4 Digital Replica Development

There is an underlying assumption that using nominal material properties is suf-

ficient for AM production processes and that printed parts will be identical to the

applied Computer Aided Design (CAD) model. However, the AM process imposes

challenges for predicting how the final component will perform due to process param-

eter controls, feedstock variability, and inherent material deviations.

Before building a digital replica and predicting how a specific AM component

will respond, an understanding of the challenges to build a digital replica are re-

quired. There is significant variation in the material properties in AM influenced

by the applied print parameters [59, 60]. By incorporating those relationships into a

topology problem, the print processing parameters have been shown to change the

optimal solution [61]. In addition to controlling the material properties, the AM pro-

cessing parameters and post-print processing steps create changes from the geometry

described by the CAD model.
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2.3 AM Defects

Defects being studied in this research are naturally generated through the Additive

Manufacturing (AM) process. The AM process has the potential to generate a number

of different defect types that can impact the performance of the final part. Section

2.3.1 reviews the types of defects that the AM process can produce with various steps

that can be applied to mitigate the impacts. Section 2.3.2 discusses how to detect

these defects without destroying the component and the type of data that can be

pulled from the detection process.

2.3.1 Natural Defects

Among the potential defects produced by the AM process are pores, Lack of Fusion

(LOF), balling, residual stresses [2], and surface roughness [3]. Figure 4 depicts five

of the various defect types. Figure 5 depicts how the surface roughness can change

based on the print orientation of the print.

Pores fall into two categories, trapped gas particles, and key hole pores. Gas

pores are typically spherical in nature and form when air particles that are bound to

the powder are released when melted [62] (Fig. 4a). The trapped gas particles form

pockets inside the melt pool and are unable to escape due to rapid solidification of

the structure. Gas porosity is generally the smallest of the voids and is randomly

distributed throughout the part. It is mitigated through control of the powder before

fusion [62]. Key hole pores are generally formed during high energy density exposures

which causes the print material to boil, creating a cavity under the layer (Fig. 4b) [2].

These defects tend to form along the laser path, creating a chain of defects [63].

The LOF defects occur when the energy applied is not sufficient to fully melt the

metal particles in the path. Variations in powder bed thickness and laser parameters

contribute to the formation of this defect (Fig. 4c) [15]. LOF defects are generally the
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Figure 4. LPBF defect: (a) gas porosity, (b) key hole defect, (c) Lack of Fusion (LOF),
(d) balling, (e) crack due to residual stresses [2].

largest of the void defects, creating large flat voids between build layers. The balling

defect occurs when the melt pool becomes elongated. To reduce the surface tension

of the melt pool, it breaks apart in to spherical balls that cool independently, creating

a beaded melt track (Fig. 4d) [64]. The residual stresses in a build are formed during

the localized heating and cooling cycles. The material expands when the laser creates

the melt pool. As it cools, the material contracts, pulling on the already solidified

material close by [16]. Sufficient residual stress causes the material to separate in

extreme cases (Fig. 4e) or creates geometry deformation in lesser cases. Either way,

the tensile residual stresses are detrimental to fatigue life.

Surface roughness is formed by sintering of free particles at the edge of the melt

pool. Overhanging surfaces tend to generate increased roughness because the laser

path passes over a bed of loose powder. Figure 5 depicts the surface of a downward

face (left) and an upward face (right). The downward face gets more partially melted

particles stuck to the part which contribute to surface defects.
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Figure 5. Specimen with a notch indention, the down facing edge (left) shows an
increase in surface roughness over the up facing edge (right) [3].

Printer setting such as laser power, scan rate, spot size, and layer thickness all

impact the quality of any print job [15,65,66]. Due to the layered build structure and

the complex thermal environment of the AM process, structural designs such as print

orientation and the amount of material associated with a print layer also impact the

material properties [3, 41, 67]. Finally post processing steps such as heat treatments

change the material properties [16,18].

With the use of proper printing parameters and appropriate post-processing, many

of these defects can be mitigated. Balling, keyhole defects, and LOF are controlled by

the print settings. Over heating leads to conditions that form keyhole defects and/or

balling of the melt pool, while under heating contributes to LOF defects. However,

the problem is complicated by more than just energy into the system. Sheridan

demonstrated that there is a range of Volume Energy Densities (VEDs) that produce

a high-density part based on changes in the power input and layer thickness in Fig.

6 [4].

Residual stresses are mitigated by a stress relief heat treatment and machining

processes such as grinding to remove stressed layers [16]. Machining processes are

also a good method for cleaning up surface roughness by removing the partially fused
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Figure 6. Plot of mean density vs Volume Energy Density (VED). Different processing
parameters of power (Q) and layer thickness (LT) shift the optimal VED [4].

particles from the surface.

This research is interested in how the voids generated during the build process

impact the fatigue life. The primary focus will be on porous defects that occur

during standard build parameters such as trapped gas pockets and LOF. Optimal

print parameters will be used to minimize the probability of key holing or balling in

this research, and residual stresses and surface roughness will be managed through

post process treatments.
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2.3.2 Defect Mapping

Knowing that the defects exist requires some method of characterizing the size

and location of these voids. The defect distributions that have been generated are

region agnostic and almost invariably utilize Computed Tomography (CT) scans [8,

10, 15, 50, 57, 68–70]. The process shoots X-rays through the component at different

angles and measures the changes in density though the structure. Due to the complex

nature of AM, a defect map is only applicable for a single geometry with the exact

processing parameters on one machine. Gumpinger noted differences in critical defect

sizes and surface roughness between components printed with a contour pattern and

those without [70].

Figure 7. a) Experimentally captured killer defects with estimated extreme value dis-
tributions for the surface and interior. b) Defect size converted to SIF [5]

Romano et al. demonstrated extreme value distribution differences between de-

fects near the surface and defects in the core using printed AlSi10Mg. Figure 7a

showed different defect distributions between the surface and interior. The term

“Killer size” refered to the initial defect that propagated to failure. While the largest

defects were more likely to occur on interior locations for the tensile bars measured, a

surface defect was nearly always the cause of failure. Figure 7b translated the defect
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sizes to Stress Intensity Factor (SIF) showing that the higher SIF on the surface of

the tensile bars made surface defects the most likely source of failure [5].

The CT scan data describes the range of defect sizes present in a component and

where each defect is located. By separating defects by the print setting that generated

them, different defect distributions can be created. A defect density distribution

allows for statistical modeling of defect sizes that could exist based on the structure,

processing parameters, and machine used.

2.4 Fatigue Life

The material fatigue properties of the part drive the output from the chosen

fatigue life defect model. An understanding of fatigue life and how the AM process

impacts traditional fatigue life models is vital to developing an improved fatigue life

prediction. Section 2.4.1 covers the basics of material fatigue life. Section 2.4.2

discusses how the defects introduced by the AM process can impact the fatigue life.

Section 2.4.3 touches on how AM processing choices can affect the material properties.

2.4.1 Fatigue Life Concepts

There are three primary factors to determining the fatigue life of a component:

the size of the defect being analyzed, the applied stress to the component, and a

shape factor which includes the geometry and depth of the defect being analyzed.

The simplest fatigue life model is the Basquin Equation (Eq. 1) which assumes the

initial defect size and shape are small enough to not contribute to the fatigue life,

leaving a fatigue life equation that is only dependent on the maximum applied stress.

This creates the traditional S-N curve (Fig. 8) which is purely material dependent

with no input from the structure being used. The S-N curve denotes the number of

cycles a given material should survive before failure. The Basquin Equation is a fit
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to experimental data to predict the maximum stress for a desired number of cycles

within the finite life range of the material. In Equation 1, A and b are crack growth

material constants [71]. N is the desired life (Fig. 8, X-axis), and σmax,N is the

maximum stress (Fig. 8, Y-axis). The Basquin Equation only fits the region of Fig.

8 labeled “Finite Life” between the yield stress (Smax) and the fatigue limit (Sf ) and

does not capture the roll over to yield stress at the top or the roll over to the fatigue

limit at the bottom.

σmax,N = AN b (1)

Figure 8. Generic S-N Curve [6].

Equation 1 gives the stress value in terms of maximum stress. To convert to a

stress range, Equation 2 is applied, creating Equation 3. The conversion between

maximum stress and the applied stress range (∆σN) is based on the applied stress

ratio (R).
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∆σN = (1−R)σmax,N (2)

∆σ0,N = A(1−R)N b (3)

The stress ratio introduces a load type dependence on the fatigue properties and

is described by Equation 4. σmin and σmax define the lowest and highest experienced

stresses over one load cycle. In a fully reversed loading scenario, such as vibrational

loading, σmin = −σmax, and R = −1. In tension-tension load cases, R will be a

positive number between 0 and 1 [7].

R =
σmin

σmax

(4)

For infinite fatigue life modeling, the fatigue limit (σ0) and fatigue limit range

(∆σ0) are the important values from the S-N curve. For finite fatigue life modeling,

the above equations (Eq. 1-4) are used to calculate the critical stress range (∆σN)

based on the desired component life.

Another important fatigue life model is the Paris Law (Eq. 5). This model

incorporates an initial defect size, stress, and shape factor into the Stress Intensity

Factor (SIF) (Eq. 6) to predict the crack growth rate. The model assumes that

Linear Elastic Fracture Mechanics (LEFM) is the dominant cause of failure and that

the crack growth rate is log-linear to the SIF.

da

dN
= C∆Kn (5)

Figure 9 denotes a typical crack growth chart for metals. Region I is crack initia-

tion, region II is crack growth, and region III is the final rupture.

The crack growth in region II is generally modeled by the Paris Law, where C and
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Figure 9. Typical crack growth behavior for metals [7].

n are material constants determined by sample testing. The Paris Law is a simplified

fit of the slope relating the Stress Intensity Factor (SIF) to the change in crack length

per change in number of cycles.

∆K is the SIF, and describes the relationship between the applied load, defect size,

and defect location as shown in Eq. 6 [7]. Y is the shape factor of the defect and is

governed by shape and location of the defect in question. ∆σ is the stress experienced

by the defect perpendicular to the crack growth direction and is governed by the load

case and part geometry. a is the initial defect size.

∆K = Y∆σ
√
πa (6)
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The crack growth chart for a given material (Fig. 9) allows the extraction of the

threshold SIF (∆KTH) and the fracture SIF (∆K1C). ∆KTH is the SIF value below

which cracks do not propagate and is used for infinite life modeling. ∆K1C is the SIF

where final rupture occurs.

The shape factor (Y ) associated with each defect has a location dependence based

on the defect’s ability to interact with the surface of the part. Murakami demonstrated

that for internal porous defects, a shape factor of 0.5 was appropriate, and for porous

defects near the surface, a shape factor of 0.65 was appropriate [72]. Equation 7

defines the boundary for when a defect can be considered a surface flaw versus an

internal flaw [5]. When the ratio of radius of the defect, r, divided by the distance

from the defect center to surface, h, is greater than 0.8, then the defect in question

may be treated as a surface flaw [73].

r/h ≥ 0.8 (7)

2.4.2 AM Variations

The AM process introduces several new variables in generating a standard S-N

curve. Due to the stochastic nature of the defect formations with respect to size

and location within an AM production, AM Stress to Life (S-N) curves have signif-

icant variation with defect sizes being one of the contributing factors [38, 70, 74, 75].

Additional variables are print orientation and post-processing steps.

Beretta et al. studied the effects of print orientation on AlSi10Mg using a three-

point bending fatigue specimen using 86 specimens printed across the five different

orientations [8]. Figure 10 depicts the print orientation for each test series. The data

from each orientation generated a different S-N curve. The variations in the S-N

curves, where the only manufacturing difference was the orientation of build, were
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Figure 10. Variations of the S-N Curve for AlSi10Mg due to variations in the print
orientation. Parts were tested “as-built” with no surface cleaning or heat treatment [8].

primarily attributed to surface roughness, with a secondary impact from residual

stresses in the “as-built” components. The spread of S-N curves from 140 MPa delta

stress fatigue limit down to 50 MPa delta stress fatigue limit correlates to the surface

roughness along the sample curve radius. The samples with overhangs (series C &

D) printed rougher surfaces due to the orientation which translated to large surface

flaws that form into crack initiation sites, and have correspondingly lower fatigue

limit values. A similar test campaign with axial fatigue test specimens using printed

aluminum also generated different S-N curves for different print orientations. For this
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case, the variation in fatigue life predictions was tied to the fatal defect sizes, where

one orientation formed larger defects than the other [38].

Sheridan studied the effects of defect size on heat treated, machined IN718 ten-

sion fatigue specimens, and demonstrated a trend that as the maximum defect size

decreased, the S-N curves for IN718 approach the fatigue performance for wrought

IN718 as shown in Figure 11 [4]. By machining the fatigue bar surfaces, AM surface

roughness was removed as a factor, and internal defects dominated failure. This trend

allows for the use of wrought material properties for defect free predictions.

Figure 11. Fatigue stress vs number of cycles for IN718 samples. Data point coloration
corresponds to the maximum defect size in the part [4].

Taylor et al. studied the effects of microstructure on short cracks, and found that

grain size tends to impact crack growth behavior to approximately three times the

grain size. Beyond that point, long crack growth dominates and the Paris Law fits

the data well [76].
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Experimental work using nickel-based superalloy 718 demonstrated that AM fa-

tigue life failures were not always controlled by LEFM. Identical specimens from one

build plate failed due to defects less than 50 µm and performed near the Basquin

Equation or failed due to defects greater than 100 µm and were dominated by the

Paris Law [77]. The test data suggested that both models must be considered when

studying fatigue life. For AM components where defects are widely prevalent and

failure defect size can vary greatly, a blending is needed to improve fatigue life pre-

dictions.

2.4.3 Material Properties

The fatigue resistance properties of AM materials have been studied extensively.

The properties of an AM material vary based on the processing parameters used, part

geometry, orientation, and post-processing steps [4, 8, 68–70, 78]. Sheridan’s research

indicates that wrought material properties for IN718 are a good estimate for a defect

free AM IN718 [4]. The study of how the material properties vary is outside the

scope of this research. Here the samples being tested will be stress relieved, polished,

and age hardened using standard processes for IN718. The crack growth material

properties used by Sheridan [11] for IN718 as shown in Table 1 will be utilized as the

starting point until material testing provides data specific to the AM build.

A b γ C C0 n m
4623.4 -0.1558 0.3727 1× 10−13 1.25× 10−14 4 0.75

Table 1. Model constants for the Basquin Equation (Eq. 1) and Paris Law (Eq. 5)
assuming defect free wrought material properties based off fit data by Sheridan [11].

2.5 Fatigue Life Modeling of AM Materials

Numerous research efforts have looked at how AM performs in uni-axial fatigue

testing in the presence of defects [3,4,8,18]. Initial fatigue life models focused on the

28



infinite life boundary [21, 22]. In recent years work has begun to focus on defining

the fatigue life for finite life problems with respect to AM defects [11]. Section 2.5.1

reviews the development of the Kitagawa and Takahashi diagram as well as the El-

Haddad model. Section 2.5.2 discusses how defects from the AM process are applied to

the models. Section 2.5.3 highlights recent research with infinite fatigue life modeling,

and section 2.5.4 extends the research to include finite fatigue life modeling.

2.5.1 Fatigue Life Model Development With Defects

Infinite life modeling of components begins with Kitagawa and Takahashi who

developed the KT model for infinite life as a piece wise function as seen in Figure 12.

Line 1 is a horizontal line that represents the fatigue limit stress of the material. Line

2 defines a constant SIF curve per Equation 8. ∆KTH replaces ∆K in Equation 6,

and is then rearranged to solve for the stress range, ∆σ. The SIF threshold (∆KTH)

from the material crack growth charts defines the boundary where any SIF larger will

grow cracks.

∆σ =
∆KTH

Y
√
πa

(8)

Any defect predicted to be in the bottom left quadrant is modeled to have infinite

life due to a lack of crack growth potential. Stress ranges above ∆σ0 are predicted to

fail based on material fatigue properties. Defects to the right of the SIF Equation fall

in the constant crack growth region governed by the Paris Law from Equation 5 [21].

El-Haddad modified the KT model to put both piece functions into a single equa-

tion that includes a transition region where virgin material properties and defect

growth properties are blended together. The El-Haddad model used Eq. 9 to define

an infinite life boundary based on defect size and the maximum applied stress to

determine if a component is susceptible to failure [9, 22] as seen in Figure 12 line 3.
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Figure 12. KT model and El-Haddad model for infinite fatigue life. Curve 1) The
material fatigue limit. Curve 2) the LEFM crack growth rate. Curve 3) The El-Haddad
curve to asymtotically approach curves 1 & 2 Plotted curves use printed IN718 material
properties.

∆σ = ∆σ0

√
a0

a+ a0
(9)

In Equation 9, ∆σ0 is the defect-free stress range that corresponds to the stress

fatigue limit; a0 is the critical crack length and a is length of the crack of interest.

The critical crack length is calculated by solving for the intersection of the two KT

lines. Rearranging Eq. 8 for a, and putting ∆σ0 in place for ∆σ yields Equation 10

where a turns into a0. This is the defining point where LEFM becomes the dominate

crack growth process for the fatigue life. In the KT model, a0 is a hard transition

point. In the El-Haddad model, both failure methods are important in the region
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around the critical crack length. When the defect being analyzed is significantly

smaller than the critical crack size, the material stress fatigue limit dictates if a

defect will grow into a crack and cause failure. As the initial defect size increases, the

model becomes dominated by LEFM to determine the defect sizes that could grow

to failure.

a0 = (
∆KTH

Y∆σ0

)2
1

π
(10)

Aigner et al. performed a side-by-side comparison of the KT model with the El-

Haddad model for Single Edge Notched Bending (SENB) samples of cast aluminum

as seen in Figure 13. The triangular data points represented samples that never

failed, and the circles, diamonds, and x’s represent the samples that failed. Within

the transition region around the critical crack length, the El-Haddad model was more

accurate than the KT model at predicting if the sample would fail [9]. Any point below

the respective curves should have hit runout. The majority of the failure samples fell

below the KT (not predicted to fail) and above the El-Haddad curve (predicted to

fail).

Both the KT model and El-Haddad model were built to account for any type

of defect using the material crack growth properties and have a dependence on the

load ratio (R) that is applied. The models define the boundary between the infinite

and finite fatigue life based on the cyclic stress range and the crack size found on a

part [21]. The El-Haddad model has been demonstrated to be a reasonable estimation

for the boundary between fatigue limit behavior and finite life through extensive uni-

axial tension testing [5, 9, 23].
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Figure 13. Comparison of KT and El-Haddad models for cast aluminum samples [9].

2.5.2 Modeling of AM Defects

To study the effects of AM defects on fatigue life Beretta et al. modified the

El-Haddad Equation (Eq. 9) based on the work by Murakami which estimated crack

length for an arbitrary crack shape as the square root of the defect area as projected

onto the plane normal to the principal stress [72]. The modified El-Haddad Equation

replaces a0 & a with
√
area0 &

√
area to form Equation 11 [79].

∆σ = ∆σ0

√ √
area0√

area+
√
area0

(11)

When applied to AM defects, the
√
area terms in Equation 11 is used to convert

the cross-sectional area of an AM defect into a length term which can be applied to
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Equations 9 & 10 exactly like any other defect. This adaptation to the El-Haddad

Equation is used widely when studying AM defects with respect to fatigue life to

simplify defect size estimation for LOF defects that can be have highly irregular

geometries [9–11].

2.5.3 Infinite Fatigue Life Research

Romano et al. [10, 57] have been studying the probability of failure based on

extreme value defect size distributions and the probability that a large enough defect

will be created at the stress concentration point, causing eventual fracture. These

models created binary fatigue failure predictions based solely on material properties

with the assumption that component failure occurred at the point of maximum stress.

Figure 14 is the process map used by Romano et al. outlining the steps needed when

applying PRObabilistic Fatigue Assessment of Components with dEfects (ProFACE)

to estimate the probability of failure. This approach used the extreme value defect

distribution, FEM, and material properties as the inputs to the fatigue life model to

predict the critical defect size and probability of failure at the stress concentration

point.

Figure 14. ProFACE modeling of critical defects [10].
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2.5.4 Finite Fatigue Life Model Development

Recent developments to the El-Haddad fatigue life model led to a finite fatigue life

version by applying Linear Elastic Fracture Mechanics (LEFM). The model updates

enabled the predictions of the finite life boundaries by applying the functional applied

stress as defined by the Basquin Equation (Eq. 1) in place of the fatigue limit (∆σ0)

and modifying how the critical crack length (a0) is calculated [11]. Using the Basquin

Equation (Eq. 1) from the S-N curve, ∆σN can be calculated for a defined finite

life. Equation 12, which predicts an initial crack length that will reach fracture after

N cycles, is created by integrating the Paris Law (Eq. 5) and separating the crack

length (a) and the number of cycles (N). The critical defect size (a0,N), which defines

the transition between material limited fatigue behavior and LEFM behavior is aN

from Equation 12 [11].

aN = (a
1−n

2
c −N(1− n

2
)C0(Y∆σN

√
π)n)

1
1−n

2 (12)

C0 & n are material properties, and Y is the shape factor for the defect of interest.

ac is the critical crack length when failure occurs, and can be calculated using Equa-

tion 13 which takes Equation 10 and replaces ∆KTH with ∆K1C of the material and

Y with 1.12, which is the shape factor for a through crack that touches the surface.

ac = (
∆K1C

1.12∆σ0

)2
1

π
(13)

Figure 15 depicts the finite life models and collected experimental data that Sheri-

dan compiled [11]. The El-Haddad formulation from Equation 11 turns into Equation

14, where the “N” subscript denotes the desired design life.

∆σN = ∆σ0,N

√ √
area0,N√

area+
√
area0,N

(14)
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Figure 15. Modified El-Haddad model for finite life. The stress ratio, R, and the design
life are the driving factors for determining the allowable defect size for a part [11].

Under the Murakami assumption that
√
Area is equivalent to defect size, Equation

14 is simplified to Equation 15. The allowable stress range (∆σ) became an explicit

function of defect size (a) and the desired design life (N), but there is also an implicit

dependency on the designed stress ratio (R) which shows up in Figure 15. The finite

model development was built on the foundation of uni-axial tension testing with a

uniform stress field.

∆σ = ∆σ0,N

√
a0,N

a+ a0,N
(15)
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2.6 Summary

Chapter II covered FEM development, AM defects and impacts, fatigue life mod-

eling, and the development from infinite life research to finite life research. The work

by Romano et al. [10] is the nearest literature to the goals of this research. Where

Romano applied the defect distribution and FEM to the fatigue life model to predict

probability of failure, this research is interested in predicting the critical defect size

and location combinations that would result in a particular finite life prediction based

on the FEM and finite life fatigue model. Using the material fatigue property equa-

tions from section 2.4.1 and the finite fatigue life model discussed in section 2.5.4,

this research evaluated and extended the work from a uniform stress field to a vari-

able, multi-axis stress field, highlighting the importance of where a defect is formed

in addition to the size of any given defect. Sheridan’s finite fatigue life model [11] was

combined with Finite Element Analysis (FEA) to incorporate geometric considera-

tions in addition to the material properties. The FEA inclusion built the relationship

between defect locations and applied stress, removing the need to assume that failure

would always occur at the maximum stress location. Experimental data demonstrated

that failures could initiate from locations with stress values as low as 50% of the max-

imum applied stress. This made component geometry an important consideration in

fatigue life predictions. Improved accuracy in the predicted stress distributions also

enabled crack initiation predictions [77]. This final version of the fatigue life model

relied on the ability to accurately predict the stress values across the geometry for a

given load case.
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III. FEM Validation

3.1 Overview

This chapter develops an understanding of how changes to the component geom-

etry and applied material properties due to printing and post-treatment steps from

the designed model impact the FEM frequency and stress/strain values. The research

experimentally measured the geometry deformations and material properties to pro-

duce digital replica FEMs of AM turbine blades, reducing the associated error with

predicting the applied stress at any given location.

This research utilized a generic turbine blade design developed by Air Force Re-

search Labs to be a structural representative of an airfoil without optimization for

aerodynamics (Fig. 16). Prior research with the turbine blade design scaled the

blade to optimize vibrational testing when exciting the second bending mode [50].

Using the same blade design and scaling, this work created digital replica models to

account for the production variations associated with AM processing. The digital

replica models were developed through three phases:

• Convergence study

• Hardware characterization

• Experimental validation

The convergence study informed on the required mesh sizing and element selec-

tion to create the initial FEM. Nominal wrought material properties were applied

to a simplified blade geometry. Mesh type and density was selected based on the

convergence of the natural frequencies and the stress values associated with the first

three modes.
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Figure 16. CAD geometry for the generic turbine blade.

The hardware characterization analyzed physical specimens to modify the initial

FEM into digital replicas. Round fatigue bar specimens printed on the same build

plate as the turbine blades were analyzed to adjust the material properties of density
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and Young’s Modulus. These parameters controlled the FEM vibrational responses.

Structured light scanning of the printed turbine blades generated the variations be-

tween the “as-designed” CAD geometry and the final hardware dimensions. The

structured light scanning has been applied to individual turbine blades to incorpo-

rate geometric damage into the models [80]. The process has also been applied to

integrally bladed rotors to fine tune the vibrational response due to minor variations

between integrated blades [81]. Application of the measured material properties and

final hardware geometries created the unique digital replicas which were each linked

to a single hardware component.

The experimental validation compared bench testing of the printed turbine blades

against their digital replicas to quantify the model improvements related to the hard-

ware characterization. The validation process studied the final mass and volume of

the digital replicas against the hardware to verify the applied density values. Natu-

ral frequency assessments quantified the impacts to frequency predictions from both

the material properties and the geometric variations. Finally, strain gauge data at

select locations informed on the ability of the digital replicas to generate an accurate

stress/strain map with respect to each turbine blade’s unique geometry.

This work created digital replicas of AM turbine blades and quantified how varia-

tions due to AM production impacted FEM development. Developing the understand-

ing of how AM deviations impact FEM predictions is the first step to understanding

the critical parameters to monitor for a digital twin. The replicas were experimentally

validated through vibrational blade testing. With the objective of applying these dig-

ital replicas to improve fatigue life predictive capabilities, matching the model stress

maps to the experimental data was the most critical of the validation steps. These

validated models can also be applied to size and shape optimizations for satisfying

vibration and strength requirements.
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3.2 Finite Element Model Development

The first phase developed the “as-designed” FEM based on nominal wrought ma-

terial properties and the CAD based geometry using quadratic hexahedron elements

(C3D20R) within the Abaqus software. A simplified turbine blade geometry formed

the base of the FEM development (Fig. 17A). Upon completion of the convergence

study to size the meshing based on frequency and stress convergence, the simplified

CAD geometry was meshed (Fig. 17B). By morphing the simplified turbine blade

FEM (Fig. 17B) against the full CAD model (Fig. 17C), idealized FEM of the tur-

bine blades was built. Mesh refinements were applied to the edges and base of the

turbine blade mesh to improve the morphing accuracy along the regions of large cur-

vature changes (Fig. 17D). This final FEM was the baseline model used to develop

the turbine blade digital replicas.

Figure 17. A) simplified turbine blade CAD file. The blade is reduced to a tapering
rectangle with a 40 degree twist. B) Hex Mesh of the simplified blade. C) Original
turbine blade design. D) Final morphed mesh to match the turbine blade geometry.
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3.2.1 Convergence Study

The optimum FEM mesh type and element size was determined through a conver-

gence study. Using Abaqus 6.14, four different solid 3-D element types were studied:

a reduced integration Linear Hexahedron (C3D8R), a reduced integration Quadratic

Hexahedron (C3D20R), a Linear Tetrahedral (C3D4), and a Quadratic Tetrahedral

(C3D10). Every case was subject to a frequency analysis. The convergence was

performed on the simplified turbine blade mesh (Fig. 17B) without the grip section.

The base of the blade was fully constrained against translation across the surface that

would connect to the grip. This simplification assumed that the grip would have no

measurable impact on the frequency response of the blade. The grip was designed to

be clamped on top and bottom during experimentation, and was significantly thicker

than the base of the blade to prevent any strain within that region. The simplified

blade geometry also significantly reduced the computation time for the convergence

study enabling more cases to be run.

The frequency convergence for each mesh type was analyzed based on the first

three vibrational modes. Figure 18 depicts the frequency and bound vibrational

stress convergence for each case. The mesh density was converted to a total number

of nodes applied in the mesh. A power law curve to predict the FEM response for

each element type based on the mesh density was fit to the results. By averaging

the limit of each curve fit as it approached infinity, an assumed truth value was

generated for the frequency and stress value of each mode. Finally, a 5% error band

was placed around these assumed truth values to depict the level of accuracy in the

mesh convergence. For the natural frequencies (Fig. 18A-C), the quadratic elements

converged very quickly, where only 1,000 nodes were needed to get within 5% of the

steady state values. In comparison, the linear elements needed almost 40,000 nodes

to converge across the first three modes.
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Figure 18. Convergence study of the simplified turbine blade for the first three modes.
A-C: frequency convergence. D-F: stress convergence.

In addition to generating a mesh that accurately represented the vibrational re-

sponse, the mesh also needed to accurately capture the stress response of the turbine

blade. Figure 18D-F shows the convergence of the stress at one point along the blade.

The maximum stress point was not used here due to the singularity from the simplified

blade boundary conditions. Instead, a point approximately two thirds of the blade

length from the root of the turbine blade was used. This point was a local maximum
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associated with the second bending mode. Due to the selected evaluation point, the

calculated stresses for mode 1 (Fig. 18D) and 3 (Fig. 18F) never came within 5% of

the projected ideal values. For the mode 2 stress convergence, the quadratic elements

needed at least 25,000 nodes to reach the 5% error band. In comparison, the Linear

Hexahedron element needed approximately 50,000 nodes, and the Linear Tetrahedral

element needed over 200,000 nodes.

The convergence study concluded that above 25,000 nodes, either of the quadratic

element types are accurate, and above 200,000 nodes the element selection became

user preference. The final considerations for element selection came down to ease of

application. Within Abaqus, the hexaherdon elements were easier to apply across the

whole geometry (blade and grip) and the quadratic elements offered more flexibility

for the morphing software to match the CAD surface.

The final applied mesh was the Quadratic Hexahedron element type (C3D20R)

with an average element size of 2.2× 109 µm3 (approximately 1.3 mm per side). The

mesh was applied to simplified CAD geometry to create a baseline turbine blade FEM

(Fig. 17B). Figure 17B was morphed using FEMorph against the target surface of

the CAD model (Fig. 17C) to align the FEM with the “as-designed” geometry. The

morphed FEM was further refined along the base of the blade, trailing edge, and

leading edge to an average size of 6.2 × 107 µm3 (approximately 0.4 mm per side).

The mesh refinements improved the geometric fit with respect to the fine features in

those regions. The final mesh (Fig. 17D) had 944,021 total nodes across the blade

and grip sections. Of those nodes, 210,652 were contained in the blade. With this

element type and node count, the frequencies have converged and the stress for mode

2 was within 2% of the predictive convergence value. This mesh was the “as-designed”

FEM or CAD based FEM which created a predictive baseline. While the grip was

not critical for the convergence study, it was vital for the model verification. The grip
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defined a common origin for hardware characterization and validation steps.

3.2.2 Frequency Analysis

A modal frequency analysis was performed on the CAD based FEM to predict

the first five natural frequencies and to estimate the modal stresses associated with

the mode shape displacements as shown in Fig. 19. The applied material properties

to the initial FEM used the wrought material properties of Inconnel alloy 718. As

seen in Figure 11, when the print quality of AM components improves, the material

properties approach wrought properties [75]. By starting with the nominal wrought

material properties, assessments were made on the importance of accurate material

properties for AM builds. The nominal material properties applied to this research

were density of 8.22 g/cm3, Young’s Modulus of 199.9 GPa, and Poisson’s Ratio of

0.294 [82].

Figure 19. A) Base Mesh: no deformation. B) Mode 1: first bending. C) Mode 2:
second bending. D) Mode 3: first torsion. E) Mode 4: third bending. F) Mode 5:
second torsion.

Modes 1, 2, & 4 (Fig. 19B, C, & E) were the first three bending modes where

the blade flexes along the ± Y-axis. Modes 3 & 5 (Fig. 19D & F) were the first and

second torsion modes rotating the blade around the Z-axis.

44



3.3 Hardware Characterization

The “as-designed” FEM from phase one assumed the hardware was perfect to the

design. However, the AM process introduced uncertainties in the material properties

and created deviations from the baseline model geometry. The AM process had

variations in the added material due to powder distributions and variations in the laser

controls. There were additional variations in the component geometries during post

processing while improving the surface finishes. To effectively utilize the FEM, the

model needed to be adjusted based on the built components. Phase two controlled the

input variables of material properties for printed IN718 (density, Young’s Modulus,

and the Poisson Ratio) and variations in the final geometry of each printed blade

from the original design.

A total of eighteen cylinders and ten turbine blades were Additively Manufactured

from nickel-based superalloy 718 on an M2 Cusing Laser Powder Bed Fusion (LPBF)

printer. All specimens were annealed at 1000◦C for one hour and then left to oven cool

back to room temperature. The specimens were then separated from the build plate by

wire Electrical Discharge Machining (EDM). The cylinders were machined according

to ASTM E466-15 [12] to create fatigue bar specimens (Fig. 20) and the turbine blades

were ground smooth to remove the AM surface roughness as described in [77]. Finally,

all of the samples were heated to 718◦C and held for eight hours, cooled to 621◦C

and held for another eight hours, and finally air cooled to age harden the material.

Three of the fatigue bars were selected to characterize the material properties of

density and Young’s Modulus. Each turbine blade underwent Advanced Topology

Optimalogy System (ATOS) scans to create a unique digital surface model for each

turbine blade. The ATOS scans are a 3-D structured light scanning process which

produced a point cloud corresponding to the components’ surface geometries [83].

The structured light scans have been used in prior turbine blade research with a scan
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accuracy of less than 8 µm to the target surfaces [80,81].

Figure 20. Fatigue bar geometry designed in accordance with ASTM E466-15 [12].

3.3.1 Material Properties

In powder based AM printers, parameters such as laser power, beam width, pow-

der size, scan speed, and even print orientation have been shown to create different ma-

terial properties for the same alloy [15,18,41,67,84]. After the print, post-processing

steps further modified the material properties [17, 69, 85]. To understand how the

applied print parameters and post-processing steps impacted the material properties,

specimen from the same build plate were selected to measure the final properties for

the AM samples.

The three selected fatigue bars (specimens 0, 11, & 14) were weighed to an accu-

racy of 1 mg and the volume measured by water displacement in a graduated cylinder

to an accuracy of 0.5 mL. Averaging the results across the three specimens yielded

a density of 8.19 g/cm3 with a standard deviation of 0.032 g/cm3. The measured
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density was 0.4% lower than the cited wrought density, with one of the three mea-

surements slightly above the nominal wrought density. Through these measurements,

a Student T-test produced a probability of 0.316 that the measured densities and the

wrought density value came from the same distribution. There was insufficient evi-

dence to say if the AM printed material had a statistically different density from the

wrought material.

Figure 21. Stress-Strain curves from the monotonic testing.

Next the fatigue bar specimens were placed in an 810 MTS Load Frame with a

100kN Load Cell. Each specimen was instrumented with an MTS axial extensiometer

(model #634.12E-24) with spring clip attachments and subject to a monotonic test to

measure Young’s Modulus. Figure 21 depicts the Stress-Strain curve generated from

each specimen. Young’s Modulus averaged 159.1 GPa with a standard deviation of

4.1 GPa across the three samples. Performing a Student T-test with the three spec-
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imen measurements against the wrought material property of 199.9 GPa generated

a probability of 0.0069 that the measured Young’s Modulus values and the wrought

value came from the same distribution. At an alpha of 0.01, the probability rejected

the hypothesis that the measured values for Young’s Modulus came from the same

population as the wrought value for Young’s Modulus.

Poisson’s Ratio was not measured in these experiments and was assumed to remain

at the wrought property of 0.294. Applying the measured material properties to the

CAD based FEM reduced the natural frequencies in Figure 19 by 10%. Table 3 shows

the new values for modes 1 & 2 with respect to the changes in material properties.

3.3.2 Geometric Deformations

Figure 22. Heat maps between the Turbine Blade unique FEM surfaces and the average
of the ATOS scanned surfaces. Red and blue areas depict where the morphed mesh
was respectively above or below the scanned surface. Green areas depict where there
is no variation.

Due to the rapid heating and cooling of material at localized points during the AM

Process, printed specimen are subject to high levels of internal residual stresses that
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cause deformations from the original design [16]. The machining process to reduce

the surface roughness of the blade surfaces also added a level of uncertainty to the

final shape and size of the turbine blades in relationship to the CAD design. These

factors led to variations in material distribution between the printed samples and the

total material in each turbine blade.

To quantify the differences between each turbine blade and the CAD model used

in the AM process, each blade was subjected to an ATOS scan to accurately map the

final surfaces. Three independent scans were taken for each of the ten blades. The

average of the three scans created the unique blade surface. Applying the blade grip

as the common reference point between surface scans and the FEM model (Fig. 17D),

FEMorph re-shaped the final mesh according to the scanned surface profiles, creating

a new unique FEM for each turbine blade. Across the ten blades, the mean geomet-

ric variation between the morphed FEM surfaces and the average of their scanned

surfaces was 25 µm with a standard deviation of 5.5 µm. The maximum variation

between the scanned surfaces and the morphed FEM geometry was 76 µm. Figure

22 is the comparison between the morphed meshes and the average of their surface

scans. While the location of maximum variation was different for each mesh/scan

pair, the largest discrepancies were always found in areas where the surface rapidly

changed direction such as the blade edges, blade tip, and the base of the blade.

When the unique FEM surfaces were compared against the original CAD geometry

(Fig. 23) with the grip region as the common reference point, the mean geometric

variation across an individual blade increased to 315 µm with a standard deviation

of 8.9 µm. The largest variation between the morphed FEMs and the CAD geometry

was 762 µm. Figure 22 highlights the magnitude of the variation between the CAD

geometry and the morphed FEMs. Where Figure 22 demonstrated that a level of

variation remained between the ATOS surface scans and the morphed FEMs, that
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Figure 23. Heat maps between the Turbine Blade unique FEM surfaces and the CAD
geometry. Red and blue areas depict where the morphed mesh was respectively above
or below the scanned surface. Green areas depict where there was little to no varia-
tion. Each turbine blade demonstrated a consistent deviation from the CAD design,
suggesting a repeat-ability to the final design with the applied processing steps.

variation was insignificant compared to the deviations between the CAD design and

the final FEM geometries. Across all ten blades, the point of maximum variation

was always at the top right corner of the turbine blade. The processing steps that

generated the deviations from the CAD design proved to be consistent and repeatable

for each hardware sample. That corner of the scanned blade surface deformed off of

the CAD design between 300 µm and 762 µm. The CAD design was approximately

310 µm thick at the corresponding blade corner, making this distortion one to two

corner thicknesses different from the designed geometry.

By morphing the CAD based FEM to match the ATOS scanned unique blade

geometries and applying the measured material properties to each turbine blade FEM,

a digital replica model was created for each AM turbine blade test specimen. The

digital replicas generated unique natural frequencies, stress maps, and peak stress
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locations. The concept was that a more accurate FEM model would produce a better

representation of the hardware. For the desired fatigue life modeling, the stress

mapping capabilities of the digital replica FEMs was the highest priority. The next

step was validation that the generated digital replicas improved the representation of

their hardware counterparts.

3.4 Digital Replica Validation

The final phase of the digital replica development was validation of the digital

replica models against bench testing of the turbine blade hardware. To validate the

digital replicas, the parameters of mass, volume, natural frequencies, and strain ratios

were studied to quantify how much the digital replica process improved the software

to hardware relationship.

3.4.1 Physical Variations

Finite Element Models Hardware
Wrought Mass

(g)
Printed Mass

(g)
Volume
(mm3)

Mass
(g)

Volume
(mm3)

CAD 529 527 64356.98 - -
Blade 01 495 493 60234.59 490 59845.61
Blade 02 495 494 60258.18 492 59785.49
Blade 03 495 494 60279.16 492 59837.36
Blade 04 494 492 60115.61 492 59671.88
Blade 05 494 492 60105.62 492 59651.01
Blade 06 496 495 60398.46 484 59957.17
Blade 07 496 494 60341.59 492 59872.46
Blade 08 496 494 60345.69 492 59893.43
Blade 09 496 494 60291.94 494 59821.73
Blade 10 494 492 60087.43 492 59797.50

Sample Mean 495.1 493.4 60245.83 491.2 59813.36
Sample Std Dev 0.88 1.08 109.37 2.70 94.09

Table 2. Mass and volume data for each model and measured data from the printed
turbine blade specimen.
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Table 2 is the mass and volume associated with each model. Applying a Student

T-test between the digital replica FEM masses using the wrought density and the

measured print density (Fig. 24A) generated a probability of 5.52 × 10−4 that the

masses are from the same distribution. While the overall mass change due to the

different densities was on the order of 1-2 grams, there were sufficient samples to

demonstrate a statistically different mass distribution for the unique geometry FEMs

between applying the nominal wrought density and the AM print density to the

FEM volumes. Applying the same test between the digital replica FEMs with the

printed material properties and the measured mass of the printed turbine blades

(Fig. 24A) generated a probability of 0.014, which is not statistically significant

with the desired alpha of 0.01. This demonstrated that while the change in density

between the wrought and printed material was determined statistically insignificant,

the small change in density created a statistically measurable difference in replicating

the hardware masses in the digital replica models.

Looking at the total component volume, both the FEM volumes and the measured

hardware volumes were statistically smaller than the CAD designed volume. This

confirmed that a significant volume was lost through the print and post-processing

steps. The comparison between the digital replica volumes and the measured hard-

ware volumes produced a probability of 1.01 × 10−8 that the measurements came

from the same distribution. Figure 24B depicts the distribution functions from the

digital replicas and the scan volumes. While the probability of the digital replica vol-

umes and measured hardware volumes were not considered statistically significant,

the digital replicas demonstrated a large improvement over using the “as-designed”

geometry volume.

Finally, with both mass and volume measured for the turbine blades, the density

of each turbine blade was re-evaluated. Across the ten specimen, the density averaged
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Figure 24. A) Mass distributions using the digital replicas with the wrought mate-
rial properties, digital replicas with the measured material properties, and hardware
measurements. B) Volume distributions between the digital replica FEMs and the
measured ATOS scan volumes.

8.21 g/cm3 with a standard deviation of 0.05 g/cm3. While marginally closer to the

wrought material properties than the fatigue bar based measured material properties,

there is no statistical relevance between the density distributions.

3.4.2 Natural Frequencies

The next level of validation evaluated the natural frequencies of the digital replica

FEM models against the measured natural frequencies of the printed turbine blades.

Each turbine blade was mounted on an Unholtz-Dickie 20K Electrodynamic Shaker

Table and subjected to a 0.1g-force sine sweep from 300 Hz to 1600 Hz. The test

results were compared to the “as-designed” FEM with wrought and measured material

properties as well as the unique blade FEMs with both material properties.

Figure 25 depicts the Probability Distribution Functions (PDFs) of the first two

modes for the FEM material variations and the experimental turbine blade testing.

The changes in material properties from the nominal wrought material properties to

the printed material properties resulted in a 10% reduction in the predicted frequen-

cies of the first and second modes. The geometry corrections from the CAD design

to the unique measured surfaces accounted for a 1-2% reduction in the natural fre-
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Mode 1 Mode 2
Wrought
(Hz)

Printed
(Hz)

Test
(Hz)

Wrought
(Hz)

Printed
(Hz)

Test
(Hz)

CAD 515.52 462.58 - 1531.0 1379.3 -
Blade 01 507.13 455.21 485.8 1516.6 1366.8 1451.1
Blade 02 507.07 455.17 478.2 1511.7 1362.0 1451.6
Blade 03 505.61 463.82 490.8 1509.6 1360.1 1475.6
Blade 04 506.17 454.38 491.3 1511.9 1362.4 1447.1
Blade 05 507.35 455.41 491.6 1513.1 1363.2 1432.8
Blade 06 508.00 456.02 467.3 1517.3 1367.3 1478.0
Blade 07 506.45 454.60 472.8 1516.3 1366.3 1490.9
Blade 08 505.20 453.43 486.8 1510.6 1361.0 1493.4
Blade 09 507.61 455.69 482.3 1516.3 1366.5 1460.7
Blade 10 506.36 454.46 483.3 1512.4 1362.4 1458.9

Sample Mean 506.70 452.55 483.0 1513.6 1351.9 1464.0
Sample Std Dev 0.89 0.80 8.17 2.80 2.52 19.82

Table 3. Mode 1 and Mode 2 Frequency Data

quencies. Figure 25 demonstrated that the frequency predictions from Abaqus were

dominated by the material properties. For any frequency dependent analysis, extreme

care should be taken to understand how the AM design process impacts the material

properties.

Figure 25. A) Frequency distributions for mode 1. B) Frequency distributions for mode
2.

From classical beam theory (Eq. 16), the natural frequency was controlled by λ

(a constant dependent on the desired mode and boundary conditions), E (Young’s
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Modulus), I (Moment of Inertia), ρ (material density), and A (cross sectional area).

With no change in the mode or boundary conditions, λ became a fixed constant.

The geometric updates to the digital replica FEMs almost completely reduced the

geometric variations between the FEMs and the experimental hardware, allowing I

and A to be assumed constant as well. With those simplifications, the natural fre-

quencies reduced to proportional to the square root of Young’s Modulus over material

density (Eq. 17) for each fixed geometry. With the density verified as statistically

indistinguishable through the measured mass, Young’s Modulus was the last input

parameter to control the predicted natural frequencies. To determine the optimal

value for Young’s Modulus to match the digital replica models to the experimental

frequencies, Equation 17 was applied twice, once to remove the modeled material

properties and a second time to apply a new value for Young’s Modulus. Optimally,

Young’s Modulus should have been 180 GPa to 185 GPa for the digital replica FEMs

to match with the experimental values. The range of optimal values was not statisti-

cally different from the measured distribution of values for Young’s Modulus. While

none of the FEMs predicted the experimental frequency values, the predicted optimal

Young’s Modulus value was not statistically significant and did not warrant changing

the printed material property applied in the FEMs.

ω = λ2

√
EI

(ρA)
(16)

ω ∝

√
E

ρ
(17)

3.4.3 Strain Ratio Comparisons

The strain ratios between the digital replicas and the tested hardware were based

on the second bending mode. Prior research with these blades [50] demonstrated that
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the second bending mode had the best balance between test duration and the ability

to add energy to the system. Above 2,000 Hz, the Unholtz-Dickie 20K Electrodynamic

Shaker Table had diminishing capabilities to generate fatigue life failure for this blade

design. While the first mode could also generate fatigue life failure, the driving

frequency would increase test duration by a factor of three. The second bending

mode (Fig. 19C) of the printed turbine blades was the nearest mode to minimize

the test duration while optimizing the applied energy to the turbine blades during

testing.

Figure 26. Primary and Secondary strain gauge locations on the turbine blades in
green and yellow. The red circles along the bottom are the points of maximum stress
for each turbine blade digital replica FEM.
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Three points of interest were analyzed on the FEMs to relate the strain prediction

accuracy. Two axial strain gauges collected data on the turbine blade surfaces (Fig.

26). Application points were identified on each blade through filtering techniques to

find common points where the strain values fluctuated by less than 1×10−4 mm/mm

within a 2 mm radius for the second bending mode and where the surface geometry

did not contain large variations for ease of application. The primary strain gauge was

at the local maximum strain point of the second bending mode. The secondary gauge

location had an additional criterion to be on the other side of a mode 2 vibrational

node from the primary strain gauge. This requirement allowed confirmation that the

mode being tested was the second bending mode.

The third data point of interest was the maximum strain point for each digital

replica model (Fig. 26) and the “as-designed” CAD FEM. The CAD FEM predicted

the maximum strain point at the center of the blade root. Five of the digital replica

models predicted similar maximum strain points with minor differences due to the

geometric variations. The other five digital replica models predicted either the leading

or trailing edges of the blade root to experience the maximum strain.

The FEM frequency analysis generated the natural frequencies, mode shapes, and

a strain map for each mode normalized to a maximum displacement of one unit

length. Since the FEMs only generated normalized values, this development used the

ratio of the measured strain gauge values over the predicted gauge location strains.

Averaging the ratio between the applied gauges for each turbine blade created the

scale value for the digital replica FEMs. By scaling the digital replica strain maps,

the maximum applied strain for each component was computed.

The measured strain values from the primary strain gauge ranged between 43%

and 185% of the predicted value based on the CAD model. The same measured values

were between 105% and 110% of the predicted strains when compared to their digital

57



replicas. The addition of geometric variations significantly tightened the quality of

the predictive strain values. While the measured components were both higher and

lower than the CAD based FEM, every specimen tested measured a marginally higher

strain than what its digital replica predicted.

The secondary gauge location was analyzed by the same process. The measured

strain values divided by the CAD based prediction were 49% to 231%. When di-

vided by their digital replica predictions, the percentages changed to 93% to 98%.

The collected strain data and the comparisons to the different FEMs demonstrated

the criticality of the geometric variations generated during the AM process. Across

the sampled locations, the measured strain values differed from the CAD based pre-

dictions by a factor of two with no consistency for a high or low estimate. Any

optimization work based on the FEM stress/strain values would require a large fac-

tor of safety to produce a reliable component. By accounting for the the geometric

variations in the AM process, the digital replica FEMs produced strain values that

were within 10% of the experimental data, freeing up the design space to solve for

the optimal solution.

Due to the normalized nature of the FEM results, the applied material property

changes did not impact the strain ratios. For this research the strain relationship was

the primary purpose of the digital replica models.

3.5 Summary Remarks

The digital replica models developed here were good representatives of their hard-

ware counterparts and proved to be significant improvements over the “as-designed”

models for vibrational analysis. By analyzing the material properties and geomet-

ric deformations and applying the measured results to create digital replica models,

incremental improvements were made to the FEMs, generating a more precise rep-
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resentation of the test hardware. The amount of model variation depended on the

parameters being changed.

• The measured geometric variations for the AM build only accounted for 1-2%

of the variation in natural frequency predictions. For analysis where natural

frequency is the primary consideration, the geometric precision gained through

the ATOS scans was not significant.

• The measured geometric variations for the AM build significantly improved the

stress and strain maps generated from the FEM frequency analysis. Where the

measured stain values ranged within 2x of the predicted “as-designed” model,

the same measurements were within 10% of their respective digital replicas.

There are several areas of uncertainty that can be considered for improving the

model fidelity.

• The variations in material properties due to changes in the AM process is an ac-

tive area of research. The measured material properties were from fatigue bars

printed on one side of the build plate. The fatigue bars were also machined to

shape instead of printed to shape, which changed the surface structure. Both

factors introduced a level of uncertainty when applying the material properties

to the turbine blades. The frequency validation demonstrated that even seem-

ingly insignificant changes to the material properties yield large variations in

the frequency response.

• Uncertainties associated with the the final surface geometry when compared

to the CAD design still exist. The ATOS scanning framework gives the op-

portunity to conduct probabilistic analysis on the expected variations between

the design and final product due to the AM processes. Each turbine blade was
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scanned three times to help control imaging artifacts. By further analyzing how

the scanned geometries vary from the CAD design at different process phases,

a comprehensive distortion matrix will be developed.

• The FEM morphing process introduced additional variations to the scanned

geometries due to internal smoothing filters. This work demonstrated that the

digital replica FEMs were different from the ATOS scanned geometries. Fur-

ther development of that relationship will lead to additional FEM convergence

requirements, denoting the required mesh density based on the desired level of

geometric accuracy.

The parameters presented in this paper are a good foundation for digital replica

development of AM components for structural analysis. Small variations to the ma-

terial properties and component geometry created large differences in the vibrational

response and predicted strain maps. The level of fidelity in the digital replica model

and purpose of creation drives the required precision in the component characteriza-

tion. A frequency analysis was driven more by material properties than geometric

variations, while stain mapping was dominated by the geometry. The validated digi-

tal replicas developed for this research were for the purpose of improving fatigue life

predictions.
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IV. El-Haddad Model Development

4.1 Overview

AM presents several challenges to aircraft and satellite design. A leading drawback

to applying AM techniques to an aircraft structure is the degradation in fatigue

performance due to the naturally forming defects [86]. The AM process generates

defects from small voids to large cracks, and several studies have looked at how the

defect size can be used to predict the fatigue life of AM components [4,8,11,19] based

on the Kitagawa-Takahashi (KT) fatigue life model and the El-Haddad fatigue life

model [21,22]. The current techniques assume that the worst-case defect will occur at

the highest stress concentration point. This creates a conservative fatigue life estimate

that restricts component geometry design space and inhibits the development of AM

components for limited life applications.

The LoF defect type is of particular interest to fatigue life as a crack initiation

point due to the size and shape. LoF defects tend to form flat separations that cover

a relatively large area. This creates a large stress concentration point that propagates

crack growth. In contrast, void defects are t̃wo orders of magnitude smaller and are

spherical in nature. The difference in size and lack of sharp edges typically minimizes

the importance of void defects in fatigue life studies. However, a small defect in a

high stress location can be more damaging to fatigue life than a large defect in a low

stress region.

Digital twin techniques utilize Finite Element Models (FEMs) to simulate load

cases and predict mission capabilities [87]. By applying the same techniques, this

research advanced the El-Haddad model by combining it with Finite Element Anal-

ysis (FEA) to explore the effects of defect location in conjunction with defect size

to predict where and when critical fatigue failure could occur. The experimental
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component studies fatigue bars in axial loading and a turbine blade design subjected

to vibrational loading fatigue tests. The fatigue life data is compared to the model

predicted life to validate the model as an accurate representation of the relationship

between defect size, location, and fatigue life. The measured defect locations are

evaluated against the model predicted failure locations to assess the accuracy of the

augmented model to predict where a fatal defect can form for a given design life and

maximum defect size.

This paper develops the criteria to predict where a component will fail using

the finite fatigue life El-Haddad model in conjunction with FEA. The critical failure

location criteria is developed using a simulated defect distribution across a turbine

blade model with the design choices of maximum defect size and design life. Critical

failure location predictions are then verified through testing of AM printed turbine

blades (Fig. 27).

Figure 27. Turbine blade specimen printed in IN718.

4.2 Fatigue Life Modeling with Defects

The El-Haddad fatigue limit model was previously converted to model finite fa-

tigue life (Eq. 15) [11]. Using the material properties defined in Table 1 and applying

the outputs from Equations 1 and 12 into Equation 15 across a range of finite fa-
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tigue life values and crack sizes yields Figure 28. View A is in the orientation of a

traditional S-N curve. As the cyclic stress decreases, the fatigue life increases. The

top bound in view A is the Basquin fit (Eq. 1) using the material properties from

Table 1. View B shows the traditional El-Haddad curves calculated at various design

life levels. As the initial crack size increases, the allowable applied stress range to

maintain a constant life curve decreases. The bend in the curve between material

fatigue limit and LEFM shifts to the right as desired life decreases. This shift means

that as the life requirements decrease, larger defects are allowed to exist before LEFM

becomes the dominate crack growth mechanism. If the defects are kept below a0,N ,

they have negligible impact to the fatigue life when compared to the material fatigue

limit. When the crack size gets above a0,N , LEFM and the material crack growth

properties become important factors in determining fatigue life.

Figure 28. Finite Life surface relating initial crack size, cyclic stress at the fracture
initiation point, and final fatigue life. A) Life/∆σ relationship. The Basquin equation
defines the upper limit of the model. B) Crack size/∆σ relationship. Traditional El-
Haddad curves build from equation 15 for different design lives, N .

There is a defect location dependence buried in figure 28 based on the stress

profile of the component being tested and the volume of the component that experi-

ences the maximum applied stress. For a specimen, such as fatigue bars, subject to

uniform uniaxial loading, there is a substantial volume of material experiencing the
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maximum applied stress. This enables the assumption that a large defect will form

in the maximum stress region and initiate failure. The defect location information

is simplified down to surface or interior defect and only impacts the applied shape

factor [57]. In other cases, such as bending loads, the volume of material subject

to the maximum applied stress is very small. In three point bending tests, failure

has been documented in AM components due to defects located away from the max-

imum stress location [78]. The augmented El-Haddad model (Fig. 28) is a surface

defined by three values: the defect size, the applied stress, and the life associated

with growing the defect to failure. In many real-world situations, the applied stress is

varied throughout the geometry and is determined by the component geometry and

the applied boundary conditions. Knowledge of two values enables the prediction

of the third. For simple structures the defect location applied stress may be directly

calculated, but for more complicated systems, a Finite Element Model (FEM) creates

a map to relate location to stress for an assumed load case.

4.3 Turbine Blade Simulation

Simulations using the augmented El-Haddad model utilize a generic turbine blade

design subject to a vibrational load state to generate a mapping of stress to location.

An FEM is created to estimate the stress profile across the turbine blade when the base

is fixed, and the blade is subjected to a vibrational load to induce the second bending

mode. The turbine blade (Fig. 29A) is meshed with 223,500 quadratic hexahedral

elements and processed in Abaqus 6.14. When the grip is fully constrained on the

top and bottom surfaces and the model subjected to a dynamic frequency analysis,

the second bending mode and the associated normalized stress map is computed (Fig.

29B). After completion of the FEM simulation, the grip is removed leaving just the

blade material composed of 47,500 elements with 210,600 nodes.
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Figure 29. A) Mesh of the generic turbine blade. B) Second bending mode.

4.3.1 Defect Generation

The defect sizes and locations needed for the augmented El-Haddad model are ini-

tially simulated using a fitted defect distribution (Fig. 30) for nickel-based superalloy

718 [66]. The distribution mean fit equation was developed for the same material

across a range of print parameters encompassing those applied to this research. The

integers on the Y-axis correspond to the number of nines in the Cumulative Distri-

bution Function (CDF) probability (ex: y = 3, F = 0.999). Defect sizes of assumed

spherical shape are pulled at random from the population until the volume of defects

reaches 0.1% of the total volume of the blade. The procedure generates 155,000 to

160,000 defects that are randomly assigned by a uniform distribution to FEM nodes

within the turbine blade. Generated defects range from 14µm up to 960µm.

4.3.2 Stress Map

The FEM frequency analysis calculates the natural frequency, mode shape, and

the relative stress and strain profile for the first five modes. The second bending mode

for the constrained turbine blade is 1379 Hz and the shape is seen in figure 29B. The

maximum stress for this load condition is located on the surface of the blade at the

root. Only 2.5% of the blade volume is subject to stress levels within 50% of the
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Figure 30. Defect CDF for nickel-based superalloy 718

maximum stress. From equation 6, if the stress level is cut in half, the defect size

must increase by a factor of four to maintain the same SIF. The Abaqus default stress

and strain profiles are normalized to a maximum displacement of 1 unit, by scaling

the stress values that generated figure 29B to the stress range calculated by equation

1 for a desired defect free life, an estimate of the applied stress is generated for every

point within the turbine blade.

Coupling the developed stress map with the locations of the defects randomly

simulated across the turbine blade creates the second parameter needed for the aug-

mented El-Haddad model: the applied stress at the defect locations. For these sim-

ulations, the maximum applied stress is scaled to 1075 MPa, which corresponds to a

defect free design life of 106 cycles. Applying the defect size and stress at location for

every defect in one case to the augmented El-Haddad model creates figure 31. Every

defect has an associated fatigue life based on the maximum stress at its location that

is calculated without any influence from the other defects. The white line in figure

31A represents the 106 fatigue life curve. Any defect above the curve is predicted to

cause pre-mature failure. Defects below the curve are predicted to fail after the design
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life. In this case, the largest defect generated is 495µm diameter at a location that

only experiences 21.7% of the maximum stress. The largest defect has been randomly

placed in a location that does not experience enough stress to grow the crack within

the design life. The first failure point is predicted at a 139µm diameter defect at a

location experiencing 93% of the maximum stress. Only 4% of the 1064 cases ran

predicted the largest generated defect to cause first failure, while 30% of the cases

failed due to a small defect at the maximum stress location.

Figure 31. A) Finite life model with 159,000 defects randomly distributed throughout
the component. Sizes range from 0.015 mm to 0.41 mm. B) Minimum stress level that
could cause failure for a design life and maximum defect size.

4.3.3 Model Outputs

There are many outputs that can be generated from the model. The simplest

outputs involve picking two of the values and solving for the third as was done in

figure 31A where the defect size and stress are defined, and the life is predicted. The

model works just as easily to pick a desired life and defect size to determine the

maximum allowed stress at the defect location. This level of output only requires

knowledge of the material properties to build the augmented El-Haddad model.

The next level of outputs make inferences on parameter limits. Using the applied

defect distribution (Fig. 30) with a desired probability of occurrence to generate a
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maximum defect size and applying a design life, N, a minimum stress level is identified

by the intersection of the El-Haddad curve for N cycles and the maximum defect

expected (Fig. 31B). This value of minimum stress defines the stress level where

defects will not interfere with the material fatigue life. Likewise, by intersecting the

maximum defect size with ∆σ0,N (Fig. 31B), the worst case life assessment is made.

This is the life that will be achieved if the largest defect does coincide with the

maximum stress location.

The final level of outputs requires knowledge of the geometry and load case. By

plotting every location on the geometry that experiences the minimum stress from

figure 31B or higher, critical failure locations are predicted. Both shorter design lives

and smaller maximum defects reduce the size of the critical failure locations. In the

examples in figure 32, when the CDF probability is desired at 0.99999, the maximum

defect corresponds very near to 400µm. Similarly, when the CDF probability is only

desired at 0.999, the maximum defect is approximately 200µm. From figure 32A to

32B the reduction in maximum defect size of interest moves the intersection of the

maximum defect and El-Haddad curve up and to the left, allowing higher stresses to

be considered non-critical and reducing the critical failure location volume. Figure

32A to 32C keeps the same maximum defect size, but decreases the design life from

106 to 105 cycles. The reduction in design life shifts the El-Haddad curve up and

to the right, minimizing the effects of LEFM on the fatigue life for the same defect

sizes. These critical failure maps inform where a component needs to be inspected

for a given load case and expected defect population.
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Figure 32. Turbine blade geometry represented in blue with red regions denoting the
critical failure locations. A) 106 cycle design life, assumed maximum defect of 400µm.
B) 106 cycle design life, assumed maximum defect of 200µm. C) 105 cycle design life,
assumed maximum defect of 400µm.

4.4 Hardware Development

To verify the functionality of the augmented El-Haddad model and the accuracy

of the outputs, ten turbine blades and eighteen cylindrical specimen were printed

from nickel-based superalloy 718 (Fig. 33). Post-print, the specimen were subject

to a stress relief anneal and the cylindrical specimen were machined to fatigue bars

according to ASTM E466-15 [12].

As seen in the aerospace industry, uncertainties and variabilities in the hardware

make performance predictions from a single FEM challenging [88, 89]. This research

performed preliminary testing and characterization on the specimen post-processing.

Material characterization testing limits the variability associated with AM material

properties. Measuring the surface geometry of each turbine blade quantifies the vari-

ability associated print geometry tolerances and thermal stress based deformations.
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Figure 33. A) Dimensions for the turbine blades. B) Dimensions for the fatigue bars [12]

4.4.1 Specimen Post-Processing

The parts were printed on an M2 Cusing Laser Powder Bed Fusion (LPBF) printer

with three regional parameter settings: core, skin, and contour (Table 4). The contour

scan is a single thin line around the edge of the surface to ensure a good melt along

the geometry surface. The skin scan is the small region from the surface ∼ 1.5mm

into the geometry. This is a tight scan pattern near the surface to create a high-

density region near the surface of the component with fewer defects. Finally, the core

scan is a high power setting that scans every other build layer on the interior of the

part following an island scan pattern. The core parameters sacrifice print quality to

improve print speed.

Post-print, the parts were processed by a stress relief heat treatment, machining,

age hardening, and a final polish process. The stress relief heat treatment put the

whole build plate into an oven at 1000◦C for one hour and then left to oven cool back

to room temperature.

70



Contour Skin Core
Power (W) 120 180 320

Layer Height (µm) 40 40 80
Scan Speed (mm/s) 280 800 700
Spot Size (µm) 50 130 180

Trace Spacing (µm) N/A 105 130
Offset (µm) 90 95 130

Table 4. M2 Cusing Printer scan settings.

The specimens were then removed from the build plate. The cylindrical specimen

were machined down according to ASTM E466-15 [12] to match the specification

in figure 33B. The turbine blades were machined along the grip to ensure parallel

surfaces on the front and back and enlarge the grip hole to 19mm (0.75in) for a

secure mount to the test fixture. The blades were rough polished with sandpaper to

remove the oxidation layer before aging. The sanding process reduced the surface

roughness to a value of Sa = 4.35µm±1.26µm. The surface roughness measurements

are in accordance with ISO 25178 [90].

The aging process was performed according to AMS2774-G [91]. The nickel-

based superalloy 718 components were heated to 718◦C and held for eight hours,

cooled to 621◦C and held for another eight hours, and finally air cooled. Post aging,

the turbine blades and fatigue bars were subject to a final polishing. The turbine

blades were polished using a pneumatic dremel with polishing stones and finished

with a very fine polishing pad. The final surface roughness for the turbine blades is

Sa = 3.19µm± 0.81µm.

4.4.2 Geometry Variability

To bypass the variability associated with using standard material properties in

the FEM, three of the fatigue bars (Fatigue Bars 00, 11, & 14) were subject to

monotonic tensile testing to measure the density and Young’s Modulus for this print
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to improve the accuracy of the FEM. The density and Young’s Modulus were directly

measured for this build as 8.19e−3g/mm3 and 159GPa respectively. Due to AM

printing processes, post processing thermal environments, and the various polishing

steps involved to make each turbine blade ready for testing, some level of structural

variation was expected between the turbine blade Computer Aided Design (CAD)

file and the final blade geometries. Using Advanced Topology Optimalogy System

(ATOS) scans to generate a point cloud of each turbine blade surface, a measured

surface geometry was built for each blade. Three scans were taken for each turbine

blade and averaged together to create a geometrically accurate surface for each blade.

The scanned surfaces have a maximum variation of 76µm from the individual scans

to the mean blade surface, and an average variation of 25µm ± 5.5µm across all of

the blade specimen. Finally, the turbine blade FEM (Fig. 29A) is morphed to align

with each unique turbine blade surface using FEMorph to create an FEM for each

turbine blade that matches the final geometry for every specimen. When comparing

the scanned blade surfaces to the CAD file (Fig. 34A), there is an average variation

of 315µm ± 9µm with a maximum variation of 750µm. In every case, the printed

geometry tilts slightly forward of the CAD file so that the largest variation is at the

blade tip (Fig. 34B).

Using the unique FEM for each turbine blade and the measured material proper-

ties from the monotonic testing, a frequency analysis was run for every turbine blade.

Where the CAD based FEM predicted the second bending at 1379 Hz, the geometri-

cally variant turbine blade FEMs predicted the second bending at 1364 Hz ± 2.5 Hz.

From each unique turbine blade FEM, individual stress maps were generated from

the second bending mode. At this point, each turbine blade has a digital twin FEM

with minimized variability between the FEM and hardware sample. Uncertainties

still exist in the form of defect size and location in the hardware that is not captured
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by the FEMs.

Figure 34. A) Heat map of the variations between the CAD file and Turbine Blade
01. Red denotes where the scanned geometry is above the CAD surface. Blue denotes
where the scanned geometry is below the surface. B) Cross-section (top down view)
of variation between the scanned surface geometry and the CAD file. The blade edges
are slightly shorter and the blade surface tilts away on the right edge.

4.5 Fatigue Testing

Two different fatigue tests were run to verify the augmented El-Haddad model.

The first is an axial tension-compression test applied to the fatigue bar specimen

executed on an 810 MTS Load Frame with a 100kN Load Cell. The second fatigue

test is a vibrational induced bending test with the turbine blades performed on an

Unholtz-Dickie 20K Electrodynamic Shaker Table. The testing sets the maximum

stress level seen by each sample, the fatigue life to failure, and by analyzing the

fracture surface, the failure defect size and location. Combining the defect location
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with the stress map for the part yields the stress experienced at the defect. The

failure defect size, defect location stress, and fatigue life are all the data needed to

determine if the augmented El-Haddad model is an accurate representation of finite

fatigue life with respect to defects and if it can accurately predict where a failure will

initiate.

4.5.1 Fatigue Bar Testing

Figure 35. Fatigue bar fracture surfaces that potentially start from internal defects.
A) Fatigue Bar 08, while a larger internal defect initiated one crack growth region, the
dominate region grew from a surface defect. B) Fatigue Bar 09. C) Fatigue Bar 10.

The fifteen remaining fatigue bars were broken into three groups. Each group was

tested at a different stress level and ran at 20 Hz until failure. Table 5 depicts the test

results. Columns 2 and 3 are the data generated directly from the fatigue tests. To

convert from σmax to ∆σ for the augmented El-Haddad model, the maximum stress is

multiplied by (1−R), where R = -1. Column 4 is generated by analyzing the fracture

surfaces under a Scanning Electron Microscope (SEM) to identify the initial failure

defect sizes. On every fatigue bar, the failure defect is identified as a LoF defect on

or near the specimen surface. With failure defects ranging in size from 236µm up

to 656µm, every fatigue bar failed to a large defect outside the 99.95 percentile of

the assumed defect distribution depicted in figure 30. Defects 400µm or larger have
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the probability of occurrence of once per fatigue bar based on the assumed defect

distribution and total fatigue bar volume. Factoring in that the region of maximum

stress is 28% of the total volume, it is expected that four to five of the fifteen fatigue

bars should fail due to defects ≥ 400µm. From Table 3, five of the fatigue bars were

assessed to fail due to defects larger than 400µm. In total, seven defects ≥ 400µm

are visible across all the measured fracture surfaces. Fatigue Bars 07, 08, and 10 all

contain defects over 400µm that did not initiate the fatal crack. Fatigue Bar 08 (Fig.

35A) contains two defects ≥ 400µm and grew from the smaller defect. The larger

defect does not touch the surface and is assessed as an internal defect according to

equation 7. The decrease in shape factor reduces the criticality of the larger defect.

Fatigue Bar 10 (Fig. 35C) also contains two of these large defects and grew the fatal

crack from the larger defect. Fatigue Bar 07 (Fig. 36C) grew from a much smaller

defect (248µm). While the larger defect propagated a crack growth region, it is not

clear why the smaller defect region grew faster and dominated the total crack growth.

The initiating defects for Fatigue Bars 09 and 10 (Fig. 35B & C) do not touch the

edge of their bars. Applying equation 7 to the fatal defects yields values of 0.22 and

0.70 respectively, concluding that these defects may safely be classified as internal

defects.

Fatigue Bars 02, 05, 07, 08, and 13 all appear to have multiple regions of inde-

pendent crack growth (Fig. 36 & Fig. 35A). In every case of multiple crack growth

regions, the failure defect is taken as the defect that initiated the largest crack growth

region.

Column 5 of Table 3 is the stress experienced at each fracture surface. Measuring

the diameter of the fatigue bar at the fracture surface allows the calculation of the

stress experienced by the failure location. Figure 37 depicts the location of every

fracture surface with respect to the fatigue bar dimensions. In every case the fracture
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Figure 36. Fatigue bar fracture surfaces with multiple crack initiation points. Identified
initiation points belong to the dominate crack growth region for each specimen. A)
Fatigue Bar 02: contains four different crack growth regions. B) Fatigue Bar 05:
contains two different crack growth regions. C) Fatigue Bar 07: contains two different
crack growth regions. D) Fatigue Bar 13: contains two different crack growth regions.

surface is at or near the maximum applied stress. The largest deviation is Fatigue Bar

04, which is far enough into the flare to experience a stress at 93% of the maximum
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Fatigue Bar
Applied

σMax (MPa)
Fatigue Life (N)

Defect
Size (µm)

Defect
σ (MPa)

01 345 230,416 236 341
02 517 22,356 262 517
03 221 464,646 314 218
04 345 75,059 538 321
05 517 23,888 448 516
06 221 553,711 425 219
07 345 118,499 248 345
08 517 20,368 402 514
09 221 1,075,687 269 (I) 220
10 345 95,388 656 (I) 345
12 517 23,776 370 514
13 221 541,165 261 217
15 345 134,758 355 335
16 517 23,250 330 517
17 221 5,883,002 351 220

Table 5. Fatigue bars subject to axial fatigue testing and fractography. The (I) next
to Defect Size denotes that the defect is an internal defect.

applied stress. Fatigue Bar 04 is an example of an extremely large defect at a lower

stress location that dictates the final failure.

Figure 37. Failure locations for every fatigue bar test. While the majority fail within
the specimen neck, a small group fail in the flare with Fatigue Bars 04 and 15 being
the farthest out on each end.

The application of columns 4 and 5 of Table 5 to the augmented El-Haddad model

enables a predictive fatigue life that may be compared to the experimental fatigue life

from column 3 to assess the quality of the model to capture the relationship between
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defect size, applied stress, and fatigue life.

4.5.2 Turbine Blade Testing

Figure 38. Locations of the primary and secondary strain gauges. Gauges attached to
the same locations for every turbine blade. The position of the maximum stress point
for each unique FEM.

The turbine blade testing is a more involved process to control the applied stress.

A Polytec OFV 500 Laser Vibrometer measures the peak blade velocity at one point

on each blade during testing. Two strain gauges, for redundancy, are applied along
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the length of the blade to measure the axial strain (Fig. 38). Application of a strain

gauge at the point of maximum stress is not feasible due to the geometry of the

turbine blade. Instead filtering techniques identify two gauge locations where the

FEM strain value has a range of less than 1e−4mm/mm across a 2mm radius and

that the average strain within the 2mm radius is within 1% of the maximum strain

in the region. The filtering criteria ensure that the strain measurements represent

the expected peak strain at their locations. The applied strain gauges are 1.6mm

across ensuring that any minor variation in gauge placement does not influence the

accuracy of relating the measurement values to the FEMs. The primary strain gauge

is co-located with the maximum stress associated with the second bending mode

(Fig. 29B). Using the linear relationship between the measured peak velocity and

the strain gauge measurements [92], the stress and strain at the gauge locations

are controlled by setting the peak measured velocity in a closed feedback loop in

the 20K electrodynamic shaker table. From each turbine blade’s unique FEM, the

relationship between maximum stress/strain and stress/strain at the gauge locations

are calculated. While the exact ratio changes for each turbine blade FEM, on average

the primary gauge measures 44.3% of the maximum strain with a standard deviation

of 2%. By extension the same ratio applies to the maximum stress. Applying the

transforms of laser vibrometer peak velocity to strain gauge measurement, strain to

stress at the strain gauge location, and measured stress to peak stress fully defines

the system to control the maximum stress from the peak velocity.

The point of maximum stress for every turbine blade is along the root where the

blade meets the grip (Fig. 38). The maximum stress location varies between each

turbine blade due to small geometric variations. The ten turbine blade FEMs predict

three primary regions where the maximum stress appears: left, right, and center of

blade on the convex side near the root. Due to the unique geometry of each turbine
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blade FEM, even blades that trend to similar peak stress locations have some regional

variation. Five of the ten turbine blades have their maximum stress point along the

center. Turbine Blades 03 and 08 have their maximum stress points on the right edge

of the blade and Turbine Blades 01, 05, and 07 all have their maximum points on

the left edge of the blade. While the global maximum stress point varies due to the

geometric variations between the turbine blades, the three identified regions are local

maximum stress points for every blade (Fig. 29B).

The turbine blade fatigue testing applies the stress step function test (Eq. 18)

[92, 93]. A desired fatigue life is selected for the test, Nt, specified in Table 6. The

sample is cycled at an initial peak stress level until Nt is reached, then the stress is

stepped up by an incremental value. For the testing here, the incremental value is

34.5 MPa (5 ksi). The fatigue stress level, σa, is the linear interpolation between the

last stress level that reaches Nt cycles, σpr, and the stress level that causes failure, σf

based on the percentage of completion for the final step,
Nf

Nt
, where Nf is the number

of cycles ran in the final step.

σa = σpr +
Nf

Nt

(σf − σpr) (18)

The results of the fatigue testing for each turbine blade are found in Table 6.

The fatigue testing of the turbine blades reached the limits of the vibration table

without growing any of the cracks to full separation. Applying a Fluorescent Penetrate

Inspection (FPI) to each blade surface revealed the location and width of each crack

(Fig. 39). With the exceptions of Blade 01 and Blade 08, the cracks initiated in

locations near the center of the blade root. In Blade 03, the crack initiated at the left

edge of the blade, far from the Blade 03 global peak stress. In Blade 08, the crack

initiated along the right edge in close proximity to its global peak stress. After growing

the cracks, the blades were separated to expose the full fracture surface by applying
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notches as the crack tips. During the separation process, the failure initiation point

for Blade 08 was mistakenly destroyed.

Figure 39. FPI of Turbine Blade 06. Measurements indicate that the crack front is
approximately 27mm long and started near the center of the blade root.

Fractography on the blade crack growth surfaces provides the critical defect size

(Table 6, column 4) and location that appears to initiate crack growth for each turbine

blade. Unlike the fatigue bars where LoF defects caused every failure, two of the

turbine blades (Blades 01 and 04) failed due to notches on the surface associated

with surface roughness. The other blade failure defects are LoF defects. The failure

defects for Blades 02 and 05 do not touch the surface, applying equation 7 yields

values of 0.15 and 0.32 respectively, classifying those defects as internal. Applying the

measured defect locations back to the FEM for each blade generates the ratio between

maximum stress and defect location stress to generate column 5. The calculated stress
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at the defect locations range from 53% to 72% of the maximum stress.

Blade ID
Applied

σMax (MPa)
Fatigue
Life (N)

Defect
Size (µm)

Defect Type
Defect
σ (MPa)

01 587 106 19 Notch (Surface) 409
02 463 5× 105 41 LoF (Internal) 337
03 679 106 195 LoF (Surface) 462
04 330 107 23 Notch (Surface) 237
05 722 105 44 LoF (Internal) 492
06 376 5× 106 207 LoF (Surface) 203
07 486 5× 106 60 LoF (Surface) 308
08 440 107 - - -
09 517 5× 105 116 LoF (Surface) 366
10 732 105 33 LoF (Surface) 439

Table 6. Turbine blades subject to vibration induced bending fatigue tests and frac-
tography.

4.6 Experimental Validation

Applying the measured defects sizes and the defect stresses from tables 5 and 6

into the El-Haddad model predicts life values. The predicted life for each specimen

is compared to the measured fatigue lives to generate figure 40. The predicted versus

measured fatigue life plot informs on the quality of the augmented El-Haddad model

against the experimental data sets. Applying the measured defect locations for each

turbine blade to their unique FEMs with the experimental fatigue life evaluates the

ability of the augmented El-Haddad model to predict critical failure locations.

4.6.1 Fatigue Life Evaluation

The fatigue bar data trends very well with the augmented El-Haddad model that

was trained from prior testing [11]. Only three of the fifteen specimen (Fatigue Bars

09, 10, and 17) tested more than twice as long as the model predicted (Fig. 40).

Fatigue Bars 09 and 10 failed due to an internal defect instead of a surface defect.
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The model assumes a surface defect which has a higher shape factor, Y , and is

therefore conservative when an internal defect becomes the root cause of error. When

the model is adjusted to account for an internal defect both data points fall within the

2x bands. The final fatigue bar specimen that that model under predicts the fatigue

life is Fatigue Bar 17, which lasted 16.4 times longer than the model prediction. It

is unclear at this time why Fatigue Bar 17 lasted so much longer than the rest of

the set. The remaining fourteen fatigue bars have a mean ratio of measured life over

predicted life of 1.54 ± 0.59. With the material properties built into the El-Haddad

model, the fatigue bar data demonstrates a slightly conservative trend in the model

prediction while keeping very accurate results.

Figure 40. Measured fatigue life of the axially loaded fatigue bars and the bending
loaded turbine blades versus the augmented El-Haddad model predictions based on
the measured fatal defect size and location.
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The turbine blade data demonstrates the same trend as the fatigue bars with an

increase in the scatter. Evaluating all nine turbine blade data points has a mean ratio

of 3.30± 5.15 for the measured life over the predicted life.

Turbine Blade 03 has the largest variation between the model prediction and the

experimental data at a ratio of 16.1. This specimen is one of the two unique cases

where the crack grew from the edge of the blade instead of the center. The edge

growth means that the crack crosses the blade at a very early stage and that it is

only attached to the main body on one side. The critical defect associated with

Blade 03 is also smoother than any of the defects seen on the other fracture surfaces

implying that there was additional friction between the fracture surfaces not seen in

any of the other specimen. The smoother surface makes identification of the initial

size harder to measure. As a result, anything that might be part of the original defect

is factored into the reported defect size in Table 6 creating an over-estimation of the

defect size being processed through the augmented El-Haddad model. There is also

a strong possibility that the extra degree of freedom imparted by having half of the

crack surface free of any applied loads or constraints absorbs some of the applied

energy and further inhibits the crack growth.

Removing Turbine Blade 03 from the set due to the unique nature of failure, the

remaining eight blades have a mean of 1.69± 1.96. In either case, there is insufficient

data to reject the hypothesis that both the fatigue bars and turbine blades use the

same trend line.

Figure 41 depicts all of the test specimen against the El-Haddad model. There is

a clear separation in failure defect sizes between the fatigue bars and turbine blades

despite being printed on the same build plate. Every fatigue bar contains sufficiently

large defects to have the fatigue life dominated by LEFM. In contrast, the turbine

blades failed due to smaller defects and responded closer to the material fatigue limit,
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creating a mixture of the two failure mechanisms.

Figure 41. Fatigue bar and turbine blade experimental data on the augmented El-
Haddad model.

4.6.2 Critical Failure Evaluation

Evaluating the critical failure locations looks at a single design life and a maximum

defect size in conjunction with the augmented El-Haddad model and FEM. Figure 42

outlines the steps required to generate the critical failure locations on any component.

This research built and tested a number of specimen and verified that the initial finite

life El-Haddad model creates an accurate representation of the relationship between

defect size, location, and desired life. For the expected maximum defect size, the best

practice is to generate a defect distribution to inform on the maximum defect size of

interest. In this section maximum defect sizes are identified based on the measured
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failure defects in the turbine blades to explore the accuracy of the identified critical

failure locations. The desired design life for each turbine blade is the tested fatigue

life value (Table 6). Finally, the minimum stress level for each choice of design life and

defect size is combined with the blade unique FEMs to identify every location that

could initiate failure. In every case here, the measured failure locations fall within

the predicted failure locations.

Figure 42. Flow chart to generate predictions of fatigue life and critical failure locations.

For Turbine Blades 01 and 03 with a fatigue life of 106 cycles, the largest failure

defect is measured at 195µm on Turbine Blade 03. Figure 43 looks closely at Turbine

Blade 03 with respect to the choice of maximum defect size when determining the

critical failure locations. Figure 43A shows the predicted failure areas where a defect

≤ 50µm has the potential to grow into a fatal crack. The measured location for

the 195µm defect is just outside of the identified region at the left edge. When the

evaluation maximum defect size is increased to 200µm (Fig. 43B), the predicted area

of crack growth expands to include the identified failure location.
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Figure 43. Critical failure locations for Turbine Blade 03 assuming A) A defect ≤ 50µm
causes failure and B) A defect ≤ 200µm causes failure

The predicted critical failure locations for Turbine Blades 05 and 10 (Fig. 44) are

depicted for the case of 105 cycles fatigue life and a failure-inducing defect ≤ 50µm.

Both turbine blades fail due to defects smaller than 50µm, and in both cases the

measured defect location falls within the predicted failure location along the center

of the blade.

Figure 44. Critical failure locations for A) Turbine Blade 05 and B) Turbine Blade
10. In both cases the identified failure defect falls within the bounds predicted by the
augmented El-Haddad model.
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4.7 Summary Remarks

This research expands the finite fatigue life El-Haddad model by augmenting the

analytical model with an FEM. The combination emphasizes the importance of ac-

counting for the defect location in conjunction with the defect size. The augmented

El-Haddad model demonstrates the ability to accurately predict the fatigue life for

both axial and vibrationally loaded specimen. Here the values for defect size and

stress are measured from the fracture surface to minimize the uncertainties in the

defect that causes failure. However, the model does not require that to generate a

fatigue life prediction. Any technique to generate a defect size and location, when

coupled with an FEM will generate the parameters required to make a fatigue life

prediction. Other techniques that could be used to make a fatigue life prediction are:

surface penetrating scans (ex: X-ray scans), defect estimations from process moni-

toring during a print (ex: in-situ data collections), or stochastic evaluations from a

known or assumed defect population.

The model is also shown to accurately predict where failure can start from for a

design life and defect size. By linking the augmented El-Haddad model with an FEM

load case, maximum expected defect, and desired component life, the model predicts

sections of the component where failure can initiate. From an inspection view, the

capability to minimize the search region for root causes of failure saves time and

money. By developing a better understanding of potential defect sizes and location

based on AM printer settings and materials, this feature of the augmented El-Haddad

model will become even more accurate and move the research toward the certification

of AM components for the aerospace industry.
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V. Validation of El-Haddad Model

5.1 Overview

By combining the traditional S-N curve for a material and the El-Haddad model

that defines a constant life curve based on applied stress and defect size [22], a response

surface is created relating defect size, applied stress, and expected life. Selecting

two of the values either through design criteria or experimental data gives a model

prediction for the third value. This paper demonstrates the validation process for the

developed model against both uni-axial tension-compression tests on standard fatigue

bars (ASTM-E466) and vibrational bending tests on a simple turbine blade design.

5.2 Background

Applying the calculation of the critical crack length (a0) according to Equation

12 and applying the stress range for the same life from the material S-N curve for

∆σ0,N using the material properties from Table 1 generated a finite fatigue life El-

Haddad curve that predicted how the maximum defect size and applied maximum

stress impact the ability to hit a target life (Fig. 45). By identifying two of the three

parameters (defect size, maximum applied stress, and design life), the augmented

model predicted what the third value should be. Uni-axial stress tests demonstrated

that the updated model generates a good prediction of boundary for any desired life

[11]. This version of the El-Haddad model still contained the underlying assumption

that failure would occur at the maximum stress location.

To enable defect location dependencies in the finite fatigue life El-Haddad model,

it was combined with a Finite Element Model (FEM). The FEM mapped out the

stress distribution for a given load case and demonstrated that crack initiation may

occur at locations other than the peak stress point [77]. Under the uni-axial loading
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Figure 45. Finite fatigue life El-Haddad model. Design lives plotted from 107 cycles
down to 103 cycles.

condition where the stress state was consistent across a relatively large volume, it

was reasonable to expect the largest defects to appear inside the region of maximum

stress. When the stress profile was not uniform, such as with complex bending loads,

the peak stress region became a very small percentage of the total material volume,

significantly lowering the probability that a large defect existed at the peak stress

location. Research with the FEM augmented El-Haddad model enabled predictions

of where failure was most likely to initiate based on the stress map and an assumed

defect population [77].

The importance of where a defect appears was found throughout literature. In

3-point bending experiments, cases of component failure due to defects not in the

maximum stress region have been seen [78]. In addition, the relative position of
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defects to the surface, shape ratios, and orientation have been identified as causes of

experimental variations that impacted how quickly a defect caused failure [94].

5.3 Experimental Processing

Ten turbine blades (Fig. 46A) and eighteen cylinders were additively manufac-

tured from nickel-based superalloy 718. The cylinders were machined down to fatigue

bars according to ASTM E466 (Fig. 46B) [12]. The specimens were all post processed

by a stress relief of 1000◦C for one hour, age hardened according to AMS-2774-G [91]

(718◦C for 8 hours, furnace cooled to 621◦C and held for eight hours, then air cooled).

The printed blade surfaces were ground smooth to an average Sa of 3.2± 0.8 to min-

imize the impacts of surface roughness.

Figure 46. A) Turbine blade geometry. B) Fatigue bar geometry.
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5.3.1 Fatigue Bar Testing

Three of the fatigue bars were selected to measure the final material properties

from the build plate. Mass and volume measurements yielded an average density of

8.19 g/cm3 with a standard deviation of 0.032 g/cm3. The three specimens were also

subjected to monotonic tensile testing on an 810 MTS Load Frame with a 100kN

Load Cell, and instrumented with an MTS axial extensiometer (model #634.12E-24)

with spring clip attachments. The test generated an average Young’s Modulus value

of 159.1 GPa with a standard deviation of 4.1 GPa. The remaining fifteen fatigue bars

were separated into three groups and subjected to fully reversed (R = −1), uni-axial

fatigue life testing (Table 7). Each group was tested on the same MTS load frame at

the maximum stress range values of 441.3, 689.5, and 1034.3 MPa respectively. The

testing frequency was set to 20 Hz until fatigue failure occurred.

Experimental Life
(N)

Applied ∆σmax

(MPa)
Fatigue Bar 01 230,416 689.5
Fatigue Bar 02 22,356 1034.3
Fatigue Bar 03 464,646 441.3
Fatigue Bar 04 75,059 689.5
Fatigue Bar 05 23,888 1034.3
Fatigue Bar 06 553,711 441.3
Fatigue Bar 07 118,499 689.5
Fatigue Bar 08 20,368 1034.3
Fatigue Bar 09 1,075,687 441.3
Fatigue Bar 10 95,388 689.5
Fatigue Bar 12 23,776 1034.3
Fatigue Bar 13 541,165 441.3
Fatigue Bar 15 13,4758 689.5
Fatigue Bar 16 23,250 1034.3
Fatigue Bar 17 5,883,002 441.3

Table 7. Experimental results from the fatigue bar testing
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5.3.2 FEM Development

Using Abaqus 6.14, two FEM model types were developed. The first FEM used

the nominal Computer Aided Design (CAD) model to generate the blade geometry

(Fig. 47A). This model created a single stress/strain map across the nominal blade

geometry and was applied to each of the turbine blade samples. The second FEM ap-

plied structured-light surface scans using the Advanced Topology Optimalogy System

(ATOS) to generate a geometrically accurate surface map of each turbine blade after

all of the post-processing steps were completed. The ATOS surface maps morphed

the CAD based FEM to create a digital replica FEM for each printed turbine blade,

generating unique stress/strain maps.

Each FEM was analyzed using dynamic frequency analysis. The analysis gen-

erated the first five mode shapes, and stress/strain values across the blade surface

normalized to a maximum displacement of one unit distance.

Figure 47. A) CAD based FEM of the turbine blade design. B) Turbine blade second
bending mode.

5.3.3 Turbine Blade Testing

The AM turbine blades were tested using an Unholtz-Dickie 20K Electrodynamic

Shaker Table and the fatigue life step method [92, 93]. The grip of the blade was
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firmly clamped, and the blades were vibrated at their second natural frequencies of

approximately 1460 Hz. Two strain gauges attached to the blade surfaces captured

the experimental strain values. A Polytec OFV 500 Laser Vibrometer measured the

peak blade velocity at a third point on each blade during testing. The laser vibrometer

data held a linear relationship with the strain gauge measurements. By scaling the

FEM stress/strain maps with the measured strain gauge values, a direct relationship

between blade translation speed from the laser vibrometer and maximum applied

stress to each turbine blade was developed. This process enabled a feedback control

loop to set the maximum stress at each fatigue life step [77].

Basquin Scaling Strain Gauge Scaling

Experimental
Life (N)

All FEMs
Basquin ∆σmax

(MPa)

CAD FEM
Exp. ∆σmax

(MPa)

Digital Replica FEM
Exp. ∆σmax

(MPa)
Blade 01 1× 106 1.075× 103 1.158× 103 1.174× 103

Blade 02 5× 105 1.197× 103 1.003× 103 9.260× 102

Blade 03 1× 106 1.075× 103 1.303× 103 1.358× 103

Blade 04 1× 107 7.506× 102 6.958× 102 6.603× 102

Blade 05 1× 105 1.538× 103 1.431× 103 1.443× 103

Blade 06 5× 106 8.362× 102 7.793× 102 7.521× 102

Blade 07 5× 106 8.362× 102 9.179× 102 9.714× 102

Blade 08 1× 107 7.506× 102 6.761× 102 8.793× 102

Blade 09 5× 105 1.197× 103 1.068× 103 1.034× 103

Blade 10 1× 105 1.538× 103 1.523× 103 1.464× 103

Table 8. Computational and experimental maximum ∆σ values for each turbine blade
based on the design life or the applied FEM.

Two different methods were applied to scale the FEM stress values from the dis-

placement normalized values to actual values. The first method applied the Basquin

Equation (Eq. 1) with the specimen design life to calculate the maximum applied

stress range for the test specimen. Both the CAD based FEM and the digital replica

FEMs were scaled by the ratio of the Basquin predicted maximum stress range over

the FEM nominal maximum stress range. The second method to scale the FEM
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stress values applied measured strain gauge values. The ratio between the attached

strain gauges and the corresponding nominal strain values from the FEMs generated

the scaling value to adjust the FEM stress maps. Table 8 annotates the maximum

stress range on each turbine blade from each method. The strain gauge scaling all

ranged within ±30% of the Basquin predicted maximum stress ranges. The corrected

geometry of the digital replicas varied the maximum stress ranges within 10% of the

CAD based FEM predictions.

While the geometric differences associated with the digital replicas did not create

a large difference in the predicted maximum stress values from the CAD based model,

there was a large difference in the maximum stress locations from the different models

(Fig. 48). The maximum stress locations for Turbine Blades 01, 05, and 07 stayed

near the leading edge with the global maximum stress point from the CAD based

FEM. The digital replica FEMs for Turbine Blades 03 and 08 predicted the global

maximum stress point to shift to the trailing edge of the blade. The remaining five

turbine blade digital replica models predicted the maximum stress point along the

center of the blade. The variations in the maximum stress location imply that the

stress magnitudes also vary significantly between the CAD based FEM and the digital

replica FEMs.

5.4 Defect Analysis

After testing, each fracture surface was analyzed on a Tescan Mira3 Scanning

Electron Microscope (SEM). Crack growth tracing of the fracture surfaces identified

the the defect that initiated the fatal fracture. From the SEM images, the fatal defect

sizes and locations were identified. The area of each defect was determined by the

SEM measurement software, which calculated an area based on the user defined defect

boundary. The applied defect size, a, in Equation 15 was calculated from Equation
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Figure 48. Maximums stress locations for the CAD based FEM (green diamond) and
each digital replica FEM (red circles).

19.

a =
√
area (19)

For the fatigue bars, the stress at the defect location was calculated from the

applied force to the specimen and the cross-sectional area measured at the fracture

plane. Applying defect size, experienced stress, and location relative to the surface

into the finite fatigue life El-Haddad model generated fatigue life predictions (Table

9). Comparing the predicted life values in Table 9 to the experimental life values from

Table 7, fourteen of the fifteen sample predictions were within 2x of the experimental

data. Fatigue Bar 17 was the only anomaly where the predicted life was 16.4x lower

than the experimental life. Analysis after the testing showed slip events during the

testing, which invalidated that test result.
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Size
(µm)

Defect ∆σ
(MPa)

Surface
Defect

Predicted Life
(N)

Fatigue Bar 01 236 682.8 Yes 1.438× 105

Fatigue Bar 02 262 1038.6 Yes 2.634× 104

Fatigue Bar 03 314 436.7 Yes 4.285× 105

Fatigue Bar 04 538 648.4 Yes 5.337× 104

Fatigue Bar 05 448 1031.7 Yes 1.206× 104

Fatigue Bar 06 425 438.4 Yes 2.762× 105

Fatigue Bar 07 248 691.0 Yes 1.289× 105

Fatigue Bar 08 402 1028.4 Yes 1.454× 104

Fatigue Bar 09 269 440.6 No 2.075× 106

Fatigue Bar 10 656 691.1 No 1.235× 105

Fatigue Bar 12 370 1027.1 Yes 1.662× 104

Fatigue Bar 13 261 433.5 Yes 5.675× 105

Fatigue Bar 15 355 670.5 Yes 8.693× 104

Fatigue Bar 16 330 1037.4 Yes 1.896× 104

Fatigue Bar 17 351 440.0 Yes 3.578× 105

Table 9. Model parameters of defect size, stress, surface location, and predicted life
for the fatigue bar specimens.

For the turbine blades, the defect locations measured from the SEM imagery were

applied to their appropriate digital replica FEM to find the stress value at the defect

locations scaled according to the strain gauge measurements. A total of 432 defects

were imaged across the ten turbine blade fracture surfaces. Table 10 describes the

model parameters of defect size, stress, location relative to the surface, and predicted

fatigue life for four different defect attributes. The first attribute is the defect that

initiated crack growth as identified through the crack growth tracing. The other three

attributes are shortest predicted life on each turbine blade, largest measured defect on

each turbine blade, and the defect on each turbine blade that experienced the largest

stress range. Across all ten specimens, in no case did the largest defect generate the

shortest life prediction, and only four specimens predicted the defect at the highest

stress value leading to the shortest predicted life. These results correlated well with

the simulation results from prior work with the finite fatigue life El-Haddad model

where 4% of cases predicted initial failure due to the largest defect and 30% of cases
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predicted initial failure due to a defect at the maximum stress point [77].

Failure Initiating Defect Shortest Predicted Life

Size

(µm)

Applied

∆σ (MPa)

Surface

Defect

Predicted

Life (N)

Size

(µm)

Applied

∆σ (MPa)

Surface

Defect

Predicted

Life (N)

Blade 01 19 971.7 Yes 5.66× 105 50 1029.6 Yes 1.92× 105

Blade 02 41 818.6 No 1.53× 106 33 706.6 Yes 1.36× 106

Blade 03 195 768.0 Yes 1.23× 105 114 1077.6 Yes 6.56× 104

Blade 04 23 564.7 Yes 4.78× 106 40 590.8 Yes 2.18× 106

Blade 05 44 1162.9 No 2.58× 105 44 1270.2 Yes 8.43× 104

Blade 06 207 423.1 Yes 8.44× 105 208 656.6 Yes 1.95× 105

Blade 07 60 728.3 Yes 6.31× 105 241 710.9 No 4.37× 105

Blade 08 - - - - 189 867.5 No 2.69× 105

Blade 09 116 893.5 Yes 1.35× 105 134 998.2 Yes 7.40× 104

Blade 10 33 1095.6 Yes 2.11× 105 68 1290.8 No 1.12× 105

Largest Defect Largest Stress Range

Size

(µm)

Applied

∆σ (MPa)

Surface

Defect

Predicted

Life (N)

Size

(µm)

Applied

∆σ (MPa)

Surface

Defect

Predicted

Life (N)

Blade 01 206 505.7 No 1.83× 106 50 1029.6 Yes 1.92× 105

Blade 02 120 118.0 No 4.00× 108 21 844.7 No 2.07× 106

Blade 03 203 1067.8 No 1.01× 105 114 1077.6 Yes 6.56× 104

Blade 04 80 67.9 No 3.76× 109 41 608.0 No 5.62× 106

Blade 05 76 334.1 No 2.69× 107 29 1349.8 No 1.41× 105

Blade 06 588 211.9 No 7.24× 106 195 666.1 No 7.26× 105

Blade 07 397 205.0 No 1.39× 107 60 728.3 yes 6.31× 105

Blade 08 241 428.7 Yes 6.56× 105 189 867.5 No 2.69× 105

Blade 09 151 999.2 No 1.90× 105 35 1006.3 No 6.25× 105

Blade 10 122 131.5 No 2.83× 108 35 1291.4 No 1.65× 105

Table 10. Model parameters of defect size, stress, predicted life, and surface location.
One defect is called out for each turbine blade based on the attributes of: initiated
fracture, shortest predicted life, largest defect, highest stress at the defect location.

A large size difference was noted between the failure initiating defects of the axially

loaded fatigue bars and the bending loaded turbine blades. Due to the geometry of

the fatigue bars, approximately 28% of total volume experienced stresses at or near

the maximum applied stress. In comparison, the turbine blade load case only allowed

approximately 2.5% of the total blade volume to experience a stress value within

50% of the maximum applied stress. The large volume percentage of the fatigue bars

allowed more opportunities for large defects to be placed where they could lead to

failure. While large defects where found on the turbine blade fracture surfaces, they

tended to form within the core of the blade where bending stresses were much lower.
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There remains the potential across all of the samples that larger defects existed off of

the fracture surface planes that were studied.

5.5 Model Assessment

Figure 49. Measured life vs. modeled life for each turbine blade. Assessments on
the defects that led to failure, the shortest predicted life defects, the largest measured
defects, and the defects at the highest stress values.

Assessing the predicted life of each defect (Table 10) against the experimental life

values (Table 8) produced Figure 49. The set of shortest predicted life defects averaged

10.3x lower life predictions than the experimental data with a standard deviation

of 12.63, creating the most conservative of the data sets. The largest stress value

predictor also created a conservative data set with a mean prediction of 6.6x lower

than the experimental data and a standard deviation of 12.23. Applying the largest
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measured defect predominately over predicted the component life with an average

of 425x longer life predictions than the experimental data. This over prediction is

attributed to the low stress locations that the largest defects formed at during the

AM production. The failure initiating defects averaged predictions 2.4x below the

experimental data with a standard deviation of 4.38. This created both the tightest

grouping, and the most accurate predictions against the experimental data. Going

forward, only the failure initiating defect set was assessed.

Applying the turbine blade defects identified as initiating failure with their exper-

imental life values (Tables 8 & 10) and the failure inducing defects from the fatigue

bar testing with their experimental life values (Tables 7 & 9) to the finite fatigue

life El-Haddad model generated Figure 50. The Basquin fit line (Fig. 50A) was the

Stress to Life (S-N) curve based on the material properties in Table 1, and assumed

that the failure mechanism was solely due to the material fatigue limit. All of the

experimental data from the turbine blades and fatigue bars fell below the Basquin fit

line, implying that the Basquin fit did not accurately capture the failure mechanisms

for AM components. By turning the finite fatigue life El-Haddad model, adjusted

S-N curves were generated from discrete defect sizes to cause failure. The defect

size dependent S-N curves included LEFM in addition to the material fatigue limit

when predicting the S-N relationship. The failure defects from the fatigue bars and

the turbine blades correlate with the El-Haddad predicted S-N curves. Figure 50A

demonstrated that the turbine blades and fatigue bars followed different S-N trend

lines based on the defect sizes that led to failure. The fatigue bar failure defects

averaged 364 µm, and the experimental data was predominately between the 250 µm

and 450 µm S-N trend lines. In contrast, the turbine blade failure defects averages

82 µm, and were clustered around the 50 µm S-N trend line.

Figure 50B plotted the experimental data against the traditional El-Haddad curves
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Figure 50. A) El-Haddad predicted S-N curves based on fixed defect sizes. B) El-
Haddad finite life curves.

where each contour was a constant life value dependent on the defect size and applied

stress range. The El-Haddad model demonstrated a good agreement between the

test and prediction life values across three orders of magnitude for the design life.

As with the S-N curves, there was a clear delineation between the fatigue bar data

and the turbine blade data based on the defect size. The larger failure defects from

the fatigue bars placed them in the LEFM dominated region of the El-Haddad curve.

The smaller turbine blade failure defects pulled the data left enough to be within the

bend of the El-Haddad plot. That region of the curve was influenced by both the

material fatigue limit and LEFM.

5.6 Summary Remarks

This research demonstrated the validity of the finite fatigue life El-Haddad model

using new experimental data. The data verified that the finite fatigue life El-Haddad

generated a solid prediction of the fatigue life. Augmenting the model with FEM

location dependencies emphasized the importance of defect location when predicting

finite fatigue lives. The same model was applied to both the axial loaded fatigue bars

and the bending loaded turbine blades, demonstrating a degree of independence in
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Figure 51. Measured life vs. modeled life for the fatal defects from the fatigue bars and
the turbine blades. While the fatigue bar predictions held a tighter fit to the experi-
mental data, the turbine blade predictions continued to trend with their experimental
data.

the applied load case.

Figure 51 is the predicted fatigue life against the experimental fatigue life. Fatigue

bar data was collected for values ranging from 104 through 106 cycles of fatigue life.

With one exception, the finite fatigue life El-Haddad model predicted a failure life

within 2x of the experimental values. The collected turbine blade data spanned 105

to 107 cycles of fatigue life. While the El-Haddad predicted life of the turbine blade

data did not agree with the experimental data as well as the fatigue bar data did,

the turbine blade predicted life values trended with the experimental results with a

slightly conservative tendency in the predictions.

While the fatigue bar specimens all failed to large defects where LEFM was mod-
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eled as the dominate failure mechanism, the experimental data from the turbine blades

demonstrated that a large range of AM defects had the potential to limit the fatigue

life. Failure defects in the ten tested turbine blade specimens ranged from 19 µm to

207 µm. The smaller initial defect sizes provided data along the blended region where

both material fatigue properties and LEFM contributed to fracture. The largest of

the failure defects were in the region dominated by LEFM.
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VI. Satellite Application

6.1 Overview

Prior work has demonstrated that fatigue life is usually limited by relatively small

defects in regions near the maximum stress locations [77, 95]. By developing the

relationship between AM defect sizes, applied stress distributions, and fatigue life,

the proposed model specifies the defect sizes that could lead to early fatigue failure

and the structural locations that must be inspected.

The NASA Standard for Additively Manufacture Space Flight Hardware by Laser

Powder Bed Fusion in Metals (MSFC-STD-3716) includes an intensive test campaign

to document the fatigue life of an AM component and requires Non-Destructive Eval-

uation (NDE) [24]. The standard further leaves it up to the structural assessment

community to define the critical flaw size for NDE. This paper specifies a method

to define the critical flaw size based on the design life and applied stress. The pro-

posed method also predicts critical inspection regions where AM defects could lead

to fatigue life failure. Applying the predicted critical flaw size and failure locations

enables customized NDE requirements based on the geometry and load to certify AM

components for space within the scope of the NASA standard.

A prime candidate for limited life application of AM components are satellite

structures. These are subject to a dominate vibration event during launch that defines

the design life. During the launch event, the launch vehicle generates a significant

amount of vibrational energy that the satellite structure must withstand across a

wide range of frequencies [96]. After separation from the launch vehicle in space,

the satellite experiences minimal cyclic loading. By designing a satellite structure to

survive the short life required by launch with some margin, structures can be further

optimized, reducing the total structure mass and freeing more of the mass budget for
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payloads.

In this research, a technique was developed to predict the smallest defect size

that could induce failure and bound the locations where larger defects could result

in failure (Fig. 52). By applying the desired design life and the maximum applied

stress range into Equation 15 for N and ∆σ, a minimum failure inducing defect size

was predicted. Any defects generated due to the AM process that were smaller than

the predicted failure-inducing defect size were assessed as incapable of leading to

fracture within the fatigue design life regardless of where they were generated. If

the expected defect distribution contained defects larger than the minimum failure-

inducing defect size, Equation 15 was applied with the design life for N and the largest

expected defect for a to predict the minimum stress range that could potentially lead

to failure before N cycles. By mapping the locations in the Finite Element Model

(FEM) that experience the predicted minimum stress range, critical failure locations

were identified that could grow a defect to early failure if the correct defect size was

formed during the printing process. These critical failure regions define where NDE

is needed most to certify a component for mission success.

6.2 Materials and Methodology

The method outlined in Figure 52 was verified using AM specimens printed in

nickel-based super-alloy 718 (IN718). The AM process naturally generated small de-

fects throughout the parts in relationship to the processing parameters. The relative

density of the final products and potential defect sizes were controlled through the

processing parameters such as laser power, scan speed, spot size, and hatch spac-

ing [65, 66]. Figure 53 was the predicted defect distribution based on the applied

processing parameters of laser power, scan speed, hatch spacing, and layer thick-

ness [66].
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Figure 52. Process flow to predict minimum defect size of interest and potential failure
regions.

Ten turbine blade and fifteen fatigue bar specimens were produced in one print

on an M2 Cusing Laser Powder Bed Fusion (LPBF) printer. The turbine blades were

fatigue tested by inducing the second bending vibration mode using the fatigue step

test. The fatigue bars were axially loaded to a maximum force, and cycled at 20 Hz

until failure [77]. The experimentally measured loads and final fatigue lives formed the

finite fatigue life El-Haddad model inputs of design life and applied stresses. While

the turbine blade geometry and IN718 material are not considered space structures,

they provided the experimental data to validate the methodology in Figure 52.

6.2.1 Test Results

Each turbine blade specimen was vibrated at its unique second bending mode

frequency according to the vibrational step test method until failure. A low force

input was applied for N cycles, and then incremented up by 34.5 MPa (5 ksi) and

ran for another N cycles. The final failure stress was calculated using Equation 20

106



Figure 53. CDF for IN718 processes by Laser Powder Bed Fusion (LPBF). Half of all
generated defects were predicted to be under 37 µm, and 99% of defects were predicted
under 121 µm. The largest observed defect was 656 µm with an occurrence probability
of less than 0.00003%.

based on the percentage of cycles ran in the final step [92,93].

σa = σpr +
Nf

Nt

(σf − σpr) (20)

The ten turbine blades were distributed into five groups of two and were tested

on an Unholtz-Dickie 20K Electrodynamic Shaker Table at cycle counts of 1 × 105,

5×105, 1×106, 5×106, and 1×107. Each turbine blade was equipped with two strain

gauges to scale the FEM stress/strain profiles according to the experienced strain at

pre-set locations. Post-failure, the fracture surfaces were studied on a Tescan Mira3

Scanning Electron Microscope (SEM) to identify the origin of the failure crack and
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Blade ID
Fatigue Life

(N)
Applied ∆σMax

(MPa)
Defect Size

(µm)
Defect ∆σ
(MPa)

01 106 1040 19 972
02 5× 105 854 41 819
03 106 1187 195 768
04 107 591 23 565
05 105 1312 44 1163
06 5× 106 670 207 423
07 5× 106 857 60 728
08 107 872 - -
09 5× 105 964 116 894
10 105 1313 33 1096

Table 11. Defect sizes and applied stress ranges that experimentally caused failure for
the turbine blades.

the initial defect size that caused failure. By mapping the defect location onto the

turbine blade FEM, an applied stress for each failure defect was calculated (Table

11).

The fifteen fatigue bar specimen were broken up into three groups of five and

tested on an 810 MTS Load Frame with a 100kN Load Cell. Each group was loaded

to a different maximum stress value (221 MPa, 345 MPa, and 517 MPa) and cycled at

20 Hz under a fully reversed load profile until failure occurred. The fracture surfaces

were analyzed on the SEM to find the initial defect that caused failure (Table 12).

One of the fatigue bars from the 221 MPa set experienced testing anomalies and was

removed from the set, leaving a total of fourteen fatigue bar specimens.

6.2.2 Minimum Defect Analysis

Following the initial steps in Figure 52, the experimental life and maximum applied

stress ranges from the fatigue testing (Tables 11 & 12) were applied to the finite fatigue

life El-Haddad Equation (Eq. 15). The output predicted a minimum defect size for

both the turbine blades and fatigue bars (Table 13). From the experimental values,

these would be the smallest possible defects that predicted the same fatigue life. The
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Fatigue
Bar ID

Fatigue Life
(N)

Applied ∆σMax

(MPa)
Defect Size

(µm)
Defect ∆σ
(MPa)

01 230,416 690 236 683
02 22,356 1034 262 1039
03 464,646 441 314 437
04 75,059 690 538 648
05 23,888 1034 448 1032
06 553,711 441 425 438
07 118,499 690 248 691
08 20,368 1034 402 1028
09 1,075,687 441 269 441
10 95,388 690 656 691
12 23,776 1034 370 1027
13 541,165 441 261 434
15 134,758 690 355 671
16 23,250 1034 330 1037

Table 12. Defect sizes and applied stress ranges that experimentally caused failure for
the fatigue bars.

final S-N curves from the turbine blade testing performed near the Basquin Equation

predicted lives, as a result the minimum predicted defect sizes were all under 50 µm.

In three of the turbine blade samples the measured stress range and component life

predicted a negative minimum defect size. In those cases, the measured stress range

was larger than the Basquin predicted stress range (Eq. 1). The minimum defect size

was set to zero indicating that those parts would not predict a better life even with

a perfect manufacturing process.

In contrast, the fatigue bars predicted minimum defect sizes in the range of 150 µm

to 400 µm. Correspondingly, the S-N relationship from the fatigue bar experimental

data was significantly less than the Basquin Equation prediction for the material. For

the fatigue bars, the AM defects measurably degraded the fatigue life.

Across all twenty four specimens, only three cases had the measured fatal defect

less than the predicted minimum defect size. In Turbine Blade 02, the difference was

1 µm, and was within the tolerance for the defect measurements. Fatigue Bars 02 and
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Turbine Blades Fatigue Bars

ID
Minimum Defect

Size (µm)
Minimum ∆σ

(MPa)
Minimum Defect

Size (µm)
Minimum ∆σ

(MPa)
01 2 237 161 381
02 42 297 297 758
03 0 237 289 305
04 9 109 368 538
05 28 494 284 744
06 10 138 255 288
07 0 138 265 469
08 0 109 317 776
09 26 297 157 231
10 28 494 310 501
12 285 745
13 259 290
15 241 451
16 289 750

Table 13. Predicted minimum defect sizes and minimum applied stress ranges to cause
failure based on the experimental lives. The minimum defect sizes applied the max-
imum stress range and the minimum stress range applied the largest observed defect
size of 656 µm.

07 differed by 35 µm and 17 µm respectively. Both of those samples also measured a

slightly higher stress range at the fracture surface than was nominally applied. For

the fatigue bars, the maximum and applied stresses were based on average diameter

measurements of the specimens. In both of these samples, the diameter at the fracture

surface was measured as less than the average diameter along the length of the test

gauge. To ensure this will not happen in an application problem, a factor of safety

should be applied to the peak stress.

6.2.3 Minimum Stress Analysis

From the experimental data in Table 11 and Table 12, it was clear that defects ex-

isted in the samples larger than their minimum defect sizes. This meant that where

the defects formed would impact the fatigue life. Continuing along the flow chart

(Fig. 52), by applying the largest expected defect with the design life to Equation
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15, a minimum applied stress range was produced (Table 13). In this case the largest

expected defect was assumed to be the largest measured defect at 656 µm. Based pub-

lished IN718 defect distributions [66], a defect of that size or larger had a probability

of less than 0.00003% to form (Fig. 53).

For the turbine blade data every location that experienced a stress range greater

than or equal to the calculated minimum stress range (Table 13) was identified on

the FEM. Figure 54 plotted the critical locations for design lives of 105, 106, and 107

cycles fatigue life. As the design life increased, the potential areas where defects could

grow to failure also increased. At the design life of 105 cycles, approximately 28%

of the blade volume was assessed as potential failure initiation points. In contrast,

when the turbine blade design life was increased to 107 cycles, the potential failure

region increased to 60% of the total volume.

Figure 54. Potential defect forming locations on the turbine blade specimens based on
the largest expected defect and the stress profile across the geometry.

The critical regions from Figure 54 were further refined by applying the fatigue

lives and initial defect sizes that that led to failure for the turbine blades. Figure 55

depicted the critical regions for blades 01, 04, and 09. When applying the measured

initial defect and fatigue life, the critical regions were restricted to very small regions
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along the root of the blades. Developing the capability to better limit the largest

expected defect would reduce the defined critical regions and constrain the required

inspection volume.

Figure 55. Predicted crack initiation regions for Turbine Blades 01, 04, and 09. The
star was the experimental crack initiation point for each specimen.

By understanding the load case and the defect population from the AM process,

bounds have been developed on defect size and applied stress range combinations

that hold the potential to lead to failure. Figure 56 plotted the bounding defect sizes

and stress ranges for Turbine Blade 01. Any defect and stress combination that fell

above the target life curve could result in pre-mature failure. Combinations below

the target life curve should survive at least the target cycle life.

6.3 Satellite Application

The process outlined in Figure 52 is directly applicable to satellites. The following

section outlines how the finite fatigue life El-Haddad model was adapted to predict the

minimum defect size that could generate fatigue failure and to predict the locations

where AM defects create a failure concern. This analysis utilized the 12U CubeSat

chassis shown in Figure 57. This particular chassis was selected for analysis because
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Figure 56. Bounding defect sizes and stress ranges that could lead to failure for Turbine
Blade 01. The maximum stress range is from the maximum applied stress in the
experimental data. The maximum defect size is the largest observed defect across all
of the specimen at 656 µm.

vibrational testing data was readily available to set the stress profiles and the structure

volume was within AM print volume capabilities. The 12U chassis was tested in the

empty and maximum mass configurations on a vibration table. The experimental

data provided the foundation to generate the required stress profiles. The FEM

was validated at the component level through free-free vibration testing and at the

assembly level through shaker table testing of the 12U CubeSat in both the empty

and fully loaded configurations [13].

The satellite vibration environment is dominated by the launch. A typical launch

generates less than ten minutes of strong vibration, covering the first and second

stages [97]. Multiplying the launch duration by the primary axial vibration modes
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Figure 57. Empty configuration for the 12U CubeSat chassis [13].

generated a first order estimate of the required cyclic fatigue life to get on orbit. For

the applied 12U CubeSat, the first natural frequencies along each axis ranged from 90

Hz to 500 Hz depending on the final load configuration. Figure 58 depicted the first

three modes for the empty 12U CubeSat. When the Base Plate was constrained in the

launch configuration, the chassis flexed along the X axis (Fig. 58A) at 343 Hz, along

the Y axis (Fig. 58B) at 394 Hz, and along the Z axis (Fig. 58C) at 489 Hz. The

additional mass in the fully loaded configuration reduced the vibrational frequencies,

so that the X axis bending was reduced to 97 Hz [13]. Multiplying the largest of the
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axial frequencies (500 Hz) with the launch duration of 10 minutes created an upper

limit of 3× 105 vibrational cycles experienced during launch.

Figure 58. The first vibrational mode along each of the three primary axes. A) X Axis
bending (343 Hz). B) Y Axis bending (394 Hz). C) Z Axis bending (489 Hz).

Before applying the method presented in Figure 52 to the 12U CubeSat chas-

sis, several parameter updates were required. Changing the material from IN718 to

printed aluminum required a new Basquin Equation (Eq. 1) and Paris Law (Eq. 5)

to define the material fatigue properties and LEFM. A new defect distribution for

aluminum predicted if failure inducing defects were a concern. Finally, the FEM

stress map associated with the vibrational modes needed to be scaled based on the

maximum expected load to generate the potential failure initiation regions.

Since every AM material has a range of processing parameters that generate differ-

ent material properties and defect distributions [65,66]. In this application a notional

set of properties were developed for printed aluminum based on experimental result

in the literature.

6.3.1 Material Properties

The material properties of interest were the constants associated with the Basquin

Equation (Eq. 1) and the Paris Law (Eq. 5). Both equations are linear in the log

space with a coefficient and an exponent to define their respective relationships. The
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Basquin Equation was defined off of data from Lee for fully reversed load cycling

on traditionally manufactured Aluminum 7075-T6 [98] and produced Figure 59A.

The produced fit was compared to several printed aluminum tests [38, 99, 100] and

was found comparable to AlSi10Mg results along the range of 104 through 106 cycles

of fatigue life. The Paris Law was fit used ASM Handbook, Volume 2 for the crack

growth of Aluminum 7075-T6 [101] (Fig. 59B). Crack growth rates for AM aluminum

alloy Scalmalloy measured very close to the ASM Handbook values [102]. Crack

growth curves for printed AlSi10Mg generated a slightly slower crack growth rate for

the fully reversed load case [5]. By retaining the faster crack growth rate in literature,

the model generated a conservative assessment.

Figure 59. A) Basquin fit based off Al 7075-T6 experimental data. Fit parameters
were A = 7711, and b = −0.3254. B) Paris fit from ASM Material Handbook, C =
5.205× 10−11, n = 3.892

6.3.2 Defect Distribution

One defect distribution set for printed Aluminum was selected for this analysis.

The applied defect distribution (Fig. 60) was generated from the Weibull distribu-

tion based on data from Maskery et al.. The distribution was generated through

X-ray computed tomography on AlSi10Mg [103]. The predicted aluminum defects

were significantly smaller than those generated in IN718 (Fig. 53) with 99% of all

116



Figure 60. Notional CDF for printed Aluminum. Documented defects in aluminum
prints were significantly smaller than those in IN718 (Fig. 53), however large defects
have been observed.

predicted defects being less than 42 µm. Even with the smaller defect distribution,

extreme defects have been seen in the literature. Maskery et al. [103] and Beretta [19]

documented defects up to approximately 200 µm. Wu et al. identified defects up to

360 µm [38]. Finally Gumpinger et al. found a surface defect in printed aluminum

that was 514 µm [70].

6.3.3 Load Case

For the analysis of this case, the defined load was derived from the NASA General

Environmental Verification Standard (GEVS) which defined the applied acceleration

spectral density (ASD) from 20 Hz to 2,000 Hz [96]. Sine sweeps across the frequency
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range for the 12U chassis on an MB Dynamics shaker table generated an acceleration

response per frequency for select locations. By multiplying the NASA GEVS profile

with the gain per frequency and summing, a peak acceleration was calculated for each

accelerometer location. The calculated accelerations were then applied to the FEM

element closest to each accelerometer to identify the experienced stress and to scale

the FEM stress profile. The maximum applied stress range to the 12U chassis varied

from 135.5 MPa for the empty chassis down to 59 MPa for the completely loaded

chassis.

6.3.4 Minimum Defect of Interest

Figure 61. Minimum predicted defects sizes that could lead to failure within 3 × 105

cycles fatigue life.
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Applying the design life of 3×105 cycles and the derived maximum stress ranges for

the empty and full 12U CubeSat chassis into the finite fatigue life El-Haddad model

(Eq. 15) generated Figure 61. For the empty 12U chassis, the smallest defect that

could lead to failure was predicted at 22.8 µm. Based on the defect distribution in

Figure 60, approximately 96.7% of all defects generated should be smaller. When the

peak stress range associated with the full 12U CubeSat was checked, the minimum

defect that could cause failure was calculated at 159.1 µm. This translated that

99.99% of all generated defects should be smaller than the minimum defect of interest.

6.3.5 Failure Prediction Regions

The next step in the process (Fig. 52) was to assess if defects larger than the

failure inducing defect were possible from the AM process. Based on Figure 60,

defects larger then 159 µm have been documented. In this example, the maximum

defect was defined at 400 µm, which corresponded to approximately one out of five

million defects. Applying the maximum defect size to the finite fatigue life El-Haddad

model (Eq. 15) for the design life of 3 × 105 cycles predicted a minimum fracture

stress range of 37.8 MPa (Fig. 62).

Finally, the FEM was filtered to identify every location that experienced the min-

imum fracture stress range along at least one of the three primary axis modes. Figure

63 highlighted every region in the empty 12U chassis that predicted a stress range of

at least 37.8 MPa. Across the empty 12U geometry, less than 0.5% of the structural

volume was assessed as potential locations to generate a fatal crack assuming a defect

between 22.8 µm and 400 µm formed.

Performing the same analysis on the full 12U chassis (Fig. 64) predicted 0.3% of

the total volume to be susceptible of fatigue failure within the applied design life of

3× 105 cycles. None of the critical locations on the fully loaded 12U were associated
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Figure 62. Addition of the minimum stress to cause fracture within 35 cycles of fatigue
life. The minimum stress value assumed that no defects larger than 400 µm were
generated from the AM process.

with the the external structure. Figure 65B pulled out a single mass stack from

the full 12U chassis. All of the critical regions associated with the fully loaded 12U

CubeSat were where the mass plates connected to their corner supports or where the

support bars connected to the adaptor plates (Fig. 65A).

6.4 Summary Remarks

The application of the developed methodology in Figure 52 generated two key

contributions associated with certifying AM components for space. First, by applying

the required design life and expected maximum stress load into the finite fatigue life

El-Haddad model, a minimum defect size was defined. The minimum defect size sets
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Figure 63. The critical regions where crack growth could initiate from for an empty
12U chassis. Predicted crack initiation regions were predominately found along the
view-port corners and at screw connection locations.

the objective goal for NDE detection resolution and AM process improvements. If all

defects were ensured to be smaller, then failure due to AM defects would not be an

issue within the design life. While it might be feasible with the correct AM parameters

and post-processing steps to keep the extreme defects below 159 µm for aluminum,

there are no indications that the processes could reduce the extreme defects as far as

22.8 µm. Because AM defects will continue to be a concern in the foreseeable future,

the second contribution identified the locations that would require inspection. By

understanding the maximum defect size for a material and applied print parameters,

the finite fatigue life El-Haddad model predicted a minimum applied stress range that
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Figure 64. The critical regions where crack growth could initiate from for a fully loaded
12U chassis. Predicted crack initiation regions were solely found within the interior
structural elements.

could lead to fracture within the design life. If all load cases were kept below this

minimum fracture stress, then fatigue failure would not be a concern. In most cases,

there will be experienced stresses between the stress to grow the largest expected

defect and the largest stress on the component. By linking the potential failure

stresses to a developed FEM, inspection location criteria was defined.

Further work to develop the model includes extending the defect population to

be parameterized based on common AM processing parameters. In this paper, the

defect population was generated from literature with no concern for how the parts

were processed. By creating a defect population based on applied AM parameters,
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Figure 65. A) One mass stack. B) The assessed critical regions associated with the
mass stack.

materials, and post-processing steps, a direct link will be created from print settings

to potential failure regions. By balancing the costs associated with reducing the

expected defect population with the costs of NDE techniques, bounds on the required

AM parameters and NDE resolution can be developed.
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VII. Conclusion

7.1 Summary Remarks

This research successfully developed a model to predict fatigue life based on mea-

sured defect size and location data. The finite fatigue life El-Haddad model generated

the connection between fatigue life, defect size, and applied stress. By augmenting the

El-Haddad model with an FEM of the desired geometry, the applied stress became

dependent on defect location.

Material properties and final geometry measurements were taken for AM built

samples and applied to the El-Haddad model and FEMs. Updates to the FEM

improved the stress mapping. The measured stresses ranged between 40% and 230%

of the predicted stresses when using the baseline geometry and material properties.

When the measured geometry and material properties were applied, the measured

stresses ranged from 90% to 110% of their predictions (Ch III).

The developed fatigue life model was validated through vibrational testing at

AFRL/RQTI. A total of twenty five specimens were built, quantified, and fatigue

tested to failure. Fifteen fatigue bars generated data on axial loading at three different

load levels and demonstrated predicted fatigue lives within 2× of the experimental

fatigue lives. The fatigue bar data validated that the applied model responded as

previously published work. Ten turbine blade samples extended the experimental

work to include bending load cases and analyzed the contributions of a complex

geometry to the model. The turbine blade predicted lives stayed within 10× of the

experimental lives (Ch V).

A second aspect of the research was to predict critical regions where AM defects

had the potential to cause fatigue failure before the design life (Ch IV & VI). Identi-

fication of a critical region required knowledge of generated defect distributions and a

124



detailed understanding of the applied loading. Applying the largest expected defect

and design life to the finite fatigue life El-Haddad model predicted a minimum stress

value that could lead to failure. By filtering the FEM to identify locations predicted

to experience at least the minimum stress value, critical regions were defined. Inten-

sive analysis of the turbine blade fracture surfaces to identify initial defect sizes and

locations demonstrated merit to the critical region assessments (Ch IV). Across the

ten data points, the critical region assessments encompasses the fracture initiation

points.

7.2 Future Research

There are several directions of research that will further the fatigue life analysis

presented in this dissertation. Research to improve the input parameters would assist

in early design application. There are several areas within the developed model that

will benefit from additional experimentation and expansion efforts to address built

in assumptions. Finally, application of this method will assist in many research

applications.

7.2.1 Research into Inputs

Chapter III demonstrated the importance of properly characterizing the material

properties and final geometry when applying state-of-the-practice FEM improvement

techniques for AM production. To generate an accurate FEM for predicting the

stress to location maps, accurate knowledge of Young’s Modulus, density, and final

geometry are required. Current methods involve experimental testing post print to

generate final properties. Applying an intensive research campaign to relate the

material properties to applied print parameters will minimize the necessity of post

print testing. This has been performed once for the density of IN718 with a function
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to predict the mean density based on laser power, scan speed, layer thickness and

hatch spacing [66]. An experimental plan could be mounted to expand the work to

fit Young’s Modulus as well, and/or branch out to additional AM materials.

In addition to Young’s Modulus and Density for the FEM development. The

finite fatigue life El-Haddad model needs the material properties for crack growth

and the Stress to Life (S-N) curve. While adjusting the model from IN718 to printed

aluminum in Chapter VI, it was discovered that there is very little published on crack

growth rate parameters or S-N parameters based on material, print settings, or load

ratios. Research in those areas will enable a broader application of the finite fatigue

life El-Haddad model.

Defect distributions are another area where the literature does not document clear

input parameters. For this research, prior testing with the same material, and covering

identical print parameters provided a defect distribution function [66]. However, that

is rarely the case. The aluminum defect distribution applied in Chapter VI was

generated from one parameter setting for AlSi10Mg, and there has been no discussion

in literature on how the defect populations change based on print parameters or post-

print processing.

While characterizing the defect distributions based on material and print param-

eters would inform on potential defect sizes, improving in-situ monitoring and post-

print scanning would directly link defects with locations. Computed Tomography

(CT) scans where discussed in Chapter II, and proposed in the original research plan.

However, due to complications with processing the scan data, it was dropped in favor

of post-fracture, Scanning Electron Microscope (SEM) imagery analysis. Improve-

ments to the scanning process, and being capable of automating the identification

of defect size and location would enable pre-test predictions of fatigue life. CT scan

processing improvements would also enable further verification of the critical failure
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region.

The in-situ monitoring is an active research field to identify defects as they form

from data collected during the build. When the capability is proven, it has to potential

to remove the need for CT scanning. Post-processing of collected in-situ data could

reveal defect sizes and locations. Real-time processing of the in-situ data is the next

step to enabling print corrections if a potential failure defect is formed within a critical

failure region.

7.2.2 Model Broadening Efforts

The finite fatigue life El-Haddad model was validated through two geometries.

The fatigue bars were tested under an axial load, and the turbine blades were tested

through a bending vibration load. While that was sufficient to demonstrate the

utility of the method; additional loads, geometries, and materials are required to

prove the versatility. Chapter VI demonstrated the process to apply the finite fatigue

life El-Haddad model to a different material and geometry. However, there is no

experimental data to quantify the applicability of the model to the new geometry

and material.

One of the assumptions built into the model was the application of the Basquin

Equation 1 to approximate the defect free S-N relationship. The Basquin Equation

breaks down at very high and low fatigue lives based on material properties. While the

applied life ranges in this research did not push the boundaries, it will be important

to develop the application limits of this model, and determine the appropriate model

augmentations to adjust the fatigue life predictions when operating in the extremely

high or low life regimes.

Another key assumption of this model was that only axial forces factored into

fatigue life. The fatigue bar testing did not have any shear stresses by design, and
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the bending tests only applied the axial portion of the stress to predict the fatigue

life. A valuable research area is to expand the model to predict fatigue life based on

shear stresses.

7.2.3 Future Applications

The capability to accurately predict the fatigue life of an AM component or to

specify inspection criteria is great, however, this tool could be extremely powerful in

the design phase. The application of a design life and defect distribution generates

critical stresses and minimum defect sizes. The potential exists to apply those gen-

erated parameters into a multi-disciplinary optimization problem. The benefit would

be an optimized print geometry that factors in load distributions and inspectable de-

fect sizes. Optimizing to a fixed design life holds potential to further reduce the used

material in any print. Tying the optimized geometry to a defect distribution creates

links to optimal print parameters as well. Research into the multi-disciplinary opti-

mization with the finite fatigue life El-Haddad model as an optimization function will

enable cheap, limited function components with pre-determined inspection criteria to

certify.
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Appendix A. Matlab Code

1.1 Master Code

%% Maj Daniel Miller

% Master script for reading and processing Abaqus Mesh to interact with

% Fatigue Life Predictions

% Section 1) Structure Abaqus Data Files to be read in. Each row in the

% name files denotes a separate model to be processed. ID the desired

% save names for the workspaces (Blade Data, Gauge Data)

% Custom Functions: None

% Section 2) Load the material properties: Basquin Equation Values and

% Crack Growth Values.

% Custom Functions: None

% Section 3) Generate the El-Haddad Finite Fatigue Life Model.

% Custom Functions: ElHaddadModel

% Section 4) Start of Blade Iteration For Loop. Includes Sections 5-11.

% Iterates through each model data set called in Section 1.

% Custom Functions: None

% Section 5) Reads in the Mesh Connectivity (Element/Node Map), Element

% Volumes, Stress Map and Strain Map for the FEM Load Case. ...

Hardcoded to

% convert from inches to microns, inchesˆ3 to micronsˆ3 and psi to MPa

% respectivly.

% Custom Functions: ReadAbaqusMesh, ReadAbaqusStress
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% Section 6) Splits the FEM model to remove un-nessesary elements.

% Function has a hardcoded separation plane to remove the structure grip

% from the blade.

% Custom Functions: PullBladeMesh

% Section 7) IDs the origin point for the FEM model being processed.

% Custom Functions: None

% Section 8) Convert stress and strain values from element values to ...

nodal

% values.

% Custom Functions: NodalStressStrain

% Section 9) Pull all of the surface nodes in the model through an

% excel spreadsheet that pre-IDs the surface node desigation numbers.

% Custom Functions: None

% Section 10) Scale the nominal stress and strain values by the ...

target life

% value for each model.

% Custom Functions: StressScaling

% Section 11) Stores the variables: BladeMesh, Mesh, Scale, Surface, and

% Origin into a super-structure.

% Custom Functions: None

% Section 12) Identify the nominal model values associated with a ...

surface

% point to correspond with an applied strain gauge.

% Custom Functions: GaugeLocation
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% Section 13) Develop and apply the scale factor to transform the ...

nominal

% stress and strain values to match the experimental strain gauge ...

values.

% Custom Functions: None

% Section 14) Save the workspaces for Blade Data and Gauge Data

% Custom Functions: None

clear all; close all; clc; %#ok<CLALL>

fprintf('Starting Master File \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% 1) Model Files and Save Files

% Abaqus.inp file converted to Abaqus.txt

% Nodes Format: ID | X | Y | Z

% Element Format: ID | Node #1 | Node #2 | ... | Node #19 | Node #20

MeshFileName = ["Blade01 Quad Morphed Meas TopBottomBC"; ...

"Blade02 Quad Morphed Meas TopBottomBC";...

"Blade03 Quad Morphed Meas TopBottomBC"; ...

"Blade04 Quad Morphed Meas TopBottomBC";...

"Blade05 Quad Morphed Meas TopBottomBC"; ...

"Blade06 Quad Morphed Meas TopBottomBC";...

"Blade07 Quad Morphed Meas TopBottomBC"; ...

"Blade08 Quad Morphed Meas TopBottomBC";...

"Blade09 Quad Morphed Meas TopBottomBC"; ...

"Blade10 Quad Morphed Meas TopBottomBC"];

% Abaqus.rpt files converted to Abaqus.txt

% Format: Element # | Von Mises | S11 | S22 | S33 | S12 | S13 | S23
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StressFileName = ["Blade01 Freq2 MP TBC StressCentroid"; ...

"Blade02 Freq2 MP TBC StressCentroid";...

"Blade03 Freq2 MP TBC StressCentroid"; ...

"Blade04 Freq2 MP TBC StressCentroid";...

"Blade05 Freq2 MP TBC StressCentroid"; ...

"Blade06 Freq2 MP TBC StressCentroid";...

"Blade07 Freq2 MP TBC StressCentroid"; ...

"Blade08 Freq2 MP TBC StressCentroid";...

"Blade09 Freq2 MP TBC StressCentroid"; ...

"Blade10 Freq2 MP TBC StressCentroid"];

% Format: Element # | Max Principle | E11 | E22 | E33 | E12 | E13 | E23

StrainFileName = ["Blade01 Freq2 MP TBC StrainCentroid"; ...

"Blade02 Freq2 MP TBC StrainCentroid";...

"Blade03 Freq2 MP TBC StrainCentroid"; ...

"Blade04 Freq2 MP TBC StrainCentroid";...

"Blade05 Freq2 MP TBC StrainCentroid"; ...

"Blade06 Freq2 MP TBC StrainCentroid";...

"Blade07 Freq2 MP TBC StrainCentroid"; ...

"Blade08 Freq2 MP TBC StrainCentroid";...

"Blade09 Freq2 MP TBC StrainCentroid"; ...

"Blade10 Freq2 MP TBC StrainCentroid"];

% Format: Element # | Ele Volume

VolumeFileName = ["Blade01 Freq2 EleVolume Base"; ...

"Blade02 Freq2 EleVolume Base";...

"Blade03 Freq2 EleVolume Base"; ...

"Blade04 Freq2 EleVolume Base";...

"Blade05 Freq2 EleVolume Base"; ...

"Blade06 Freq2 EleVolume Base";...

"Blade07 Freq2 EleVolume Base"; ...

"Blade08 Freq2 EleVolume Base";...
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"Blade09 Freq2 EleVolume Base"; ...

"Blade10 Freq2 EleVolume Base"];

% Master Blade Save Name

SaveFile = 'AllBlades Quad Morphed Meas TopBottomBC.mat';

% Master Gauge Save Name

GaugeSave = 'AllBlades Primary Secondary StrainGauges.mat';

%% 2) Material Properties for IN718

% Properties based on Sheridan's Paper: A Modified El Haddad Model For

% Versatile Defect Tolerant Design

% Loading and Shape Factors

Mat.R = -1; % Load Ratio (S max/S min)

Mat.Y1 = 1.12; % Crack Shape Factor (through crack at edge)

Mat.Y2 = 0.65; % Near surface pore

% Wroght IN718 Crack Growth Material Properties

Mat.A = 4623.4; % Material constant

Mat.b = -0.1558; % Material constant

Mat.gamma = 0.3727; % Material constant

Mat.C = 1e-13; % Material constant

Mat.n = 4; % Material constant

Mat.m = 0.75; % Material constant

Mat.K Ic = 50; % Material constant (MPa*sqrt(m))

Mat.C 0 = Mat.C/(1-Mat.R)ˆ(Mat.n*Mat.m);

fprintf('Finished Inputing Material Properties \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% 3) Generate El-Haddad Model
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% Applied the crack growth and Basquin Equation material properties to

% generate a finite life El-Haddad curve with the parameters of desired

% life, crack size, and applied stress.

Model = ElHaddadModel(Mat);

fprintf('Finished calculating El-Haddad Finite Fatigue Life \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% 4) Start of Blade For Loop

for jj = 1:length(MeshFileName)

%% 5) Read in Mesh Data

% Name of file to read in, make sure to save the Abaqus input file ...

as .txt

% first

% Reads in every node and element

% Mesh Input Units: inches

% Inputs: Mesh Name, Nodes Per Element

[Mesh.Nodes, Mesh.Elements] = ReadAbaqusMesh(MeshFileName(jj),20);

Mesh.NumNodes = size(Mesh.Nodes,1);

% Re-shape the element matrix to put each element on one line

% needed due to Abaqus output formatting with Quad Hex elements

Mesh.Elements = Mesh.Elements';

Mesh.Elements = Mesh.Elements(:);

Mesh.Elements = nonzeros(Mesh.Elements);

Mesh.NumEle = length(Mesh.Elements(:))/21;

Mesh.Elements = reshape(Mesh.Elements,21,Mesh.NumEle);

Mesh.Elements = Mesh.Elements';

% convert Node location from Inches to Microns
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Mesh.Nodes(:,2:end) = Mesh.Nodes(:,2:end)*25400;

fprintf(['Finished Reading in the Mesh for Blade ...

',num2str(jj,'%02i'),' \n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

% Read in element stress values

% Stress Input Units: psi

% Inputs: File Name, Number of columns in .txt file

Mesh.Freq2.Nom Stress = ReadAbaqusStress(StressFileName(jj),8);

% Convert Stresses from psi to MPa

Mesh.Freq2.Nom Stress(:,2:end) = ...

Mesh.Freq2.Nom Stress(:,2:end)*(0.00689476);

fprintf('Finished Reading in the Stress Map for Freq 2 \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

% Pull elemental strain values

% Inputs: File Name, Number of columns in .txt file

Mesh.Freq2.Nom Strain = ReadAbaqusStress(StrainFileName(jj),8);

fprintf('Finished Reading in the Strain Map for Freq 2 \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

% Elemental Volume Data

% Volume Input Units: inˆ3

% Inputs: File Name, Number of columns in .txt file

Mesh.EleVolume = ReadAbaqusStress(VolumeFileName(jj),2);

% Convert from inˆ3 to micronˆ3

Mesh.EleVolume(:,2) = Mesh.EleVolume(:,2)*(25400ˆ3);

fprintf('Finished Reading in the Element Volumes \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% 6) Pull Blade Specific Data From Mesh
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% Pull just the blade elements from the mesh to simplify plotting

% Function has the cutting plane hard coded inside (Line 17 of Function)

BladeMesh = PullBladeMesh(Mesh);

fprintf('Finished separating the Blade Mesh from Grip Mesh \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% 7) Origin Location

% ID an origin location based on the lowest values of x, y, and z within

% the blade grip.

O z = min(Mesh.Nodes(:,4));

[Ind Oz,val] = find(Mesh.Nodes(:,4)<=(O z+10)*10);

O x = min(Mesh.Nodes(Ind Oz,2));

O y = min(Mesh.Nodes(Ind Oz,3));

BladeMesh.Origin = [O x, O y, O z];

fprintf('Finished IDing Model Origin Location \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% 8) ID Nominal Max Stress & Stress Range at Each Node

% Pull the elemental stress and strain values that touch one node. ...

Store

% the largest value as the nodal stress/strain values.

BladeMesh = NodalStressStrain(BladeMesh);

BladeMesh.Freq2.Nom NodalStressRange = BladeMesh.Freq2.Nom NodalStress;

BladeMesh.Freq2.Nom NodalStressRange(:,2:end) = ...

(1-Mat.R)*BladeMesh.Freq2.Nom NodalStress(:,2:end);

fprintf('Finished Generating Nominal Nodal Stress Values \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);
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%% 9) Surface Mapping

% Pull the node map and stress/strain values associated with every ...

surface

% node.

% Read in Surface Node IDs

SurfaceNodeIDs = xlsread('SurfaceNodes.xlsx');

fprintf('Finished Loading Surface Node IDs \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

% Create array of surface node info

SurfaceMembership = ismember(BladeMesh.Nodes(:,1),SurfaceNodeIDs);

Surface.Nodes = [];

Surface.NodeStrain = [];

for ii = 1:BladeMesh.NumNodes

if SurfaceMembership(ii) == 1

Surface.Nodes = [Surface.Nodes; BladeMesh.Nodes(ii,:)];

Surface.NodeStrain = [Surface.NodeStrain; ...

BladeMesh.Freq2.Nom NodalStrain(ii,:)];

end

end

fprintf('Finished IDing Surface Node Location and Strain \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% 10) Scale Stress Map by desired defect free life
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% Use target life and Basquin Law to predict the max stress for the ...

design

% life. Design Max Stress / Nominal Max stress = Model Scale Value. ...

Apply

% the scale value to saved nominal stress/strain values.

% Desired Defect Free Design Life

TargetLife = [1e6; 5e5; 1e6; 1e7; 1e5; 5e6; 5e6; 1e7; 5e5; 1e5];

[BladeMesh, BladeMesh.Freq2.Mod Scale] = ...

StressScaling(BladeMesh,Mat,TargetLife(jj));

fprintf('Finished Scaling the Blade Stress Map and Defect Stress ...

Values \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% 11) Store Data in SuperStructure

Mod Blades{jj,1} = BladeMesh;

Mod Mesh{jj,1} = Mesh;

Mod Surface{jj,1} = Surface;

% Clear variables to prevent rollover artificats between modeling being

% processed.

clear BladeMesh Mesh Surface

end

%% 12) ID Gauge Locations

% Pick measure distances for where to place a gauge. Apply the ...

distances

138



% to the model surface to identify nodal location and associated

% stress/strain.

% Note: GaugeLocation is hardcoded for the applied turbine blade ...

geometry.

% Measure Left from Right Edge

ML = 26400; % microns

% Measure Down from Top Edge

MD = 32200; % microns

PrimeGauge = GaugeLocation(ML,MD,Mod Surface);

PrimeGauge.MaxStrain(jj,:) = ...

max(Mod Blades{jj,1}.Freq2.Nom NodalStrain(:,2:5));

% Measure Left from Right Edge

ML = 31000; % microns

% Measure Down from Top Edge

MD = 86000; % microns

SecondGauge = GaugeLocation(ML,MD,Mod Surface);

SecondGauge.MaxStrain(jj,:) = ...

max(Mod Blades{jj,1}.Freq2.Nom NodalStrain(:,2:5));

fprintf(['Finished IDing Gauge Locations and Strains \n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% 13) Experimental Strain Scaling

% Apply the measured strain at failure for both gauges

% Divide measured strain values by Model strain values at the gauge

% locations

% Average the scale factors for a single scale value per blade

% Failure Strain Values
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PrimeGauge.FailureStrain = [1617.413; 1343.385; 1767.788; 965.448; ...

1964.016; 1040.844; 1201.68; 1320.45; 1448.281; 2068.824]*1e-6;

SecondGauge.FailureStrain = [1159.531; 1068.243; 1362.922; 703.851; ...

1471.868; 834.485; 1010.466; 1025.969; 1117.907; 1591.6]*1e-6;

% Calcuate Blade Scale Factor

G1 Ratio = PrimeGauge.FailureStrain./PrimeGauge.MeanStrain(:,4);

G2 Ratio = SecondGauge.FailureStrain./abs(SecondGauge.MeanStrain(:,4));

Exp Scale = (G1 Ratio+G2 Ratio)./2;

% Scale Nominal Values to Experimental Scaling

for ii = 1:length(Mod Blades)

Mod Blades{ii,1}.Freq2.Exp NodalStress = ...

Mod Blades{ii,1}.Freq2.Nom NodalStress;

Mod Blades{ii,1}.Freq2.Exp NodalStress(:,2:end) = ...

Mod Blades{ii,1}.Freq2.Exp NodalStress(:,2:end)*Exp Scale(ii);

Mod Blades{ii,1}.Freq2.Exp NodalStrain = ...

Mod Blades{ii,1}.Freq2.Nom NodalStrain;

Mod Blades{ii,1}.Freq2.Exp NodalStrain(:,2:end) = ...

Mod Blades{ii,1}.Freq2.Exp NodalStrain(:,2:end)*Exp Scale(ii);

Mod Blades{ii,1}.Freq2.Exp Scale = Exp Scale(ii);

end

%% 14) Save the Workspaces

save('El-Haddad Model','Model')
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save(SaveFile,'Mod Blades','Mod Mesh','Mod Surface','Mat')

fprintf('Blade Workspace Saved \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

save(GaugeSave,'PrimeGauge', 'SecondGauge')

fprintf('Gauge Values Saved \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

1.1.1 El-Haddad Function

%% Maj Daniel Miller

% El-Haddad Fatigue Life Model

% Applies a material property set to a pre-set range of defect sizes and

% design lives. Calculates the critical El-Haddad defect size and ...

stress

% values. Returns vectors for stess, defect size, and design life.

function Model = ElHaddadModel(Mat)

%% Input Parmeters

a = logspace(-7,-3,100); % Crack size of interest (meters)

N = logspace(3,7,100); % Cycles to failure

%% Calculate dS

% Basquin Law with Walker Modification for stress ratio (R)

% Calculate applied stress range for per life and stress ratio

deltaS N = (1-Mat.R) * Mat.A.*N.ˆMat.b * ((1-Mat.R)/2)ˆ(-Mat.gamma);

% fatal crack size
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% Assuming any fatal crack will be a through crack

% Calculate failure crack size based on applied stress range

a c = (1/pi)*(Mat.K Ic*(1-Mat.R)/Mat.Y1./deltaS N).ˆ2;

% Paris Law

% Calculate starting crack size for given cycles to failure

a 0 = (a c.ˆ(1-Mat.n/2) - ...

N.*((1-Mat.n/2)*Mat.C 0*(Mat.Y2*deltaS N.*sqrt(pi)).ˆMat.n)).ˆ(1/(1-Mat.n/2));

% El-Haddad Equation

for ii = 1:length(deltaS N)

deltaS(ii,:) = deltaS N(ii).*(sqrt(a 0(ii)./(a+a 0(ii))));

end

%% GridData

% Re-format the data for plotting

deltaS = deltaS';

deltaS vector = deltaS(:);

a vector = zeros(size(deltaS vector'));

N matrix = zeros(size(deltaS));

for ii = 1:100

N matrix(ii,:) = N;

end

N vector = N matrix(:);

for ii = 1:length(a)

for jj = ii:100:length(deltaS vector)

a vector(1,jj) = a(ii);

end

end
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Model.a 0 = a 0';

Model.deltaS N = deltaS N';

Model.a N = a vector';

Model.dS N = deltaS vector;

Model.N = N vector;

end

1.1.2 Read Abaqus Mesh

%% Maj Daniel Miller

% Read in Abaqus Mesh Data

% Adapted from Mathworks question: Extract nodes and elements from ...

abaqus

% input file to matlab

% https://www.mathworks.com/matlabcentral/answers/307258-extract- ...

% nodes-and-elements-from-abaqus-input-file-to-matlab

% Convert an Abaqus fileName.inp to fileName.txt and parses out node

% listings, locations, and element connection map

% Input: desired .inp file and an integer for the number of nodes per

% element

% Output: Matrix of Node IDs with locations, Matrix of Element IDs with

% nodal connections

% Runs a modified version of the Matlab function dlmread() called

% Moddlmread()

function [nodes, elements] = ReadAbaqusMesh(filename, NodesPerEle)

fname = char(filename);

fname = [fname,'.txt'];
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fid = fopen(fname,'rt');

S = textscan(fid,'%s','Delimiter','\n');

S = S{1} ;

fclose(fid);

%% Get the line number of mises

idxN = strfind(S, 'Node');

idx1 = find(not(cellfun('isempty', idxN)));

idxE = strfind(S, 'Element');

idx2 = find(not(cellfun('isempty', idxE)));

idxElS = strfind(S, 'Elset');

idx3 = find(not(cellfun('isempty',idxElS)));

idxEnd = strfind(S, 'End');

idx4 = find(not(cellfun('isempty', idxEnd)));

%% pick nodes

nodes temp = Moddlmread(fname,',',[idx1(1),0,idx2(1)-2,3]);

nodes = zeros(nodes temp(end,1),4);

% space nodes to capture missing node indexes

for ii = 1:length(nodes temp)

nodes(nodes temp(ii,1),:) = nodes temp(ii,:);

end

%% pick elements

elements = Moddlmread(fname,',',[idx2(1),0,idx3(1)-2,NodesPerEle]);

end

1.1.3 Read Abaqus Stress

%% Maj Daniel Miller

% Read in Abaqus Stress Data
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% convert fileName.rpt to fileName.txt

% Input: Name of File to be read, How many columns the output should ...

have

% Output: Ele ID | Data column 1 | ... | Data column (Numcolumns-1)

% Runs a modified version of the Matlab function dlmread() called

% Moddlmread()

function stress = ReadAbaqusStress(filename,NumColumns)

fname = char(filename);

fname = [fname,'.txt'];

fid = fopen(fname,'rt');

S = textscan(fid,'%s','Delimiter','\n');

S = S{1} ;

fclose(fid);

%% Get the line number of mises

idxStart = strfind(S, '-----');

idx1 = find(not(cellfun('isempty', idxStart)));

idxEnd = strfind(S, 'Minimum');

idx2 = find(not(cellfun('isempty', idxEnd)));

%% pick elements

stress = Moddlmread(fname,' ',[idx1(2),0,idx2-4,74]);

zeroStress = [];

v = nonzeros(stress');

if v(1)==1 && v(2)==2

v = [v(1);zeros(NumColumns-1,1);v(2:end)];

end

for ii = 9:length(v)-1

if v(ii)==v(ii+1)-1 && v(ii)==v(ii-NumColumns)+1 && ...
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v(ii)~=v(ii+NumColumns)-1

v = [v(1:ii);zeros(NumColumns-1,1);v(ii+1:end)];

zeroStress = [zeroStress;ii,v(ii)];

end

end

stress = reshape(v,NumColumns,length(stress))';

end

1.1.4 Modified dlmread File

% Added range(4) = size(result,2)-1; to correctly set the fourth range

% valuve (Line 156)

function result= dlmread(filename,delimiter,r,c,range)

%DLMREAD Read ASCII delimited file.

% RESULT = DLMREAD(FILENAME) reads numeric data from the ASCII

% delimited file FILENAME. The delimiter is inferred from the ...

formatting

% of the file.

%

% RESULT = DLMREAD(FILENAME,DELIMITER) reads numeric data from the ...

ASCII

% delimited file FILENAME using the delimiter DELIMITER. The ...

result is

% returned in RESULT. Use '\t' to specify a tab.

%

% When a delimiter is inferred from the formatting of the file,

% consecutive whitespaces are treated as a single delimiter. By
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% contrast, if a delimiter is specified by the DELIMITER input, any

% repeated delimiter character is treated as a separate delimiter.

%

% RESULT = DLMREAD(FILENAME,DELIMITER,R,C) reads data from the

% DELIMITER-delimited file FILENAME. R and C specify the row R ...

and column

% C where the upper-left corner of the data lies in the file. R ...

and C are

% zero-based so that R=0 and C=0 specifies the first value in the ...

file.

%

% All data in the input file must be numeric. DLMREAD does not operate

% on files containing nonnumeric data, even if the specified rows and

% columns for the read contain numeric data only.

%

% RESULT = DLMREAD(FILENAME,DELIMITER,RANGE) reads the range specified

% by RANGE = [R1 C1 R2 C2] where (R1,C1) is the upper-left corner of

% the data to be read and (R2,C2) is the lower-right corner. RANGE

% can also be specified using spreadsheet notation as in RANGE = ...

'A1..B7'.

%

% DLMREAD fills empty delimited fields with zero. Data files where

% the lines end with a non-whitespace delimiter will produce a ...

result with

% an extra last column filled with zeros.

%

% See also DLMWRITE, CSVREAD, TEXTSCAN, LOAD.

% Obsolete syntax:

% RESULT= DLMREAD(FILENAME,DELIMITER,R,C,RANGE) reads only the ...

range specified

% by RANGE = [R1 C1 R2 C2] where (R1,C1) is the upper-left corner of
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% the data to be read and (R2,C2) is the lower-right corner. RANGE

% can also be specified using spreadsheet notation as in RANGE = ...

'A1..B7'.

% A warning will be generated if R,C or both don't match the upper

% left corner of the RANGE.

% Copyright 1984-2015 The MathWorks, Inc.

% Validate input args

fid = -1;

if nargin==0

error(message('MATLAB:dlmread:Nargin'));

end

% Get Filename

if ~ischar(filename) && ~(isstring(filename) && isscalar(filename))

error(message('MATLAB:dlmread:InvalidInputType'));

end

filename = char(filename);

% Get Delimiter

if nargin==1 % Guess default delimiter

[fid, theMessage] = fopen(filename);

if fid < 0

error(message('MATLAB:dlmread:FileNotOpened', filename, ...

theMessage));

end

str = fread(fid, 4096,'*char')';

frewind(fid);

delimiter = guessdelim(str);

if isspace(delimiter);

delimiter = '';
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end

else

delimiter = sprintf(delimiter); % Interpret \t (if necessary)

delimiter = char(delimiter);

end

if length(delimiter) > 1,

error(message('MATLAB:dlmread:InvalidDelimiter'));

end

% Get row and column offsets

offset = 0;

if nargin<=2, % dlmread(file) or dlmread(file,dim)

r = 0;

c = 0;

nrows = -1; % Read all rows

range = [];

elseif nargin==3, % dlmread(file,delimiter,range)

range = r;

if ischar(range) | | (isstring(range) && isscalar(range))

range = char(range);

range = local str2rng(range);

elseif length(r)==1 % Catch obsolete syntax ...

dlmread(file,delimiter,r)

warning(message('MATLAB:dlmread:ObsoleteSyntax'));

result= dlmread(filename,delimiter,r,0);

return

end

r = range(1);

c = range(2);

nrows = range(3) - range(1) + 1;

elseif nargin==4, % dlmread(file,delimiter,r,c)

nrows = -1; % Read all rows
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range = [];

elseif nargin==5, % obsolete syntax dlmread(file,delimiter,r,c,range)

if ischar(range) | | (isstring(range) && isscalar(range))

range = char(range);

range = local str2rng(range);

end

rold = r; cold = c;

if r > range(3) | | c > range(4), result= []; return, end

if r ~= range(1) | | c ~= range(2)

warning(message('MATLAB:dlmread:InvalidRowsAndColumns'))

offset = 1;

end

% For compatibility

r = max(range(1),r);

c = max(range(2),c);

nrows = range(3) - r + 1;

end

% attempt to open data file

if fid == -1

[fid, theMessage] = fopen(filename);

if fid < 0

error(message('MATLAB:dlmread:FileNotOpened', filename, ...

theMessage));

end

end

% Read the file using textscan

try

tsargs = {...

'HeaderLines',r,...

'HeaderColumns',c,...
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'ReturnOnError',false,...

'EmptyValue',0,...

'CollectOutput',true,...

'EndOfLine','\r\n'};

if ~isempty(delimiter)

delimiter = sprintf(delimiter);

delimiter = char(delimiter);

whitespace = setdiff(sprintf(' \b\t'),delimiter);

tsargs = [tsargs, ...

{'Delimiter',delimiter,'Whitespace',whitespace}];

end

result = textscan(fid,'',nrows,tsargs{:});

catch exception

fclose(fid);

throw(exception);

end

% close data file

fclose(fid);

result = result{1};

range(4) = size(result,2)-1;

% textscan only trims leading columns, trailing columns may need ...

clipping

if ~isempty(range)

ncols = range(4) - range(2) + 1;

% adjust ncols if necessary

if ncols ~= size(result,2)

result= result(:,1:ncols);
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end

end

% num rows should be correct, textscan clips

if nrows > 0 && nrows ~= size(result,1)

error(message('MATLAB:dlmread:InternalSizeMismatch'))

end

% When passed in 5 args, we have an offset and a range. If the ...

offset is

% not equal to the top left corner of the range the user wanted to read

% range Ai..Bj and start looking in that matrix at rold and cold. For

% backwards compatibility we create a result the same size as the ...

specified

% range and place the data in the result at the requested offset.

% For example, given a file with [1 2 3; 4 5 6], reading A1..C2 with ...

offset

% 1,2 produces this result:

% 0 0 0

% 0 5 6

if nargin==5 && offset

rowIndex = rold+1:rold+nrows;

columnIndex = cold+1:cold+ncols;

if rold == 0

rowIndex = rowIndex + 1;

end

if cold == 0

columnIndex = columnIndex + 1;

end
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% assign into a new matrix of the desired size

% need to create temp matrix here cuz we want the

% offset region filled with zeros

new result(rowIndex,columnIndex) = result;

result = new result;

end

function m=local str2rng(str)

m = [];

% convert to upper case

str = upper(str);

% parse the upper-left and bottom-right cell locations

k = strfind(str,'..');

if length(k)~=1, return; end % Couldn't find '..'

ulc = str(1:k-1);

brc = str(k+2:end);

% get upper-left col

k = find(~isletter(ulc), 1 );

if isempty(k) | | k<2, return; end

topl(2) = sum(cumprod([1 26*ones(1,k-2)]).*(ulc(k-1:-1:1)-'A'+1))-1;

topl(1) = str2double(ulc(k:end))-1;

% get bottom-right col

k = find(~isletter(brc), 1 );

if isempty(k) | | k<2, return; end

botr(2) = sum(cumprod([1 26*ones(1,k-2)]).*(brc(k-1:-1:1)-'A'+1))-1;

botr(1) = str2double(brc(k:end))-1;
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m=[topl botr];

1.1.5 Separate Blade Mesh

%% Maj Daniel Miller

% Separate the Abaqus Mesh File

% Creates a cutting plane, and separates the FEM data (Lines 14 & 15)

% Removed majority of the FEM data to improve processing speeds

function BladeMesh = PullBladeMesh(Mesh)

BladeElements = [];

BladeVolume = [];

BladeEleStress = [];

BladeEleStrain = [];

% Plane equation in microns

NodeLocation = 541784032*Mesh.Nodes(:,2) - 1870964000*Mesh.Nodes(:,4);

NodeLocation = find(NodeLocation<= -71096632000000);

BladeNodes = Mesh.Nodes(NodeLocation,:);

for ii = 1:Mesh.NumEle

if sum(ismember(Mesh.Elements(ii,2:end),NodeLocation)>0)

BladeElements = [BladeElements;Mesh.Elements(ii,:)];

BladeVolume = [BladeVolume;Mesh.EleVolume(ii,:)];

BladeEleStress = [BladeEleStress;Mesh.Freq2.Nom Stress(ii,:)];

BladeEleStrain = [BladeEleStrain;Mesh.Freq2.Nom Strain(ii,:)];

end

end
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BladeMesh.NumNodes = length(BladeNodes);

BladeMesh.NumEle = length(BladeElements);

BladeMesh.Nodes = BladeNodes;

BladeMesh.Elements = BladeElements;

BladeMesh.EleVolume = BladeVolume;

BladeMesh.Freq2.Nom Stress = BladeEleStress;

BladeMesh.Freq2.Nom Strain = BladeEleStrain;

end

1.1.6 ID Nodal Stress and Strain Values

%% Maj Daniel Miller

% Find Max Stress touching each Node

function Mesh = NodalStressStrain(Mesh)

Stress = zeros(Mesh.NumNodes,4);

Strain = Stress;

for ii = 1:Mesh.NumNodes

[row,col] = find(Mesh.Elements(:,2:end)==Mesh.Nodes(ii,1));

TempStress = Mesh.Freq2.Nom Stress(row,2:5);

[x,Ind] = max(TempStress(:,1));

Stress(ii,:) = TempStress(Ind,:);

TempStrain = Mesh.Freq2.Nom Strain(row,2:5);

[x,Ind] = max(TempStrain(:,1));

Strain(ii,:) = TempStrain(Ind,:);

Mesh.NodalNearElements{ii,1} = Mesh.Elements(row,:);

end
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Mesh.Freq2.Nom NodalStress = [Mesh.Nodes(:,1), Stress];

Mesh.Freq2.Nom NodalStrain = [Mesh.Nodes(:,1), Strain];

end

1.1.7 Scale the Stress

%% Maj Daniel Miller

% Scale the max stress and stress range on BladeMesh and Defects ...

according

% to the desired defect free system life

% Abaqus vibrational analysis normalizes the stress and strain values

% This function predictes the peak stress based on the Basquin Equantion

% and scales the stress and strain based on the predicted value.

%%

function [BladeMesh, Scale] = StressScaling(BladeMesh, Mat, TargetLife)

BladeMesh.Freq2.TargetLife = TargetLife;

BladeMesh.Freq2.dS Target = ...

(1-Mat.R)*Mat.A*BladeMesh.Freq2.TargetLife.ˆMat.b;

Scale = ...

BladeMesh.Freq2.dS Target/(max(BladeMesh.Freq2.Nom Stress(:,2))*2); ...

% Scale by Von Mises Stress

BladeMesh.Freq2.Scale Stress = BladeMesh.Freq2.Nom Stress;

BladeMesh.Freq2.Scale Stress(:,2:end) = ...

BladeMesh.Freq2.Nom Stress(:,2:end)*Scale;
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BladeMesh.Freq2.Scale Strain = BladeMesh.Freq2.Nom Strain;

BladeMesh.Freq2.Scale Strain(:,2:end) = ...

BladeMesh.Freq2.Nom Strain(:,2:end)*Scale;

BladeMesh.Freq2.Scale NodalStress = BladeMesh.Freq2.Nom NodalStress;

BladeMesh.Freq2.Scale NodalStress(:,2:end) = ...

BladeMesh.Freq2.Nom NodalStress(:,2:end)*Scale;

BladeMesh.Freq2.Scale NodalStrain = BladeMesh.Freq2.Nom NodalStrain;

BladeMesh.Freq2.Scale NodalStrain(:,2:end) = ...

BladeMesh.Freq2.Nom NodalStrain(:,2:end)*Scale;

BladeMesh.Freq2.Scale NodalStressRange = ...

BladeMesh.Freq2.Nom NodalStressRange;

BladeMesh.Freq2.Scale NodalStressRange(:,2:end) = ...

BladeMesh.Freq2.Nom NodalStressRange(:,2:end)*Scale;

end

1.1.8 Analyze Gauge Locations

%% Maj Daniel Miller

% Assessment of Strain Gauge Quality at one point across all blades

function CommonGauge = GaugeLocation(ML,MD,All Surface)

r target = 2000;

for jj = 1:length(All Surface)
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%% Measure Placement from top

Top = max(All Surface{jj,1}.Nodes(:,4));

ind = find(All Surface{jj,1}.Nodes(:,4)>0.999*Top);

Mean Top = mean(All Surface{jj,1}.Nodes(ind,4));

Z coord = Mean Top - MD;

%% Measure Placement from Right

ind = find(All Surface{jj,1}.Nodes(:,4)>Z coord*0.9 & ...

All Surface{jj,1}.Nodes(:,4)<Z coord*1.1);

MinX = min(All Surface{jj,1}.Nodes(ind,2));

index = find(All Surface{jj,1}.Nodes(ind,2)<(MinX+0.1*MinX));

Mean X = mean(All Surface{jj,1}.Nodes(ind(index),2));

Mean Y = mean(All Surface{jj,1}.Nodes(ind(index),3));

theta temp = [];

D2TS = [];

% Search Algorithm to find angle to top surface

theta temp(1) = 0.8;

X coord = ML/sqrt(1+tan(theta temp(end))ˆ2) + Mean X;

Y coord = (X coord-Mean X)*tan(theta temp(end)) + Mean Y;

r = sqrt((All Surface{jj,1}.Nodes(:,2)-X coord).ˆ2 ...

+ (All Surface{jj,1}.Nodes(:,3)-Y coord).ˆ2 ...

+ (All Surface{jj,1}.Nodes(:,4)-Z coord).ˆ2);

D2TS(1) = min(r);

theta temp(2) = theta temp(end)-0.01;

X coord = ML/sqrt(1+tan(theta temp(end))ˆ2) + Mean X;

Y coord = (X coord-Mean X)*tan(theta temp(end)) + Mean Y;
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r = sqrt((All Surface{jj,1}.Nodes(:,2)-X coord).ˆ2 ...

+ (All Surface{jj,1}.Nodes(:,3)-Y coord).ˆ2 ...

+ (All Surface{jj,1}.Nodes(:,4)-Z coord).ˆ2);

D2TS(2) = min(r);

while D2TS(end)<D2TS(end-1)

theta temp(end+1) = theta temp(end)-0.01;

X coord = ML/sqrt(1+tan(theta temp(end))ˆ2) + Mean X;

Y coord = (X coord-Mean X)*tan(theta temp(end)) + Mean Y;

r = sqrt((All Surface{jj,1}.Nodes(:,2)-X coord).ˆ2 ...

+ (All Surface{jj,1}.Nodes(:,3)-Y coord).ˆ2 ...

+ (All Surface{jj,1}.Nodes(:,4)-Z coord).ˆ2);

D2TS(end+1) = min(r);

end

theta L = theta temp(end-2);

theta U = theta temp(end);

D2TS L = D2TS(end-2);

D2TS U = D2TS(end);

Interval = abs(theta L - theta U);

while Interval>0.0001

theta a = theta L-0.33*Interval;

theta b = theta L-0.66*Interval;

X coord = ML/sqrt(1+tan(theta a)ˆ2) + Mean X;

Y coord = (X coord-Mean X)*tan(theta a) + Mean Y;

r = sqrt((All Surface{jj,1}.Nodes(:,2)-X coord).ˆ2 ...

+ (All Surface{jj,1}.Nodes(:,3)-Y coord).ˆ2 ...

+ (All Surface{jj,1}.Nodes(:,4)-Z coord).ˆ2);

D2TS a = min(r);

159



X coord = ML/sqrt(1+tan(theta b)ˆ2) + Mean X;

Y coord = (X coord-Mean X)*tan(theta b) + Mean Y;

r = sqrt((All Surface{jj,1}.Nodes(:,2)-X coord).ˆ2 ...

+ (All Surface{jj,1}.Nodes(:,3)-Y coord).ˆ2 ...

+ (All Surface{jj,1}.Nodes(:,4)-Z coord).ˆ2);

D2TS b = min(r);

if D2TS a < D2TS b

theta U = theta b;

Interval = abs(theta L - theta U);

elseif D2TS a > D2TS b

theta L = theta a;

Interval = abs(theta L - theta U);

else

theta L = theta a;

theta U = theta b;

Interval = abs(theta L - theta U);

end

end

theta = (theta U + theta L)/2;

indexes = find(r<=r target);

NodeCluster = All Surface{jj,1}.Nodes(indexes,:);

NodeStrains = All Surface{jj,1}.NodeStrain(indexes,:);

StrainRange = ...

abs(max(NodeStrains(:,2:end))-min(NodeStrains(:,2:end)));

MeanStrain = mean(NodeStrains(:,2:end));
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CommonGauge.Centroid(jj,:) = [X coord,Y coord,Z coord];

CommonGauge.theta(jj,:) = theta;

CommonGauge.StrainRange(jj,:) = StrainRange;

CommonGauge.MeanStrain(jj,:) = MeanStrain;

CommonGauge.NodeCluster{jj,1} = NodeCluster;

CommonGauge.NodeStrains{jj,1} = NodeStrains;

end

end

1.2 Defect Processing

%% Maj Daniel Miller

% Takes the meta-data files from the Mira SEM imager and translates the

% coordinates to the base coordinates for the part

% Needed Files: Data collection centered on the origin of the part ...

and at

% known +X and +Y locations

% Data collection centered on the defects of interest

% SEM Table data denoting defect area

clear all; close all; clc;

%%

fprintf('SEM Defect Data Processing \n')

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);
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%% Load Blade Data

load AllBlades Quad Morphed Meas TopBottomBC.mat

fprintf('Loaded Blade Meshes \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% Blade 01

% Blade 01 Grip Measurements (meters)

B01.X Meas = 62.56/1000;

B01.Y Meas = 18.75/1000;

% Copy over SEM data files and save as .txt files

% Read in SEM Data

FileName = 'Blade01 TiltRotate Origin00-jpg';

B01.Origin = ReadSEMData(FileName);

FileName = 'Blade01 TiltRotate +X00-jpg';

B01.XAxis = ReadSEMData(FileName);

FileName = 'Blade01 TiltRotate +Y00-jpg';

B01.YAxis = ReadSEMData(FileName);

DefectNum = 68; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ['Blade01 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B01.Defect{ii+1,1} = ReadSEMData(LocFileName);

B01.Position(ii+1,:) = PositionTransform(B01,ii+1);

DefFileName = ['Blade01 LoF',num2str(ii,'%02i'),' Table'];

[B01.DefectSize(ii+1,1), B01.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end
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BladeNumber = 1;

B01.MeshOrigin = Mod Blades{BladeNumber,1}.Origin'; % microns

% Map defect to closest FEM Node

% Map largest and smallest stress within a radius of the measured defect

% location

Radius = 500; % microns

B01 = MeasuredDefectMapping(B01,Mod Blades{BladeNumber,1},Radius);

% Calculate predicted life for each defect size/stress combo

B01.min Life = DefectStressSizetoLife(B01,'min',Mat);

B01.max Life = DefectStressSizetoLife(B01,'max',Mat);

B01.Life = DefectStressSizetoLife(B01,'avg',Mat);

save('Blade01 MeasuredDefects.mat','B01')

fprintf(['Finished with Blade',num2str(BladeNumber,'%02i'),' Defects ...

\n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% Blade 02

% Blade 02 Grip Measurements (meters)

B02.X Meas = 62.45/1000;

B02.Y Meas = 18.81/1000;

% Copy over SEM data files and save as .txt files

% Read in SEM Data

FileName = 'Blade02 TiltRotate Origin00-jpg';

B02.Origin = ReadSEMData(FileName);

FileName = 'Blade02 TiltRotate +X00-jpg';

B02.XAxis = ReadSEMData(FileName);
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FileName = 'Blade02 TiltRotate +Y00-jpg';

B02.YAxis = ReadSEMData(FileName);

DefectNum = 20; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ['Blade02 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B02.Defect{ii+1,1} = ReadSEMData(LocFileName);

B02.Position(ii+1,:) = PositionTransform(B02,ii+1);

DefFileName = ['Blade02 LoF',num2str(ii,'%02i'),' Table'];

[B02.DefectSize(ii+1,1), B02.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end

% Move data from second Blade 2 Set to first set

% Blade 02 Grip Measurements (meters)

B02 S2.X Meas = 62.45/1000;

B02 S2.Y Meas = 18.81/1000;

% Copy over SEM data files and save as .txt files

% Read in SEM Data

FileName = 'Blade02 Set2 TiltRotate Origin00-jpg';

B02 S2.Origin = ReadSEMData(FileName);

FileName = 'Blade02 Set2 TiltRotate +X00-jpg';

B02 S2.XAxis = ReadSEMData(FileName);

FileName = 'Blade02 Set2 TiltRotate +Y00-jpg';

B02 S2.YAxis = ReadSEMData(FileName);

DefectNum = 0; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ...

['Blade02 Set2 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B02 S2.Defect{ii+1,1} = ReadSEMData(LocFileName);
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B02 S2.Position(ii+1,:) = PositionTransform(B02 S2,ii+1);

DefFileName = ['Blade02 Set2 LoF',num2str(ii,'%02i'),' Table'];

[B02 S2.DefectSize(ii+1,1), B02 S2.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end

B02.Defect(end+1,1) = B02 S2.Defect;

B02.Position(end+1,:) = B02 S2.Position;

B02.DefectSize(end+1,1) = B02 S2.DefectSize;

B02.ShapeFactor(end+1,1) = B02 S2.ShapeFactor;

clear B02 S2;

BladeNumber = 2;

B02.MeshOrigin = Mod Blades{BladeNumber,1}.Origin'; % microns

% Map defect to closest FEM Node

% Map largest and smallest stress within a radius of the measured defect

% location

Radius = 500; % microns

B02 = MeasuredDefectMapping(B02,Mod Blades{BladeNumber,1},Radius);

% Calculate predicted life for each defect size/stress combo

B02.min Life = DefectStressSizetoLife(B02,'min',Mat);

B02.max Life = DefectStressSizetoLife(B02,'max',Mat);

B02.Life = DefectStressSizetoLife(B02,'avg',Mat);

save('Blade02 MeasuredDefects.mat','B02')

fprintf(['Finished with Blade',num2str(BladeNumber,'%02i'),' Defects ...

\n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% Blade 03
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% Blade 03 Grip Measurements (meters)

B03.X Meas = 62.58/1000;

B03.Y Meas = 18.77/1000;

% Copy over SEM data files and save as .txt files

% Read in SEM Data

FileName = 'Blade03 TiltRotate Origin00-jpg';

B03.Origin = ReadSEMData(FileName);

FileName = 'Blade03 TiltRotate +X00-jpg';

B03.XAxis = ReadSEMData(FileName);

FileName = 'Blade03 TiltRotate +Y00-jpg';

B03.YAxis = ReadSEMData(FileName);

DefectNum = 23; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ['Blade03 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B03.Defect{ii+1,1} = ReadSEMData(LocFileName);

B03.Position(ii+1,:) = PositionTransform(B03,ii+1);

DefFileName = ['Blade03 LoF',num2str(ii,'%02i'),' Table'];

[B03.DefectSize(ii+1,1), B03.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end

BladeNumber = 3;

B03.MeshOrigin = Mod Blades{BladeNumber,1}.Origin'; % microns

% Map defect to closest FEM Node

% Map largest and smallest stress within a radius of the measured defect

% location

Radius = 500; % microns
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B03 = MeasuredDefectMapping(B03,Mod Blades{BladeNumber,1},Radius);

% Calculate predicted life for each defect size/stress combo

B03.min Life = DefectStressSizetoLife(B03,'min',Mat);

B03.max Life = DefectStressSizetoLife(B03,'max',Mat);

B03.Life = DefectStressSizetoLife(B03,'avg',Mat);

save('Blade03 MeasuredDefects.mat','B03')

fprintf(['Finished with Blade',num2str(BladeNumber,'%02i'),' Defects ...

\n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% Blade 04

% Blade 04 Grip Measurements (meters)

B04.X Meas = 62.63/1000;

B04.Y Meas = 18.77/1000;

% Copy over SEM data files and save as .txt files

% Read in SEM Data

FileName = 'Blade04 TiltRotate Origin00-jpg';

B04.Origin = ReadSEMData(FileName);

FileName = 'Blade04 TiltRotate +X00-jpg';

B04.XAxis = ReadSEMData(FileName);

FileName = 'Blade04 TiltRotate +Y00-jpg';

B04.YAxis = ReadSEMData(FileName);

DefectNum = 84; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ['Blade04 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B04.Defect{ii+1,1} = ReadSEMData(LocFileName);

B04.Position(ii+1,:) = PositionTransform(B04,ii+1);
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DefFileName = ['Blade04 LoF',num2str(ii,'%02i'),' Table'];

[B04.DefectSize(ii+1,1), B04.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end

BladeNumber = 4;

B04.MeshOrigin = Mod Blades{BladeNumber,1}.Origin'; % microns

% Map defect to closest FEM Node

% Map largest and smallest stress within a radius of the measured defect

% location

Radius = 500; % microns

B04 = MeasuredDefectMapping(B04,Mod Blades{BladeNumber,1},Radius);

% Calculate predicted life for each defect size/stress combo

B04.min Life = DefectStressSizetoLife(B04,'min',Mat);

B04.max Life = DefectStressSizetoLife(B04,'max',Mat);

B04.Life = DefectStressSizetoLife(B04,'avg',Mat);

save('Blade04 MeasuredDefects.mat','B04')

fprintf(['Finished with Blade',num2str(BladeNumber,'%02i'),' Defects ...

\n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% Blade 05

% Blade 05 Grip Measurements (meters)

B05.X Meas = 62.52/1000;

B05.Y Meas = 18.78/1000;

% Copy over SEM data files and save as .txt files
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% Read in SEM Data

FileName = 'Blade05 TiltRotate Origin00-jpg';

B05.Origin = ReadSEMData(FileName);

FileName = 'Blade05 TiltRotate +X01-jpg';

B05.XAxis = ReadSEMData(FileName);

FileName = 'Blade05 TiltRotate +Y00-jpg';

B05.YAxis = ReadSEMData(FileName);

DefectNum = 30; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ['Blade05 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B05.Defect{ii+1,1} = ReadSEMData(LocFileName);

B05.Position(ii+1,:) = PositionTransform(B05,ii+1);

DefFileName = ['Blade05 LoF',num2str(ii,'%02i'),' Table'];

[B05.DefectSize(ii+1,1), B05.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end

BladeNumber = 5;

B05.MeshOrigin = Mod Blades{BladeNumber,1}.Origin'; % microns

% Map defect to closest FEM Node

% Map largest and smallest stress within a radius of the measured defect

% location

Radius = 500; % microns

B05 = MeasuredDefectMapping(B05,Mod Blades{BladeNumber,1},Radius);

% Calculate predicted life for each defect size/stress combo

B05.min Life = DefectStressSizetoLife(B05,'min',Mat);

B05.max Life = DefectStressSizetoLife(B05,'max',Mat);

B05.Life = DefectStressSizetoLife(B05,'avg',Mat);
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save('Blade05 MeasuredDefects.mat','B05')

fprintf(['Finished with Blade',num2str(BladeNumber,'%02i'),' Defects ...

\n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% Blade 06

% Blade 06 Grip Measurements (meters)

B06.X Meas = 62.43/1000;

B06.Y Meas = 18.77/1000;

% Copy over SEM data files and save as .txt files

% Read in SEM Data

FileName = 'Blade06 TiltRotate Origin00-jpg';

B06.Origin = ReadSEMData(FileName);

FileName = 'Blade06 TiltRotate +X00-jpg';

B06.XAxis = ReadSEMData(FileName);

FileName = 'Blade06 TiltRotate +Y00-jpg';

B06.YAxis = ReadSEMData(FileName);

DefectNum = 50; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ['Blade06 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B06.Defect{ii+1,1} = ReadSEMData(LocFileName);

B06.Position(ii+1,:) = PositionTransform(B06,ii+1);

DefFileName = ['Blade06 LoF',num2str(ii,'%02i'),' Table'];

[B06.DefectSize(ii+1,1), B06.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end
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BladeNumber = 6;

B06.MeshOrigin = Mod Blades{BladeNumber,1}.Origin'; % microns

% Map defect to closest FEM Node

% Map largest and smallest stress within a radius of the measured defect

% location

Radius = 500; % microns

B06 = MeasuredDefectMapping(B06,Mod Blades{BladeNumber,1},Radius);

% Calculate predicted life for each defect size/stress combo

B06.min Life = DefectStressSizetoLife(B06,'min',Mat);

B06.max Life = DefectStressSizetoLife(B06,'max',Mat);

B06.Life = DefectStressSizetoLife(B06,'avg',Mat);

save('Blade06 MeasuredDefects.mat','B06')

fprintf(['Finished with Blade',num2str(BladeNumber,'%02i'),' Defects ...

\n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% Blade 07

% Blade 07 Grip Measurements (meters)

B07.X Meas = 62.41/1000;

B07.Y Meas = 18.77/1000;

% Copy over SEM data files and save as .txt files

% Read in SEM Data

FileName = 'Blade07 TiltRotate Origin00-jpg';

B07.Origin = ReadSEMData(FileName);

FileName = 'Blade07 TiltRotate +X00-jpg';

B07.XAxis = ReadSEMData(FileName);

FileName = 'Blade07 TiltRotate +Y00-jpg';
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B07.YAxis = ReadSEMData(FileName);

DefectNum = 58; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ['Blade07 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B07.Defect{ii+1,1} = ReadSEMData(LocFileName);

B07.Position(ii+1,:) = PositionTransform(B07,ii+1);

DefFileName = ['Blade07 LoF',num2str(ii,'%02i'),' Table'];

[B07.DefectSize(ii+1,1), B07.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end

BladeNumber = 7;

B07.MeshOrigin = Mod Blades{BladeNumber,1}.Origin'; % microns

% Map defect to closest FEM Node

% Map largest and smallest stress within a radius of the measured defect

% location

Radius = 500; % microns

B07 = MeasuredDefectMapping(B07,Mod Blades{BladeNumber,1},Radius);

% Calculate predicted life for each defect size/stress combo

B07.min Life = DefectStressSizetoLife(B07,'min',Mat);

B07.max Life = DefectStressSizetoLife(B07,'max',Mat);

B07.Life = DefectStressSizetoLife(B07,'avg',Mat);

save('Blade07 MeasuredDefects.mat','B07')

fprintf(['Finished with Blade',num2str(BladeNumber,'%02i'),' Defects ...

\n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);
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%% Blade 08

% Blade 08 Grip Measurements (meters)

B08.X Meas = 62.37/1000;

B08.Y Meas = 18.75/1000;

% Copy over SEM data files and save as .txt files

% Read in SEM Data

FileName = 'Blade08 TiltRotate Origin00-jpg';

B08.Origin = ReadSEMData(FileName);

FileName = 'Blade08 TiltRotate +X00-jpg';

B08.XAxis = ReadSEMData(FileName);

FileName = 'Blade08 TiltRotate +Y00-jpg';

B08.YAxis = ReadSEMData(FileName);

DefectNum = 23; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ['Blade08 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B08.Defect{ii+1,1} = ReadSEMData(LocFileName);

B08.Position(ii+1,:) = PositionTransform(B08,ii+1);

DefFileName = ['Blade08 LoF',num2str(ii,'%02i'),' Table'];

[B08.DefectSize(ii+1,1), B08.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end

BladeNumber = 8;

B08.MeshOrigin = Mod Blades{BladeNumber,1}.Origin'; % microns

% Map defect to closest FEM Node

% Map largest and smallest stress within a radius of the measured defect

% location
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Radius = 500; % microns

B08 = MeasuredDefectMapping(B08,Mod Blades{BladeNumber,1},Radius);

% Calculate predicted life for each defect size/stress combo

B08.min Life = DefectStressSizetoLife(B08,'min',Mat);

B08.max Life = DefectStressSizetoLife(B08,'max',Mat);

B08.Life = DefectStressSizetoLife(B08,'avg',Mat);

save('Blade08 MeasuredDefects.mat','B08')

fprintf(['Finished with Blade',num2str(BladeNumber,'%02i'),' Defects ...

\n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% Blade 09

% Blade 09 Grip Measurements (meters)

B09.X Meas = 62.44/1000;

B09.Y Meas = 18.76/1000;

% Copy over SEM data files and save as .txt files

% Read in SEM Data

FileName = 'Blade09 TiltRotate Origin00-jpg';

B09.Origin = ReadSEMData(FileName);

FileName = 'Blade09 TiltRotate +X00-jpg';

B09.XAxis = ReadSEMData(FileName);

FileName = 'Blade09 TiltRotate +Y00-jpg';

B09.YAxis = ReadSEMData(FileName);

DefectNum = 34; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ['Blade09 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B09.Defect{ii+1,1} = ReadSEMData(LocFileName);
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B09.Position(ii+1,:) = PositionTransform(B09,ii+1);

DefFileName = ['Blade09 LoF',num2str(ii,'%02i'),' Table'];

[B09.DefectSize(ii+1,1), B09.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end

BladeNumber = 9;

B09.MeshOrigin = Mod Blades{BladeNumber,1}.Origin'; % microns

% Map defect to closest FEM Node

% Map largest and smallest stress within a radius of the measured defect

% location

Radius = 500; % microns

B09 = MeasuredDefectMapping(B09,Mod Blades{BladeNumber,1},Radius);

% Calculate predicted life for each defect size/stress combo

B09.min Life = DefectStressSizetoLife(B09,'min',Mat);

B09.max Life = DefectStressSizetoLife(B09,'max',Mat);

B09.Life = DefectStressSizetoLife(B09,'avg',Mat);

save('Blade09 MeasuredDefects.mat','B09')

fprintf(['Finished with Blade',num2str(BladeNumber,'%02i'),' Defects ...

\n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%% Blade 10

% Blade 10 Grip Measurements (meters)

B10.X Meas = 62.46/1000;

B10.Y Meas = 18.74/1000;
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% Copy over SEM data files and save as .txt files

% Read in SEM Data

FileName = 'Blade10 TiltRotate Origin00-jpg';

B10.Origin = ReadSEMData(FileName);

FileName = 'Blade10 TiltRotate +X00-jpg';

B10.XAxis = ReadSEMData(FileName);

FileName = 'Blade10 TiltRotate +Y00-jpg';

B10.YAxis = ReadSEMData(FileName);

DefectNum = 41; % Final count of imaged defects

for ii = 0:DefectNum

LocFileName = ['Blade10 LoFDefects ',num2str(ii,'%02i'),'-jpg'];

B10.Defect{ii+1,1} = ReadSEMData(LocFileName);

B10.Position(ii+1,:) = PositionTransform(B10,ii+1);

DefFileName = ['Blade10 LoF',num2str(ii,'%02i'),' Table'];

[B10.DefectSize(ii+1,1), B10.ShapeFactor(ii+1,1)] = ...

ReadSEMTable(DefFileName);

end

BladeNumber = 10;

B10.MeshOrigin = Mod Blades{BladeNumber,1}.Origin'; % microns

% Map defect to closest FEM Node

% Map largest and smallest stress within a radius of the measured defect

% location

Radius = 500; % microns

B10 = MeasuredDefectMapping(B10,Mod Blades{BladeNumber,1},Radius);

% Calculate predicted life for each defect size/stress combo

B10.min Life = DefectStressSizetoLife(B10,'min',Mat);

B10.max Life = DefectStressSizetoLife(B10,'max',Mat);
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B10.Life = DefectStressSizetoLife(B10,'avg',Mat);

save('Blade10 MeasuredDefects.mat','B10')

fprintf(['Finished with Blade',num2str(BladeNumber,'%02i'),' Defects ...

\n']);

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

%%

Mod Defects{1,1} = B01;

Mod Defects{2,1} = B02;

Mod Defects{3,1} = B03;

Mod Defects{4,1} = B04;

Mod Defects{5,1} = B05;

Mod Defects{6,1} = B06;

Mod Defects{7,1} = B07;

Mod Defects{8,1} = B08;

Mod Defects{9,1} = B09;

Mod Defects{10,1} = B10;

save('AllBlades MeasuredDefects.mat','Mod Defects')

fprintf('Finished saving Measured Defect Data \n');

fprintf(['Time Stamp: ',datestr(now,'HH:MM:SS'),'\n']);

1.2.1 Read SEM Data

%% Maj Daniel Miller

% SEM Image data to pull out tilt, WD, and X,Y,Z of image center

% SEM defaults to units of meters for distance and degrees for ...

rotation, no

% unit conversion is applied
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% Input: FileName of SEM image data

% Output: Defect Data Structure with variables for the SEM image

% coordinates (Meters, degrees)

%% Image Data Selection Function

function DefectData = ReadSEMData(filename)

% fileID = fopen('Blade05 LoFDefects 30 Mod-jpg.txt');

filename = char(filename);

fname = [filename,'.txt'];

fid = fopen(fname);

S = textscan(fid,'%s','Delimiter','\n');

S = S{1};

fclose(fid);

ind = find(S{55}=='=');

DefectData.Tilt = double(string(S{55}(ind+1:end)));

ind = find(S{56}=='=');

DefectData.X = double(string(S{56}(ind+1:end)));

ind = find(S{57}=='=');

DefectData.Y = double(string(S{57}(ind+1:end)));

ind = find(S{58}=='=');

DefectData.Z = double(string(S{58}(ind+1:end)));

ind = find(S{63}=='=');

DefectData.WD = double(string(S{63}(ind+1:end)));

end

1.2.2 Read SEM Table

%% Maj Daniel Miller
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% Pull out defect size and depth from SEM Image processing Table data

% Process SEM image to generate a defect area, re-label defect area to

% 'LoFXX'.

% If the defect area contains any fracture regions, collect their

% area and re-label 'SX' for subtraction

% If Blade edge is visible in the image, measure the normal distance ...

from

% blade edge to defect center, re-label 'Depth'

% The code scans the .txt files for the defect area: 'L', any ...

reductions in

% area: 'S', and the depth from surface: 'D'. If items are labeled

% differently, this code won't funciton correctly, and no errors ...

will be

% reported

% Defect Size is assumed as square root of area ('L'-'S'), SEM table ...

defaults to

% microns for measurement values.

% Shape Factor is 0.65 for a defect at the surface and 0.5 for a defect

% inside the structure based on the ratio of the defect radius (Size/2)

% divided by the depth ('D')

% Input: FileName for SEM table

% Output: Defect Size (microns), Shape Factor for each defect

%% Defect Size Selection Function

function [DefectSize, ShapeFactor] = ReadSEMTable(filename)
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filename = char(filename);

fname = [filename,'.txt'];

fid = fopen(fname);

S = textscan(fid,'%s','Delimiter','\n');

S = S{1};

fclose(fid);

AreaSub = 0;

Depth = Inf;

for ii = 1:length(S)

if S{ii}(1)=='S'

values = regexp(S{ii},'\d*','Match');

AreaSub = ...

AreaSub+str2double(values{2})+str2double(values{3})/100;

elseif S{ii}(1)=='L'

values = regexp(S{ii},'\d*','Match');

AreaDef = str2double(values{2})+str2double(values{3})/100;

elseif S{ii}(1)=='D'

values = regexp(S{ii},'\d*','Match');

Depth = str2double(values{1})+str2double(values{2})/100;

end

end

% Units: microns

DefectSize = sqrt(AreaDef - AreaSub);

Ratio = (DefectSize/2)/Depth;

if Ratio <0.8

ShapeFactor = 0.5;

else

ShapeFactor = 0.65;

end
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end

1.2.3 Coordinate Transformation

%% Maj Daniel Miller

% Runs transformation to convert from SEM coordinate system to Blade

% coordinate system.

% Uses images aligned with the Blade Origin, at a known location ...

along the

% blade X-Axis, and at a known location along the blde Y-Axis

% Measurement values generate a rotation angle to account for ...

variations in

% the part placement in the SEM

% Measured Blade X & Y dimentions enable scaling of SEM measured ...

values to

% the actual part dimentions

% Input: Blade (Measured Defect Structure), BladeIndex (which defect is

% being processed)

% Output: Calcluated defect location in Blade Coordinates (microns)

%% Coordinate Transform Function

function DefectLocation = PositionTransform(Blade,BladeIndex)

tilt = Blade.Origin.Tilt;

% Calculations
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Rotation = atan2(Blade.XAxis.X-Blade.Origin.X,-1*...

(Blade.XAxis.Y-Blade.Origin.Y));

X scale = Blade.X Meas/(norm([Blade.XAxis.X;Blade.XAxis.Y]-...

[Blade.Origin.X;Blade.Origin.Y])*cosd(tilt));

Y scale = Blade.Y Meas/norm([Blade.YAxis.X;Blade.YAxis.Y]-...

[Blade.Origin.X;Blade.Origin.Y]);

% Units: Meters

X = ...

X scale*((Blade.Defect{BladeIndex}.X-Blade.Origin.X)*sin(Rotation)-...

(Blade.Defect{BladeIndex}.Y-Blade.Origin.Y)*cos(Rotation))...

*cosd(tilt);

Y = ...

Y scale*((Blade.Defect{BladeIndex}.X-Blade.Origin.X)*cos(Rotation)-...

(Blade.Defect{BladeIndex}.Y-Blade.Origin.Y)*sin(Rotation))...

+ 0.0005; % adding 0.5 mm

Z = (Blade.Defect{end}.Z-Blade.Defect{BladeIndex}.WD)*cosd(tilt)...

+0.012; % adding 12 mm

% Units: microns

DefectLocation = [X, Y, Z].*1e6;

end

1.2.4 Map Defects to FEM

%% Maj Daniel Miller

% Connect Measured Defect Location to closest FEM point

% Add in FEM stress value to Measured Defect Structure
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%% Map FEM stresses to Defect Locations

function DefectSet = MeasuredDefectMapping(DefectSet,BladeMesh,Radius)

O x = DefectSet.MeshOrigin(1);

O y = DefectSet.MeshOrigin(2);

O z = DefectSet.MeshOrigin(3);

for ii = 1:length(DefectSet.DefectSize)

% Units: microns

r Node = ...

sqrt((BladeMesh.Nodes(:,2)-(DefectSet.Position(ii,1)+O x)).ˆ2+...

(BladeMesh.Nodes(:,3)-(DefectSet.Position(ii,2)+O y)).ˆ2+...

(BladeMesh.Nodes(:,4)-(DefectSet.Position(ii,3)+O z)).ˆ2);

% ID closest point to measured defect location

[~,ind1] = min(r Node);

% Pull stress values assiciated with the closest point

% Units: MPa

DefectSet.dStress(ii,:) = ...

BladeMesh.Freq2.Nom NodalStressRange(ind1,:);

DefectSet.dStress(ii,2:5) = ...

abs(BladeMesh.Freq2.Nom NodalStressRange(ind1,2:5).*BladeMesh.Freq2.Mod Scale);

% ID all nodes within R of measured defect location

tempInd = find(r Node<=Radius);

% ID nodal dStress values

if isempty(tempInd)

TempdStress = BladeMesh.Freq2.Nom NodalStressRange(ind1,:);

else

TempdStress = BladeMesh.Freq2.Nom NodalStressRange(tempInd,:);

end

% Pull min/max stress values within assigned measurement error
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[~,minInd] = min(abs(TempdStress(:,5)));

[~,maxInd] = max(abs(TempdStress(:,5)));

DefectSet.min dStress(ii,:) = abs(TempdStress(minInd,:));

DefectSet.max dStress(ii,:) = abs(TempdStress(maxInd,:));

DefectSet.min dStress(ii,2:5) = ...

abs(TempdStress(minInd,2:5)).*BladeMesh.Freq2.Mod Scale;

DefectSet.max dStress(ii,2:5) = ...

abs(TempdStress(maxInd,2:5)).*BladeMesh.Freq2.Mod Scale;

end

end

1.2.5 Predict Defect Life

%% Maj Daniel Miller

% Use the defect and material structures to search for the optimum ...

number

% of cycles required to fit the modeled defect size and FEM stress ...

results

% First function finds 2 cycle values that bracket the target FEM stress

% results. Then checks the half value point to refine the search area

% until the upper and lower bounds are within 1 cycle of eachother.

% Input: Defect Structure, Material Properties Structure

% Output: Defect Structure

function TargetLife = DefectStressSizetoLife(DefectSet,LifeSet,Mat)

%% Set Inital Bounds Around Target Stress

% Initial point for Number of Cycles
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delta = 10;

UpperLimit = 1e10;

% No data point should have fewer cycles than delta

% Pull target stress and defect size for each defect being processed

if LifeSet == 'min'

D sig map = DefectSet.max dStress(:,5);

elseif LifeSet == 'max'

D sig map = DefectSet.min dStress(:,5);

elseif LifeSet == 'avg'

D sig map = DefectSet.dStress(:,end);

else

error('Second function variable needs to: min, max, or avg')

end

% Convert defect size from microns to Meters

a = DefectSet.DefectSize.*1e-6;

% Shape Factor vector

ShapeFactor = DefectSet.ShapeFactor;

% For use on Worst Case Analysis (Y = 0.65 for all defects)

% ShapeFactor = 0.65*ones(size(DefectSet.DefectSize));

% Set up initial points for number of cycles

Cycles(:,1) = delta*ones(length(a),1);

Cycles(:,2) = Cycles(:,1) + 1.618*Cycles(:,1);

Values = SolveForSig(Cycles(:,1),Mat,a,ShapeFactor);

F(:,1) = Values.D sig;

Values = SolveForSig(Cycles(:,2),Mat,a,ShapeFactor);

F(:,2) = Values.D sig;

ii = 2;
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% Incrament number of cycles up until target stress is captured

while sum(F(:,ii) > D sig map) >0

ii = ii+1;

Cycles(:,ii) = Cycles(:,ii-1) + 1.618ˆ(ii-1)*delta;

Values = SolveForSig(Cycles(:,ii),Mat,a,ShapeFactor);

F(:,ii) = Values.D sig;

end

% Set initial Lower Bound, Upper Bound and interval

F = F - D sig map;

F(F<=0) = nan;

[val,col] = min(F,[],2);

alpha L = zeros(length(a),1);

alpha U = zeros(length(a),1);

for ii = 1:length(a)

alpha L(ii) = Cycles(ii,col(ii));

alpha U(ii) = Cycles(ii,col(ii)+1);

if alpha L(ii) >UpperLimit

alpha L(ii) = UpperLimit;

alpha U(ii) = UpperLimit;

end

end

I = alpha U - alpha L;

%% Halfing Search To ID Number of Cycles to Hit Target Stress

% While the interval is wider than 1 cycle, check calculated stress

% against target stress, and shrink search area by 1/2

while sum(I > 1) >0

alpha a = alpha L + 0.5*I;
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Values = SolveForSig(alpha a,Mat,a,ShapeFactor);

D sig a = Values.D sig;

for ii = 1:length(a)

if D sig a(ii) < D sig map(ii)

alpha U(ii) = alpha a(ii);

elseif D sig a(ii) > D sig map(ii)

alpha L(ii) = alpha a(ii);

else

alpha L(ii) = alpha a(ii);

alpha U(ii) = alpha a(ii);

end

end

I = alpha U - alpha L;

end

% Save out final results

Average = (alpha U+alpha L)/2;

Values = SolveForSig(Average,Mat,a,ShapeFactor);

TargetLife.Scale N f BackSolve = Average;

TargetLife.Scale a 0 BackSolve = Values.a 0;

TargetLife.Scale a c BackSolve = Values.a c;

end

%% Function

% Input: Number of Cycles (Guess), Material Properties, Defect Size

% Output: Model Parameters (Stored in Structure)

function Values = SolveForSig(N, Mat, a, ShapeFactor)

D sig N = 2*Mat.A*N.ˆMat.b;

a c = (2*Mat.K Ic./(Mat.Y1*D sig N)).ˆ2/pi;
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a 0 = (a c.ˆ(1-Mat.n/2) - ...

N*(1-Mat.n/2)*Mat.C 0.*(ShapeFactor.*D sig N.*sqrt(pi)).ˆMat.n).ˆ(1/(1-Mat.n/2));

D sig = D sig N.*sqrt(a 0./(a+a 0));

Values.N = N;

Values.D sig N = D sig N;

Values.a c = a c;

Values.a 0 = a 0;

Values.D sig = D sig;

end
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