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Abstract 

 Manmade objects tend to be more polarized than natural objects.  This allows 

polarization to be a viable detector for terrestrial manmade targets by discriminating 

between the targets and their natural background [1].  The two main ways of describing 

polarized light are Jones vectors and Stokes vectors.  Stokes vectors, the version that will 

be analyzed here, describes the light’s intensity in terms of total intensity, linearly polarized 

light, and circularly polarized light.  Currently, a method developed by Dr. Cain and Dr. 

Lemaster, can be used to recreate an expected Stokes polarization vector from returning 

light [2].  This method currently applies to three of the Stokes parameters, that is, the linear 

polarization components, but can be expanded to include circular polarization.  Circular 

polarization is not currently being utilized for object characterization because the 

mathematical complexity is greater than for that of linear polarization.  This research will 

analyze a way to expand existing algorithms to include circular polarization and enable the 

complete reconstruction of the Stokes vector from the measured light.   
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MULTICHANNEL BLIND DECONVOLUTION OF CIRCULARLY POLARIZED 

IMAGERY 

 
1. Introduction 

1.1. Chapter Overview 

This chapter starts with the motivation for exploration and expansion of 

polarimetric based target detection/characterization.  Then, it shall go into the different 

tasks necessary to complete the research.  Following this, the chapter lists the various 

assumptions made in developing this research.  Lastly, the chapter lists an overall chapter 

by chapter layout of the remainder of the document. 

1.2. Motivation 

The ability to monitor the health of a satellite is important to its maintenance.  In 

geosynchronous orbit, this can be difficult due to the inability to resolve images.  

Polarimetry techniques may allow a sensor to tell the difference between an inactive space 

rock and a satellite that is active.  Polarimetry enables the detection of acoustic vibrations 

which is for detecting if an electrical system is on [3].  However, in addition to detecting 

the difference between a manmade and naturally occurring orbital object, it is also 

important to be able to characterize the objects themselves.  It should come as no surprise 

that the current National Security Space Strategy states that "space is vital to U.S. national 

security and our ability to understand emerging threats, project power globally, conduct 

operations, support diplomatic efforts, and enable global economic viability" [4].  After all, 

today, on the civilian side, we depend on orbital satellites for everything from banking to 
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internet access to travel directions.  On the military side, we are even more dependent upon 

situational awareness, which largely depends upon space dominance.  To this end, the 2010 

U.S. National Space Policy directs us to develop methods and technologies which are able 

to "detect, identify, and attribute actions in space that are contrary to responsible use and 

the long-term sustainability of the space environment" as well as "pursue capabilities to 

detect, track, catalog, and characterize near-Earth objects to reduce the risk of harm to 

humans from an unexpected impact on our planet and to identify potentially resource-rich 

planetary objects" [5]. 

 While many methods currently exist to attempt to detect/characterize objects, these 

all rely on linear polarization.  Linear polarization methods have the advantage of enabling 

passive detection.  For example, when unpolarized solar light reflects off of a manmade 

object, the Degree of Linear Polarization (DoLP) typically increases [6], [7].  This allows 

the sensor to detect the object’s presence without using any active means, which can 

sometimes give away the sensor’s location/intent. 

 Circular polarization very rarely occurs naturally and thus, a sensor that utilizes it 

will not find anything using passive detection methods [8].  However, if a beam of 

circularly polarized light is used to illuminate a target, the response can be measured and 

characterized.  This allows for the detection of characteristics (specifically, certain portions 

of the Mueller matrix of a material) that are not currently measured.  This research develops 

a means of expanding the current linear polarization Generalized Expectation 

Maximization (GEM) algorithms to include circular polarization for active detection.  

These GEM algorithms are designed to be used with a blind deconvolution algorithm. 
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1.3. Research Tasks 

1.  Develop a way to characterize circular polarization. 

2.  Develop an algorithm to express circular polarization in terms of the variables 

used in Dr. Lemaster’s dissertation [2]. 

3.  Validate the algorithm through simulations/laboratory experiments. 

 

1.4. Assumptions and Limitations 

The following assumptions are made throughout this research, unless otherwise 

stated. 

1.  Both photon counting noise and background noise follows a Poisson 

distribution. 

2.  The background noise is unpolarized. 

3.  No circular polarization is generated naturally.  

4.  The intensities of the light on different pixels on the Charged Coupled Device 

(CCD) are statistically independent.  

 

 

1.5. Document Outline 

In this dissertation, chapter 2 outlines some background work that was discovered 

during the literature review.  The papers that were reviewed focused mostly on polarimetric 

sensing techniques.  This chapter will discuss previous work done in this field and how this 

work can be improved.  It then goes on to explain the GEM method in more depth as well 
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as how it will be improved.  Next, chapter 3 describes the methodology used to complete 

this research.  Chapter 4 displays the results of the experiments described in chapter 3, and 

chapter 5 draws conclusions from the result in chapter 4 as well as recommendations for 

potential future research in this area. 
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2. Background and Literature Review 

2.1. Chapter Overview 

This chapter discusses the background and literature review that was utilized by 

this research.  It will begin with a brief overview of imaging in general.  Next it will discuss 

atmospheric phase screens and methods of modelling them, followed by a discussion of 

polarimetry to include Jones and Stokes vectors (two methods of describing polarization 

states).  Then, an overview of GEM will be given as well as its current and potential uses.  

Lastly, some potential improvements will be analyzed in more depth. 

 

2.2. Imaging 

A camera measures the irradiance of the light that reaches a given pixel [8].  The 

idea is that, based on the irradiance at that pixel, and given knowledge of the path that the 

light travels, you can calculate the light reflected off of (or in some cases emitted by) the 

object.  Additionally, if you go back a step further and know the characteristics of the light 

that reached the object, you can calculate the reflectance parameters of that object.  While 

this may sound simple, phenomenon such as atmospheric aberrations can severely limit 

your knowledge of the effects of the path on the light.  Thus, the data collected by the 

camera (also known as the image) can be described by Equation (2.1) where ( )i y  is the 

received irradiance at the plane of the image on the detector array, per pixel (in the image 

plane coordinates), y, ( )o x  is the reflected irradiance of the object, per pixel (in the object 
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plane coordinates) x, and ( )h y x−  is the Point Spread Function (PSF).  y and x are 

shorthand for ( )1 2,y y  and ( )1 2,x x  in the two dimensional case.  In the discrete case, this 

obviously simplifies this expression in Equation (2.2) which is much more manageable. [9] 

  

 ( ) ( ) ( ) ( )( ) ( ) ( )1 2 1 1 2 2 1 2,i y o x x h y x y x dx dx o x h y x dx
∞ ∞ ∞

−∞ −∞ −∞

= − − − = −∫ ∫ ∫ . (2.1) 

 ( ) ( ) ( ) ( )( ) ( ) ( )1 2 1 1 2 2,
x x

i y o x x h y x y x o x h y x= − − − = −∑ ∑ . (2.2) 

 Thus, for an ideal situation, ( ) ( )h y x y xδ− = − , leading the recovered image to 

be identical to the irradiance at the object plane ( i o= ).  However, in the real world there 

are effects that cause the PSF, h, to deviate from a δ function.  Two of the effects that will 

be discussed here are diffraction and atmospheric turbulence.  The image is degraded by 

diffraction as a function of the aperture size.  This ultimately limits the image resolution.  

The diffraction effect on the PSF, which includes the effect of the aperture size, is shown 

below in Equation (2.3) for the continuous case and Equation (2.4) for the discrete case as 

( )diffractionh x .  ( )A u  describes the aperture function (the shape of the aperture), u describes 

the coordinate system inside the aperture plane, and k is a constant related to the wavelength 

and the propagation distance. [10] 

 ( ) ( )
2

2 j kxu
diffractionh x A u e duπ

∞
−

−∞

= ∫ . (2.3) 

 ( ) ( )
2

2 j kxu
diffraction

u
h x A u e π−= ∑ . (2.4) 
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 The second, and more complex cause of image path degradation is atmospheric 

turbulence.  Atmospheric turbulence causes a phase shift in the light that passes through it 

on the basis of temperature and pressure at a given location and time.  Thermal eddies 

create a temperature gradient which causes the index of refraction to change.  When this is 

happening independently in many regions within the field of view, this produces a phase 

shift in the light for one region relative to another [11].  Mathematically, this is defined as

( )j ue ϕ , where ϕ  is the random phase effect cause by the propagation of the light through 

the atmosphere.  While a more thorough treatment of this topic can be found in [8], the 

combined equation for the two effects are given in Equation (2.5) for the continuous case 

and Equation (2.6) for the discreet case. 

 ( ) ( ) ( )
2

2 j uj kxuh x A u e e duϕπ
∞

−

−∞

= ∫ . (2.5) 

 ( ) ( ) ( )
2

2 j uj kxu

u
h x A u e e ϕπ−= ∑ . (2.6) 

 

 

2.3. Atmospheric Phase Screens 

There are two primary methods of simulating atmospheric phase screens.  One is 

known as the Zernike method and the other the Fourier Transform method [11] [12].  The 

Fourier Transform method is much faster to compute, but has been shown to have errors 

when dealing with lower spatial frequency harmonics [11] [13].  Because computation time 

was not a concern, the Zernike method was used in this research. 
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Figure 1: Zernike Phase Screen Pictorial [14] 

 The Zernike method utilizes a series of polynomials each representing a different 

type of aberration.  Figure 1 shows what the individual phase screens for fifteen of these 

would look like.  Each of the polynomials that are used in the approximation are weighted 

and then added together to produce the total phase screen.   

 The Zernike polynomials are a set of polynomials defined on a unit circle, with a 

key property of being orthogonal over the unit circle. The Zernike polynomials are defined 

as follows [14]: the equation for a Zernike polynomial is given in Equation (2.7), where r 
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and θ define the polar coordinates, iZ  is the ith Zernike polynomial, m is the azimuthal 

frequency and n is the radial degree.  ( )m
nR r  is the radial factor and is defined in Equation  

(2.8).  ( )mG θ  is known as the annular factor and is defined in Equation (2.9). 

 ( ) ( ) ( ) ( )
( )0

02 1
,    

0

m m
n

i
n

mn R r G
Z r

mR r

θ
θ

 ≠+=  =
. (2.7) 

 ( ) ( ) ( )( )/2
2

0

1 !

! ! !
2 2

sn m
m n s
n

s

n s
R r r

n m n ms s s

−
−

=

− −
=

+ −   − −   
   

∑ . (2.8) 

 ( ) ( )
( )

sin  odd
    

cos  even
m m i

G
m i
θ

θ
θ

= 


. (2.9) 

 These polynomials are then weighted and added together to produce the phase 

screen, ϕ , in Equation (2.6) that is used in the various simulation.  This is expressed 

mathematically in Equation (2.10) where iC is the Zernike coefficient that describes the 

weighting value of the ith Zernike polynomial [14].  The number of coefficients needed 

depends on the ratio of the aperture diameter (d) and the atmospheric seeing parameter (

0r ). 

 ( ) ( )
max

1
, ,

i i

i i
i

r C Z rϕ θ θ
=

=

= ∑ . (2.10) 

In the simulations performed throughout this research, the phase screens were 

created by MATLAB programs called zern_phase_screen [15]. This program utilizes 

a common method of simulating atmospheric turbulence by the creation of Zernike 

polynomials.  It utilizes the coherence diameter ( 0r ), the size of the pupil (d), the number 
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of pixels in the scene (N) and the number of Zernike coefficients to calculate.  In the 

baseline simulation, when 
0

10d
r
= , 100 Zernike polynomials were used.  In other words, 

max 100i = . 

 

2.4. Polarimetry 

 One of the most commonly accepted methods for describing light is as a transverse 

electric field traveling in the z direction.  In unpolarized light, this field has a random and 

generally unpredictable polarization angle.  In linearly polarized light, the polarization 

angle is constant.  Linear polarization is typically achieved by placing a polarization filter 

(also known as a polarization analyzer) in front of a source.  The filter blocks out all light 

that does not have the appropriate polarization angle, thus the only light passing through is 

‘polarized’ at the permissive angle.  These angles are generally described as the 

combination of xE


 and yE


. xE


 is a vector in the x direction of magnitude xE , representing 

the portion of electric field vector in the x direction and yE


 is a vector in the y direction of 

magnitude yE , representing the portion of light that is polarized in the y direction.  Both of 

these vectors oscillate in a waveform as described in Equations (2.11) and (2.12), where 

ω  is the temporal frequency of the light (proportional to the wavelength), t is the time, k 

the spatial frequency of light, and z is the location in the direction of propagation.  The 

term ε , is the phase difference between yE


 and xE


, which is 0 in the case of linearly 

polarized light.  The polarization angle of the field is said to be the angle of the sum of the 

two vectors at a given point.  A visual representation of this case is shown in Figure 2.   
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 ( , ) cos( )x xE z t E kz tω= −


. (2.11) 

 ( , ) cos( )y yE z t E kz tω ε= − −


. (2.12) 

 

Figure 2: Linear Polarization [6] 

Partially polarized light consists of a combination of both polarized and unpolarized 

light.  This is achieved when you have light from a polarized source and natural light 

reaching your sensor at the same time [10].  The unpolarized portion of partially polarized 

light perturbs the polarization angle from its expected angle. 

 The resulting field can be measured by a set of three channels. One channel is 

unfiltered.  This gives the total intensity of the field.  The remaining two channels are 

orthogonally polarized filters at the receiver, one to measure the intensity of xE  and one to 

measure the intensity of yE .  It is worth noting that the measured quantity of total intensity 

in terms of photoelectrons is actually equal to the sum of 2
xE and 2

yE  as shown in Equation 
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(2.13).   E


 is the sum of the two vectors xE


 and yE


. This is shown below in Equation 

(2.14).  The angle of polarization is ( )1tan /x yE E−
 

. 

 

 2 2
x yI E E= + . (2.13) 

 x yE E E= +
  

. (2.14) 

 

2.4.1. Stokes Parameters 

One common method of expressing polarimetric data is through a Stokes vector,  

S .  The Stokes vector is composed of four different parameters (also known as the Stokes 

parameters).  These will be referred to as 0S , 1S , 2S , and 3S .  The vector itself, S , is 

shown below in Equation (2.15).  0S  denotes the total intensity of the vector (typically 

normalized to 1).  1S is a function of the amount of light that is polarized in either the 

horizontal or vertical direction.  Thus, when the polarization state is horizontal, 1 1S = , and 

when the light is completely vertical, 1 1S = − .  2S  is a function of the component of light 

with a polarization angle, α , of 45° (midway between the two extremes for 1S ).  3S  is a 

function of the intensity of the light that is circularly polarized.  A list of common Stokes 

vectors is shown below in Table 1 for reference.  The physical definitions of the respective 

Stokes parameters are shown below in Equation (2.16). 

One advantage presented by using Stokes vectors is that they can be calculated from 

intensities which can be directly measured.  A downside of the Stokes vector, from a 
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physical modeling perspective is that, with the exception of 0S , the other parameters can 

be negative.  This poses a problem for statistical modeling because Poisson distributions 

only deal with positive numbers [6].   This is problematic because photon arrival at a CCD 

is governed by a Poisson distribution and a Poisson distribution cannot have a negative 

value [16].  

 

 

0

1

2

3

S
S

S
S
S

 
 
 =
 
 
 

 . (2.15) 

 

22
0

22
1

2

3

2 cos

2 sin

x y

x y

x y

x y

S E E

S E E

S E E

S E E

ε

ε

= +

= −

=

=

. [10] (2.16) 
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Table 1: Stokes Vector Descriptions [10] 

Description Stokes Vector 

Horizontal 
�
1
1
0
0

� 

Vertical 
�

1
−1
0
0

� 

+45⁰ 
�
1
0
1
0

� 

-45⁰ 
�

1
0
−1
0

� 

Right Hand Circular 
�
1
0
0
1

� 

Left Hand Circular 
�

1
0
0
−1

� 

 

The fact that the Stokes parameters represent an easily measurable quantity, the light’s 

intensity, allows the individual Stokes parameters to be calculated from the results of a data 

collect using four different polarization analyzers (three if circular polarization is ignored).  

The first is simply a filter that reduces all light passing through by 50%. The resulting 

intensity is 0I .  The second is a horizontally polarized filter.  The intensity that it reads is 
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known as 1I .  The third channel contains a filter polarized in 45φ = ° .  Its intensity is 

referred to as 2I  .  Finally, the fourth channel uses a circular polarizer opaque to L-state 

polarized beams.  Its intensity is 3I .  The relationship between these four intensities and 

their resulting Stokes vector parameters is shown below in Equation (2.17).  Because this 

equation contains the total intensity ( 0I ), it is possible to back calculate how polarized the 

light is, in addition to its polarization angle.  These Stokes vectors are usually normalized 

(though it is not required), which simply means the vector is divided by 0S  [10].  This 

convention is shown below in Equation (2.18). 
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 −   
   
   =−   
   
   − 
  

. (2.18) 

2.4.2. Circular Polarization 

Circular polarization occurs when 0ε ≠  from Equation (2.12).  As a result of the offset 

along the z axis of the two fields ( , )xE z t


 and ( , )yE z t


  (from Equations (2.11) and (2.12) 

respectively), the angle of polarization is no longer constant in the direction of propagation.  
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Because the angle is nonconstant, it is more difficult to model.  This is displayed visually 

in Figure 3.   

Typically, circular polarization is only monitored in active sensing.  Passive sensing 

depends upon the reflection of natural light off of an object.  Because circular polarization 

is not naturally occurring, it is therefore not a factor in passive imaging [6] [8].  Active 

sensing, by contrast, utilizes a controlled source.  This source could contain circularly 

polarized light. 

 The DoLP of a measurement refers to the amount of the incoming light that is 

linearly polarized, as described below in Equation (2.19) [2].  While most of the GEM 

discussion will revolve around the DoLP, it is important to distinguish this value from the 

degree of total polarization, P, shown below in Equation (2.20), which includes the 

circularly polarized component. 

 
2 2

1 2

0

S S
DoLP

S
+

= . (2.19) 

   

 
2 2 2

1 2 3

0

S S S
P

S
+ +

= . (2.20) 

 Calculating the polarization angle, α , is shown in below in Equation (2.21) [8]. 

 1 2

1

1 tan
2

S
S

α −  
=  

 
. (2.21) 
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DoLP does not include circular polarization as a component.  Thus, when circular 

polarization is considered, the polarization factor that is used will not be the DoLP, but will 

instead be P for total polarization.  

 

Figure 3: Right Circularly Polarized Light 

 The direction that the light rotates is determined by ε  from Equation (2.12).  If the 

field is rotating clockwise in the direction of propagation (as depicted in Figure 3) the field 

is considered to be right-circularly polarized.  This occurs when 2
2

mπε π= − + , where m 

is an integer.  If the direction of rotation is counter-clockwise, it is considered to be left-

circularly polarized.  This occurs when 2
2

mπε π= + . 

 

2.4.3. Mueller Matrices 

Once the optical system has taken measurements that can reconstruct the Stokes 

vector of the light that arrives at the camera, the effect of the interface may be calculated 
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(assuming the Stokes parameters of the light before it reached that object are known).  This 

can either be reflectance parameters of the object or the effect the interface has on light that 

passes through it, depending upon the position of the camera  [10].  The relationship for 

calculating a Mueller transform matrix is shown below in Equation (2.22).  finalS  is the 

light that exits the interface, M is the Mueller matrix of the interface (which can used to be 

described as the reflectance parameters of the objects) and initialS  is the Stokes vector of 

the light that reaches the interface.  Some sample Mueller matrices and their corresponding 

effects are shown below in Table 2. 

 final initialS S= M  (2.22) 
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Table 2: Mueller Matrix Examples [10] 

Effect Mueller Matrix 

Horizontal Polarizer 1 1 0 0
1 1 0 0

0.5
0 0 0 0
0 0 0 0

 
 
 
 
 
 

 

Vertical Polarizer 1 1 0 0
1 1 0 0

0.5
0 0 0 0
0 0 0 0

− 
 − 
 
 
 

 

+45⁰ Polarizer 1 0 1 0
0 0 0 0

0.5
1 0 1 0
0 0 0 0

 
 
 
 
 
 

 

-45⁰ Polarizer 1 0 1 0
0 0 0 0

0.5
1 0 1 0

0 0 0 0

− 
 
 
 −
 
 

 

Quarter Wave Plate;  

(Fast Axis: 

Horizontal) 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 
 
 
 
 − 

 

Quarter Wave Plate 

(Fast Axis: Vertical) 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 
 
 
 −
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2.4.4. Jones Vectors 

Thanks to Muller matrices, Stokes vectors are quite effective at displaying the effect 

of an interface, however, they do not perform well at calculating the propagation of light 

through a medium.  To do this, Jones vectors are used.  A Jones vector is a two-element 

vector describing the light that has a parallel polarization in element one and the light that 

has a perpendicular polarization in element two as shown below in Equation (2.23) [10], 

[9]. While Jones vectors are more difficult to measure outright, they are conceptually 

simpler.  Like Stokes vectors, Jones vectors are a way to display the relationship of xE  and 

yE  however Jones vectors do not, by themselves, contain the information needed to 

calculate the DoLP or P. 

 x

y

E
J

E
 

=  
 

. (2.23) 

 To display circular polarization, phase shifts are utilized, thus the resulting vector 

elements become complex numbers.  Sample Jones vectors are shown below in Table 3. 
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Table 3: Jones Vector Examples 

Description Jones Vector 

Horizontal 1
0
 
 
 

 

Vertical 0
1
 
 
 

 

+45⁰ 11
12
 
 
 

 

-45⁰ 11
12

 
 − 

 

Right Hand Circular 11
2 i
 
 − 

 

Left Hand Circular 11
2 i
 
 
 

 

 

 

2.4.5.  Polarimetric Reflection 

 

Reflective objects reflect polarized light slightly differently than unpolarized light.  

In addition, they reflect the light differently if it is polarized perpendicularly or in 

parallel to the plane of incidence.  R


 describes the ratio of light that is polarized parallel 

to the incidence plane that reflects off the surface. Similarly, R⊥ determines how much 
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of the light that is perpendicularly polarized with the incidence plane that reflects off 

of the surface.  [10] 

2.5. GEM Overview 

Collecting polarization data typically requires the utilization of multiple different 

polarization analyzers.  A polarimetric image contains information regarding the 

polarization state of the object scene.  GEM combines the joint likelihood of the outputs of 

the independent polarization analyzers (each output is a separate polarization channel).  

The GEM itself is an iterative algorithm for determining the maximum likelihood (ML) 

estimates of the scene parameters.  The GEM is divided into two steps, the Expectation 

step and the Maximization step.  In the Expectation step, the algorithm calculates an 

expected likelihood value for the complete data (the scene truth, in the case of an optical 

system) based upon the measured data as well as the previous iteration output of the GEM.  

In the Maximization step, the parameters are selected such that the likelihood value in the 

Expectation step is maximized.  In other words, the Maximization step selects the 

parameter set that has the highest likelihood based upon the measured data, d, (sometimes 

referred to as the incomplete data) and the likelihood of the parameter set selected by the 

previous iteration of the algorithm [2]. 

2.5.1. GEM Primer  

The GEM ‘algorithm’ is not an algorithm, per se, but a framework for developing 

the most likely result of a given function [17].  If d is the incomplete data and D  is the 

complete data, than the maximum-likelihood estimate of D  given d  is defined by the 

function L , given Equation (2.24) where ( )g D d  is the conditional Probability Density 
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Function (PDF) of D  given d .  The goal, is to find the value that gives the D  that is most 

likely to have yielded the d  that has been observed.  Frequently, this will be an iterative 

process of guessing a value for D , looking at the resulting ( )L D , changing D  and going 

back to see if that improved ( )L D .  Two limitations that could be set up as bounds are a 

limited number of iterations, or a minimum value of ( )L D . 

 ( ) ( )L D g D d= . (2.24) 

 

When the function is discrete this is simply a summation, but this is obviously 

problematic when the PDF is continuous.  Thus, a different set of random variables, z , 

which depend upon D , can be built. Then the PDF ( )f z d  is constructed, such that 

maximizing ( )f z d  is simpler than maximizing ( )g D d .  Mathematically, this is shown 

below in Equation (2.25). 

 ( ) ( )g D d f z d dz= ∫ . (2.25) 

  

2.5.2. Expectation Step for Three Channel Case 

Section 2.5.2, Section 2.5.3, Section 2.5.4, and Section 2.6 largely describe the work 

done by Dr. Lemaster in [2] and [6].  In generic terms, the Expectation step defines the 

objective function that is being maximized.  For a given iteration, n , the objective function 

nQ  is the same as the conditional expectation of the complete data log-likelihood, based 

upon the measured (incomplete) data as well as the previous iteration’s estimates of the 
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function’s parameters.  In the more specific case of a polarimetric data, the parameters of 

interest are , , , and u p hλ λ α .  uλ  represents the amount of light that is unpolarized in the 

measured sample.  By contrast, pλ represents the amount of light that is (linearly) polarized 

in the measured sample.  h  denotes the PSF which describes the transformation that occurs 

between the source and the plane where the measurement is taken. Equation (2.26) shows 

how the object function is broken down into the unpolarized and polarized components and 

Equation (2.27) shows that the image function is a convolution of what the object actually 

looks like and the PSF. The incomplete data, because it receives both polarized and 

unpolarized light from a given channel, is displayed in Equation (2.28).  The expectation 

function for the unpolarized and polarized components, for a given channel and x,y pair are 

shown in Equations (2.29) and (2.30), where the subscript k is either u for unpolarized data 

or p for a polarized data.  α  describes the angle of polarization of the signal.  y is the 

location in the imaging space, x, is the location in the object plane.  o is the object function, 

that is, what the object actually looks like, and i, the image function, which is the same as 

the mean of d.  The subscript c, as well as the c in the summation, denotes a specific channel 

which will correspond with a specific polarization angle.  For example, cθ  denotes the 

polarization angle of the polarimeter associated with channel c.  ucD  signifies the 

unpolarized (subscript u) portion of the complete data seen in channel c.  Similarly, pcD  

signifies the polarized (subscript p) portion of the complete data seen in channel c.   

 ( ) ( ) ( ) ( )( )21 cos
2c u p co x x x a xλ λ θ= + − . (2.26) 
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 ( ) ( ) ( )c c c
x

i y o x h y x= −∑ . (2.27) 

 ( ) ( ) ( ), ,c uc pc
x x

d y D y x D y x= +∑ ∑ . (2.28) 

 ( ) ( ) ( )1,
2uc u cE D y x x h y xλ= −   . (2.29) 

 ( ) ( ) ( )( ) ( )2, cospc p c cE D y x x a x h y xλ θ  = − −  . (2.30) 

 

The objective function is defined below in Equations (2.31) and (2.32), where L is 

the log likelihood of the data.  While log likelihood is derived more thoroughly in [2] , it 

is shown below in Equation (2.33).   

 ( ) ( )1 1 1 1, , , , , , | , , , ,n n n n n
u p u p u pQ h E L h d hλ λ α λ λ α λ λ α− − − − =   . (2.31) 

 ( ) ( )1 , , , , , , | , , , ,n n n n n
u p u p u pQ h E L h d hλ λ α λ λ α λ λ α+  =   . (2.32) 

 

( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )( )[ ]
( ) ( ) ( )( )

2

2

, , , | , , , ,

1 1
, ln

2 2

, ln cos

cos

n n n n

u p u p

uc u c u c

x y c

pc p c c

x y c
p c c

L h d h

y x x h y x x h y x

y x x h y x x

x h y x x

D

D

λ λ α λ λ α

λ λ

λ α θ

λ α θ

=

− − −

− −
+

− − −

 
  

  
 
  

∑∑∑

∑∑∑

. (2.33) 

 The expectation value itself is defined as ( )1 ,n
kc y xψ + in Equation (2.34).  The results 

for the u and p portions of the expectation value may be found by referencing back to 

Equations (2.29) and (2.30) [2].    

 ( ) ( )1 , , | , , ,n n n n
kc kc c k cy x E D y x d hψ λ α+  =   . (2.34) 

 ( ) ( )
( ) ( ) ( )1 1,

2

n
cn n n

uc u cn
c

d y
y x x h y x

i y
ψ λ+ = − . (2.35) 
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 ( ) ( )
( ) ( ) ( ) ( )( )1 2, cos

n
cn n n n

pc p c cn
c

d y
y x x h y x x

i y
ψ λ α θ+ = − − . (2.36) 

 

2.5.3. Maximization Step for Three Channel Case 

To find the maximization of the likelihood, you must take the derivative of 1nQ +  

with respect to the individual parameter that you are attempting to maximize and set that 

equal to 0 for a given pixel, 0x .  For example, looking at , , or u pλ λ α in this case yields: 

Equations (2.37), (2.38), and (2.39), respectively. 

 
( )

( )
( ) ( )( )

11
0 2

0
0 0

,
cos 0

nn
pc

c
y c cp p

y xdQ x
d x x

ψ
α θ

λ λ

++  
 = − − ≡     

∑∑ ∑ . (2.37) 

 
( )

( )
( )

11
0

0 0

,
0

2

nn
uc

y cu u

y xdQ C
d x x

ψ
λ λ

++  
= − ≡ 

 
∑∑ . (2.38) 

 
( )

( ) ( )( ) ( ) ( )( )( )[ ]
1

1

0 0 0 0

0

, tan sin 2 0
n

n

pc c p c
y c c

dQ
y x x x x

d x
ψ α θ λ α θ

α

+

+= − + − ≡  ∑∑ ∑ . (2.39) 

By choosing cθ  in such a way that the orientations of the polarimeter are evenly distributed 

over all linear polarization states, some of these terms can be found to simplify into 

Equation (2.40) where k is used to symbolize either u for the unpolarized or p for the 

polarized state and C is the number of available channels [2] .   

 ( ) ( )1 12 ,n n
k kc

y c
x y x

C
λ ψ+ + =  ∑∑ . (2.40) 

The polarization angle found from the maximization function can be expressed in terms of 

the two linearly polarized Stokes parameter estimates via Equation (2.41) [2]. 
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 ( ) ( )
( )

1
2 01 1

0 1
1 0

1 tan
2

n
n

n

S x
x

S x
α

+
+ −

+

 
=   

 
. (2.41) 

 

2.5.4. Point Spread Function (PSF) Estimator 

The derivative of 1nQ + with respect to the PSF, at pixel z y x= −  is shown below 

in Equation (2.42).   

 

 
( )

( ) ( )
( ) ( )

1 11
1, ,n nn

pc uc n
c

y yc c

y y z y y zdQ o y z
dh z h z

ψ ψ+ ++
+− + −

= − −∑ ∑ . (2.42) 

Equation (2.42) enables us to use a PSF estimator originated by Schulz [18].  First, 

use the definition of ( )A u  as aperture function, such that ( ) 1A u =  when u r< and 

( ) 0A u =  when  u r> .  The resulting definition is shown below in Equation (2.43), which 

is simply an expansion of the discrete case of Equation (2.6) for an iterative estimation 

process.   k (in the exponential term) is a constant dealing with both the wavelength and 

sampling effects, and 1n
cϕ
+  refers to the current estimate (in the same vein as 1n

cψ +  from the 

previous section) of the atmospherically induced phase modulation for channel c.  This 

allows us to use a phase retrieval algorithm from [2] shown below in Equation (2.44) where 

( )xξ  is defined in Equation (2.45).  ( )cd y  is simply d (the incomplete data) at pixel y on 

channel c.  Therefore, ( )n
ci y  is the mean of nth iteration of the estimation of i at pixel y on 

channel c.  cD  is the complete data on channel c.  n
co  is the nth iteration of the estimation 

of the object function on channel c. 
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 ( ) ( ) ( )1
2

1 1 2,
n
ci un n i kux

c c
u

h x A u e e ϕπϕ
++ + −= ∑ . (2.43) 

 

 
 ( ) ( )( )1

if ln , 

 otherwise

c cn c
xc n

c

x h xξ ϕϕ
ϕ

ϕ
+

   = 


∑ . (2.44) 

 

 ( ) ( ) ( )
( ) ( )

, n
c c c n

cn
yc c

h x d y
x o y x

D i y
ϕ

ξ = −∑ . (2.45) 

Given Equation (2.46), we can use Equation (2.45), to find Equation (2.47) where 1−ℑ  is 

an inverse Fourier transform, and phase is a function that extracts the phase angle from a 

complex number.  This GS process is performed multiple times within each GEM iteration. 

 ( ) ( )1n
c c c

x y
D o x d y+= =∑ ∑ . (2.46) 

  ( ) ( )( )1( 2 )1phase ,
n
ci u kuxn

c cx e ϕ πϕ ξ ϕ
+ −− = ℑ  

. (2.47) 

 

2.6. Existing GEM-based Blind Deconvolution Utilization 

The GEM algorithm has been used experimentally in the past to reconstruct the initial 

polarization angles of measured light.  This has been achieved even through a random 

phase screen, which creates aberrations simulating that of the atmosphere.  The experiment 

in [6] consisted of two bars of light, each fully polarized, at orthogonal polarization angles.  

Unless the polarization analyzer was set, such that it filtered out all light from one bar, a 

phase shift dominated.  In the end, there was about a 10⁰ bias in the results.  The cause of 
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this bias was not fully understood, though one theory was that the bias was the result of the 

imperfections in the polarization analyzers. 

A different experiment involved the simulation of target data.  This scenario was 

theoretically identical to the first, in that there were two bars polarized at orthogonal 

polarization angles.  Also, atmospheric interference was simulated using the first nine 

Zernike polynomials.  These parameters were input into a MATLAB simulation which 

assumed a Poisson distribution for all relevant light sources. 

The results of these experiments were quantified with a Normalized Mean Squared 

Error (NMSE) measurement shown in Equation (2.48) where  ( )f x  is the individual 

estimate and ( )f x  is the known truth. 

 

 
( )  ( )

( )

2

2

f x f x
NMSE

f x

 ∑ − =
∑

. (2.48) 

   The results of the error for the three linear Stokes parameters are shown below in Figure 

4. The graphs depict the median (the second quartile) with bars representing the first and 

third quartile limits.  This means that 50% of the data is contained within the bars (so 25% 

is above the median and 25% is below the median).  The median was used, as opposed to 

the mean and standard deviation, to avoid having negative values for the lower NMSE. 
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Figure 4: Stokes Parameter Estimations from Multichannel GEM 

    In order to reconstruct the Stokes vector, S, the polarization angle, α , is necessary. S  

can be recomputed as shown below in Equation (2.49) with definitions shown in Equations 

(2.50) and (2.51) for the unpolarized component of the vector, uS , and the polarized 

component, pS , respectively.  0S  is the total light intensity.  This gives the ability to use 

these principles for partially polarized light as well as completely polarized light, as was 

the case in these experiments.  When the light was completely polarized, all elements of

uS  are equal to 0. 
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 u pS S S= + . (2.49) 

 ( ) 0

1 1
0 0

1
0 0
0 0

u uS P Sλ

   
   
   = = −
   
   
   

. (2.50) 

 ( )
( )

( )
( )0

1 1
cos 2 cos 2
sin 2 sin 2

0 0

p pS PS
α α

λ
α α

   
   
   = =
   
   
   

. (2.51) 

 Setting 3 0S =  makes the assumption that the circularly polarized component of the 

light received has an intensity of 0.  In natural light, this has been demonstrated to be true 

[8], however, expanding this method into the circular domain could allow for certain active 

detection methods to work as well as the passive approaches described here.  This would 

require the illumination of the target with an active, circularly polarized beam and then 

measuring the effect that the reflection has on the beam. 

 

2.7. Material Classification 

Fully identifying a specific material is challenging using only polarimetry.  However, 

classifying certain characteristics, using polarimetry, has been done.  Dielectric metallic 

objects can be identified using the polarization Fresnel ratio [8] [19].  The Fresnel ratio is 

defined by F in Equation (2.52).   2.0F >  is indicative of a dielectric surface, while 

2.0F <  is indicative of a metallic surface  [19].  An example of an image produced with 

this classification method is shown below in Figure 5 [8].  On the top of the figure is the 

portion of the image flagged as ‘metallic’ and the bottom of the figure is portion flagged 
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as ‘dielectric’.  In the case of the scissors, the metallic blade is clearly visible on the top 

and the dielectric handle on the bottom.  The spots on the bottom left image are rust spots 

on the blade that are correctly identified as dielectric.  Similarly, with the printed circuit 

board, the metallic traces are clearly visible in the top image and the dielectric substrate is 

highlighted in the bottom of the figure. 

 RF
R
⊥=


. (2.52) 

 

Figure 5: Metallic/Dielectric Polarimetric Classification [8]  

Another method that is used to distinguish between metallic and dielectric 

substances involves a slightly more complex calculation but in essence is looking at the 

DoLP as described above in Equation (2.19) [20].  It was noted that the DoLP ‘map’ 
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(displayed below in Figure 6) dielectric materials, such as vinyl chloride, demonstrated a 

convex pattern, and metallic materials, such as copper, displayed a concave pattern.  The 

z-axis is the DoLP and the x and y axes correspond to the pixels in the above photographs.  

The white dot in the graphs is the estimated point where the center of the light source hits 

the object. 
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Figure 6: DoP Dielectric/Metallic Map [8] 

2.8. Polarimetric Material Classification via GEM 

Continuing on the above work, there has been some study into the additional 

application of GEM to polarimetric material characterization.  Dr. Hyde’s work shows the 

potential of identifying predetermined materials via the DoLP of the return light [8].  There 
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are some limitations to this, however, and only a few sets of materials were examined.  By 

reflecting unpolarized light off of a surface and measuring the return light with a 

polarimetric imager (shown below in Figure 7) he was able to observe a very strong 

correlation between the object material type and the DoLP.   

In one experiment utilizing this setup, Dr. Hyde used iron and glass samples with 

different roughness levels (σ ) of each.  He then varied the angle of incidence, iθ  (and the 

corresponding angle of reflection, rθ ) to observe the impact σ had on his measurements.  

The result was that σ  had much less of an impact than the actual material index of 

refraction, which makes material type identification much more manageable.  This is 

shown below in Figure 8.  Initially only DoLP is used, but later the complex index of 

refraction for the material, η , (with real part n and imaginary part κ ) at point x, is 

recovered for greater material discrimination  [8]. 
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Figure 7: Polarimetric Material Characterization Experiment [8] 
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Figure 8: Interpreted Material DoLP [8] 

 

 A flowchart of the methodology used by Hyde for the material recovery is shown 

below in Figure 9.  The flowchart represents the thi iteration of the process for the given 

experiment.  The superscript thy is for a theoretical number, the superscript meas is for a 

measured number.   It is necessary to have prior information about the objects you are 

attempting to discriminate between in order to set up the initial hypotheses which is 

potentially problematic for a large database, but when there are only a few material types 

(dielectric vs metallic) this works well.  In the end the experiment was able to recover fairly 

accurate κ values from the various metals (though the mean values of η  are typically not 
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very close).  The results for four different materials, with and without turbulence, and then 

with correction, are shown below in Figure 10.   

 

 

Figure 9: Material Characterization Flowchart [8] 
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Figure 10: Index of Refraction Recovery [8] 

 

2.9. Summary 

 Polarimetry is commonly used in the characterization of objects.  Linear 

polarization is more commonly used than circular polarization because it occurs naturally 

and thus lends itself well to passive polarimetric detection schemes.  However, circular 

polarization is becoming increasingly interesting in certain circles and little has been done 

to characterize it due to its increased complexity as well as the requirement for active 

sensing.  Stokes parameters are a common means of describing the polarization of the 

intensity of a light wave.  A GEM based approach exists for describing a scene via Stokes 

parameters but only based upon the linear set of parameters.  This research intends to 

expand that approach to include circular polarization as well. 
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3. Methodology 

 

This chapter begins with a physical description of the system that was tested and 

simulated.  Then it shall discuss the development and adaptation of the existing GEM frame 

work to this model and how these methods shall incorporate circular polarization.  Next it 

will discuss how this was adapted into MATLAB as well as some variations on that 

simulation.  Lastly, a laboratory experiment will be described to validate the algorithm as 

well as several variations of the experiment. 

3.1. Test Setup 

In addition to turbulence, this simulation also involves a polarization filter at the 

end to enable the collection of the polarimetric state of the data (including the ellipticity). 

The orientation of this filter will be different for each channel.  The differences in 

orientation will allow for the data to be collected properly.  This filter will consist of a 

waveplate ( wpM , which is defined in Equation (3.1)) of retardance ϕ and a linear polarizer 

( DM ).  For each channel the waveplate will be rotated to a different angle, θ, to allow 

differentiation between the channels and to enable the algorithm to function properly.  The 

linear polarizer will remain untouched.  This is shown below in Figure 11.  

 

( ) ( ) ( ) ( ),wp R w Rθ φ θ φ θ= −M M M M .    (3.1) 
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Figure 11: Experimental Setup [21] 

 

The mathematical interpretation of this setup is similar to that performed in [6] 

except for the addition of the fourth Stokes element.  The Mueller matrix is a means of 

describing the effect that a system has on the light that passes through it.  Specifically, this 

will calculate the polarization state of the light after it passes through.  The basic equation 

is shown below in Equation (3.2) where inS  is the Stokes vector of the light entering the 

system, M is the Mueller matrix of the system, and outS is the Stokes vector of the light 

leaving the filter.  

 out inS S= M . (3.2) 

In this case, there will be two elements to the Mueller matrix.  They are the 

waveplate and the linear polarization filter.  The linear filter will be set at an angle of 0θ =  

which has a Mueller matrix DM shown below in Equation (3.3).  The waveplate’s Mueller 

matrix, ( ),wp θ φM  is determined by Equation (3.1).  ( )R θM , which defines the effect 

rotating an element has on a system, is defined in Equation (3.4) where θ  denotes the angle 

that the waveplate is rotated to, relative to the polarization filter.  ( )w φM  is the Mueller 
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matrix for a waveplate, as shown in Equation (3.5) where φ  denotes the ellipticity (that is, 

the angular difference between the fast and slow axis) of the plate [21].  Thus, plugging 

Equations (3.4) and (3.5) into Equation (3.1), ( ),wp θ φM  becomes Equation (3.6).   
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 =
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M . (3.6) 

 

In Mueller calculus, the multiplication sequence is from left to right.  That is, the 

last element that the light passes through, then the first, then the original Stokes vector to 

get the outgoing Stokes vector.  Thus, the full equation begins with the linear polarizer (the 

last element) is followed by the waveplate, and ends with the input light, as shown below 

in Equation (3.7) [21]. 
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 out inD wpS S= M M . (3.7) 

 

It is important to note that the detector will only be able to read the total intensity, not the 

entire Stokes vector.  After multiplying through the elements in Equation (3.7), the total 

intensity, 0,inS  for a given system is shown in Equation (3.8) below and cW consists of the 

elements of the Mueller matrix that are used to calculate 0,inS  for that channel.  The 

subscript c indicates the variables that vary by channel. 
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2 2

1 ,
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2 ,
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c c c c in
c out c c in

c c c c in

c inc c

S
S

S W S
S
S

θ φ θ
φ θ θ

φ θ

   
   +   = =  −  
   

−    

. (3.8) 

There will be four different elements needed in the output (effectively the four 

elements of the Stokes vector), meaning that there will be four channels needed for the 

experiment. Therefore, in the end, W  will be a 4x4 matrix.  Selecting the angles needed 

for these channels is a matter of minimizing Stokes readout error for the overall system.  

The intensity seen by the camera will actually add a noise vector, n , to Equation (3.8) , 

causing the light intensity read by the camera to become Equation (3.9).   

 ( )camera inI S n= +W . (3.9) 

 

To find an estimate of inS  without knowing n , the pseudoinverse of W  is taken 

[22].  Here, the pseudoinverse is the same as the inverse if the inverse exists, and results in 

the minimum norm, least square error reconstruction otherwise (as would the case when 
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there are fewer than four channels for instance).  This pseudoinverse is defined as κ  and 

is known as the condition number [23].  The original Stokes vector is then computed by 

Equation (3.11) where  inS  is the reconstructed estimate. 

 1κ −= W W . (3.10) 

 

camerainS Iκ= . (3.11) 

There will be an error in this reconstruction, S∆ , based on the pseudoinverse and 

the noise.  Substitution of cameraI  from Equation (3.11) into Equation (3.9) yields Equation 

(3.12), which shows that minimizing κ  will minimize the error in the Stokes vector 

recreation [22]. 

 

in inS S S nκ− = ∆ = . (3.12) 

In prior work, 0S , 1S , and 2S  were calculated, which allowed for only three 

channels of different angles [2].  In this case, the angles needed across the four channels to 

reach the minimum condition value for the four Stokes element case is given by the 

following vectors, where Channel c would consist of a waveplate of ellipticity cφ  which is 

rotated to an angle of cθ  relative to the horizontal, and then followed by a horizontal 

polarization filter [23].  The minimum κ  will minimize the error sensitivity of the total 

system.  This minimum is achieved at the cφ  and cθ  values listed below in Equations (3.13) 

and (3.14) [21] [23] [22].  These angles were chosen to optimize SNR.  Optimizing the 

SNR of the incomplete data gives the best inputs into the log likelihood equation.  Giving 

the algorithm a noisy signal would make it more difficult to reconstruct the original target.  
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Additionally, the choice of these angles, by minimizing κ , allows decoupling of variables 

later on in the GEM algorithm development. 
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132
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. (3.13) 
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After inserting Equations (3.13) and (3.14) into the partial Mueller matrix in 

Equation (3.6), we have a new transfer matrix, W , shown below in Equation (3.15).  This 

is not a Mueller matrix, but will function in a similar manner, mathematically.  Inserting 

W back into Equation (3.2) shows how the system will effect each of the different channels 

based upon the inputs received, where cd is the data received for a particular channel, c .   
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Thus, to go back from the data to the Stokes vector at the polarimeter you would multiply 

the data vector by the inverse of W matrix, or 1−W . 

As with [2], converting the Stokes vector into its polarized intensity and unpolarized 

intensity splits the data into two Poisson variables which can feed into the existing GEM.  

The Stokes components at that point are given by Equation (3.17). 

 
( ) ( )
( ) ( )
( )

0

1 0

2 0

3 0

cos 2 cos 2

cos 2 sin 2

sin 2

S I
S PS

S PS

S PS

χ α

χ α

χ

=

=

=

=

. (3.17) 

 

P is the Degree of Polarization and I is the total intensity that reaches the receiver.   χ  is 

the ellipticity of the light and α  is the polarization angle of the light.  The unpolarized 

portion of the Stokes vector, which only concerns the top component is shown as uS  in 

Equation (3.18) and the polarized component as pS  in Equation (3.19). 
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( )

0

1
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. (3.19) 

 

Measured through the system of polarization analyzers described above in Equation (3.8) 

the resulting intensity is shown in Equation (3.20). 



47 

 ( )
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 (3.20) 

 

The fully polarized component, pλ , is shown below in Equation (3.21) .  Similarly, the 

unpolarized component, uλ , is shown below in Equation (3.22).   

 0p PSλ =  (3.21) 

 ( ) 01u P Sλ = −  (3.22) 

 

Thus the total intensity, found by substituting Equations (3.22) and (3.21) into 

Equation (3.20) is shown below in Equation (3.23).  For the sake of simplification, 

( ), , ,c cT χ α θ φ  is defined in Equation (3.24). 

 ( ) ( ) ( ) ( )0 0 , , , , , ,
1 1 1, 1
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48 

3.2. GEM Integration 

 

3.2.1. Expectation Step 

As described in section 2.5.2, the Expectation step defines the objective function 

that is being maximized.  Unlike the three Stokes case described in section 2.5, the 

parameters of interest here are , , , ,  and u p hλ λ α χ .  Equation (3.25) defines the object 

function as a sum of the unpolarized and polarized components.  The incomplete data, 

because it receives both polarized and unpolarized light from a given channel, becomes 

Equation (3.26).  The expectation function for the unpolarized and polarized components, 

for a given channel and x,y pair are shown below in Equations (3.27) and (3.28).  As before, 

o is the object function, and i, the image function, which is the same as the mean of d.  The 

subscript c, as well as the c in the summation, denotes a specific channel which will 

correspond with a specific ϕ and θ.   

 ( ) ( ) ( ) ( ), , ,
1
2 c cc u p To x x x χ α θ φλ λ= + . (3.25) 

 ( ) ( ) ( ), ,c uc pc
x x

d y D y x D y x= +∑ ∑ . (3.26) 

 ( ) ( ) ( )1,
2uc u cE D y x x h y xλ= −   . (3.27) 

 ( ) ( ) ( ) ( ), , ,, c cpc p cTE y x x h y xD χ α θ φλ= −   . (3.28) 

The objective function is defined below in Equation (3.29), where L is the log likelihood 

of the data.  While this last term is derived more thoroughly in [2] , it is shown below in 

Equation (3.30).  Now that the log likelihood for the system has been defined, the angles 
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selected previously can be verified via a Cramer Rao Lower Bound (CRLB).  The method 

by which this was done is described in Appendix A. 

 ( ) ( )1 , , , , , , | , , , ,n n n n n
u p u p u pQ h E L h d hλ λ α λ λ α λ λ α+  =    (3.29) 
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1 1
, , , , ln

2 2

, ln , , , , , ,

u p uc u c u c
x y c

pc p c c c p c c c
x y c

L h y x x h y x x h y x
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D

D

λ λ α λ λ

λ χ α θ φ λ χ α θ φ

= − − −

+ − − −

 
  

∑∑∑

∑∑∑
(3.30) 

The expectation value itself is defined as ( )1 ,n
kc y xψ +  in Equation (3.31) where the 

subscript k is either u for unpolarized data or p for a polarized data.  The results for the u 

and p portions of the conditional expectation value may be found by referencing back to 

Equations (3.27) and (3.28) [2].    

 ( ) ( )1 , , | , , ,n n n n
kc kc c k cy x E D y x d hψ λ α+  =    (3.31) 

( )1 ,n
pc y xψ +  is more complicated than it was for the linear case but ( )1 ,n

uc y xψ +  is unchanged.  

Because ucλ and pcλ   are each Poisson, and the collected data consists of their sum (for a 

given channel) their expectation can be shown in Equation (3.32) where ic is the mean value 

of the total intensity for channel c [24]. 

 
( )uc pc kc c

kc uc pc kc
cuc pc

dE
i

λ λ λ
λ λ λ λ

λ λ

+
 + = =  +

. (3.32) 

Equations (3.21) and (3.22) show the respective kcλ values for each given pixel, x. 

( )1 ,n
uc y xψ +  and ( )1 ,n

pc y xψ + become what is shown below in Equations (3.33)  and (3.34) 

respectively. 
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( ) ( ) ( )1 1,
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cn n n

uc u cn
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i y
ψ λ+ = − . (3.33) 

 ( ) ( )
( ) ( ) ( ) ( )1 , , ,, c c

n
cn n n

pc p cn
c

T
d y

y x x h y x
i y

χ α θ φψ λ+ = − . (3.34) 

 

3.2.2. Maximization Step 

Next, the derivative of 1nQ +  was taken with respect to the various parameters of 

interest listed and set the result equal to 0 for each pixel, 0x .  For example, looking at pλ

or uλ  yields Equations (3.35), or (3.36) respectively. 
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= − ≡ 

 
∑∑ . (3.36) 

As with the three Stokes case, the specific values of cθ  and cφ  selected in Equations 

(3.13) and (3.14), the ( )[ ], , ,c c

c
T χ α θ φ∑  in Equation (3.35) simplifies to 2 for all 

combinations of α and χ  when you sum across all channels.  This allows Equation 

(3.35) to simplify Equation (3.37). 
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Because C=4, Equation (3.37) can be rewritten as Equation (3.38) putting it in a similar 

form to Equation (3.36). 
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Equations (3.36) and (3.38) can now be generalized as Equation (3.39) [2] . 
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 Following the similar steps in Eq 3.35 and 3.36, estimating the unknown parameters 

α  and χ  was expected to be found by maximizing the log-likelihood function with respect 

to the parameter.  This is worked out in Appendix A and B.  Unfortunately, due to the 

coupling of parameters, the angles could not be isolated in the same manner as the other 

parameters.  To alleviate this problem, an intuitive solution was proposed that involve the 

creation of a polarized Stokes vector (similar to pS  in Equation (3.19) ) for each pixel, 0x

, from the existing polarization angle estimates ( ( )0
na x  and ( )0

n xχ ) as well as ( )1
0

n
p xλ +

.  The unpolarized component is omitted because it does not contribute to the polarization 
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angle.  This Stokes vector, 
1n

S
+

 can then be used to calculate the angle of linear 

polarization, ( )1
0

na x+  via Equation (3.40) [2] as well as the next estimate of the ellipticity, 

( )1
0

n xχ + , via (3.41). 
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The only piece remaining is the PSF, ( )ch y x− .  As seen in Equation (2.6) the PSF 

consists of a pupil function and a phase.  The pupil function is already known, based upon 

the camera, leaving the phase to be estimated.  This estimation is done using the 

Gerchberg–Saxton (GS) phase retrieval algorithm, just as it had been in prior work [25] 

[6]. 

3.2.3. Algorithm Pseudocode 

An intuitive way to express how the different functions operate together is to display it 

as pseudocode.  The entire algorithm is run 1000 times for each simulation, thus there are 

1000 total iterations of the update functions.  However within each of these 1000 iterations, 

the GS phase retrieval algorithm is run to 25 times before selecting the updated phase angle.  

So, the update algorithm for a given pixel, might have a pseudocode resembling: 

A.) For iteration = 1:1000 

1.) Calculate 1n
uλ
+  from Equation (3.39). 

2.) Calculate 1n
pλ
+  from Equation (3.39). 
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3.) Calculate Stokes vector estimate, 
1n

S
+

, using the 1−W  as well as 1n
pλ
+ , nα , and 

nχ . 
4.) Calculate 1nα +  using Equation (3.40). 
5.) Calculate 1nχ +  using Equation (3.41). 
6.) For each channel, c, calculate 1n

ch +  by estimating the phase angle 
a. For j=1 to 25 

i. Run the GS phase retrieval algorithm to estimate the phase angle 
for this channel,  cϕ , for the atmospheric effect of the PSF. 

b. 

1n
ccϕ ϕ+ = , which is plugged into (2.6) to give 1n

ch +  for each channel 
c. End 

7.) End 
B.) End 
 
 The output of the above pseudocode will be the updated estimates for ch  for each 
channel, as well as pλ , uλ , α , and χ  for the original target. 

   

 

3.3. MATLAB Simulation 

A polarized target was simulated in MATLAB (shown below in Figure 12) containing 

the letters A, F, I, and T.  The A is polarized to 60 , =0α χ= ° ° . This mostly removes the A 

from channel 2.  The F is polarized to 64.2 , =0α χ= − ° ° .  This mostly removes F from the 

image produced by channel 3.  This will become relevant when channel 3 is ‘cleaned’ 

because the image output of channel 3 then looks clear but is missing the F.  The I is 

polarized at 45 , =0α χ= ° ° .  The T is the circularly polarized component with polarization 

angles of 0, =45α χ= ° .  This is detailed in Table 4. 
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This target was passed through a randomly generated PSF for each channel.  During the 

simulated trials, a or  of 0.1 m was used and 100 Zernike polynomials were calculated.  The 

four resulting images are each passed through a different channel.  These channels are 

differentiated by the angle of the waveplate, cθ , as shown above in Equation (3.14).  This 

creates the four images shown below in Figure 13.  The Poisson noise that describes the 

random photon arrival to the sensor was then simulated via a Poisson random number 

generator within MATLAB.  These four images then became the input data for each 

channel, or cd .  Each letter in the image was polarized to a different angle such that each 

channel had one letter that was virtually invisible, as can be seen in Figure 13.  The ‘T’ was 

circularly polarized.  The aperture diameter was set to be 1 meter. 

 

 

Figure 12: Object 
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Table 4: Polarization States of Simulated Data 
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Figure 13: Data With Turbulence   

After the data was created, it was sent to a separate program, along with information 

about the angles of the waveplate. That second program executed the GEM based blind 

deconvolution algorithm described above.  It then output an estimated uλ , pλ , α , and χ  

for each pixel in the object plane, in an effort to recreate the target.  The program also made 

estimations of the PSF, per the GS algorithm which it also exported for comparison with 

the original PSFs. 

3.4. Variations 

Additionally, several variations of this simulation were performed to compare the 

results.  In the first, the effects of atmospheric turbulence were removed by setting 

1 meteror D= = to verify the algorithm’s functionality in that condition.  Next, the 
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algorithm was applied to a known PSF ( or = 0.1 meter).  This essentially made it a 

deconvolution algorithm instead of a blind deconvolution algorithm.  Third, the simulation 

was repeated with one turbulence free PSF ( or D= ) and three ‘normal’ channels ( or = 0.1 

meter).  This third simulation, with three ‘normal’ channels and one turbulence free channel 

most closely resembles the earlier work performed in [6].  Then, the simulation was 

repeated with an initial guess consisting only of the PSF of the lens to demonstrate how 

much of a role the initial guess plays in the overall result.   

Lastly, simulations were run at different retardances to simulate varying the 

retardance of the waveplate.  This was done to see how far from the ideal 132⁰ retardance 

a reasonable result could be produced because quarter waveplates (with a 90⁰ retardance) 

are far more readily available than those waveplates with the desired retardance.   

For the or D=  case, Figure 14 shows what the intensity data looked like for one of the 

trials and for the simulation.  Figure 15 shows an example of what the intensity data looked 

like for each of the channels in one trial where three of the channels were ‘normal’ and one 

had no atmospheric turbulence.  For all of the other variations (where all four channels had 

‘normal’ PSFs), the intensity at the receiver used the same parameters as those seen in 

Figure 13. 
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Figure 14: Turbulence Free Data 
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Figure 15: Data With One Turbulence Free Channel 
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3.5. Laboratory Experiment 

To begin the simulation, a fiberoptic broadband light source was connected to a 

narrow bandpass filter centered at 1550 nm.  In order for the waveplate to have the 

appropriate retardance for all of the measured light, it is necessary for that light to be of 

about the same wavelength.  Next, the light in the fiberoptic line was linearly polarized to 

45⁰ then passed through a quarter waveplate which was rotated to an angle of 23.5⁰ (π/8 

radians) relative to the same frame as the linear light. This produced the source light with 

an ellipticity of 45⁰.   

This source light passes through a polarization filter, then a 125 mm focal length 

lens before reaching the CCD array.  The camera used was a Goldeye G-033 TECless 

which has a pixel pitch of 15 microns.  The overall magnification of the system was 

approximately 2.5.  The polarization filter consists of a Variable Retardance Waveplate 

(VRW) which was tuned to 132⁰ retardance at 1550 nm followed by a horizontally oriented 

linear polarizer (denoted with LP in Figure 16).  The VRW was a Thorlabs LC-1111T-C.  

The ideal temperature for achieving a retardance of 132⁰ is 25⁰ C and a voltage of 1.22 

VRMS is applied to it.  The light source is 290 mm from the lens which is 220 mm from 

the CCD array to place the target in focus of the CCD array.  This is shown visually in 

Figure 16.  The data that was produced is shown below in Figure 17.  The light source was 

a fiberoptic element approximately 10 microns on a side which will cause it to appear as a 

point source, much like an object in geostationary orbit would to an Earthbound telescope.  

While this involves measuring light from a source, instead of light reflecting off of an 
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object, the algorithm itself simply calculates the Stokes vector of the arriving light and so 

is still capable of recreating the image of the source. 

 

Figure 16: Experimental Setup 

 

The VRW was rotated to -51⁰ from horizontal, and a plastic film was placed over 

the polarization filter to simulate turbulence blurring the image primarily along the y-axis.  

Then the waveplate was rotated to -15⁰ from horizontal, and the film was stretched to blur 

it along the y axis.  A second image was taken in this state.  Afterwards, the waveplate was 

rotated to 15⁰ from horizontal and the film was removed.  A third image was taken.  Finally, 

the waveplate was rotated to 51⁰ from horizontal and the film was stretched in the x-y axis 

to produce turbulence at a 45⁰ angle to maximize the diversity between the different point 

spread functions.  The fourth and final picture was taken in this state.  The linear polarizer 

remained horizontal throughout the experiment.  The resulting intensity from each channel 

is shown below in Figure 17. 

Afterwards, the quarter waveplate was replaced with a linear polarizer (rotated to 

90⁰) to produce linearly polarized light at a specific angle.  This gave the algorithm a chance 

to verify that it would not incorrectly classify a linearly polarized source as circularly 
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polarized by assigning a nonzero χ.  The process of producing a phase screen was repeated 

and the intensity results are shown below in Figure 18. 

Next, a variation of this setup was then used to create multiple sources.  To do this, 

a splitter was inserted into the fiberoptic line to split the light equally in each line.  The end 

of the first line matched that of the first experiment, with elliptically polarized source light.  

The second line produced a source matching the second experiment, with linearly polarized 

light at 90⁰.  The purpose of this was to show that the algorithm can differentiate between 

two sources of different polarization types.  A photo of this setup is shown below in Figure 

19.  Turbulence was added in the same manner as the previous two scenarios and the data 

was inserted into the algorithm.  The initial data is shown below in Figure 20.  Finally, the 

point sources were replaced with a bar.  This consisted of a back illuminated 150 micron 

slit placed where the previous source had been.  The light was elliptically polarized at 

45χ = ° .  This time, turbulence was created in each channel by the plastic film, and the 

film was stretched in a different direction in each channel.  This allows testing of the blind 

deconvolution portion of the algorithm.  The channel inputs are seen below in Figure 21. 
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Figure 17: Circularly Polarized Sample With Turbulence 
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Figure 18: Linearly Polarized Sample With Turbulence 
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Figure 19: Laboratory Setup Photo 
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Figure 20: Experimental Data Sample with a Linear and a Circular Source 

 



67 

 
Figure 21: Experimental Data with an Elliptically Polarized Bar Source 

4. Results 

4.1. Chapter Overview 

 

This chapter will cover the results from the experiments and simulations discussed in 

chapter 3.  First it will discuss the baseline simulation focusing initially on a single trial 

then expanding to show some statistics for a group of 10 trials performed with the same 

settings.  Next the chapter will discuss the variations performed from the baseline 

simulation.  Following that discussion, the chapter will cover the results of the laboratory 
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experiments performed.  Finally the chapter will mention some interesting notes on the 

results and conclude with a chapter summary. 

 

4.2. Baseline Simulation 

The first scenario to be discussed is the simulation referred to as the ‘baseline’.   Figure 

22 shows the PSFs used to create the raw channel images in Figure 13.  The estimated PSF 

produced by the algorithm is depicted in Figure 23 for comparison.  In the end there is a 

very close visual match.  Several different methods were attempted for defining the initial 

guess for the PSF.   To produce an initial estimate, 1000 sample PSFs were generated using 

the same parameters mentioned in chapter 3.  This would be based upon 0r , D and the 

number of Zernike polynomials used in the PSF.  These samples were then recentered so 

that the max values overlap and then they were averaged together.  The resulting average 

was used as the initial guess for the PSF that was actually used.  An image of this initial 

guess is shown below in Figure 24.   

The main outputs of this algorithm are the variables uλ , pλ , α , and χ .  These are 

shown below in Figure 25.  The truth data is shown in Figure 26 along with the truth data 

for the default scenario in which all four channels had ‘normal’ PSFs.  At each iteration, 

the Normalized Mean Squared Error (NMSE) between the truth data and the GEM output 

is shown below in Figure 27.  Although this experiment was run up to 1000 iterations, the 

improvements typically stagnated after around 200 iterations.  In this scenario, error in 

reconstruction of pλ  appears to be the deciding factor on when to cease iterating.  The 

discontinuities in the two angle plots occurs when the estimated PSF center shifts, causing 
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the resulting estimated object to shift.  Because the letters are only a few pixels wide this 

shift causes a relatively large change from one iteration to the next.  Comparing the pλ  

output in the lower left of Figure 25 to the input in Figure 13, one can see that the image 

greatly improves over any individual channel, as a result of the information provided by 

the other channels.  In essence, applying the blind deconvolution algorithm to the four 

channels together yields more information than would be gained by looking at any of the 

channels independently.   

Finally, in Figure 28, a series of 10 experiments with the same input parameters for 

the PSF generator were performed to provide a clear sense of the variability that can be 

expected from this approach.  Only pλ  is shown because it most closely resembles the 

initial object and can thus provide a clear, visual interpretation of how well the original 

object was recreated.  Figure 29 shows the mean of the NMSE for the 10 trials as well as a 

blue band representing one standard deviation from the mean.  The mean NMSE was 

approximately 0.9e-5.  The expected mean NMSE will be situational.  Situations in which 

the PSF creates a greater distortion on the object will likely produce a greater mean NMSE 

and vice versa.  Conversely, situations in which the target has simpler geometry would be 

expected to have a lower mean NMSE. 



70 

  

 

    

Figure 22: Actual PSF Used in Trial 1 
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Figure 23: Estimated PSF From Trial 1    
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Figure 24: Initial PSF Guess 
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Figure 25: GEM Output From Trial 1 
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Figure 26: Object Used in Trial 1 
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Figure 27: NMSE for GEM Output 
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Figure 28: pλ  Estimates Across 10 Baseline Trials 
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Figure 29: NMSE for pλ  For Baseline Trials 

4.3. Simulation Variations 

 

Then ten trials done for each of the variation scenarios are shown below in Figure 30-

Figure 37.  The pλ  outputs for the trials tested under the turbulence free phase screen  

( )0r D=  are shown in Figure 30 and the NMSE results over iteration number for each trial 

are shown in Figure 31.  In this variation the input data used follows was created with the 

same statistics as the sample shown in Figure 14.  All of the results quickly reach a very 

legible result.  Given the clarity of the initial inputs, however, this was not an unexpected 

        =Mean of NMSE 

        =One Standard Deviation 
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result.  Less expected is that in many cases, the results actually get worse shortly after 

reaching their lowest value, at least based upon the NMSE.  That said, it is worth noting 

that the NMSE between the target and the GEM output is on a very small scale.  At the end 

the mean NMSE for the trials was around 0.4e-5, which is roughly half the error of the 

baseline plot.   
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Figure 30: pλ  Estimates 0 1r = meter 
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Figure 31: NMSE Results for 0 1r = meter 

 

 Next, the process was repeated with a known ‘normal’ PSF case ( 0 .1r =  meter).   

This refers to the sample input shown in Figure 13.  This variation used the same input 

variables as the initial experiments, but substituted the true PSF in each channel for ch .  

This allowed the new portion of the GEM to be tested without being negatively impacted 

by issues with the GS algorithm.  However, this does make it simply a ‘deconvolution 

algorithm’ instead of a ‘blind deconvolution’ algorithm.  The resulting pλ  estimate for 

each trial are shown below in Figure 32 and the NMSE results are shown in Figure 33.  

       =Mean of NMSE 

      =One Standard Deviation 
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Although this variation has PSFs that were created with the same variables as those in the 

baseline, the output is far more ideal in that it has a much lower NMSE, and converges 

quickly.  This indicates that the majority of the error in the baseline likely comes from the 

PSF estimation process.  In this case, the mean NMSE was around 0.5e-5.  Contrary to what 

one may expect, this result is not as good as the turbulence free case.  This outcome could 

be a result of the cutoff occurring at 1000 iterations.  It is worth noting that at this point, 

the turbulence free case has begun to diverge, but the known PSF case is still improving.  

It is also worth noting that in the known PSF case, the variance was smaller than for all 

other cases.  In other words, because the correct PSF was entered into the equation as the 

initial guess, each of the different sample datasets produced roughly the same amount of 

error. 
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Figure 32: pλ Estimates for a Known PSF 
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Figure 33: NMSE Results for Known PSF 

 

 

 The third scenario involves one channel with a turbulence free PSF ( 0 1r = meter) 

and three with a ‘normal’ PSF ( 0 .1r = meter).  This matches the input shown in Figure 15.  

The results of the ten trials are shown below in Figure 34 and Figure 35.  While the results 

do not converge quite as quickly or nicely as in the known PSF case, the end result appears 

better than the baseline.  This is due to the effect of channel 3 being able to give the majority 

of the information.  The F is still invisible in that channel because the polarization state of 

the F is almost perpendicular to that of the Mueller matrix of the filter in front of channel 

       =Mean of NMSE 

      =One Standard Deviation 
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3.  However, because of the ‘clean’ information that is obtainable, the PSFs for the other 

channels are easier to infer and thus the missing data can be acquired.  In spite of the clean 

appearance, in the end, this case produced around a NMSE of 0.9e-5, which is roughly the 

same as that in the original experiment, though the variance is much tighter. 
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Figure 34: pλ  Estimates for Clean Channel Variation 



86 

 

Figure 35: NMSE Results for Clean Channel Variation 

 

 

 Next, using the baseline PSF variables (shown in Figure 13) a different PSF 

initialization guess was attempted.  In this case, the guess of the starting PSF was that there 

was nothing but a lens in front of it and the algorithm would iterate from there to discover 

the true PSF.  Thus, any phase variation in the initial guess would be a result of known 

aberrations in the optical system.  While this is a realistic scenario if you know nothing 

about the atmospheric conditions, it is severe and demonstrates the importance of having 

an initial guess that at least resembles the true PSF.  The results are shown below in Figure 

       =Mean of NMSE 

      =One Standard Deviation 
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36 and Figure 37.  Not only does the convergence typically happen much later (if at all) 

the NMSE at the point of convergence is much higher than in any of the other methods 

examined here.   
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Figure 36: pλ for Lens Only Initial Guess 
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Figure 37: NMSE for Lens Only Initial Guess 

 

 Lastly a set of trials were run varying the retardance of the waveplate.  This was 

performed using the ‘normal’ PSF generating parameters in all four channels which creates 

data similar to what is shown in Figure 13.  The retardance ranged from 123-132⁰ in one 

degree increments for a 10⁰ span.  The results are shown below in Figure 38. With a few 

degree offset, the image is still intelligible, however once you get past around three degrees 

from the baseline of 132⁰ the restoration rapidly deteriorates, as shown in Figure 39.  Even 

with a tuned VRW, a small temperature shift could mean a few degrees change in 

retardance which could seriously skew the results.  An alternative method could be to 

       =Mean of NMSE 

      =One Standard Deviation 
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employ a quarter waveplate paired with a tight bandpass filter to achieve the desired 

retardance.  Also, it is noteworthy that the result reaches an optimal point fairly early on in 

many of these cases and then diverges.   
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Figure 38: Effect of Lens Retardance on pλ  
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Figure 39: NMSE Effect of Lens Retardance 

 

4.4. Lab Results 

4.4.1. Single Target Tests 

In the single circular light source scenario, (with initial channel inputs shown 

above in Figure 17), the algorithm managed to deconvolve the image into approximately 

a point source, which roughly matches the original source.  The GEM algorithm 

estimated that χ  was approximately 45⁰, which corresponds to circularly polarized light 
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coming from the quarter waveplate.  As seen above in Figure 3, α  will vary with 

circularly polarized light, so the value of α was not expected to be predictable unless the 

distance between the source and collector is known to a very precise value (ie fractions of 

a wavelength).  The GEM output plot for this scenario is shown below in Figure 40.  

Because this point source is difficult to see in the full scale, additional images are 

attached which have been zoomed in around the area of the point source.  Figure 41 

shows the trimmed and zoomed image around the target to show that it was resolved to a 

point source.  The calculated χ  at that region was within 5⁰ of the estimated value in the 

original source.  A trimmed and zoomed version of the source, around that region, can be 

seen in Figure 42.  The PSF estimate can be seen in Figure 43.  Because the actual truth 

data was not known in this case, a NMSE calculation was not possible.  However, it is 

worth noting that after 100 iterations, the image began to get worse. 
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Figure 40: GEM Output from Laboratory Experiment 



96 

 

Figure 41: GEM Output Closeup 
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Figure 42: Original Signal 
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Figure 43: PSF Estimate 

 

For the linearly polarized sample, the algorithm also successfully reconstructed the 

point source.  It correctly determines that 0χ =  at the source.  The angle of polarization 

however, has a range of values across the source.  While it does cross over the 45⁰ mark, it 

ranges all the way from -45⁰ to 75⁰.  This is shown below in Figure 44.  As with the 

circularly polarized sample, a zoomed in version of the original data is shown below in 

Figure 45.  The PSF estimation is shown in Figure 46. The inability to correctly determine 

the angle of polarization was likely due to thermal fluctuations in the VRW.  Temperature 

shifts in the device can cause a large shift in retardance.  This is also possibly why the 
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algorithm resolved the target to a pair of point sources instead of just one, creating a PSF 

estimation that seems inconsistent with the initial data.  Following the experiments, the 

thermal regulator registered that VRW varied from 23⁰ C to 27⁰ C during the experiment 

despite being engaged and set at 25⁰ C. As above, the image eventually got worse but here 

after only around 30 iterations. 

 

Figure 44: Linearly Polarized Point Source 
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Figure 45: Linearly Polarized Source Data 
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Figure 46: Estimated PSF for Linearly Polarized Source 

4.4.2. Multiple Targets 

In the scenario where there were two sources (with the initial inputs shown above in 

Figure 20), one circularly polarized and one linearly polarized, the algorithm succeeded in 

identifying which was which.  For the linear source, the reading was 91α = − °  on a source 

that was actually 90− ° .  The measurement was 34χ = °  from light that should have had 

an ellipticity of 45° .  Much of this error can likely be explained by variability within the 

VRW.  While not as large a range as in the linear case, the thermal regulator was frequently 

off by around a degree Celsius which can account for a shift in the waveplate’s retardance.  

The results were actually better than expected given the results of the angle variation test 
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and the fact that all rotational angles had to be controlled to by hand.  The GEM outputs 

are shown below in Figure 47.  The scale for the χ  has been changed to add contrast 

because, after filtering, it is only non-zero in a single pixel.   

 

 

Figure 47: Two Source Differentiation 
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Figure 48: Data Input for Two Sources 
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Figure 49: PSF Estimation for Two Sources 

4.4.3. Multiple Targets 

Finally, the bar case demonstrates the algorithm’s ability to deconvolve a less trivial 

source.  The initial inputs for this case were displayed above in Figure 21.  The GEM 

output can be seen below in Figure 50.  As before, the angle of polarization is 

unpredictable because the light is circularly polarized.  There is no unpolarized light 

erroneously detected.  The shape of the polarized light reconstruction matches that of 

the original slit.  The ellipticity estimated is approximately 48⁰ compared to the original 

ellipticity of 45⁰. A zoomed version of the original data is displayed in Figure 51 and 

the PSF estimate is shown in Figure 52.  The bar is successfully reconstructed, however 
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there are some errors in the PSF estimation for channel 1.  This is likely due to the 

turbulence produced by the plastic film not being completely isoplanatic across the 

image. 

 

 

Figure 50: Bar Target GEM Output 
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Figure 51: Data Input for Bar Target 
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Figure 52: PSF Estimation for Bar Target 

 

4.5. Discontinuity Discussion 

Much of the discussion thus far as dealt with pλ .  This is because pλ  most closely 

comprises the data of the initial object.  However, there are some noteworthy observations 

from the angle calculations as well.  While this did not occur in the first trial, shown in 
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Figure 27, in many of the later trials, such as the example shown in Figure 53 

discontinuities appear in the NMSE plots for χ . 

 

Figure 53: NMSE Data for Trial 3 

This is likely caused by shifts in the estimated PSF causing a shift in the center of the 

estimated object.  Because of the way the data is filtered, any pixel that does not contain 

an object is zeroed out in the angle displays, because it does not make sense to include 

angle estimates where there is no object.  The pλ  and uλ estimates are provided for each 

pixel. 

Coupling this filtering with the fact that many of the letters are only a few pixels wide, 

a pixel or two shift in the estimated center of the object can provide a large change in the 
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angle estimate, potentially causing each pixel in an individual letter to change.  This large 

shift from one iteration to the next, especially on as small a scale as the NMSE plot is, can 

create the discontinuities observed.  This can be visually seen below in Figure 54, which 

shows the χ  estimate for iteration 174 and Figure 55, which displays the χ  estimate for 

iteration 151.  This shows that the angle estimates for the T shift a pixel downward in the 

y direction during the disconnect observed in Figure 27 for χ  between iteration 174 and 

175. 

 

Figure 54: χ estimate for iteration 174 
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Figure 55: χ estimate for iteration 175 

  



111 

5. Conclusions 

5.1. Summary 

This chapter will discuss conclusions that have been drawn from the data collected and 

discussed in the previous chapters.  First it will give a broad overview of the effectiveness 

and conditions of effectiveness for the algorithm.  Then suggested areas of future research 

will be stated. 

5.2. Effectiveness 

 In chapter 3, an iterative algorithm is derived which takes the equations developed 

by Dr. Lemaster and adds a circular polarization component to it [6].  This algorithm 

utilizes data from four distinct channels to develop estimates for polarized intensity, 

unpolarized intensity, angle of polarization, ellipticity, and the point spread function.  The 

effectiveness of the resulting algorithm in identifying the polarization state of light is 

demonstrated both by laboratory experimentation and MATLAB simulations.  This 

should enable a novel means of active polarimetric sensing that is not currently in use.  

Given that passive polarimetric sensing is currently employed to characterize certain 

materials, the addition of active polarimetry will likely expand upon this currently 

employed capability [26].  

 
As seen in chapter 4, the algorithm produced a NMSE of 0.9e-5 under baseline 

conditions.  Baseline conditions consisted of a D/r0 of 10 and 100 Zernike polynomials for 

the PSF.  The overall shape of the NMSE curve matches that of the prior work done in [2].  

The results seen throughout this research indicate that an algorithm was developed to express 
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circular polarization in terms of the variables used in [6].  The resulting image, for both the 

baseline simulation and the experiment, was very close to the original target image in terms 

of both the polarized and unpolarized components.  The angle of linear polarization and 

the ellipticity was reconstructed well in the baseline simulation as well as in some of the 

lab simulations.  The mean ellipticity (the component that is being added by this research) 

error for the baseline simulation was approximately 5⁰.  The ellipticity error in the simple 

circular only lab experiment was 5⁰ and for the bar target the error was 3⁰.  However, the 

lab experiments in which the temperature, and thus the ellipticity, of the waveplate varied 

during the simulation, the resulting angle of polarization as well as the ellipticity, tended 

to be less accurate.  But even in these cases, the algorithm did succeed in creating a good 

reconstructing of the polarized and unpolarized image.  The angle of ellipticity in the 

scenario with two targets, that is, the scenario with circularly polarized light that had the 

greatest thermal variance, was 11⁰ 

The variations of the baseline simulation demonstrated that having a PSF estimate that 

is of the same form as the one used makes a large difference in the outcome.  When the 

PSF form is not known (as was demonstrated with the experimental example) the best 

outcome is achieved with an initial guess of a Zernike phase screen with one to two waves 

of defocus.  While eliminating all turbulence provided a predicably improved outcome 

(cutting the NMSE by 50%), clearing up only one channel did not improve the outcome. 
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5.3. Future Work 

This section discusses recommendations for future work related to this field.  These 

suggestions could help further develop the existing algorithm and likely enhance its 

efficacy. 

5.3.1. Multiframe Blind Deconvolution 

Coupling this technique with a multi-frame blind deconvolution technique such as that 

seen in [18] or [27] would likely help the outcome.  Adding additional frames to each 

channel has helped to improve other blind deconvolution methods so it is logical to assume 

that it would here as well. 

5.3.2. Retardance Stability 

The retardance of the VRW was shown to be very dependent upon temperature.  

Therefore a different, more specialized waveplate that is less thermally sensitive will also 

lead to a more stable replication of the original image.  This could be done by having a lens 

cut to deliver the specified retardance at a desired wavelength.  Finding a material that is 

more thermally resilient would likely be a material science project.  A simpler solution 

could even be to match a quarter waveplate with a narrow bandpass filter to create the 

optimal retardance. 

5.3.3. Waveplate Diagnostics 

 An alternative method of dealing with errors mentioned in 5.3.2. would be to 

include an algorithm to maximize the likelihood of the waveplate error.  This could 

enable retardance error to be calculated out of the output.  This would not only alleviate 
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the need for a more stable waveplate but also could allow for corrections in other areas, 

such as the wavelength filter. 

5.3.4. Improved Stopping Criteria 

Another area of future work could be to develop a more accurate stopping criteria.  As 

seen in both Figure 39 and the laboratory experiment, if the retardance of the waveplate is 

not properly tuned, the algorithm does not always converge.  However, as seen in the 

laboratory experiments, a reasonable result can still be gained if you look at an image in 

the middle of the algorithm.  Figuring out where to stop to get the optimal image could be 

an interesting project as well.   

5.3.5. Material Characterization  

As discussed in chapter 2, if light bounces off of an object, and the elements of the 

initial Stokes vector are known, this algorithm allows the elements of the reflected light to 

be estimated.  Knowing both the initial and the final Stokes vectors allows the polarimetric 

reflectance of the material to be calculated.  A database of the polarimetric reflectances 

could be compiled, similar to what was done in [8], but including circular polarization as 

well.  Doing so would enable this algorithm to assist in material identification through a 

turbulent medium, such as the atmosphere. 
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Appendix A: Proof for α   

The first method to attempt to optimize the α update equation was to follow suite from 

the other update equations and take the derivative of 1nQ +  with respect to α , set it equal 

to zero and solve for α .  Doing so produced Equation (A.1).   
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After the summing over the four channels, and then substituting in cθ  and cφ  from 

Equations (3.14) and (3.13) , Equation (A.1) becomes Equation (A.2). 
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Fortunately, many of these terms cancel out, simplifying the equation to Equation (A.3). 
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The next step involves substituting in 1
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known based on the current estimates, 1
,

n
t cψ +  is based upon the angles that are about to be 

calculated. 
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Unfortunately, setting this equation to 0 and solving for α does not yield a solution as is.  

However, if the assumption is made that the product of any three 1
,

n
t cψ +  are equal, setting 

(A.6) equal to 0 and solving for α finds Equation (A.7).  Unfortunately, this assumption 

is only true for certain specific combinations of angles. 
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Now the intermediate Stokes vector described in Section 3.2.2 is constructed.  The 

elements are described below in Equation (A.8) 
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This allows the substitution to be made yielding Equation (A.9) 
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Appendix B: Proof for χ  

Solving the optimization equation for χ  follows a similar set of steps to those for α in 

Appendix A. 
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Also, as above, when the sum is taken across the channels, substituting in the angles for 

the individual channels and taking the sum across the channels simplifies the equation, 

causing the first term to cancel out and leaving Equation  
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This also can be simplified by removing a tangent term from the numerators and 

substituting in the 1
,

n
t cψ +  in the denominator.  This yields Equation (B.3) 
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This equation also does not resolve when set to 0 and solved for χ .  Thus, as with α , an 

established equation will be used instead.  This equation will be updated with optimized 

values for both pλ  and uλ  and has been shown to yield reasonable solutions both in 
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simulation and in the laboratory experiments for the polarization angle and ellipticity of 

the given targets. 
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