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Abstract In this paper the compatibility is analyzed of the
non-perturbative equations of state of quarks and gluons aris-
ing from the lattice with some natural requirements for self-
gravitating objects at equilibrium: the existence of an equa-
tion of state (namely, the possibility to define the pressure as
a function of the energy density), the absence of superlumi-
nal propagation and Le Chatelier’s principle. It is discussed
under which conditions it is possible to extract an equation of
state (in the above sense) from the non-perturbative propaga-
tors arising from the fits of the latest lattice data. In the quark
case, there is a small but non-vanishing range of temperatures
in which it is not possible to define a single-valued functional
relation between density and pressure. Interestingly enough,
a small change of the parameters appearing in the fit of the
lattice quark propagator (of around 10 %) could guarantee
the fulfillment of all the three conditions (keeping alive, at
the same time, the violation of positivity of the spectral rep-
resentation, which is the expected signal of confinement).
As far as gluons are concerned, the analysis shows very
similar results. Whether or not the non-perturbative quark
and gluon propagators satisfy these conditions can have a
strong impact on the estimate of the maximal mass of quark
stars.
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c e-mail: pais@cecs.cl
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1 Introduction

One of the main open problems in theoretical physics is a
proper understanding of the infrared behavior of non-Abelian
gauge theories, like Quantum Chromodynamics (QCD), and
of its phase diagram (see [1]). The non-perturbative nature of
the infrared region of QCD prevents one from using the stan-
dard perturbative techniques based on Feynman diagrams.
Thus, it is necessary to rest on non-perturbative techniques
and/or lattice data. In the present paper, we will combine
lattice data (both for the quarks and gluons propagators)
together with the non-perturbative effects arising from (the
elimination of) Gribov copies [2] (for the gluonic sector) to
extract non-perturbative equations of state for quarks as well
as gluons. We will adopt the ζ -function regularization tech-
nique [3–5], which allows one to write many of the physical
quantities in a closed form as (very rapidly convergent) series
of Bessel functions. This technical point will play an impor-
tant role in the following.

The details of non-perturbative propagators of quarks and
gluons are of great interest in applications. For instance, in
astrophysics, there is evidence supporting the existence of
quark stars (two detailed reviews are [6,7]). As such objects
are gravitating, it is of fundamental importance to check
under which conditions they can be in hydrostatic equilib-
rium and which is the expected upper bound on their mass.
Due to the great difficulty to construct analytically an equa-
tion of state (EOS) for such extreme matter configurations,
it is important to have some estimates on the mass bounds
of self-gravitating objects which can be deduced by generic
principles rather than from the exact form of the EOS. For a
neutron star this has been done by Rhoades and Ruffini [8]
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using only very basic principles. Two of the required basic
principles are the absence of superluminal propagation and
Le Chatelier’s principle.

The absence of superluminal propagation is necessary to
enforce causality and is considered one of the most basic
principles of relativistic physics.

Le Chatelier’s principle simply states that when any sys-
tem at equilibrium is subjected to change, it will react in such
a way to oppose to the change. This means that assuming Le
Chatelier’s principle is completely generic as, without it, it
would not even be possible have a stable equilibrium.

The third principle required by Rhoades and Ruffini is the
validity of the hydrostatic equilibrium equation of General
Relativity. Just from the above requirements, they were able
to derive a bound of 3.2 M⊙ for a neutron star without know-
ing any further details of the EOS (besides its existence of
course, as will be explained in a moment).

As it is possible to extract detailed information as regards
the non-perturbative propagators from lattice data (as well
as from the Gribov–Zwanziger procedure) a natural ques-
tion arises: will the equations of state derived from the non-
perturbative quarks and gluons propagators be compatible
with the basic principles stated above?

In the present analysis, in order to be as generic as possible,
we will drop the assumption of the hydrostatic equilibrium
equation as it is specific to General Relativity (it may be that
this theory acquires some corrections in some extreme range
of parameters). The other two principles, namely causality
and Le Chatelier’s principle are, instead, quite generic and,
consequently, we will consider them.

Actually, before discussing these two principles, there is
a more basic requirement which was implicitly assumed in
[8] (as well as in a great part of the theoretical literature
on gravitating compact objects): namely the existence of a
well-defined EOS or, in other words, the possibility to define
an implicit one-to-one functional relation between pressure
and energy density. The importance of such a requirement
becomes obvious if one considers that, if it is not satisfied, it
is not even possible to discuss the coupling with the Einstein
equations (in the usual way, at least). That is the reason why
in [8] such a principle was not analyzed in detail, rather it
was just considered as obvious. However, the present anal-
ysis shows that the very existence of an EOS depends on
the precise values of the parameters appearing in the fit of
the lattice propagators. Remarkably, there are cases in which
it is not possible at all to extract a well-defined EOS from
the non-perturbative propagators. This, for instance, prevents
one from coupling strongly interacting quarks and gluons to
Einstein gravity in any obvious way. In particular, in these
situations the bound derived in [8] would not apply. Usu-
ally, the fact that it is not possible to define a one-to-one
relation between pressure and energy density suggests that
some extra physical parameter is needed to properly label

the equilibrium states in order to define an EOS in the usual
sense.

The fact that there may not exist a well-defined EOS in
certain situations can be seen as follows. From the non-
perturbative propagator it is possible to compute the grand
partition function from which all relevant thermodynamical
quantities like the pressure and energy density as functions of
the temperature and of the chemical potential can be derived.
Taking, for example, a fixed value of the chemical potential
it is possible to get a parametric equation for the energy den-
sity e(T ) versus pressure P(T ) curve. This curve, however,
represents a single-valued function P = P(e) only when the
functions P(T ) and e(T ) are strictly monotonous as a func-
tion of the temperature T or the shapes and ranges of non
monotonicity in T for P and e are exactly the same.

The computation of the grand partition function from the
non-perturbative lattice quarks propagator at finite tempera-
ture and chemical potential has been performed in the ref-
erence [9] using dimensional regularization techniques. In
this paper, the ζ -function regularization technique is used
instead and the non-perturbative gluons propagator is dis-
cussed as well. The advantage of the ζ -function regular-
ization [10,11] is that it reduces the number of numerical
integrations (many of the expressions are evaluated as fast
converging series of Bessel functions) and, consequently, it
reduces the numerical error allowing to see even very tiny
effects. Indeed, although our computations show that the
two techniques clearly agree, using the ζ -function approach
it is possible to see that for the values of the parameters
appearing in the fit of the last lattice quarks propagator,
the curve P(T ) and e(T ) of the pressure and energy den-
sity as a function of the temperature are non-strictly mono-
tonic functions and have different shapes near T = 0. This
means that for a small range of temperatures, the functional
relation of pressure and energy density is not one-to-one:
namely, one of the requirements of Rhoades and Ruffini is
violated.

The problem in the EOS being well defined disappears by
allowing a change in the fit parameters of around 10 %. Inter-
estingly, once the existence of an EOS has been ensured, the
causality and Le Chatelier principles turn out to be almost
satisfied without any extra requirements on the parameters.
For this reason, it may be interesting to explore the phe-
nomenological consequences of allowing such changes in
the fit parameters.

A similar analysis reveals that the same requirement of
Rhoades and Ruffini can be violated in the case of the non-
perturbative gluons EOS. The theoretical interest of the gluon
case is that if one considers a Gribov–Zwanziger (GZ) propa-
gator with the inclusion of the effects of the condensates then,
by allowing a change in the fit parameters of around 10 %,
one can satisfy all the requirements of Rhoades and Ruffini.
On the other hand, if one does not include the condensates,
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then a change in the Gribov mass of around 10 % is defi-
nitely not enough to satisfy all the requirements of Rhoades
and Ruffini.

The paper is organized as follows: in the next section the
relevant thermodynamic quantities for the non-perturbative
quark propagator are constructed. The most relevant details
of the computations related to the ζ -function regularization
technique are kept in the main text as they are fundamental in
detecting the non-existence regime of the EOS. In the third
section, the analysis is extended to the gluonic sector. The
last section is dedicated to the conclusions and perspectives.

2 The non-perturbative quark propagator
and its thermodynamics

Let us start the analysis with the non-perturbative quark prop-
agator S(p) arising from the lattice [12,13]

S(p) = −γμ pμ+14 M0(p)

p2 + M2
0 (p)

, M0(p) = M3

p2 + m2 + m0,

(1)

M3 = 0.196 GeV3, m2 = 0.639 GeV2, m0 = 0.014 GeV,

(2)

where γμ are the Euclidean Dirac matrices and 14 is the
4 × 4 identity matrix. Such a propagator can be included
in the framework of the so-called refined Gribov–Zwanziger
(RGZ) approach as indicated in [14,15]. It is worth empha-
sizing here that the above propagator can be expanded into
three ‘standard’ Fermions propagators, two of which having
complex conjugated poles and the third with real poles. The
physical interpretation of having complex conjugated poles
is that they are a signal of confinement as propagators with
complex poles in p2 violate positivity. Such poles are deter-
mined by the following equation:

p2(p2 + m2)2 + [M3 + m0(p2 + m2)]2

= (p2 + α1)(p2 + α2)(p2 + α3), (3)

meaning that the set {αi } represents minus the roots of the
denominator in S(p).

2.1 Thermodynamics

As said above, the idea to compute the grand partition func-
tion using the non-perturbative quarks propagator arising
from lattice data has already been proposed in the reference
[9]. The new idea proposed in the present paper is to analyze
in which range of the parameters appearing in the propa-
gators, pressure and energy density satisfy some very basic
consistency conditions of thermodynamical equilibrium con-
figurations. Such conditions appear in a very natural way in

the analysis of any self-gravitating compact object (like quark
stars) in an analogous way to the pioneering work [8].

The first consistency condition is actually so obvious that
it was not even explicitly enumerated (but of course assumed)
in [8] so that we will call it condition zero.
Condition zero: Existence of an equation of state In the stan-
dard general relativistic approach to self-gravitating objects,
before even beginning to require some consistency condi-
tions on thermodynamical quantities, it is necessary to have
an EOS (namely, a functional relation P = P(e) of the pres-
sure in terms of the energy density). If this condition is not sat-
isfied, there would not exist any obvious way to couple non-
perturbative quarks and gluons to General Relativity (nor
to any reasonable generalization of General Relativity). As
there are some arguments supporting the existence of quark
stars [6,7], the issue about the possibility to define an EOS
even in such extreme conditions is very relevant.
Condition one: Causality As is well known, in order to
enforce causality a necessary condition is to impose the
requirement that no signal can travel faster than the speed
of light. This means that the speed of sound inside a self-
gravitating object cannot be superluminal. In terms of the
EOS this condition takes the simple form dP

de ≤ 1. It is there-
fore obvious that, without condition zero, it is not even pos-
sible to enforce causality.
Condition two: Le Chatelier’s Principle This principle states
that for any action intended to modify a given equilibrium
configuration of a system, the system will react in such a
way that it opposes to the change. This principle is actu-
ally equivalent to the assumption that there exists a stable
equilibrium configuration. For a self-gravitating object this
principle implies that there is no spontaneous gravitational
collapse. In terms of the EOS, this principle can be stated as
dP
de ≥ 0. Once again, it is worth noticing here that without
condition zero being satisfied, it is not possible to enforce
this principle.

The condition that is prone to fail in the context of the
non-perturbative quarks propagator (as well as gluons prop-
agator in the next section) is condition zero. Indeed we will
show that it exists a narrow range of temperature close to
T = 0 where the pressure is not a strictly monotonous func-
tion. Very important, from this point of view, is the fact that
the ζ -function regularization provides results in closed ana-
lytic form as sums of (very fast convergent) series of suit-
able Bessel functions (unlike Ref. [9] in which the authors
used dimensional regularization). The grand partition func-
tion corresponding to the non-perturbative quark propagator
in Eqs. (1) and (2) reads (we will follow the notation of [9])

log Z(T, μ)

2βV Nc N f
=

+∞∑

n=−∞

∫
d3 p

(2π)3 log �−2(�2(μ) + (ωn − iμ)2),

(4)
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where in our case � is a suitable dimensional parameter,
Nc = 3, N f = 6, ωn = 2π(n + 1)T are the Matsubara
frequencies for fermions, and

�2(μ) = p2 +
(

M3

(ωn − iμ)2 + p2 + m2 + m0

)2

. (5)

It is worth to note that usually the grand partition function is
written with β2 = 1/T 2 instead of our �−2. However, some
subtraction must be done also in such a case in order to avoid
the infinite part [16]. In our case, splitting our regulator as
�2 = β2N 2 in (4), where N is a dimensionless constant,
we obtain

log Z(T, μ)

2βV Nc N f
=

+∞∑

n=−∞

∫
d3 p

(2π)3 log β−2
(
�2(μ) + (ωn − iμ)2

)

+
+∞∑

n=−∞

∫
d3 p

(2π)3 logN−2,

where we can use precisely the last term to absorb the infinity
setting P(T = 0, μ = 0) = 0. At the end, this will give us
the same result as [9].

One can simplify the above expression (4) as

log Z(T, μ)

2βV Nc N f
=

+∞∑

n=−∞

∫
d3 p

(2π)3 ln �−2

×
[

p2 +
(

M3

(ωn − iμ)2 + p2 + m2 + m0

)2

+ (ωn − iμ)2

]

=
+∞∑

n=−∞

∫
d3 p

(2π)3 ln �−2

×
[(

p2 + (ωn − iμ)2
) (

p2 + (ωn − iμ)2 + m2
)2 + (

M3 + m0
(
p2 + (ωn − iμ)2 + m2

))2

(
p2 + (ωn − iμ)2 + m2

)2

]

=
i=4∑

i=1

ci

+∞∑

n=−∞

∫
d3 p

(2π)3 ln �−2
[
p2 + α2

i (ωn, μ)
]

=:
i=4∑

i=1

I (αi )ci ,

where {α2
i (ωn, μ), (i = 1, 2, 3)} are minus the three roots of

the numerator, α2
4 = (ωn−iμ)2+m2, {ci = 1, (i = 1, 2, 3)}

and c4 = −2. So, everything reduces to finding, for a generic
αi , the quantity

I (αi ) =
+∞∑

n=−∞

∫
d3 p

(2π)3 ln �−2
[
p2 + α2

i (ωn, μ)
]
.

Now, using the fact that ln �−2[ p2 + α2
i (ωn, μ)] =

− lims→0
∂
∂s ln(�2[ p2 + α2

i (ωn, μ)])−s we can write

I (αi ) = − lim
s→0

∂

∂s

{

(�)2s
+∞∑

n=−∞

∫
d3 p

(2π)3

([
p2 + α2

i (ωn, μ)
])−s

}

= − lim
s→0

∂s

{

(�)2s
+∞∑

n=−∞

�(s − 3/2)

8π
3
2 �(s)

(
α2

i (ωn, μ)
) 3

2 −s

}

,

(6)

so that we get

I (αi )=− lim
s→0

∂s

{

(�)2s
+∞∑

n=−∞
1

8π
3
2 �(s)

∫ ∞
0

dt e−tα2
i t s−5/2

}

.

(7)

In order to proceed, it is necessary to have an explicit form
for the αi , it can be shown that (see Appendix A for details)
α2

i = m2
i − (μ + iωn)2, i = (1, 2, 3). Having Re(m2) > 0

(remember the α2
i are the opposite of the roots of the numer-

ator) the integral is convergent, thus

I (αi ) = − lim
s→0

∂s

{

(�)2s
+∞∑

n=−∞

T 3−2s

4sπ2s− 3
2 �(s)

×
∫ ∞

0
dyys−5/2e−q2

i y
∞∑

n=−∞
e−y(n+c)2

}

= − lim
s→0

∂s

{

(�)2s T 3−2s

4sπ2s− 3
2 �(s)

×
∫ ∞

0
dyys−5/2e−q2

i y
√

π

y
ϑ3

(
cπ, e−π2/y

)
}

,

(8)

with c = 1
2 − i μ

2πT , q2
i = m2

i
4π2T 2 and y = 4π2T 2t and

ϑ3 (x, y) the Jacobi θ -function. Using the well-known rep-
resentation for the Jacobi θ -function
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ϑ3(x, y) = 1 + 2
∞∑

n=1

yn2
cos 2nx,

the integral can be reduced to

I (αi ) = − lim
s→0

∂s

{

(�)2s

[
T 3−2s(q2

i )2−s�(s − 2)

4sπ2s−2�(s)

+ T 3−2s(q2
i )1− s

2

4s−1π s�(s)

+∞∑

n=1

ns−2 K2−s

× (2nπ

√

q2) cos
(

nπ − i
nμ

T

)
]}

= (m2
i )

2

32π2T

(

log

(
m2

i

�2

)

− 3

2

)

+
+∞∑

n=1

m2
i (−1)nT

π2n2 K2

⎛

⎝n

√
m2

i

T

⎞

⎠ cosh
(μn

T

)
, (9)

where we assume μ < Re(mi ).

2.2 Existence of equation of state

From the partition function, we can obtain the pressure,
entropy density, number density, and energy density, respec-
tively:

P(T, μ) = T

V
log Z(T, μ),

s(T, μ) = ∂ P

∂T
(T, μ), (10)

n(T, μ) = ∂ P

∂μ
(T, μ),

e(T, μ) = T s − P + μn.

Inverting the last equation, we can obtain the EOS either for
μ constant P = P(e, T )

∣
∣
μ or T constant P = P(e, μ) |T .

We stress here the fact that, if the pressure and energy density
function in (10) are not strictly monotonic functions in some
interval J ∈ R either for T or μ, and also the shape of non-
monotonicity in J does not coincide exactly for P and e,
then it is not possible to define a proper EOS as a function
P = P(e) in the interval J .

As is shown in Fig. 1, using the mass fit parameters
(2) for the quark propagator, we see there is a range of
T ∈ (0.0, 3.36) × 10−2 GeV, which we will call criti-
cal zone, where we cannot find an EOS. This is because
when we have imaginary a component of the poles of the
propagator, the modified Bessel functions Kν acquire, below
T = 0.036 GeV, an oscillatory behavior; see Appendix B.
In our opinion, these results suggest that, at low tempera-
ture, some extra physical parameters (which, for example,
can be related to light glueballs) suitable to properly label
the equilibrium states are needed (see Appendix B for some
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Fig. 1 The pressure P of the quark sector (red line) and its energy
density e (black dots) as a function of the temperature for μ = 0. It is
worth to note the detail of the plot due the critical zone is very narrow
compared to the entire unit range and the values of negative P is less
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Fig. 2 The pressure P of the quark sector as a function of the energy
density e for μ = 0. We can see if e ≤ 0 then the EOS cannot be defined

considerations on this respect). For instance, there is not a
unique value of the normalized pressure for a normalized
energy density of −5 × 10−11. It is interesting to address the
plot of pressure P as a function of the energy density e. As
is shown in Fig. 2, there is an EOS when both e and P are
positive. On the other hand, if we change the fit parameters
+10 %, such critical zone would disappear (or it could even
increase if we decrease the lattice parameters by −10 %), as
we can compare in Fig. 3.

2.3 Checking causality and Le Chatelier’s principles

Once we can write the EOS, we may wonder if the conditions
of causality (c2 = ∂ P

∂e ≤ 1) and Le Chatelier’s principle (P is
monotonically growing with respect to e), which appearing in
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Fig. 4 The pressure P of the quark sector as a function of the energy
e for μ = 0

[8], are both satisfied. As we can see in Fig. 4, Le Chatelier’s
principle holds for the mass values of the lattice data, when
it is possible to define an EOS P = P(e) (see description
above). In Fig. 5, one can see that causality holds as well.

3 The gluonic sector

In this section we will check, as we did in the previous section
for the quarks, whether or not the non-perturbative gluons
propagator in the Landau gauge arising from the lattice [17]
gives rise to an EOS satisfying the three principle mentioned
above. The extra benefit of this analysis is that, in the glu-
ons case, the non-perturbative propagator arising from the
lattice data can also be deduced theoretically. Such a prop-
agator is strongly related with one of the most fascinating
non-perturbative effects in non-Abelian gauge theories: the
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Fig. 5 The squared sound velocity of the quark sector as a function of
the temperature for μ = 0

appearance of Gribov copies [2]. On flat, topologically trivial,
space-times (which is the only case which will be analyzed
here) Gribov copies represent a topological obstruction to
define globally the gauge-fixing peculiar of the non-Abelian
nature of the gauge group (for a good review see [18]).

On the other hand, both on curved spaces and on flat spaces
but with non-trivial topology the pattern of appearance of
Gribov copies can be considerably more complicated. For
instance, Gribov copies can appear even in the Abelian case
(see in particular [19–25]). The results in these references
suggest, as a future direction, to analyze how the equations of
state of interacting gauge bosons (even in the Abelian case)
depend on the non-trivial backgrounds on which they are
defined. We hope to come back on this interesting issue in a
future publication.

The most effective method to eliminate Gribov copies
(proposed by Gribov himself in [2] and refined in [26–28])
amounts to restrict the domain of the path integral to the
region in which the Faddeev–Popov operator is positive defi-
nite (such region is called Gribov region). In [29] the authors
showed that all the gauge orbits cross the Gribov region.
Hence, the GZ restriction does not lose any relevant physical
configuration. A local and renormalizable effective action for
Yang–Mills theory whose dynamics is restricted to the Gri-
bov horizon was constructed in [30–33] by adding extra fields
to the action. Later, an improved action was proposed by con-
sidering suitable condensates [34], which leads to propaga-
tors and glueball masses in agreement with the lattice data
[35]. With the same action, one can also solve the old prob-
lem of the Casimir energy in the MIT-bag model [36]. More-
over, this approach is quite effective also at finite temperature
[37–39] and, at least at one-loop order, gives rise to a vacuum
expectation value for the Polyakov loop compatible with its
role of order parameter for the confinement–deconfinement
transition [40].
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3.1 Gribov–Zwanziger approach

Within the GZ approach, the vacuum energy density at one
loop can be written as (we will follow the notation of [40]):

Ev = −d(N 2 − 1)

2Ng2 λ4 + 1

2βV
(d − 1) ln

(
D4 + λ4

�4

)

− d

2βV
ln

(−D2

�2

)

, (11)

being � a regularization parameter, β = 1/T and V the
spatial volume. One can normalize the Gribov parameter λ

in order to absorb the divergent part of (11). In this way one
obtains for the SU (2) internal gauge group

Ev(T ) = 3

2
(d−1)

[
I (T, iλ2)+I (T,−iλ2)

]
−d

2
I (T, 0),

(12)

where in the d = 4 case

I (T, α2) = T
+∞∑

n=−∞

∫
d p3

(2π)3 ln �2
(
ω2

n + m2 + p2
)

= (α2)2

32π2

(

ln

(
α2

�2

)

− 3

2

)

− α2T 2

π2

+∞∑

n=1

(−1)n−2 K2

(
n

m

T

)
, (13)

where we have taken the thermodynamic limit V → +∞ in

the second equality, which implies
∑

q → V
∫ d3q

(2π)3 [18].
The detailed computations of (13) are in Appendix A.

In principle, as we are working at finite temperature, one
should first determine how the Gribov mass parameter λ

depends on the temperature itself (see [37–39]). However,
this would lead to a coupled system of integral equations to
be solved self-consistently and this would enormously com-
plicate the numerical task. Fortunately, as the available results
clearly indicate, the Gribov parameter λ changes very slowly
in the range of temperatures analyzed in the present paper
(see Figure 2 of [40] where λ was computed as a function
of T , the only reasonable assumption being that the coupling
constant g does not change in a small range around T = 0) so
that we will work in the approximation in which λ does not
depend on the temperature and is actually equal to its T = 0
value (see [41], where λ4 = 5.3 GeV4). In such a case, we
can construct P(T ) = −Ev(T ) and the result is plotted in
Fig. 6. Interestingly, as was also suggested by the results
on the Polyakov loop [40], there is a range of temperatures
where the pressure is negative and is not a strictly monotonic
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function. Furthermore, if we modify the Gribov parameter
by ± the 10 % of its value, the plot remains almost the same,
as we can see in Fig. 7. Namely, within the GZ approach,
the zeroth consistency condition of [8] is likely to be always
violated.

In Fig. 8 we plotted the squared velocity as a function of
temperature in the region where we can define an EOS. We
see Le Chatelier’s principle and causality conditions are both
satisfied.

It is interesting to show if the zeroth consistency condition
is fulfilled in dimensions d = 2 and d = 3 also with SU (2)

internal gauge group. The computation could be done using
(12) and considering1 for d = 2

I (T, α2) = − 2

π
T

√
α2

+∞∑

n=1

n−1 K1

(

n

√
α2

T

)

, (14)

while for d = 3

I (T, α2) = −
√

2

π3/2 T 3/2(α2)3/4
+∞∑

n=1

n−3/3 K3/2

(

n

√
α2

T

)

,

(15)

and using for both cases the Gribov parameter λ4 given in
[41]. As is shown in Fig. 9, both in d = 2 and d = 3, there
is a region where the EOS cannot be well defined in the GZ
approach.

3.2 Refined Gribov–Zwanziger approach

In this subsection, we consider the non-perturbative gluon
EOS taking into account the appearance of the condensates
in the propagator [34] which is favored by lattice data [17]

1 We take only the modes n �= 0 for I (T, α2) in dimensions d = 2 and
d = 3.

(following the same technique to compute the partition func-
tion (4)). The RGZ-propagator is [41]

�ab
μν(p) = δab p2+N 2

p4+p2(N 2+m2)+m2 N 2+λ4

(

δμν − pμ pν

p2

)

= δab�(p2)

(

δμν − pμ pν

p2

)

, (16)

N 2, m2 being condensate-related values, and λ the Gribov
mass parameter. In this case the renormalized RGZ-vacuum
energy at one loop can be written as [40]

Ev(T ) = 3

2
(d−1)

s=1∑

s=−1

[
I (T, r2+)+ I (T, r2+) − I (T, N 2)

]

− 3

2
I (T, 0), (17)

where the function I is the same as (13) and r2± are the minus
roots of the denominator of the RGZ-propagator, which are
given by

r2± = (m2 + N 2) ± √
(m2 + N 2)2 − 4(m2 N 2 + λ4)

2
, (18)

where the condensate values m2, N 2 and the Gribov param-
eter λ were extracted from [41]:

N 2 = 2.51 GeV2,

m2 = −1.92 GeV2, (19)

λ4 = 5.3 GeV4.

In Fig. 10 are plotted the pressure P (red line) and the energy
density (black dots) as functions of temperature T . Again a
region is observed where the EOS is not well defined. How-
ever, in this case if we change the fit parameters ±10 %,
then the result is drastically different. In fact, as we show in
Fig. 11a, for a modification +10 % of the RGZ-parameters,
the critical region reduces considerably. Also, from Fig. 11b,
we can infer that the EOS can be defined for e ≥ 0 and
for almost all T for a modification +10 % of the RGZ-
parameters. In order to see how the modified parameters
change the behavior of the propagator with respect to the
original values, we plot in Fig. 12 the function �(p2) defined
in (16) for different values of the condensates parameters N 2,
m2 and Gribov mass parameter λ. We can see that the curves
are significantly modified for changes of 5 and 10 % of these
parameters. Even more, for a change of 10 % (either in the
condensates or Gribov mass parameter) the real poles in the
positive axis generate negatives values of �(p2). This means
that even if by changing the parameters it is possible fix the
thermodynamic problem, the corresponding propagators are
quite off-scale2 with respect to the lattice results.

2 In particular, an intuitive way to realize the lattice propagator is very
different from the propagator with real poles (without thermodynamics
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Taking into account that in dimension d = 3 there exists
also the possibility to refine the GZ approach [42], which is
not the case for d = 2 [43], we can perform the same analysis
in three dimensions and the results are qualitatively the same
as in dimension d = 4.

4 Conclusions and perspectives

In this paper, the existence and properties of the EOS derived
from the non-perturbative quark and gluon propagators are

Footnote 2 continued
pathologies) is due to the difference of the discriminants, which deter-
mines whether the poles are real or complex conjugated. Such a distance
is at least as big as the absolute value of the discriminant of the lattice
propagator itself, which is around 1.6 GeV4 for the lattice values (19).

analyzed at one loop. In order to reduce as much as possible
the number of numerical integrations (and, correspondingly,
the numerical error) the ζ -function regularization method is
used. The present computations are compatible with previous
results found in Ref. [9]. However, with the ζ -function reg-
ularization method it is possible to disclose very tiny effects
that, otherwise, are difficult to disentangle from the numeri-
cal errors. Indeed, in the case of quarks, the analysis reveals
that, depending on the exact value of the parameters in the
fit of the lattice quark propagator, the pressure as a func-
tion of the temperature (at fixed chemical potential) can be a
non-monotonic function of the temperature.

Even if the effect is small, the non-monotonic behav-
ior of the pressure in this temperature interval implies that
the pressure as a function of the energy density is not sin-
gle valued (namely, one cannot define an EOS in the usual
sense). By changing the fit parameters of at least +10 %,
this feature almost disappears. The physical explanation
(see Appendix B) of this result is the following: the non-
perturbative propagators analyzed in the present manuscript
can have both complex conjugated poles (as suggested by
the lattice data) and real poles. In both cases such propaga-
tors violate positivity (in the former case due to the complex
conjugated square masses, in the latter case due to the fact
that there is always a negative residue) and so they describe
confined degrees of freedom. It is true that complex conju-
gated poles are more natural to describe confined degrees of
freedom (as first recognized by Gribov and Zwanziger) and
are also supported by lattice data. However, it is interesting
to explore what happens when, instead of a pair of com-
plex conjugated poles, one gets two real poles with opposite
residues. In this case, as we have explicitly shown in this
manuscript, there is no pathological behavior in the thermo-
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Fig. 12 Above Comparison of the curve �(p2) in the unit range of
square momenta p2 for the original mass lattice values (red line) with
respect to a modifying only N 2 in +5 % (green line) and +10 % (blue
line);bmodifying only m2 in +5 % (green line) and +10 % (blue line); c
modifying only λ4 in −5 % (green line) and −10 % (blue line). Below To
see more clearly how the modified propagator is out of scale with respect
to the lattice values, we plot sgn(�) log10 � in the square momenta

range close to the real poles which appear d in p2 ≈ 1.3 × 10−3 GeV2

when only N 2 is modified +10 %; e in p2 ≈ 2.8 × 10−3 GeV2 when
only m2 is modified +10 %; f in p2 ≈ 7.4 × 10−2 GeV2 when only
λ4 is modified −10 %. Observe also how, since the poles are in the real
positive axis in the modified propagators, the function �(p2) acquires
negatives values

dynamics (despite the violation of positivity). The price to
pay is, obviously, that it is not easy to interpret a propagator
with two real poles which can be split into two terms (one

with positive and one with negative residue). Such behavior
can appear, for instance, when considering the semi-classical
Gribov approach at finite temperature [38]. Our personal
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opinion is that complex conjugated poles are clearly favored
and, correspondingly, the pathologies in the thermodynam-
ical behavior which are observed are related to the fact that
some degrees of freedom (such as light glueballs) – which,
unfortunately, are difficult to describe analytically – are miss-
ing at low temperatures. Nevertheless, we think that it is an
interesting observation that one can both keep alive the vio-
lation of positivity and, at the same time, solve the thermo-
dynamical pathologies mentioned above by using real poles
with opposite residues. For the sake of clarity, in Appendix B
we present a concrete example of how the propagator changes
when one moves to real poles.

The same analysis has been performed for the non-
perturbative gluon and ghost propagators in the GZ
parametrization, and the results are very similar. Moreover,
in this case, the present analysis is able to clearly distin-
guish between the scenarios with and without condensates.
The reason is that, if one insists on extracting an EOS in
the usual sense, then it is necessary to use the refined ver-
sion which includes the condensates (and which is favored
by lattice data). Otherwise, in the case in which the only
non-perturbative parameter is the Gribov mass, not even a
10 % change in its value can guarantee the existence of an
EOS. The reason of this could be traced on the fact that it
is not possible to avoid complex poles in the gluon propaga-
tor changing the Gribov parameter λ4 for the GZ approach.
This is not the case for the RGZ-approach, where one has
more parameters to play with and for which could be, in
principle, obtained real poles (see Appendix B for details).
However, even in the case of real poles, one of the residues
of the RGZ-propagator has negative sign, violating positivity
of the Källén–Lehmann spectrum representation, indicating
still some sort of confinement (see some examples of this in
[38,44,45]).

Our interpretation of the present results (both in the quarks
case and in the gluon case) is not that it is mandatory to
require the fulfillment of the three requirements mentioned
in the previous sections. Rather, it is that strong quantum
effects could be able to violate (the first of) the three condi-
tions (the zeroth requirement of [8] mentioned in the previous
sections). At least in the cases analyzed here, once the con-
dition to have a well-defined EOS is satisfied, the causality
and Le Chatelier principles are both satisfied. However, the
first condition can be violated, although in small intervals,
and this can have a rather big impact on the physical appli-
cations of the non-perturbative equations of state of quarks
and gluons. In particular, the Rhoades–Ruffini bound would
not be applicable anymore and one could have quark stars
more massive than expected. Due to the fact that already a
relatively small change in the fit parameters of the lattice
propagators can enforce the consistency conditions of self-
gravitating QCD matter, it is of course of interest to explore
the phenomenological consequences of modifications of such

parameters using the mentioned consistency conditions as
guideline.

Still it is possible that the thermodynamics at two-loop
computations could have better behavior for the pressure and
entropy as is the case for the massive Landau–DeWitt action
[46]. However, as for the (R)GZ-approach higher loops com-
putations are very difficult, it is not easy to see what happens
in the gluonic sector of this model. Nevertheless, we tend to
believe this behavior of the thermodynamical quantities is not
just a technical issue but it is related to the lack of degrees of
freedom at low temperatures (confined phase). After all, we
are using propagators which contain a lot of non-perturbative
information (as they come from very precise lattice fits). It
is worth emphasizing that the existence of the EOS is an
assumption of great importance in the astrophysical context.
For instance, a great part of the theory of gravitational hydro-
static equilibrium is based on the assumption that there is a
well-defined functional relation between pressure and energy
density. As there is also evidence supporting the existence of
quark stars (see the review [6,7]), it is clear that the present
results can be quite relevant in applications.

On the other hand, it is a very concrete possibility that
the future lattice data will confirm the actual values of the fit
parameters of the lattice propagators and from an analytical
point of view the thermodynamics quantities have the same
behavior at two or more loops. Indeed, we have also shown
that the propagators with real poles (which are free from ther-
modynamical pathologies) are quite off-scale with respect to
the lattice data. Thus, it is unlikely that higher loops effects
can take care of such a difference. In such a case, an EOS
(at least in the usual sense) would be unavailable. A non-
single-valued relation between pressure and energy density
suggests that there is some information missing when con-
sidering strongly interacting quarks and/or gluons. In other
words, in such situations, some extra physical parameters
able to properly label the equilibrium states are needed (see
Appendix B). This, of course, is a quite interesting conclu-
sion. We think that all these issues are worth to be further
investigated in the future.
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Appendix A: Detailed computation of I (T, μ, α2)

We saw in the paper that to have a manageable expression
of I (T, μ, α2) is very important for the quark and gluonic
sector, so we include in this appendix the detailed computa-
tion of this quantity using ζ -functions in the fermionic and
bosonic case.3 The definition of the generic I function is

I (T, μ, α2) =
+∞∑

n=−∞

∫
d3 p

(2π)3 ln �−2

×
[

p2 + (ωn − iμ)2 + α2
]
,

where ωn are the Matsubara frequencies (2πnT in the
bosonic case and 2π(n + 1)T in the fermionic case), � is a
free parameter which we use to regularize, and α2 is a mass
parameter which we allow to acquire a complex value. We
can write I as the derivative with respect to some auxiliary
variable s and then taking the limit s → 0:

I = lim
s→0

∂

∂s

(

−T �2s
+∞∑

n=−∞

∫
d3q

(2π)3

×
(
(ωn − iμ)2 + α2 + q2

)−s
)

. (A1)

Defining a new variable t as |q| = t
√

(ωn − iμ)2 + α2 and
passing to spherical coordinates, we have

I = lim
s→0

∂

∂s

(

−T �2s 4π

(2π)3

+∞∑

n=−∞

(
(ωn − iμ)2 + α2

) 3
2 −s

×
∫ +∞

0
dt t2(1 + t2)−s

)

. (A2)

Let us focus on the last integral. We can write it as

∫ +∞

0
dt t2(1 + t2)−s = 1

4

√
π

�(s − 3
2 )

�(s)
,

where we used the � property (s −1)�(s −1) = �(s). Thus,
one gets

I = lim
s→0

∂

∂s

(

−T �2s �(s − 3
2 )

8π
3
2 �(s)

×
+∞∑

n=−∞

(
(ωn − iμ)2 + α2

) 3
2 −s

)

.

3 Because the computation for fermions and bosons are very similar,
for completeness we keep μ during the calculation, but at the end only
fermions will be considered with chemical potential.

Moreover, taking into account the definition of the � func-
tion,

�(t) =
∫ +∞

0
xt−1e−x dx,

one gets

�

(

s − 3

2

) (
(ωn − iμ)2 + α2

) 3
2 −s

=
∫ +∞

0
dwws− 5

2 e−w
(
(ωn−iμ)2+α2

)

.

Defining y = w4π2T 2, v2 = α2

4π2T 2 , and cε = ε/2 − iμ
2π

,
where ε = 1 for fermions and ε = 0 for bosons, we arrive at

I = lim
s→0

− ∂

∂s

(
�2s T 4−2s

22sπ2s− 3
2 �(s)

∫ +∞

0
dyys− 5

2 e−yv2

×
+∞∑

n=−∞
e−y(n+cε )

2

)

.

Let us focus now on the last sum. We can use the Poisson
summation formula,

+∞∑

n=−∞
f (x + n) =

+∞∑

k=−∞
e2π ikx

∫ +∞

−∞
f (x ′−2π ikx ′

dx ′.

(A3)

In our case f (x) = e−yx2
so, completing the square,

∫ +∞

−∞
e−yx ′2

e−2π ikx ′
dx ′ −k2π2

y

∫ +∞

−∞
e−y(x ′+ ikπ

y )2
dx ′ −k2π2

y

√
π

y
,

(A4)

where in the last equality we used the result
∫ +∞
−∞ e−y(x+a)2

dx

=
√

π
y . We arrive at

+∞∑

n=−∞
e−y(n+cε )

2 =
√

π

y

(

1 + 2
+∞∑

n=1

cos(2πkcε)e
− k2π2

y

)

.

Now, we have

I = lim
s→0

− ∂

∂s

(
μ2s T 4−2s

22sπ2s− 3
2 �(s)

∫ +∞

0
dyys− 5

2 e−yv2
√

π

y

×
(

1 + 2
+∞∑

n=1

cos(2πkcε)e
− n2π2

y

))

.

To compute the n = 0 mode, the integral of the first term is
∫ +∞

0
dyys− 5

2 e−yv2
√

π

y
=

√
π

(v2)s−2 �(s − 2),

where we used again the definition of the � function. Now,
in order to compute the n �= 0 modes, we can show that
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∫ +∞

0
dyys− 5

2

√
π

y
2e−yv2− n2π2

y

= 2

√
π

(v2)s−2

∫ +∞

0
dzzs−3e−z− n2π2v2

y .

The last integral can be rewritten in terms of the modified
Bessel function of the second kind, Kν [47]:
∫ +∞

0
dt t−ν−1e−t− b

t = 2

bν/2 Kν(2
√

b),

so we have
∫ +∞

0
dyys− 5

2

√
π

y
2e−yv2− n2π2

y

= 22(v2)2−s√π

(n2π2v2)
2−s

2

K2−s(2nπ
√

v2).

Defining

In=0 = lim
s→0

− ∂

∂s

(
μ2s T 4−2s(v2)2−s

22sπ2s−2�(s)
�(s − 2)

)

,

and

In �=0 = lim
s→0

− ∂

∂s

(
μ2s T 4−2s(v2)

2−s
2

22s−2π s�(s)

×
+∞∑

n=1

ns−2 K2−s(2nπ
√

v2) cos(2πncε)

)

,

we arrive at

I = In=0 + In �=0.

Let us compute In=0 first. Using the properties of the � func-
tion

�(s) = (s − 1)�(s − 1) = (s − 1)(s − 2)�(s − 2),

then

In=0= lim
s→0

−π2T 4v4 ∂

∂s

((
�−2T 2v2

2−2π−2

)−s
1

(s−1)(s−2)

)

.

Taking into account

lim
s→0

∂

∂s

(
�−2T 2v2

2−2π−2

)−s

= − ln

(
α2

�2

)

,

we have

In=0 = (α2)2

32π2

(

ln

(
α2

�2

)

− 3

2

)

,

which looks very similar to the standard dimensional regular-
ization procedure used in quantum field theory at zero tem-
perature [48]. Now, in order to compute In �=0, we observe
that �(s) = 1

s − γ + O(s) when s → 0, which implies

1
�(s) = s +γ s2 +O(s3) when s → 0. So, in the limit s → 0,

there only survives the term which derives from 1
�(s) , i.e.,

In �=0 = α2T 2

π2

+∞∑

n=1

(−1)nε+1n−2 K2

(

n

√
α2

T

)

cosh(nμ/T ).

For the case of fermions,

I (T, μ, α2) = (α2)2

32π2

(

ln

(
α2

�2

)

− 3

2

)

+ α2T 2

π2

+∞∑

n=1

(−1)n+1n−2 K2

(

n

√
α2

T

)

cosh(nμ/T ),

(A5)

while for bosons the result is

I (T, α2) = (α2)2

32π2

(

ln

(
α2

�2

)

− 3

2

)

− α2T 2

π2

+∞∑

n=1

n−2 K2

(

n

√
α2

T

)

. (A6)

Appendix B: Some considerations on the non-monotonic
behavior of P(T )

Let us analyze the expression

B =
4∑

i=1

ci I αi ,

considered on the quark sector after having determined the
cut-off � requiring log Z(0, 0) = 0. B is simply the sum
of the terms containing the Bessel functions. For the sake of
clarity we will stop at the first one, n = 1:

B = T 2 18

π2

[

m1
2 K2

(√
m1

2

T

)

+ m4
2 K2

(√
m4

2

T

)

+ 2�
(

m2
2 K2

(√
m2

2

T

))]

,

where, eventually, m2
1 = 0.848, m2

2 = 0.2148+0.0579i, m2
4

= 0.639. Ignoring the T 2 term (it is of no importance to the
following) and developing around T = 0, B is found to be

B ∼ m(3/2)
1 e−m1/T + m(3/2)

4 e−m4/T

+ 2�
[
(m2

2)
(3/4)e−m2/T

]
.

Thus, with m2 = m2R + im2i , one gets

B ∼ m(3/2)
1 e−m1/T + m(3/2)

4 e−m4/T

+ 2e−m2R/T �
[
(m2R + im2i )

(3/2)e−im2i /T
]
,
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and defining m2 = m2R + im2i = ρ2eiφ we end up with

B ∼ m(3/2)
1 e−m1/T + m(3/2)

4 e−m4/T

+ 2ρ
(3/2)
2 e−m2R/T cos

(
m2i

T
+ 3

2
φ

)

.

Now, it is clear that, when T → 0, B oscillates due to the
presence of the cos function, that is to say, because of the
complex masses. Thus, if m2i is zero, B is strictly mono-
tonic. This is exactly what one can get, for example, chang-
ing by +9 % the parameters. Indeed, in this case, using
M3 = 0.214 GeV3, m2 = 0.697 GeV2, m0 = 0.015 GeV,
we get α1 = 0.194, α2 = 0.283, α3 = 0.916 GeV2; see
Eq. (3). While, for the gluons, taking N 2 = 2.74 GeV2, m2 =
−2.09 GeV2, λ4 = 5.8 GeV4 in Eq. (18), we get r+ =
0.55, r− = 0.09 GeV2. Obviously, as the presence of real
poles over complex conjugated poles only depends on the
discriminant of (18), one can just vary one of the three param-
eters keeping fixed the other two in such a way as to change
the sign of the discriminant itself (in the case of the quark
propagator the analysis of the roots is more complicated as it
involves a cubic equation, but, conceptually, a similar scheme
can be applied). However, this is quite beyond the scope of
the present work as our intention was just to emphasize that
with real poles (despite the violation of positivity related
to the negative residue) one can solve the above mentioned
pathological behavior of the equation of state P = P(e).
The reason is that the main goal of the present paper is the
analysis of the lattice propagators both of which (quarks and
gluons) strongly favor complex conjugated poles.

Is it possible to obtain a strictly monotonic function even
in the presence of two complex conjugate masses? No, in this
case it is possible to ensure that B is positive. For instance,
reasonable conditions to achieve this are either m1 < m2R ,
or m4 < m2R . Indeed, in these cases, assuming for example

m4 < m2R and 2
(

ρ2
m4

)(3/2)

< 1, one gets

B ∼ m(3/2)
4 e−m4/T

[

1 +
(

m1

m4

)(3/2)

e
−m1+m4

T

+ 2

(
ρ2

m4

)(3/2)

e
−m2R+m4

T cos

(
m2i

T
+ 3

2
φ

)]

≥ 0.

However, there is no possibility to obtain a strictly monotonic
function. The same will be true for the gluonic sector. In this
appendix we presented a concrete example of how the prop-
agator changes when one moves to real poles but, of course,
our main goal is to disclose the thermodynamical pathologies
related to the complex poles supported by the lattice data and
the necessity to include in the thermodynamical description
extra degrees of freedom in order to avoid such pathologies

We conclude that in the presence of complex conju-
gated poles, the thermodynamical quantities as pressure and
entropy are not well behaved in some region, as was already

pointed out in [49]. Thus, the above considerations strongly
suggest that some extra physical parameter is necessary to
properly label the equilibrium states. There are many inter-
esting options such as flavor parameters (in the case of quarks
propagator), group parameters, and so on.
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