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ABSTRACT

The beaver population in the Southeastern United States has caused severe damage to valuable

timber land through dam-building and flooding of bottom-land forest. Traditionally, beavers have been

trapped by small group of people as a source of their livelihood. The low pelt price in the recent years

has failed to stimulate adequate trapping pressure, and thus, resulted in increased beaver population and

damage losses. The low trapping pressure has left the burden of nuisance control on property owners.

Since the beaver population is mobile, extermination of beavers from affected parcels results in

migration of beavers from neighboring less controlled parcels to less populated controlled parcels. This

backward migration of beavers from uncontrolled habitat to controlled habitat imposes a negative

diffusion externality on the owners of controlled parcels because they have to incur the future cost of

trapping immigrating beavers. Unless all the land owners agree to control the beaver population

simultaneously, the diffusion externality could result in a low incentive for control of beaver population

on the part of individual land owners, causing a wedge between social and private needs for controlling

beaver population.

This study attempts to develop a bioeconomic model that incorporates dispersive population

dynamics of beavers into the design of a cost-minimizing trapping strategy. While recognizing the need

for several management options, depending on the land owners attitude about beavers, this study

focusses its attention on the situation where all the land owners in a given habitat share common interest

of controlling beaver nuisance, and collectively agree to place the area-wide control decision in the hands

of a public agency, on a cost sharing basis. The model is based on the notion that the public manager

attempts to minimize the present value combined costs of beaver damage and trapping over a finite

period of time subject to spatiotemporal dynamics of beaver population. The time and spatial dynamics

of beaver population is summarized by the parabolic diffusive Volterra-Lotka partial differential

equation. Thus, the current problem is a typical distributed parameter control problem.

VI



The cost-minimizing area-wide trapping model is capable of characterizing the beaver control

strategy that leaves enough beavers after taking into account the net migration at each location and time,

so as to strike the optimal balance between timber damage and trapping cost. The marginality condition

governing this tradeoff requires that the marginal damage savings from the beavers trapped at each

location equal the marginal costs of trapping. The marginal savings from trapping activity, in turn, is

measured as the imputed nuisance value (shadow price) of the beaver stock in a unit area.

The optimality system for this problem that characterizes the optimal control is solved

numerically. The validity of the theoretical model is empirically examined using the bioeconomic data

collected for the Wildlife Management Regions of the New York State Department of Environmental

Conservation. The empirical simulation generated discrete values for the optimal beaver densities and

trapping rates across all the individual operational units over time. The entire distribution of optimal

beaver densities does gradually and smoothly decline over the period of time. The unevenness of the

initial population distribution smoothes out eventually across the beaver habitat. At each geographical

location, towards the end of the planning period optimal trapping rate will become zero, whereas the

population density asymptotically approaches zero.

The sensitivity analysis where the cost and damage parameters of the model are alternated

between high and low values indicates that an increase in the damage potential of beavers could

substantially increase the net present value total cost. On the other hand, an increase in the cost of

beaver trapping adds only marginally to the total cost, conserving more number of beavers. The

geographical variation in the beaver damage potential has a noticeable reflection on the spatial

distribution of trapping rates, with little impact on the optimal densities. The areas with higher beaver

damage potentials require more intensive trapping operation.
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CHAPTER I

INTRODUCTION

Beavers, caster canadensis, were saved from almost complete elimination in the middle of this

century by regulations controlling trapping season, method, and numbers. Under this protection the

beaver population has increased alarmingly in the last 25 years across the Southeastern United States

(Arner and Dubose; Bullock and Arner). In many parts of this region, beavers have caused severe

damage to valuable timber land through dam-building and resultant flooding of bottom-land forest.

Other nuisance activities include blocking of roadside culvert flooding highways, building dams on

streams where shore-line developments are flooded, and destruction of ornamental trees and shrubs in

urban and suburban areas (Hill). A recent survey report by Miller on damage from vertebrates to

southern forests states that ... without question the beaver is the vertebrate animal causing the most

damage to southern forests at the present time (p. 13).

Reported losses to local/state economies due to beaver damage has been alarming. In

Tennessee alone, a survey by the Forest Department indicated that more than 81,000 acres of dead and

fading forest land required beaver control and drainage of standing water, with an associated loss of over

$26 million (Tennessee Forestry Department). Bullock and Arner estimated direct and indirect

economic losses to Mississippi economy of approximately of $2.4 billion for the period 1975 to 1985.

Substantial timber damage estimates have been reported for other states (Hill).

Documented benefits have been cited for beaver as a conservator of nature and source of

recreation. In addition, beavers may have economic value in terms of fur, meat and caster and oil

glands. However, the high degree of beaver nuisance has earned them a status of pest, at least in the

southern range limits.



Beavers as Common Property and Economics of Overpopulation

Beaver as an important wildlife species has remained a property of the public domain. In most

cases, each state has mandated the respective state wildlife protection agency to ensure the overall

balance of beaver population. Traditionally, beavers have been trapped by small group of people as a

source of their livelihood. A primary responsibility of the management agencies is to restrict the

niunber of trappers in a specified region through quotas or seasons. In areas where beavers are known

to contribute direct economic and ecological benefit, management goals are to increase long-term mean

population levels by preventing destmction of habitat by themselves (Todd, p. 119). In other areas where

they are both beneficial and a nuisance, management is faced with conflicting goals. Management

strategy is to allow enough number of trappers to keep the damage under control while at the same time

to guard the population from overharvest. Conversely, in regions like the southeast where beavers are

treated as a pest, wildlife agencies have adopted an extreme harvest strategy. There are no restrictions

on trapping in most southern states. In fact, some states like Alabama, Tennessee and Kentucky have

passed legislation to pay bounties to trappers (Hill).

The level of beaver trapping, the only effective means of controlling populations, is mostly

driven by the market value of beaver pelts. By simple economic intuition, trappers are induced to

undertake trapping as long as the expected pelt prices are high enough to yield economic profits. Thus,

pelt price determined by the pelt quality is the main economic factor that could regulate the beaver

population along with appropriate regulation against overharvest. Historically, prices of beaver pelt

coming from southern range limits have remained very low. Hill and Novakowski point out that in

Canada the demand for trapping responds instantaneously to pelt price whereas in the United States,

trapping pressure is more price-inelastic. This seems to be particularly true in the southeastern states.

As a result, beaver trapping has not been financially attractive in this region. The pelt market which

has been successful in the northern part of this continent in controlling beaver population has failed in

the southeast to stimulate adequate trapping pressure.



Ecological Externality and Management Scenarios

The immediate question that follows is how property owners are responding to low trapping

pressure. More than 80 percent of the land affected by beavers in the southeast is under private

ownership (personal communication with McMahan). It is obvious that beaver control must be the

concern of private land owners and incur the cost of trapping beavers in order to prevent damage to

their economically valuable timber land.

There have been many myopic attempts on a limited scale to eradicate beavers from the

affected parcels. But these attempts have failed to keep the beaver population under control for several

reasons which are ecologically and economically intuitive. Experiences from isolated eradication efforts

have demonstrated that beavers from neighboring parcels tend to immigrate continually into less

populated controlled parcels (Houston). This migration imposes a negative externality, hereafter called

dijfusion externality, on the owners of controlled parcels because they incur the future costs of

eradicating beavers that are currently on uncontrolled (or less controlled) neighboring parcels but that

will fill the vacuum created by extermination on controlled parcel. Because of their mobility, the

dynamics of beaver populations within a controlled parcel depends upon the total population levels in

the region as a whole rather than on the levels within a decision unit. Unless there is some arrangement

to control the beaver population on the entire habitat, individuals owning part of the beaver habitat may

not be able to control the beaver population and the associated damage effectively. This is a typical

feature of a common property resource that could drive a wedge between private and public incentives

for controlling the nuisance.

The level of control effort by owner of a beaver-affected parcel, however, depends upon the

degree of cooperation by the neighboring land owners. The owners of neighboring parcels may have

mbced economic objectives. Based on their economic motives, the beaver-affected land owners may find

themselves under three different scenarios. First, a neighboring parcel may be a public land where

beavers may not be viewed as a nuisance, and/or beavers are protected to provide source of recreation.

Under such circumstances, owners of beaver-affected parcels have to face extreme non-cooperation from



their neighbors. They are aware that there would be no control effort on the neighboring parcels, and

that they have to exercise adequate control efforts unilaterally, keeping in view the possible immigration

of beavers from uncontrolled adjacent parcels, following the control effort on their beaver resident land.

Second, the neighboring land owners may view beavers as a valuable capital stock and try to increase

their population. The other possibility is that neighboring owners may be acting as free riders enjoying

the savings in damage from, and trapping costs of, beavers migrating into controlled parcels. The

owners of controlled parcels incurring trapping costs have no means to exclude non-acting neighbors

from receiving the benefit of beaver control efforts on the resident land. Thus, two or more contiguous

land owners in a given beaver habitat may hold mixed or diametrically opposite views about beaver

population.

Finally, all land owners in a given watershed may have a similar objective of controlling the

beaver nuisance problem. Any individual timber land owner might be affected by beavers as badly as

others in the watershed. But, any single owner is less likely to exercise enough control effort because

of the diffusion externality. However, because of the common problem experienced by all the land

owners, there might be a consensus among owners to collectively control the beaver population in the

entire habitat.

Management Implications

There is no single management strategy that can provide a solution to the beaver nuisance

problem imder all the scenarios. The management strategy depends on the situation faced by the land

owners. Under the fu-st scenario, a land owner doesn't anticipate any cooperation from the neighbor.

The management of beaver population under this circumstance needs to be modelled under the

framework of single species harvesting from two ecologically dependent species population. This type

of problem has been most popular in the fishery economic literature. Under the second scenario, land

owners in a given watershed have diametrically opposite objectives. Such a management problem can

be simulated as differential game planning with two or more players.



The third scenario, where all the land owners in a beaver habitat suffer similar damage and

thus, are interested in controlling the beaver population if other members mutually respond, warrants

totally different management strategy. The obvious strategy open to land owners under this

circumstance is to organize among themselves to develop a collective trapping strategy that aims to

minimize the beaver damage with all the direct operational costs and externalities internalized. As

individual decision making land owners are unable to control the population of the entire beaver habitat,

they would better serve their common interests by collective action and placement of the responsibility

of region-wide regulation in the hands of a single, public manager, on a cost sharing basis. Such a policy

enables the public manager to explicitly consider costs of operation and externalities stemmed from their

natural dispersal behavior into a management strategy in addition to damage reduction goal.^

Since the focus of this study is controlling timber damage inflicted by beavers on large timber

lands controlled by multiple land owners, this study concentrates on a cooperative beaver management

strategy. The development of beaver trapping models under all the three scenarios is beyond the scope

of this study. The analyses under other two scenarios are being undertaken in separate studies.

Beaver Management and Spatiotemporal Optimization

Cooperative management of beavers is basically a problem of managing a renewable capital

resource over a period of time and space. Since growth of this biological capital is dynamic in nature,

present harvesting at a given location can affect future availability and biological productivity of the stock

throughout the entire beaver habitat. Further, the damage savings from and/or cost of current trapping

may accrue in the future at all locations. Therefore, an economically optimal harvesting policy

constitutes simultaneous choices of present and future harvesting [for all the spatial points], and the

optimal choices at different times [and space] are interrelated (Arrow and Kurz). This type of temporal

and spatially distributed control strategy could be evolved using a complicated mathematical analysis

^See Fedei and Regev for a discussion of similar economic view point in the context of multiple pest species control problem.
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called distributed parameter control.

The idea of distributed control problem is similar to classical optimal control theory. Here

capital stock and control (harvesting) variables are treated as functions of time and space. The time and

spatial evolution of a state variable is expressed in terms of a partial differential equation. Some pay-off

function is optimized over time and space domain, subject to the above partial differential equation of

motion, to obtain area-wide distributed optimal control and state values. Essentially, the need for

distributed control arises when capital stock has more than one attribute.

In economic literature, there are only few studies which have attempted to consider multiple

attributes of capital simultaneously (Haurie, Sethi and Hartl; Robson; Bensoussan, Nissen and Tapiero).

Manzell, in the context of agricultural pest management, introduced the idea of classical trapping models

that described the pest diffusion process based on a partial differential equation. However, these models

were developed to analyze the ecological behavior of a pest population which was subject to trapping,

rather than explore economic implications for pest control. The harvesting model of diffusive population

developed by mathematicians, Leung and Stojanovic, in the recent years is a theoretical modeling

exercise, with no real life application. No work has been located in economic literature that integrates

dispersive population dynamics of a small-mammal into an optimization framework capable of

characterizing cost-mmimizing spatial trapping strategies over time. Such an integration would have not

only the practical importance outlined above, but also would make an interesting addition to

bioeconomic research on optimal harvest of diffusive species. Clark, and Hamalainen and Kaitala

considered diffusion dynamics in the context of optimal harvesting-for-sale of fish populations migrating

between only two adjacent patches. Their models are not adequate to handle small mammal

populations like beavers which continuously migrate over a broad geographical area. Another feature

that distinguishes the current problem from their study is the design of the institutional framework

within which the management decisions would be made.

It is essential to realize that a bioeconomically optimal spatial trapping strategy that may result

in the complete eradication of beavers is also not acceptable politically. Such a strategy would incur



strong opposition from advocates of animal rights and esthetics. Therefore, caution should be exercised

in modeling beaver management to see that optimal trapping does not result in species extinction in the

region.

Objectives of the Study

Beaver damage to timber lands in the Southeastern United States is a pressing concern for

private and public timber land owners and wildlife agencies. Despite severe loss to timber industry, no

serious attempt has been made to evolve a suitable management plan for controlling beaver population.

The migratory behavior of beavers, which has a direct impact on the cost effectiveness of any control

program, seems to have been ignored by the management agencies. The beaver population dynamics

depends on the population levels of the entire habitat on which an individual owner suffering beaver

damage losses has no control. The resulting diffusion externality draws a gap between public and private

incentives for controlling the beaver population. This study attempts to develop a unified bioeconomic

trapping model that incorporates dispersal behavior of the beavers into an economic framework. The

analysis focuses on the bioeconomic implications of an area-wide centralized control policy, emphasizing

the common property feature of the beaver nuisance problem. The economic conflict between density

dependent beaver damage, trapping cost and diffusion-related externality are explicitly considered in the

model.

The key assumption of this study is that all the owners operating in a given beaver habitat share

common interest of controlling the beaver problem, and that they collectively agree to place the area-

wide control decision in the hands of a public agency and share the cost. Following Clark, we adopt the

notion that a public manager acting on behalf of land owners attempts to maximize the community

welfare, which is similar to a sole owner's profit-maximizing behavior.

An attempt is made to see that the optimal trapping strategy does not totally eliminate the

beaver population from the region. This study, without loss of generality, ignores potential

environmental and economic benefit (Hill) that beavers might have in the southeast at low levels of



population. The model developed here would need only slight modification to include possible beaver

benefits. Finally, the validity of the theoretical model is empirically examined using economic and

biological data from the Wildlife Management Regions of the New York State Department of

Environmental Conservation.

The organization of the study is as follows. A brief sketch of biology of beavers, nature of their

damage, and current beaver management strategy followed in various parts of the United States and

Canada is provided in the next chapter. Also included in the following chapter is an overview of

modeling spatiotemporal dynamics of diffusing animals and optimal control models for harvesting

structured biological species. The third chapter develops the area-wide distributed control model evolving

cost-minimizing beaver trapping strategy. The optimal trapping model developed in this study was a

complicated nonlinear control model which required rigorous numerical simulation before making

practical use of the same. The numerical simulation of the distributed-control model and its empirical

application is presented in the fourth chapter. The last chapter summarizes the study and adds

management implications.



CHAPTER II

REVIEW OF LITERATURE

Before developing a bioeconomic model for beaver management, it is essential to a have basic

understanding of various components of the modelling process. These components include (1) beaver

ecology (e.g., birth, mortality and migratory behavior), (2) nature of beaver damage, (3) techniques and

methods of control available, and (4) economics of damage and control. Based on a survey on vast

beaver biology literature, these components are introduced in this chapter. This chapter also reviews

several ecological diffusion models that provide a mathematical framework for developing beaver

trapping strategy. Standard mathematical/economic terminologies that are used in subsequent chapters

are also introduced. These models depict how technological and ecological attributes of a biological

resources can be incorporated into a decision maker's economic optimization framework.

Dynamics of Beaver Population

The beaver has been the most widely studied wildlife species by field biologists. A recent

review article by Hill provides a detailed description of beaver biology. The following sections draw

heavily upon his study and references cited therein.

Reproduction and Mortality

Beavers are monogamous animals and reproduce once a year generally during late fall through

the winter season. Sexual maturity occius at an age of 2 to 4 depending on environmental factors and

population levels (Semyonoff). A typical litter would be 3 to 4 youngs with a wide range of one to nine

(Hill). Beaver mortality is generally caused by predation by mammalian predators such as coyote and

timber wolf. Predation is more likely during periods of food shortage when beavers tend to range over

larger areas. Other minor predators and water-borne disease can also cause beaver mortality.



Payne estimated the annual birth and natural mortality for Newfoundland beavers at 0.536 and

0.188. This gives a net annual population growth rate of 0.3479. He also pointed out that growth of

the beaver population is compensatory in nature. That is, population growth responds to the current

population level and mortality rate (natural and harvesting). Lancia and Bishir showed that observed

data on beaver population in Massachusetts from 1952 to 1978 followed a logistic growth function.

From the estimated logistic growth function, a maximum average annual growth rate of .335 was

obtained. These results support the view that the growth of beaver population is compensatory in

nature, and that logistic growth function is an adequate approximation of the temporal growth process

of beavers.

Beaver Habitat

Beavers are commonly foimd in large rivers, impoundments, lakes streams, tributaries and

seepage. High quality habitat with abundant vegetation can harbor large number of beaver colonies.

A colony unit, as Bradt defines, constitutes of a group of beavers occupying a pond or stretch of stream

in common utilizing a common food supply, and maintaining a common dam or dams. Hill describes

the members of a typical colony to include the adult pair, two to four kits from the previous spring litter,

two or three yearling, and occasionally one or more that are about 2.5 years old. The size of a colony

depends upon the habitat quality. Several studies have provided estimates of colony size. Denney

estimated an average of 5.2 beavers per colony in the United States and 5 in Canada.

Beavers are known to construct dams across flowing water which consequently raises the water

level. They prefer to build food reserves for the winter season in the water. Lodges or bank dens are

constructed for shelter near the water and food source.

Migratory Behavior

Spatial diffusion of the beaver is an important aspect of their population dynamics. Bergerud

and Miller identified the following four types of beaver movements: (1) movement of the entire colony

10



between ponds within its territory, (2) wandering of yearlings, (3) dispersal of two-year-old beaver to

establish new colonies, and (4) miscellaneous movement of adults who likely have lost their mates. The

last three categories of beaver movement constitute actual inter-territorial immigration or emigration

(Hodgdon). The substantial portion of territorial migration is caused by the third factor, dispersal of

two-year-old beavers to establish new colonies. There exists an innate tendency (among two-years-old)

to leave their home colony (Leege; Bergerud and Miller). It has also been found that habitat quality may

have some influence on the rate of migration. In good quality habitat, less and less beavers are foimd

to emigrate (Gunson). Hill cites several studies which documented the distance travelled by

transplanted beavers. In some instances, beavers have moved more than 200 km.

Beaver Damage and Control

Beaver Damage

Beaver damage was reported as early as the 1950s, soon after restocking beavers in the

continent. The nature of beaver damage varies widely across regions. Todd, while making an argument

for beaver trapping, explains the several ways they can cause damage. During periods of shortage of

their preferred food like aspen and willow, beavers can inflict huge damage to the logging industry by

cutting timber and flooding timber land with their dams. Failure to control the beaver population will

lead to their dispersal into other agricultural land where they can be found in direct conflict with Human

interest (Parsons and Brown, 1978). There are instances where wide spread dam building activity has

caused water stagnation which hindered fish migration and spawning movements (Todd; Knudsen).

Beavers are also known to be potential carrier of disease, called Tularemia, which can affect other

wildlives and domestic animals including man.

Houston, in a personal communication, mentioned that damage of the habitat by beavers is a

dynamic process of interaction between dam building activities and siltation. Beavers generally select

tributaries or creeks joining the main streams or rivers, and build dams restructuring stream flow. Over
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time, the back-up water collects silt, raising the upstream water level. As beaver population increases

over time, individuals find it much easier to go to the fringes of the back-up water and construct more

dams across streams joining the existing water pond. This process could continue until a vast area

becomes flooded.

Obviously, beavers have many direct and indirect harmful effects on human beings and other

wildlife. As beaver population increases, the financial loss (direct and indirect) seems to increase more

than proportional. While several beaver damage estimates have been made, no systematic attempt has

been made to compare the beaver population and the associated damage levels. Damage estimates and

population estimates for a wildlife management unit in New York State reported by Purdy et al. are

partial but provide some basis for damage cost to be used in the current study.

Control Techniques and Costs

Byford discussed various types of beaver control techniques in practice. In some cases, beaver

dams and lodges have been destructed manually or by using dynamite. However, this technique has not

been very effective since beavers can reestablish easily dams and lodges. Altering the beaver habitat

might be effective in some cases. Removing certain tree species which are favorite food for beavers has

been found to be an effective way of checking their population. This method, of course, is not universal,

but only site specific. Toxicants have been used in some cases to poison the beaver food source. Since

beavers are mobile and may not return to the same food source for 2 to 3 weeks, this method may also

be ineffective (Byford). The cost of using toxicants would likely be similar to costs of trapping operation

(Hill). Also, the pelt and meat obtained from poisoned beavers would be of no use value. Other

techniques available, which are considered less effective, include shooting, using alligators as predators,

live-trapping and translocating.

Trapping is considered to be the most effective means of beaver control (Gotie; Hill; Byford).

This method has been found more useful and reliable when seasons and a quota system of management

need to be enforced. The conibear trap, size 330, has been found to be an extremely effective trap.
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This trap is suitable for either shallow or deep water. The traps are generally set in the dams, burrow,

or lodge entrance, in narrow channels, in runs in front of drain pipes, or beneath slides (Byford). When

beavers encounter the trap, they are killed instantly.

Only limited information is available relative to the costs and resource requirement of a beaver

trapping operation. Estimate by Hill was based on a two years survey of trappers in Alabama. During

the 1972-73 trapping season, an average beaver trapper employed 20 Conibear traps and spent 58 days

to capture 50 beavers which meant 23.2 days of conibear-trap time (20 times 58 divided by 50), and 1.16

days of trapper's time per beaver. During the next year, an average trapper employed only 16 Conibear-

traps and spent 32.2 days capturing 39.7 beavers, which amounts to 12.98 days of conibear-trap time and

0.81 days of trapper's time per beaver. Though this information is limited and region specific, it is

indicative of the underlying cost structure of the industry. The higher level of trapping operation in the

first year required more resources in terms of equipment and labor compared to that of the second year.

The input requirement reported did not include other resources needed like fuel and vehicle. This leads

to the conclusion that the unit cost of trapping is an increasing function of level of trapping operation.

This has an implication on the owner's management decision while measuring beaver damage relative

to cost of trapping.

Population Management

Although, currently, there is no systematic beaver population management effort in the

southeast, a knowledge of beaver management strategy that are in vogue in other parts of the United

States and Canada may be of interest. Management objectives differ from region to region.

Maintaining a sustained harvest of population is an important objective in most Canadian provinces

(Todd) whereas striking a balance between land use conflict and biological carrying capacity has been

the main concern in the northern United States (Gotie). In almost every state or provinces with beaver

management programs, a quota system has been used for controlling the beaver population. The quota

system requires taking certain number of beavers from each active colony. Quotas are established on
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the basis of predicted population or active colonies, level of nuisance, land owners tolerance to beaver

damage (Gotie) and previous year trapping experience. In recent years, more state wildlife agencies,

such as New York, have been air-surveying every year to take inventory of the number of active beaver

colonies. Based on the beaver siuwey, the harvest quotas for the coming season would be determined.

Hill and Novakowski have reported on the various systems through which quotas have been

enforced. Under the Registered Trap Line System, which has been popular in Canada, an individual

biologist, trapper, or group is assigned a specified geographic area. The registered trappers are expected

to harvest according to the quota fixed by the jurisdictional agency. Control on the harvest is

administered by sealing or tagging pelts recovered in the area. In some part of the United States, state

agencies fix zonal quotas, and the total harvest is distributed among the trapper-permittees. Generally,

the trapping operation is restricted to a certain season. Control regulations are enforced only when state

agencies have reason to believe that the population is being subjected to overtrapping. Even in areas

where beavers are managed for damage control, no specific information on damage estimates, trapping

cost, nor migration is considered in fixing quotas. Quotas in each management unit are established

mostly on the basis of qualitative measures of land owners' beaver damage tolerance level generally

assessed by land owners' opinion surveys.

Dynamic DIfTusion-Interaction Population Models

The development and understanding of an appropriate population model is a key to the success

and reliability of a management model for biological renewable resources. For the sake of mathematical

simplicity, most biological resource management models are based on highly simplified ecological

assumptions (eg. single species, temporal variation, general production, and deterministic growth)

(Clark). The real life management problems call for more realistic, though complex, modelling efforts.

The complexity may be added due to species-specific biological variation from the basic modelling

framework, for instance, age-structure, spatial heterogeneity, and size-specific harvesting. Spatial

distribution and diffusion are the key ecological considerations that warrant explicit consideration in
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characterizing beaver management strategy. In the spirit of its importance, the following subsection is

devoted to a brief survey of the development of diffusion models in population ecology literature.

DifTusion and Random Walk

The classical theory of the diffusion of a biological population is founded on the popular theory

known as random walk (Skellam). Skellam was the first to draw an analogy between the random motion

of molecules and that of organisms (Edelstein-Keshet). According to the random walk hypothesis, an

organism on a line moves one place to the left or right, with equal chance of occupance. If this random

jump process continues, after many jumps, the distribution of the probabilities of occupance of the

organism at different points is binomial. For a larger number of movements with smaller steps, the

distribution tends to be normal. For a particle suffering random displacement e on one dimensional

space X at regular intervals of time o), Skellam showed that the probability density (*1/) of the particle

at different location and time must satisfy the following partial differential equation,

n)
dt 2 « cbt^

The above equation derived from the random walk models is analogous to classical diffusion process.

The classical diffusion process is readily applicable to process of population migration. The conservation

law as applied to the movement of particles or individual organisms can be represented as (Edelstein-

Keshet),

(2)

' rate of change
of particle
population
in (x, x+h)

^ per unit time ,

rate of
entry

into (x, x+h)
^ per unit time

rate of
departure

from (x, x+h)
, per unit time ̂

where h is small interval on the linear space x. The two terms on the right hand side are inward and
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outward flux of particles or individuals, respectively. The inward and outward flux can be determined

by classical Pick's law. The law states that the amount of transport of matter in the x direction across a

unit normal area in a unit time, i.e., the flux, is proportional to the gradient of the concentration of matter.

The gradient is measured by the difference or variation in the concentration or density of individuals

across unit interval. Let D represent constant of proportionality of flux to gradient, and C(x,t) the

concentration of particles at point x and time t. Now utilizing Pick's law, each of the flux terms on RHS

of equation (2) can be expressed in terms of gradients to obtain

(3) |C(x.t+6)-C(x,r)jj^ ̂  jj^C(x-t-A,0-C(x,r)j _ j^|C(x,r)-C(x-h.f)j

Simplifying (3) further, we obtain

|C(x,/4.g)-C(x,f)j ̂  JC{x*h,i)-2C(x,t)*C(x-h,i)

Taking a limit of this equation as A - 0 and 8-0, that is, as respectively space and time intervals get

vanishingly small, we arrive at the following parabolic equation of diffusion:

(5) ic .
at

Notice that equation (5) is same as equation (1). Skellam's rationale behind using the random walk-

based equation (1) as a measure of population dynamics of diffusing biological population seems to be

quite justified. He suggested that for a large population reproducing continuously according to Pearl-

Verhulst logistic law, an appropriate model would be

(6) = D— + T(a - AT)
dt ar^

where F(T) = T(<2-AT) is the rate of growth of local population in the absence of dispersal. TheZ)

is called dispersion rate or mean square dispersion per unit time. The total time rate of growth of
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population at any spatial point, 5T(x,r)/0r, is an interaction between local temporal growth and the net

population flux through that point. The growth term F(T) not only increases density iocaiiy but also

causes a faster spatial distribution in the population than that anticipated by diffusion alone (Edelstein-

Keshet). Skellam cited the example of the spread of muskrat population over central Europe over a

period of 25 years, and showed that the equation (6) modelled muskrat diffusion fairly well.

The above parabolic partial differential equation (6) of diffusion was used by Fisher as early

as 1937 to model movement of genes. Similar diffusion models have been reported in recent literature

for studying population dispersal. A more detailed survey of diffusion models is available in Okubu.

Two models describing the spread of small insects are worthy of mention here. Ludwig, Aronson and

Weinberger modelled the movement of spruce budworm using the following equation,

(7) = D— + apfl--] - p-
dt dx^ V

where P is the population at period t and distance x from some initial point, and P is the rate of

mortality due to predation. Other parameters have the usual interpretation. Notice that here movement

was considered on a single spatial coordinate. Kareiva (1983) applied the following diffusion equation

to observed data on spatial movements of several herbivore insects:

(8) = D
^ ̂  dt

'£N ̂  ̂
* dy\

where Nix,y,t) is the population density at t and spatial coordinates (x,y), and D is the diffusion

coefficient. He reported that this diffusion model was a fairly good approximation of the spread of

various insects he studied. In all of the above models the diffusion coefficient was assumed to be

constant across the entire space domain. Attempts have been made to vary the diffusion coefficient with

time, weather, density, age and spatial position. Models of density-dependent and spatially varying

diffusion were studied by Kareiva (1982), Gureny and Nisbet, and Shigesada.

17



The above summary indicates that diffusion equations of appropriate form have been applied

with reasonable success to model dynamics of migratory populations. The models considered so far

represent dynamics of unexploited resources. Suitable harvesting mortality needs to be added into above

models to simulate temporal and spatial growth of exploited population. This will permit incorporation

of spatial distribution and dispersal aspects into an economic optimization framework.

Optimal Harvesting of Biological Resources

The management of renewable biological resources caught the attention of economists with the

pioneering and much cited work of Scott (Clark and Munro). He attempted to cast harvesting of fishery

under the framework of a static capital problem. Until the development of optimal control theory in

the early 1960s, economics of renewable resources continued to be studied under static terms.

Subsequent to the classic work of Pontryagin et al., economists soon realized the strength of control

theory in handling complexity that arises with the capital problem due to the explicit consideration of

time. Today the biological resource economics literature is rich and profound, and is much influenced

by optimal control theory.' However, most harvesting models developed so far have considered only

time aspects of capital under various economic, institutional and biological circumstances. Nevertheless,

these models have added significantly to our understanding of the fundamental mechanics of modern

capital-theoretic management of renewable resources.

Inclusion of structural attributes like age or spatial coordinates makes optimal harvesting models

quickly complicated. This is likely the reason that bioeconomics researchers have stubbornly resisted

modelling of multiple attributes. The limited number of studies that have investigated harvesting of

structured populations are mostly from the disciplines of mathematics and ecology, and obviously, lack

economic orientation. However, it is useful in the current study to review analytical techniques that have

been developed for these types of control problem.

'The interested readers are advised to see Qark for a detailed discussion on application of the optimal control theory to
harvesting of biological species.
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When the population of a biological species is characterized by structural (space, age, size) and

temporal dynamics, the entire population can best be considered as a system. Then the optimal control

of such a system must be achieved simultaneously across the entire domain of a given attribute. The

distributed parameter control theory is considered most appropriate for controlling these systems. Under

this control theory, the dynamics of the subject population is characterized by a partial differential

equation. The optimality conditions, similar to those of conventional optimal control theory, capable

of yielding necessary optimal conditions are derived for specific problems (Brokate for age-structured

population model; Bensoussan, Nisson and Tapiero for vintage capital model; Robson for vintage

housing model). However, unlike Pontryagin's Maximum Principles, the optimality systems derived in

these studies lack generalization, and they are very problem specific. See Lions for some generalizations

without detailed existence results for the optimal systems. The complexity and nature of the analysis

depends on the type of partial differential equation and the associated boundary conditions for each

problem. Unfortunately, there are few studies of optimal harvesting of a structured population. More

research, though limited in absolute sense, has been reported on age-structured population control

(Brokate, Getz, Clark, Gurtin and Murphy) than on spatially distributed population control problem.

Leung and Stojanovic is an example study which investigated return-maximizing harvesting of diffusive

biological species. Because of its usefulness for our study, a brief discussion of this model seems

appropriate.

Harvesting of Diffusive Population

In the optimal harvesting model for diffusive population, Leung and Stojanovic describe

population dynamics of the species by

(9) Am + u[(fl{x)-j{x))-bu\ = 0 in Q

with no-flux boundary condition,

(10) ^ = 0
dv
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where u is the population density of the species, Au refers to the Laplacian, which measures spatial rate

of change in the density, i.e., diffusion, the a(x) and f{x) refer to spatially dependent intrinsic growth

and harvesting rate, respectively ; and b denotes crowding effect which dampens the average annual

growth rate. The Q is the domain of the system in the spatial coordinates. Equation (9) indicates that

at every point on the domain, the net rate of change in population density due to migration (Au) is

counter-balanced by local periodic growth, net of harvest mortality. The boundary condition in (10)

constrains the migration (flux) to zero on the boundary. Mathematically, this system is called an elliptic

partial differential equation.

The objective of the sole owner of this biological resource is to maximize a pay-off function -

the difference between gross revenue and total harvest cost across entire region and over time. That is,

(11) J(f) = f[Kuf - Mf^Jdbc
Q

where K is the market price of the product and M the constant parameter of the quadratic total cost

function in effort /. By rigorous mathematical proof, it can be shown that the optimal population stock

for the above problem would be the solution of the following coupled system of partial differential

equations in u and p (adjoint variable):

+ au - (b + ———\u^ = 0
I j

in Q

(12)
Ap + (a-2bu)p + " = 0

IM

with no-flux boundary condition:

du _ dp

dv dv
^.^.0 aa
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The variable p has the usual interpretation of the costate variable encountered in an optimal control

problem with ordinary differential equation (Haurie, Sethi and Hartl). This is the marginal benefit

associated with the state variable u. Given the optimal solutions of u and p from the above system,

the optimal harvesting for the entire domain was found to be

(13) / = '■« Q

The solution of control and state variables were based on certain assumption on annual growth rate and

control variable. It was also proved that biological stock will not go to extinction when optimal

harvesting strategy in (13) is exercised.

21



CHAPTER III

OPTIMAL STRATEGY FOR BEAVER TRAPPING

In the first chapter, it was emphasized that the nuisance beaver populations have typical features

of a (harmful) common property resource. As beavers are mobile, the decision of an individual land

owner to control the damage will be affected by the population dynamics of the entire region. Since

the individual property owners have no means to control the population of the entire watershed, they

lack enough incentive to control the population on their respective parcels. Therefore, timber land

owners suffering beaver damage losses may better achieve their common goal of nuisance control by

an area-wide management response. Institution of a collective management agency to ensure area-wide

trapping in the interest of the society is a policy compromise worthy of consideration. In this chapter,

a bioeconomic model that integrates diffusive beaver population dynamics with a loss-minimizing

trapping strategy of a public manager is suggested.

Development of the Bioeconomic Model

An Ecological Diffusion Model

Consider a large wildlife management region, perhaps of the order of hundreds of square miles,

which is a potential habitat for a beaver population. This region is assumed to be closed to outside

migration of beaver population. Let us assume that the management region is a continuous two-

dimensional domain Q with spatial axes x and y, i.e. Q c with smooth boundary of the domain

denoted by dQ (see Figure 1).' Let Q represent a three dimensional real domain whose components

are a spatial domain Q and a time domain on the interval 0 i t i T, i.e., Q c R'. Time T is some

'in general, the problem we develop holds valid for n-dimensional domain also, i.e. Q c R".
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Figure 1. The representative beaver management region.

finite terminal time. Denote Z(x,y,t) as density of beaver population [heads (hd)/square mile (sq mi)]

at location (x,y) and time t. Consistent with other standard diffusive population models (e.g. Ludwig,

Aronson and Weinberger), it is assumed that beavers encounter a hostile environment at the boundary

of the domain dSi and hence can't survive. As younger members of the beaver colony have the innate

tendency to leave the home colony (Leege), it is further assumed that the beavers within the management

region are mobile. Let P(x,y,t) be the proportion of Z to be trapped at location (,x,y) and time t.

Then modifying the general framework of Skellam^ to include human intervention by way of trapping,

the dynamics of diffusing beaver population are formalized by the following parabolic partial differential

equation:

section on Diffusion and Random Walk in the second chapter for detailed discussion on theoretical development of
standard diffusion models.
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... 5Z i^Z ^Z\
(1) — = a +

dt [dx^ dy\ * 8(Z) - PZ inQ = a X (0,7)

with initial and side boundary conditions:

Zix,y,0) = Z^{x,y) on Q, r = 0

Z(x,y,t) =0 on dQ X (0,7)

where d^dt is net time rate of growth of population density at a given point (x,y) and time t. The

constant a is the diffusion coefficient [sq mi/year (yr)] and measures the rate of mean square

dispersion. The expression a (d^Z/d*^ + ̂ Zjdy^) is the formal representation of net diffusion flux across

the spatial coordinate (x,y). For the sake of simplicity and in keeping with many standard diffusion

models, assumptions are made that beavers always move from higher density habitat to lower density

habitat without backward migration. Though we can't totally reject the possibility that beavers may

return to the territory of the home colony, this assumption seems to be relatively realistic. In the short-

run beavers might undertake exploratory trips to a potential new colony site and return to the home

territory (Bergerud and Miller). But in the long-run, the beaver population tends to move outward and

can be expected to expand to a larger area. Furthermore, the rate of dispersion a is assumed constant

over the entire region mainly for analytical simplicity. Varying this parameter could be handled with

some modification of our analysis.

The function g(Z) is the density-dependent annual biological productivity of beavers, in the

absence of dispersion. For analytical simplicity, we ignore other demographic aspects such as age

structure, time lags and sex differences. Following Lancia and Bishir, the logistic growth function was

considered appropriate to capture the compensatory impacts of population density and available

resources on the beaver population growth rate. Hence, we maintain

(2) g(Z) = a(x,y)Z - b(x,y)Z^

where a(x,y) is the maximum possible rate of net recruitment at location (x,y), and b(x,y) the measure
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of density dependence at (x,y). Notice that these parameters can vary across beaver habitats reflecting

the impact of environmental variability on the productivity of the beaver. This function has the following

additional features:

(3) g(Z) >0 for 0 < Z(x,y) < K(x,y), g(0) = g(K) = 0 g"(Z) < 0

where KOc,y) - laix,y)y[b(x,yy] denotes the carrying capacity of the habitat at location (x,y).

The termPZ is annual trapping density (hd/sq mi/yr) at each location (x,y). Since trapping

is the only means of beaver population control, it is assumed that beavers are harvested only through

use of conibear traps. The level of trapping at given location can impact current and future productivity

of beavers at that given location, as well as at surrounding locations. A physical constraint exists on the

maximum trapping attainable, i.e. 0 s Pix,y,t) s

The partial differential equation in (1), which is also called the state equation of motion, has

an initial boundary condition, Z(x,y,0) = Zo(x,y). That is, we have definite knowledge of the initial

distribution of the beaver population over the entire region. The initial density distribution function

2o(x,y) is a nonnegative function. The environmental hostility impact on the beaver population along

the boundary of the region 3Q at any point in time is represented by the condition, Z(x,y,l) = 0 on

5£1 X (0,7). Introducing (2) in (1), we have the following system describing the dynamics of beaver

population in the domain Q:

(4) Z, = a(Z^+Z^) + oZ - bZ^ - PZ in Q = Q x (0,7) (state equation)

with initial and side boundary conditions,

Z(x,y,0) = Zo(x,y) on Q, t = 0

Z(x,y,t) =0 on dCl X (0,7)

with physical constraint on trapping,

0 ̂ P S
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dZ 3^Z ^Zwhere, for notational simplicity, Z, = —, = , Z = , a = a(x,y), and b = b(x,y). Note that
dt dx^ dy^

from comparison results for parabolic partial differential equations, solutions of (4) are positive (Protter

and Weinberger). The functions a and b are bounded (finite) and positive. The term PZ reduces the

magnitude of the solution of equation (4). Therefore, the solutions of the above equations are bounded

independent of P"°". The actual proof of existence of the solution to the state equation is shown in

Appendix 1.2.

The Economic Optimization Framework

The economic motivation for the problem is based on the society's collective welfare

maximization criterion. Suppose that the representative beaver management region is comprised of

numerous identical decision units (i.e. timber land owners). Beavers are causing damage in each

decision unit in several ways. However, the degree of their damage potential can vary across decision

imits depending on the type of food habitat and the nature of the affected timber land. In common,

beaver damage in all the units increases with their number. Their damage impact can be contained only

by reducing their population density. Because of their mobility, the dynamics of beaver population

within a decision unit depends upon the total population level in the region as a whole. The total

population of the region is exogenous to an individual decision maker, and hence he is aware of his

inability to influence to a significant degree the total population. As a result, individual decision makers

have little incentive to exercise beaver control on their parcel unless there exists an area-wide combined

effort. They know that their individual effort would cause an environmental vacuum and, thus, attracting

more beavers to their parcel. The presence of this diffusion externality explains why most land owners

are currently unwilling to invest significantly in beaver control. Consequently, in the aggregate the

decision units are likely to better achieve their common interests by placing the right of region-wide
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supervision in the hands of a single public decision maker.' In the present study, it was assumed that

they have agreed for such collective action, and that the individual decision units abide by the

supervisory and control regulations stipulated by the public manager for their respective parcels.

Following Clark, the public manager is assumed to view the [beaver] stock as a capital asset; [and thus

to manage according to] the standard cost-benefit criterion o/[minimizing] values of net economic

[losses] (pp. 3, 4).

The public manager must deal with two important economic effects relative to this problem:

(1) the direct and indirect loss to society through beaver damage to timber land, and (2) the monetary

costs inciured in controlling beaver population. The need for decision making emerges because there

exists a trade-off between these two economic effects.

Define D(Z) [$/sq mi/yr] as beaver-inflicted damage loss which is assumed to increase at an

increasing rate with increase in Z , i.e., Z)'(Z) > 0 and D"(Z) > 0. Beaver density has a compounding

effect on the dollar damage. This phenomenon can be represented by the following simple function:

(5) Z)(Z) = |yZ2

where y = t{x,y) is damage parameter ($ sq mi/yr/hd') at location (x,y).

In order to expose the cost structure of the beaver trapping industry, let us first analyze the

trapping rate P which is already defined. The P can be viewed as the periodic rate of production from

the beaver capital resource.^ Each level of production (trapping) rate is associated with the specific

quantity of a composite beaver control input that may include conibear trap, baits, vehicle time, fuel.

'similar economic motivation is developed by Feder and Regev in the context of multiple pest species control problem.

""The definition of P (as percent or proportionate of Z) is based on real life management practice. Under the quota system
of management, quotas are generally defined as fixed number of beaver per colony. Given the colony size, it is easier to express
the absolute quotas into per cent quotas and vice versa.
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and trapper's labor.^ Based on the study reported by Hill, we assume that the cost of trapping unit

beaver uniformly increases with level of operation, i.e., production or trapping rate. As the desired level

of operation P is increased, owner would be required to maintain a more than proportionate inventory

stock and spend more time to search for beavers and to monitor the trapping operation. The result

would be an increase in the unit trapping cost with an increase in P. Bringing additional resources into

operation therefore would be possible only at the expense of increased unit cost. The unit cost, and

hence total trapping costs, exhibit adjustment externality!" In other words, the owner would be penalized

severely as he tries to adjust resources in order to attain higher levels of trapping operation. LetCfP)

($/hd) denote unit cost of trapping beavers. The C(F) is assumed to be a linear function of P. Thus,

we have

(6) C(F) = cP C'(P) = c> 0

where c = c(x,y) is cost parameter ($ yr/hd) at location (x,y). Notice that the total cost of trapping

(cPPZ = cP^Z) turns out to be quadratic in P, which is commonly seen in many economic problems.

The problem before the public manager is to select a spatiotemporal trapping strategy that

minimizes the present value of the sum of beaver-inflicted damage to society and costs of trapping over

the entire region ($), taking into account the beaver population dynamics which explicitly includes

intraregional beaver migration. That is, assuming a positive discount rate r reflecting time preference,

the goal is to minimize the following total cost functional:

T(7) JiP) [^jyZ^*cP^zjdxdy dt

subject to system (4).

fix idea in terms of more popular notion prevailing in fishery economics literature (Clark), each level of composite
beaver control input can be viewed as certain effort level.

®Smith discussed other types of recovery cost externalities in the context of production from natural resources. He
considered a similar case where total cost of recovery increased at an increasing rate with rate of production.
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Derivation of the Optimality System

To find an optimal control P* for our problem in (7), we need to differentiate the cost

functional Jff) with respect to control P. The existence of such an optimal control will be treated in

Appendix 1.3. Since the state variable Z is contained in the objective functional, and the control P is

in the state equation, it is evident that the choice of control P determines Z. We can show thatZ

depends on f in a differential way. Then we can characterize the optimal control P * in terms of the

unique solution of the optimality system, which consists of the state equation coupled with an adjoint

equation.

Suppose that Z* is the optimal state variable associated with an optimal control P*. Consider

another modified admissible control level P* = P*+eh with associated state variable Z*, where

h = h(x,yj) is a variation function and € is a constant parameter. Clearly, as e - 0, the modified

control tends to optimal control P'. Further, Z*(x,y,0) = Z*(x,y,0) = Zf^(x,y). It can be shown that

the solution of state equation Z is differentiable with respect to control P7 Mathematically,

.Q. ,. Z{P*+eh) - Z(,P')
(8) l™. - 0-^^ — = t

In other words,

/-ON r Z*-Z* dZ(9) tan..,-— - t
P'

where ijr is the variable that measures differential dependence of the state variable on the control.

Notice that since Z*(x,y,0) - Z*(x,y,0) = 0, ili(x,y,0) = 0. Call i|i hereafter state-differential variable.

'See Appendix 1.3 for the proof of this result.
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By construction both 2* and Z* with their respective controls P* = P*+eh and P* are

solutions of the state equations (4). Hence we have

(10) Z' = a(Z^+Z^ + oZ* - HZ'? - (P**eh)Z' in Q = Qx(0,J)

with initial and side boundary conditions:

2\x,y,0) = Zo(x.y) on Q, t = 0

and

Z\x,y,t) =0 on dQ X (0,7)

(11) Z; = ci(Z^*Z^ * aZ' - HZ'? - P'Z' in Q = Qx(0,7)

with initial and side boundary conditions:

Z'ix,y,0) = Zo(x,y) on Q, r = 0

Z'(x,y,t) =0 on 30 X (0,7)

Subtracting (11) from (10) and dividing by parameter e, we obtain

(12) Z*-Z*
\ /

Z*-Z*
= a

)t c

Z*-Z"

w.

+a
Z*-Z'

- ft
(Z'?-(Z'?

P'

/ \

z*-z*
-

Taking the limit of the above equation as e 0 (i.e., as the parameter gets small), and using the

differentiability result in (9), we obtain the following partial differential equation which state-differential

variable i|r must satisfy:

(13) = a(ilr^ + i|r^ + ai|f - 2hZ> - 7"+ - hZ' in Q = Qx(0,7)

with initial and side boundary conditions:

i|r(j:,y,0) =0 on 0, r - 0

'KJC.y.O =0 on dQ X (0,7)
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Proposition: For an optimal control P' and corresponding solution Z' = Z(P'), there exists a Junction X(x,y,t)

satisfying the adjoint equation:

(14) -X, = + * aX - 2bZ'X - rX - P'X + yZ* + c(P*)^ in Q x (0,7)

with terminal and side boundary conditions:

X(x,y,T) =0 on Q, t = T

Xix,y,t) = 0 on dQ X (0,7)

and

(15) P* = A
^' 2c

where A(a:,y,7) = 0 is the usual transversality condition.

Proof: Since, by definition, P' yields the minimum value of the social loss functional J(P), any control

other than P must be inefficient. That is, 0 ̂ J(P' +eA) - J(P *). Given this, we can conveniently state

that the derivative of the loss functional with respect to the control evaluated at P' must be greater than

or equal to zero. Symbolically,

(16)
e

Substituting for J from (7), using the differentiability result obtained in (9), and simplifying the results,

we get
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T

(17) 0 s lim, , 0 1/rre-^l \y(Zf * c(P'*ehfZ*
®Ofl U2

|y(Z*)' + ciP'fZ* |d[zd)'£&

= lim..o///«-''||Y
00 I ̂

j'z'-z*
(Z*+Z*) + c

.1 ® i
(P«)2[ z'-z* j ^ (2p'ft+eA2)Z' dxdydt

= fffe'''{[yZ'->-c(P'f]if + 2cP*hZ'}dxdydt
CO

Rearrange the adjoint equation in (14) as

(18) - a(X„ + Aj^ - oX + 2hZ*X + rX + P*X = yZ* + c(P')^

and substitute the result into inequality (17) to obtain

T

(19) 0 i ///«'"{[->.,-a(X_„+ X^-aX+2hZ*X+rX+P*X]i|r + 2ci>*/iZ*}drafydr
00

Integrating the right hand side of (19) by parts, above inequality can further be reduced to

r

(20) 0 i ///e""{['I',-«('!'„+ i|rj^-at+2iZ>+F>]X + 2cP*hZ*]dxdydt
oo

Rewriting the partial differential equation in (13) as

(21) i|f, - a(i|r„ + T|rp - ai|r + 2hZ> + F*i|r = -AZ*

and substituting the result into inequality (20), we obtain

T

(22) 0 s fffe-^hC-kZ" + 2cP*Z')dxdydt.
oo
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Inequality (22) is used to characterize the optimal control. Consider the following three cases:

Case 1: P'(x,y,i) = 0.

Along the optimal path where P*{x,y,t) = 0, we can choose only nonnegative variations h which would

ensure P' - P* +eA = eh i 0. If A ̂  0, inequality (22) holds if and only if

(23) - \Z' + IcP'Z' = Z'(-X + 2cP') i 0.

This implies that 2cP* = 0 i X. Since A is a solution of the partial differential equation in (18) which

has a positive source term yZ* + c(P*)^ on the right hand side, A must be nonnegative (Protter and

Weinberger). For similar reason, Z* > 0 for all (x,y,t) but the boundary dC2. Therefore, the fact that

2cP* = 0 i A. is a contradiction unless A = 0. Thus, we conclude that whenever P'(x,y,t) = 0,

A(j:,y,0 =0.

Case 2: 0 < P'(x,y,^) <

On the above control set, we can choose variation function h with arbitrary sign. When h is arbitrary,

only way the inequality (22) holds is by requiring

(24) - AZ* + 2cP'Z' = Z*(-A + 2cP') = 0.

Since Z* > 0, this implies that on this set P* = —.
2c

Case 3: P\x,y,t) = P"".

We can choose only nonpositive h on this set, to ensure P* = P* + eh = P°" + eh ̂  P°". \lh ^ 0,

the inequality (22) holds if and only if
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(25) - XZ* + IcP'Z' = Z*(-X *2cP') <: 0

This implies that on this control set i** = i"°" s —.
2c

Putting the three cases together, the optimal control should be

(26) P* = inin|p°^,

It is easier to obtain a simpler form of the solution for P* in terms of only the adjoint variable if we

go through the following reasoning. Conceptually we may select P"" large such that A/2c is always

less than P™*. Then what we need to show is that A is always finite and bounded independent of the

bounded P®**.

Claim: There exists M > 0 independent of P™* such that A i M on Q.

Since the bound on Z* is independent of P®", all the terms not involving P* in the adjoint equation

(14) are finite and do not force the solution A to be unbounded. Even the terms involving P' pull the

solution down, since they are negative, i.e., P'icP'-k) ̂  P*[c(A/2c)-A] = -P*A/2 s 0. Hence, the

solution of the adjoint equation is bounded from above independent of P®".

Now we can choose P"" so large that

(27) 2l ̂  M. < pmMK
2c 2c

Making use of the result (27), the optimal control (26) can be conveniently expressed as

(28) p* = A
^ 2c
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Considering the above relationship between an optimal control and the associated adjoint variable, we

now consider the following optimality system (OS):

(29) z; = a(Z;;+Z3;) + aZ* - uz*? - — in (? = Q X (0,7)
2c

■A* - a(Aj^ + A^ + aV - IbZ'X' - rV - — * yZ* in <? = Q x (0,7)
4c

with initial, terminal, and side boundary conditions:

2{x,y,Q) = Zo(x,y) on Q, t = 0

Ux,y,T) =0 on Q, r = r

Z(x,y,t) = A(x,y,0 =0 on dCl x (0,7)

Notice that the above OS is obtained by substituting the optimal control F* from (28) into the state

equation (4) and the adjoint equation (14). The proof of existence and uniqueness of the solution to

OS is shown in Appendix 1.4, which gives the representation of the unique optimal control. The optimal

solutions of state and costate variables are the solutions of the above system of two coupled nonlinear

partial differential equations. As mentioned before, the optimal beaver population density Z* will

remain positive at all locations (x,y) and time t. This fulfills our goal that the social loss-minimizing

optimal beaver trapping strategy should not call for a complete eradication of beaver population from

the South.

Economic Interpretations of the Necessaiy Conditions

In order to gain additional insight into the OS and the necessary conditions that yielded the

optimal control, an attempt to provide economic interpretations for various expressions is made here.

Following Hartl and Sethi, and Robson the adjoint variable k(x,y,t) is assumed to have usual

interpretation of the marginal shadow price of capital, i.e., marginal value of beavers at location (x,y)
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and time t. In other words, X measures the effect of an incremental change in the optimal beaver

density Z*(x,y,t) at a given location and time on the Juture social welfare of all the locations in the

region.

Given the interpretation of the adjoint variable, the economic meaning of the conditions

obtained in (23), (24) and (25) which are used to characterize the optimal control can be sought. Let

us examine each of the terms in the above mentioned equations:

2cP*Z* ($/sq mi) is the derivative of the total cost of

trapping [c(F*)^Z*] on a unit area with respect to
the rate of trapping P evaluated at optimal F*.
Hence, this is the marginal cost (AfC) of investment
in the beaver trapping activity.

XZ* (S/sq mi) is the derivative of the total potential

nuisance value (XP*Z') of beavers trapped from a

unit area (P'Z*) evaluated at its shadow priceX
with respect to the rate of trapping P. Intuitively,
this is the marginal savings in beaver damage loss to
society as a result of the beaver trapping activity,
i.e., the marginal rate of return (MR) generated by
this activity.

Now going back to the necessary condition in (23), we know that the inequality in (23) holds

only when X = 0, that is, when the marginal potential nuisance value of beaver ( XZ *) is zero. We have

also seen that in case 1 corresponding to (23), the optimal control must be zero. This amounts to say

that when beavers are not a problem, it is not economically wise to trap them.

Equation (24) represents a situation (case 2) where the marginal return from trapping beaver

equals the marginal cost of trapping, i.e., XZ* = 2cP'Z'. This condition yielded the closed form

optimal control P* = X/2c. Finally, the inequahty (25) represents a situation (case 3) where marginal

return is greater than the marginal cost. Under this situation, the public manager has to exercise the

maximum control. That is, when the marginal nuisance value of beavers trapped is much higher than

the incremental cost of trapping, the public manager can not spju-e any effort.
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Synthesizing the above three situations, we can write the optimal control in terms of following

simplified expression:

(30) P'ix.y,t)

P"" if MR > MC

— if MR-' MC
2C

0 if MR = 0

The above expression looks similar to the synthesized control obtained for the standard fishery problems

discussed by Clark.

Adjoint Equation

The economic meaning of the adjoint equation (14) becomes more lucid if we go through the

following routine. Form a current-viilue Hamiltonian from the integrand of the social loss functional

(7) and the state equation (4) as

(31) H'*iZ.P.x,y,f,X) = FiZ,P,x,y,t) + Hx,y,t)lZ,iZ,P,x,y,t) - a(2„+Z^]

where F(Z,P,x,y,t) = cP^Z. Notice that the above Hamiltonian represents the instantaneous

flow of social loss F at a given location plus the future social loss A[Z, - «(2„+2j^)] inflicted by the

current recruitees at location (x,y), which is annual increment in the beaver density net of migrants

[Z, - a (Z^ ]• Differentiating the Hamiltonian with respect to the state variable and using equation

(4), we obtain
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^ az az az"- ' " J

— + X—[aZ - bZ^ - PZ]
az az^ ^

- [yZ* + c(P*)^ + [flX - 2iZ'X - P*X]

Now, comparing the above result with the adjoint equation in (14), it is readily apparent that

(33) - [i,. . rt. ̂  g » 1 A(z, - a(Z^*Z„}]

Now the adjoint equation can be easily interpreted. The X, + a(X^ + Xj^) is the change in the marginal

valuation of beaver stock due to passage of time, including the impact of net diffusion on the value of

beaver stock [i.e., «(^„ + ̂jy)]. In the case of conventional capital stock, following Dorfman, this

measures the change in the shadow price of the capital stock. But in the case of the beaver population

which is a capital asset generating negative return, this has to be carefully interpreted. As discussed

before, X in some sense is the potential marginal reduction in social loss accruing over the entire

spatiotemporal domain as a result of trapping a unit beaver at the present time. The dollar value of this

potential marginal reduction in loss is likely to depreciate over time. Therefore, the left hand side of

the equation (33) represents the discounted shadow price of beaver (rX), net of current depreciation

in value {-[X, + <*(A.„ + Xj^)]}. Thus, the left hand side represents the instantaneous cap/fa/dmde/it/

rate (using the terminology of Haurie et.al). The terms on the right hand side represent the marginal

rate of flow of current and future social loss as a result of a change in the beaver density which can be

viewed as the capital loss rate. The condition (33) and hence the adjoint equation (14) asserts that the

mar^nal dividend rate must equate with the mar^nal capital loss rate, along the optimal path, over the

entire spatial and temporal domain.
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The meaning of the transversality condition k(x,y,T) =0 should be intuitively obvious. Since

we have not assigned any salvage value to beaver stock at T a priori, the marginal value A(7) must be

zero.
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CHAPTER rV

EMPIRICAL SIMULATION OF THE BEAVER TRAPPING MODEL

The bioeconomic beaver trapping model is illustrated in this chapter by numerically deriving

an area-wide optimal trapping strategy for a real life problem. Unfortunately, the biological and

economic information required by the model was not readily available for the Southeast. However, in

order to demonstrate the analytical and practical utility of the model, the same is applied to the beaver

population data collected for the Wildlife Management Region 7 of the New York State Department

of Environmental Conservation (NYSDEC). This region is selected not because beavers are causing

severe problem in the area, but because the most comprehensive biological and economic data required

by the model are available for this one region. Since the purpose of this analysis is primarily

exploratory, the results obtained from this should be used with caution. The results obtained here may

lack reliability to the extent that certain assumptions made in the model may not be exactly valid for the

study region. For instance, the assumption of environmental hostility at the boundary of this region was

imposed. This may be debatable since some parts of the Region 7 are contiguous parts of the

neighboring potential beaver habitats which sustain beaver population.

Before getting into the actual exercise, it may be recalled that the optimality system (OS)

obtained in the equation (29) of the chapter III is a system of coupled nonlinear parabolic partial

differential equations. There is no way to obtain closed-form solutions of this system. A scheme that

numerically solves the system is needed. In this Chapter a numerical simulation procedure for solving

the optimality system is designed. Then the numerical model is applied to the beaver population data

available from the NYSDEC and other sources.

Numerical Solution of the Optimality System

There are many numerical methods developed to derive approximate solutions to partial

differential equations (Hall and Porsching; Ames). One of the popular techniques that has been widely



used in natural and physical sciences is the finite difference method. The basic approach in this method

is to approximate a continuous variable/domain by finite number of discrete values/points. The

derivatives of any variables are replaced by appropriate difference quotients (eg. first derivative by a first

difference quotient).

Finite Differences: A Simple Case^

Consider a continuous function u(ac,y) on the square domain Q c which is twice

differentiable with respect to x as well as y. As shown in Figure 2, the domain D is discretized into

uniform mesh of points, x^, x.^ • • • x^ • • • along x axis and Vv Vi ' ' ' Vj ' ' ' Vn alongy

axis with mesh size Ajc and Ay, respectively. Therefore, in general x,,., = x, + Ax and yy„, = y^ + Ay.

The function value u(x,y) near location (Xj,y.) is approximated by uiXpyf). Using Taylor's series

expansion for u(Xf^i,yj) about (x-.y^ in the variable x, it follows:

Divide both sides by Ax to get

M ̂  . o,A,)
Ax Ax dx '

where 0(Ax) represents all the higher order terms. Simplifying (2) further, we have

|, .
dx ' Ax

Dropping the higher order terms yields the following approximation:

'This section is adopted from Ames.
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Q
Q

Vh

u(x,, y,)uOt,y)

(a) (b)

Figure 2. The discretization of a continuous domain: (a) two dimensional continuous domain, (b)
two dimensional discrete domain.

... du, . - uiXpy.)
<"> "a];—^ forward difference

The right hand side in (4) is known a& forward difference approximation of du/dx.

Using Taylor's approximation, dujdx can also be approximated by backward and centered

differences as under:

(5)
du, . «(*,.>/) - u(x,.^,yj)

^—- backward difference

(6)
_ - u(x^_^,yff

ILx
centered difference

Similarly, the second order partial of u with respect to x can be approximated by

second difference- 2"(X;,yp + «(x,.pyp
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Similar expressions can be obtained for partial derivatives of u with respect to y.

Discretization of the Optimality System

On the above lines, the original problem of the OS can be discretized. For the sake of

analytical simplicity, it was assumed that the spatial domain Q was a rectangle. Subdivide the

spatiotemporal domain ^ = Q x (0,7) by uniform mesh points denoted by x^, and t where

i = 0, 1, 2, • • • Af, y = 0, 1, 2, • • • Af and t = 0, 1, 2, • * • 7 with mesh size Ajc, Ay and At,

respectively along jc, y and t axes (see Figure 3). The boundary of the domain lies along

i = 0, M; j = 0, N and t - 0, T. Let Z'j and A.^ respectively denote the values of the beaver density

and the adjoint variable at location (Xj,y^) and time t. These are the discrete approximations of the

values of the continuous functions Z{x,y,t) and A(x,y,t), respectively. Notice that the domain Q is now

discretized into (A/+l)(N+l)(r+l) number of grid points. Now the state and the adjoint partial

differential equations at each mesh point (x^.y^.r) can be approximated by replacing the derivatives by

suitable finite difference approximations developed in (4), (5), (6) and (7). Thus, the following

approximations were chosen.

(8) Z,
z'*^ - z'

At

a'"' - A'
- X =
' ~ At

Zj^^lJ ~ Zi.ij
(Ax)2

a' - 2A' + a'

(Ax)2

{^yf (Ay)2
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Notice that backward difference was used for the time derivative of X. Because, two partial differential

equations in OS have opposite orientations. While the state equation moves forward from the initial

condition, the adjoint equation moves backward from the terminal condition. In other words, the

solution for X variable evolves through backward steps beginning terminal point. Hence, a backward

difference approximation was selected for -X,.

Substituting (8) into the OS, we get

z'*' - z'
(9)

At
~ 2Z, y + y) + ~ ̂ uj *

(Ay)^(Ax)

'U ~ KiKj ~
AA
2c.
U

z'
ny for all i, j, and t

with initial and side boundary conditions:

Z^j = Z(x,yj,0) for all i arul j

Ki = 0 for i = 0 and M, j = 0 and N; all t

X' ' - X'
W

At

^ly * /<"■ j' ^ *

with terminal and side boundary conditions:

J*X, y = 0 for all i and j

x;.y = 0 for i = 0 and M, j = 0 and N; all t
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Observe that various model parameter values a(x,y), b(x,yX y(x,y) and c(x,y) are also approximated

by their respective discrete values.

Simplifying the system of equations in (9) further, the following system of coupled nonlinear

difference equations in the state and the adjoint variables can be derived along with the respective

boimdary conditions mentioned above:

(10) Zl]' = At a y - 2Z, j + Zi.i j) + —
(Ax)' (Ay)'

+ At hj " Kj^iJ ~
t

2c.
U )

Z,j + Zlj for all i, j, and t

Kj = a
(Ax)' (Ay)'

+ Ar 'u - Vi "4"^ + for all i, j, and t

The above system constitutes (Af+l)(Af+l)(r+l) munber of difference equations for each of the Zf j andA,- ̂

variables.

The solution of the simultaneous system in (10) is characterized as follows. If the above system

of equations for every i, j and t were not coupled, given the values of Z'^j at all locations for the initial

time r = 0 known, one could advance the solutions of Z,|y at t = 1, and repeatedly up to t = T.

Similarly, knowing the terminal values of Xfj, the solutions of the adjomt variable for all the time steps

could be derived by advancing backward from t = T-l tof = 0. Since the state and adjoint difference

46



 

equations are coupled, the solutions for at any t can not be found unless the corresponding

solutions of the adjoint variable X{ y are known. Similar problem exists in solving for . In order

to overcome this problem, the following iteration scheme was followed.^

1. Assume some arbitrary values for Xjy at all the grid points for time t = 0 {.o T
(A, y = 0 by transversahty condition).

2. Impose the initial boundary conditions of the state equation, use information on Ay

from the step (1), and generate the values of for all the locations using
difference equations in (10). Of course, the solutions at the side boundary are zero,
and hence, need not be computed.

2 T3. Solve successively for Z, y • • • • Zy using solutions in the step (2) and information in
the step (1).

4. Solve iteratively for Ay' down to Ay using the solutions of Zy generated in steps (2)
and (3) and terminal condition of the adjoint variable A, y = 0. Replace the initial

arbitrary values of Ay in the step (1) by this newly generated array of Ay.

5. Repeat the steps (2) and (3) to obtain a new array of solutions of Zy using the

solutions of Ay generated in the step (4),

6. Compare the arrays of the solutions of Zy obtained in the step (3) and (5) and that

of Ay in the steps (1) and (4). If the difference in the weighted averages of these
values at each time t from two successive iterations is greater than certain tolerance
limit, repeat the steps (2) to (5).

7. Continue the above iteration until the solutions of Zy and Ay converge between
iterations.

In order to obtain convergence in the solutions, a stability condition for the above problem is

needed (Hall and Porsching). Rewrite the state difference equation in (10) to obtain

^See Hackbusch for a development of numerical methods for solving parabolic equations with opposite orientations.
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(11) 1 -
2aAt 2aAt aAt aAt

(Ax)^ (Ay)^ * ^i*lj

<

z'

aAt aAt

(Ay)^ hj-i *

>

z'

For convergence of the solutions, Z^y' should be a convex combination of various Z values on the right

hand side of the above equation. The be the convex combination of all the variables on right

hand side only if (1) sum of all the coefficients on the right hand side (bracketed terms) is one, and (2)

all the coefficients are greater than or equal to zero. The first condition is fulfilled in the above case.

The second condition will be fulfilled only if the values of Ax, Ay and Lt are chosen such that

(12) 1 - 2fiA£ _ ̂  ̂ Q
(Ax)^ (Ay)^

Simplify (12) further to obtain the following stability condition for this problem:

(Ax)^(Ay)'
(13) At i

2a[(Ax)2 + (Ay)2]

The accuracy of the solutions of the state and adjoint variables from the above numerical

method depends on the actual size of Ax, Ay and At. The accuracy can be improved by narrowing

the mesh size. For instance, assume that the continuous domain Q is discretized into (5 by 4) grid

points initially (see Figure 4a). Then the numerical simulation must be performed on the above grid.

Later, suppose that each grid mterval is equally subdivided along both x and y axes increasing the

number of grid points to (9 by 7) (as shown in Figure 4b). By superimposing the Figure 4a on 4b, every

mesh point on the coarse grid coincides with every alternate grid point on the fine grid. Now simulation

can be performed for the fine grid. Then the solutions of the fine and coarse grid simulations for the

common mesh points should be compared. If there is a wide difference in the solutions of two
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Figure 4. The refinement of numerical simulation by narrowing grid size: (a) coarse grid intervals,
(b) flne grid intervals.

simulations across the mesh points, one can further narrow down the mesh intervals and perform the

simulation until the solutions converge.

Computer Simulation

A computer algorithm in VAX FORTRAN codes was written to perform the above iterative

numerical simulation (see Appendix II). A pictorial representation of this algorithm is given in Figure

5. The program reads the specified inputs concerning model's bioeconomic parameters, initial, terminal

and side boundary conditions on beaver density and adjoint variables, grid size, and number of grid

points. Then the program initializes user-specified values for the state and adjoint variables over the

entire grid. It runs through two loops computing the density of beaver population and the adjoint

variable using the discretized optimality system in (10). The values of the state and the adjoint variables

generated from the above computation are compared with their respective initial array of values against

a user-specified tolerance limit. If the tolerance criterion is not met, the current values will be stored

in a buffer, and the program goes through the computation loops again, every time comparing the
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Figure 5. The flow chart showing the computer simulation of the beaver trapping
model.
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current array solutions with those in the buffer. Once the values of Z'j and converge, the program

calculates the optimal control for all the locations (grid points), usmg the latest solution values

of the adjoint variable, and outputs the results.

Empirical Application: Parameterization

Delineation of the Study Area

The administrative Region 7 of the NYSDEC was selected for our study. The study region

includes nine counties of central New York with an expanse of 6,296.4 sq mi (see Figure 6). This area

cuts across eight ecological zones. More than 50 percent of the study area falls in Central Appalachians

ecozone. The landscape is mostly characterized by hills of wide ranging elevations interspersed with

farmlands and mixed-species of hardwood forest trees (Purdy et al.). The NYSDEC has been

conducting aerial surveys to estimate beaver populations in order to form a basis for the design of

management regulations. Mr. Gotie of NYSDEC estimated around 6,900 beavers in this region during

the year 1988.

Considering the significant role of beavers in increasing wetland area in the state of New York,

the DEC attempts to increase the beaver population in this region. However, the Department's goal

can't always be fulfilled due to concerns expressed by public and private land owners about the

increasing beaver damage. For the purpose of this study, the beneficial value of beavers in the study

region is not important and hence ignored.

Analytical Setting

For analytical simplicity and lack of better information, certain assumptions were made

regarding the study area. The study region is inscribed into a rectangle region D (Figure 7). From here

onwards, fi becomes the representative beaver management region for the analytical purpose. The
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Figure 7. The analytical beaver management region showing the
numerical grid points.

perimeter of this rectangle is the boundary of the management region along which the density of beaver

population was assumed to be zero. The management region was arbitrarily subdivided into 60 small

cells, 6 cells along x axis (west-to-east direction) and 10 cells along y axis (south-to-north direction).

By eyeballing the stutfy region was found to occupy two-thirds of the management region. As mentioned

earlier, the total geographical area of the study region is 6,296.4 sq mi. Based on this, the total area of

the entire management re^on was found to be 9444.6 sq mi and the individual cells 157.41 sq mi. Given

the area of the individual cells, the size of the grid intervals happens to be Ax = Ay = 12.55 miles.

Accordingly, the values of M and N are, respectively, 6 and 10. The total number of grid points across

the spatial domain including those on the boundary of the region is 77. The points with (*) mark in the

figure indicate the locations of the grid points. The density of beaver population on each location (grid

point) corresponds to the beaver density (hd/sq mi) on an area of 157.41 sq mi represented by a square
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cell surrounding the grid point (for instance, the square cell bordering point A in Figure 7).

Baseline Parameter Values

Most of the biological and economic data required by the model are available for the Region

7 of the NYSDEC. Part of the necessary information was obtained from personal contact with state

biologist Mr. Gotie, and the other part was obtained from published literature. The information not

available for this region was taken from multiple sources as explained below. For the baseline

simulation all the biological and economic parameters were assumed constant for the entire region.

Initial population distribution (Z°y): From the aerial survey data supplied by the NYSDEC, it was

found that 1988 was the recent year for which zone-wise population estimates for the entire study re^on

were available. Thus the year 1988 was considered as time period zero in this analysis. Using the

available data, the beaver density for each of the ecological zones was computed (see Table 1). Using

the zonal density estimates, weighted population density for each grid point of the management region

was determined. The proportionate areas of ecozones falling under a given cell were used as weights.

For example, consider the square cell surroimding the point A in Figure 7. The 61 percent of the area

of this cell falls in the Central Appalachians ecozone and 39 percent in the Finger Lakes Highlands

zone. From Table 1, the beaver densities of these two regions in 1988 were, respectively, in hd/sq mi

0.939 and 0.762. Hence, the weighted density of beavers at grid point A became 0.61 times 0.939 plus

0.39 times 0.762, which was equal to 0.87 hd/sq mi. The densities at the grid points along the boundary

of the management region were set to zero. The initial distribution of the beaver densities for all the

grid points derived in this manner are presented in Table 2.

Population growth parameters (a and b): Lancia and Bishir fit observed data on the beaver population

in Massachusetts from 1952 to 1978 to a logistic growth function. They estimated a maximum specific
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Table 1. The density of beaver population in various ecological zones of the Region 7 of
NYSDEC during the year 1988.

Ecological 21ones Geographical
Area

Number of Beavers' Density of Beaver
Population

(Square miles) (Heads/square
miles)

East Ontario Plain 124.1 224 1.805

Oswgo Lowlands 280.1 313 1.117

Drumlins 452.7 556 1.228

Erie Ontario Plains 964.4 697 0.723

Finger Lakes Highlands 513.1 391 0.762

Central Appalachians 3,573.8 3,356 0.939

Tughill Transition 328.7 1165 3.544

Central Tughill 59.5 200 3.361

'Estimated by Mr. Gotie, state biologist with NYSDEC, Cortland, New York, based on the
aerial survey of active beaver colonies.

growth rate of 0.335. Interestingly, the above estimate is close to another estimate made by Payne for

Newfoundland beavers in 1984 (0.347875).^ Hence, Lancia and Bishir's estimate was taken as

reasonable baseline value for natural growth rate parameter a in this analysis, and it was assumed that

natural growth rate was constant over the entire management region.

Based on the number of active colonies and approximate population estimates (provided by Mr.

Gotie) for the years 1983 to 1990 average beaver colony size in the study region was estimated at 4.755

hd/colony. The number of potential sites in the region was reported to be 5,367. Parsons and Brown

(1979) from a study in the part of Northern New York reported that reproduction of beavers ceased

when occupancy rate (the ratio of number of active colonies to that of potential colonies) exceeded 40

Payne estimated birth and death rates at 0.536 and 0.355, respectively. The death rate was the sum of natural mortality
and harvest mortality; hence, the natural mortality was calculated by netting out the average harvest mortality rate computed
from Payne's Table 2 (0.166875). The maximum net proportional birth rate for the above beaver population could be calculated
as 0.536 - (0.335 - 0.166875) = 0.347875.
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percent. Assuming 40 percent occupancy rate to be the reasonable carrying capacity for the study report,

the number of active colonies at the carrying capacity was worked out as 0.40 times 5,367 which was

equal to 2,147 colonies. Given the estimated colony size of 4.755 hd/colony, the number of beaver at

the carrymg capacity was calculated to be (2147) (4.755) = 10,208. Then the average density at carrying

capacity K could be easily worked out as 10,208 divided by total geographical area 6,296.4 sq mi, which

yielded K = 1.6212 hd/sq mi. Knowing the values of a and K, the measure of density dependence b

was computed as h = afK = 0.335/1.621 = 0.2066315.

Diffusion coefficient (a): A baseline value for the diffusion coefficient was not readily available. The

following procedure was adopted to derive a reasonable estimate of this parameter. Recall the partial

differential equation describing beaver population dynamics without trapping as:

(14) Z, = a(Z„*Z^) * aZ - bZ^

Discretize the above equation to obtain the following finite difference equation:

7'** - 7'
(15)

Af
= a „ -2Z,;, ♦Z/.,J . - K . z',.,)

* -lA -kaK/

Solving the above equation for a,

(16) A., - A ♦Ku) * - A * z//-.)

z'*^ - z'
— - a. .Z!. -b. .{Z!f

The values of a, b, Ajc and Ay for the management region are already known. In order to obtain an
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estimate of a, the densities of beaver population at some location (/,;) at two successive time steps

(/+!) and t, and densities of beaver population at the four surrounding locations

('jy"*"!) and (i,y'-l) at time step t were used. The point A in Figure 7 which lies in

the border of Central Appalachians and Finger Lakes Highland ecozones was selected for this purpose.

The point A was found suitable because it was on the border of two ecological zones across which there

was a wide variation in beaver densities. Such variation in densities should help measure the diffusion

phenomenon fairly well. Another reason was that the density estimates for this location and all the

required surrounding locations for two continuous years (1984 and 1985) were available. Since the

population was measured once a year, the time interval was considered to be Af = 1 for the purpose

of this calculation. Inserting all these values into (16), the baseline value for the diffusion coefficient

was found to be a = 725.27 sq mi/yr.

Discount rate (r): The proxy used in this study for the society's time preference rate or the real

discount rate is the nominal rate on AAA corporate bonds for June 1987 less the percentage change in

price from June 1986-87 (see Federal Reserve Bulletin, Table A24). This rate, r = 0.056, was assumed

to be a good average of the productivity of low-risk investments in the capital markets.

Damage function parameter fv): The baseline damage parameter was calculated from the beaver-

inflicted damage estimates provided by Purdy et al. for this region during the period 1983-1984. They

reported 780 damage incidences over a period of two years. Based on this figure, we assumed an

average number of incidence per year to be 390. They also provided the average dollar estimate of

these damages at $ 736 per incidence. The average annual total damage in the region was found as

(736)(390) = $ 287,040. This amounted to unit area average damage level of D(Z) = 287,040/6,296.4

= $45.59/sq mi/yr. Further, the damage estimated above was assumed to be associated with the

region's population level of 5,000 beavers (i.e., a beaver density of Z = 5,000/6,296.4 = 0.7941) during

58



1984 as reported in the above study. Thus, the damage parameter could be calculated as

y = 2D(Z)/{Z)' = 2(45.59)/(0.7941)^ = $ 144.59 sq mi/yr/hdl

Cost function parameter (c): Ermer reported from a trappers' survey for the Region 9 of the

NYSDEC, west part of the state, on the beaver trapping time. The reported trapping was 12.79

homs/hd. Assuming a wage rate of $ 5/hour, the imit trapping labor cost was calculated at $ 63.95.

Notice that this didn't include other overhead costs. For lack of information it was assumed that labor

cost was the major component of the trapping cost, and that the unit overhead cost was 20 percent of

the labor cost, which resulted into total unit trapping cost C(P) = 63.95 + 12.79 = $ 76.74/hd. Ermer

also considered an average harvest rate of 2 hds/colony for this region. Assuming that the average

colony size of 4.755 hds calculated for the study region applied to Region 9, the average trapping rate

for this region was found out to be F = 2/4.755 = 0.42. Assiune that this trapping rate was associated

with the unit trapping cost C(F) = $76.74. Then the cost parameter was worked out as

c = C(F)/F = = 16.1AIQA2 = $ 182.71 yr/hd.

Planning period (T) and time step interval (Ar): The numerical simulation in this analysis assumed

ten year period as a reasonable finite planning horizon ( T) within which most parameters of the model

were likely to remain imchanged. It was presumed that the optimal trapping strategy needs to be

revisited after the end of the finite planning period, by reassessing the values of the model parameters

and the beaver density distribution existing at that time. It was expected that the continuous beaver

trapping on lines with the proposed optimal strategy would change the ecosystem of the beaver habitat,

and thus, could affect some of the biological parameters. The economic parameters may also change

after a finite period of time. By equation (13) it was required that the time axis should be discretized

by choosing each time step Lt based on the spatial intervals Ajc and Ay, and the value of a. Thus,
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the value of Ar was calculated by the following expression

(17) Ar = < (Ax)'(Ay)'
a[(Ax)' + (Ay)'] 2a[(Ax)' + (Ay)']

The computer algorithm calculates the value for At automatically given the values of Ax, Ay and a.

For the baseline values of Ax = Ay = 12.55 and a = 725.27, At was foimd to be 0.05209. Now the

time axis t could be rescaled such that each time period (one year) corresponds to 0.05209. Thus, the

entire planning horizon of 10 years was equivalent to (0.05209)(10) = 0.5209 on the new time scale.

Baseline simulation was conducted using the above parameters (see Table 3). As suggested

before, for more accuracy of the results a second simulation was performed by halving the grid intervals,

Ax and Ay, i.e., Ax = Ay = 6.27. As a result, in the second simulation, Ar = 0.013, M = 12, N =

20, and T = 40. The total number of grid points increased to 11,193. The optimal solutions of the

beaver densities and the trapping rates were found to converge on the common grid points in just two

iterations. Thus, the values from the second iteration were accepted as the optimal state and control

variables.

Table 3. The baseline parameter values.

Symbol Meaning Units Value

a maximum rate of net recruitment y' 0.335

b density dependence of beaver stock (hds/sq mi) yr ' 0.2066315

a diffusion coefficient (sq mi) yr"' 725.27

r real annual discount rate 0.056

Y damage function parameter $ (sq mi)/yr/hd' 144.59

c cost function parameter $ yr/hd 182.71
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Empirical Simulation Results

Baseline Simulation

The optimal densities of beavers and rates of trapping across the management region over the

entire plaiming horizon are presented in Appendix III. Figures 8a - c and 9a - c show the three

dimensional surface graphs of the spatial distributions of the optimal beaver densities and trapping rates,

respectively, at three different points in time. The optimal population levels are shown for the time

steps 0, 5 and 10 whereas the trapping rates are presented for the time steps 0, 5 and 9. The trapping

operation begins at time 1 and ends at one time step prior to the terminal time. The terminal time

trapping rates are zero due to the transversality condition, i.e., zero marginal nuisance value of beavers

at the end. For a better understanding of the spatiotemporal changes in the optimal beaver stocks and

the control, cross-sectional views of the three dimensional representations (Figure 8 and 9) are

presented in Figure 10 and 11. For instance. Figure 10a shows the. cross-sectional view of the optimal

beaver densities for all the grid points along the south-north direction at location Xj on west-east

direction at three points in time, i.e., t = 0, 5, 10 (refer to Figure 7 for identification of the above

geographical locations). Similarly, Figures 10b and c represent the optimal densities at locations Xj and

Xj, respectively. Figures 11a - c correspond to the optimal beaver trapping rates at the three respective

locations.

The initial distribution of the beaver population (Figure 8a) indicated that the beavers were

more concentrated in the northern parts of the management region in the year 1988. Their stocks in the

southern portion were fairly even distributed. By exercising the optimal trapping strategy over the entire

management region every year thereafter, the beaver densities seemed to uniformly smooth out across

the individual management cells. The optimal stock distribution in Figure 8a and c, respectively, for the

years 5 and 10 were more even. The above smoothing out phenomenon is also demonstrated in Figures

10a - c. Another noteworthy feature was that the optimal densities over a period of time were gradually,
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Figure 8. Optimal densities of beaver population in the management region for the baseline

simulation: (a) for the initial year (t = 0), (b) for the middle year (t = S), and (c) for the terminal

year (r = 10).
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Figure 9. Optimal trapping rates in the management region for the baseline simulation: (a) for the

initial trapping year (t = 1), (b) for the middle trapping year (f = 5), and (c) for the terminal

trapping year (t = 9).
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uniformly declining at all the geographical locations. Towards the terminal time (Figure 8c), beaver

densities at all the grid points were asymptotically approaching zero. The densities tapered down to zero

towards the boundaries with a hump about the center of the region. However, it was important to note

that the optimal strategy did not totally eliminate the beaver populations from the region at the end of

the planning period.

The optimal trapping rates in the beginning of the plamiing horizon were more uneven across

the management region (Figures 9a and 11a - c). The management strategy required trapping more

beavers from the northern parts with higher densities. As the planning period advanced, the area-wide

optimal trappmg rates became evenly distributed (Figures 9b - c and 11a - c). This was consistent with

the even distribution of the densities observed towards the end of the planning period. Also notice that

the spatial distribution of the optimal trapping rates gradually approached zero at all the points towards

the end of the planning horizon, and in fact, became zero at the terminal point.

Figme 12 presents the temporal behavior of the optimal stock and control at a selected location

represented by point A shown in Figure 7. The optimal trapping rate tapered down to zero at the end

of the finite planning period where as there were some beavers left in the habitat, the damage potential

of which, by the design of the model, was negligible. The similar behavior could be expected for the

optimal stocks and controls at all the other grid points.

The discounted total cost of the optimal trapping program over the finite time horizon was

$136,500.80 for the entire management region. The total number of beavers trapped following this

optimal strategy was 2,314.

Sensitivity Analysis

The optimal trapping strategy was expected to be sensitive to the model's parameters. The

model's sensitivity was analyzed for variation in the two key economic parameters, i.e., c and y • Four

simulations were run alternating between high and low values for each. Table 4 summarizes the results

of the above simulations. At both the levels of y, the increase in c increased the total loss marginally
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Table 4. The societal loss and number of beavers trapped under varying levels of cost and
damage parameters.

Low c High c

Low Y

II

o
o

c = 300

Y = 100 Y = 100

The value of total = $93,920.87 The value of total = $95,498.05
loss functional loss functional

Number of beavers trapped = 2,895 Number of beavers trapped = 997

High Y c = 100

II

O
o

Y = 300 Y = 300

The value of total = $268,922.90 The value of total = $281,762.40
loss functional loss functional

Number of beavers trapped = 7,939 Number of beavers trapped = 2,894

(from $93,920.87 to $95,495.05 at lower damage potential and $268,922.90 to $281,762.40 at high damage

potential). On the other hand, there were substantial reductions in the overall beavers trapped in both

the cases (2,895 to 997 and 7,939 to 2,894, respectively). The increase in the cost of operation makes

beaver trapping less attractive leaving more beavers in the watershed. This would lead to an increase

in the beaver damage.

The total loss functional was found to be more sensitive to the damage parameter. At both the

levels of c, the increase in y resulted in substantial jump in the total loss (from $93,920.87 to

$268,922.90 at low trapping cost and from $95,498.05 to $281,762.40 at high trapping cost). The number

of beavers trapped also increased more than double in both the cases (2,895 to 7,939 and 997 to 2,894,

respectively). This indicates that from society's welfare point of view, the beaver damage potential is

more crucial than the cost of trapping operation. However, it is interesting to note that increase in the

cost of trapping would conserve beavers with marginal increase in burden to the society. This has a

potential policy implication for conserving beaver population at times of environmental adversity in that
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given any damage potential of beavers, a tax on beaver trapping could be used as a potential instrument

in building beaver stocks. This policy instrument could be enforced at nominally low additional burden

to the society.

Further, the effect of spatial variation in the damage parameter on the optimal beaver stocks

and trapping rates was analyzed. Figme 13 represents the spatial variation in the damage parameter

assumed in this simulation. The optimal beaver population and trapping across the management region

at three different points in time are presented in Figure 14 and 15, respectively. There was not much

difference in the spatial behavior of the optimal beaver stocks between the baseline simulation with

constant damage parameter (Figure 8) and the current simulation (Figure 14). However, a distinct

change in the spatial behavior of the optimal trapping between the baseline simulation and current

simulation could be observed (compare Figures 9 and 15). The spatial pattern of the optimal trapping

under the current simulation was consistent with the spatial variation in the damage parameter as

illustrated in Figure 13. The values of the damage parameter about the middle portion of the

management region were less than those of the northern and southern portions of the region.

Accordingly, there was a trough in the optimal trapping rates in the middle portion with two humps at

both ends of the region (Figure 15). This indicates that the optimal trapping is directly proportional to

the damage parameter. As observed in the baseline simulation, both the distributions of optimal stock

and control tapered down over the period of planning horizon. Again at the terminal time, control rates

were zero whereas the optimal densities were asymptotically declining.

71



300

yio

yo

Figure 13. The values of the damage parameter across the management region assumed in the
sensitivity anaiysis.
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Figure 14. Optimal densities of beaver population in the management region for the simulation with
variable damage parameter (a) for the initial year (t = 0), (h) for the middle year (f = 5), and (c)
for the terminal year (t = 10).
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Figure 15. Optimal trapping rates in the management region for the simulation with variable damage
parameter (a) for the initial trapping year (t = 1), (b) for the middle trapping year (t = 5), and (c)
for the terminal trapping year (t = 9).
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CHAPTER V

SUMMARY AND MANAGEMENT IMPLICATIONS

Background and Summary

The beaver population in the Southeastern United States has increased alarmingly over the last

25 years and caused severe damage to valuable timber land through dam-building and flooding of

bottom-land forest. Miller mentioned in a recent survey report that among all the vertebrate animak^

beaver has caused the most damage to southern forests. Though beavers have a potential to be

beneficial as a conservator of nature, source of recreation and furbearer, the high degree of beaver

nuisance has earned them a status of pest, at least in the southern range limits.

Traditionally, beavers have been trapped by small group of people as a source of then-

livelihood. The market for beaver pelt, the main driving force inducing the trappers' effort, has been

the main factor in governing the population of beavers. The wildlife protection agencies of respective

states have the responsibility of protecting beaver populations against overharvest during the periods of

high market for the beaver pelts. In the northern parts of the United States and Canada, because of

the better quality of beaver pelt, there has been fairly consistent market for beavers, and hence, the

management agencies have tried to sustain the long-term productivity of beavers through trapping

regulations such as quotas or seasons. Historically, prices for beaver pelt coming from southern range

limits have remained low. Hill and Novakowski point out that in Canada the demand for trapping

responds instantaneously to pelt price whereas in the United States, trapping pressure is more price-

inelastic. This seems to be particularly true in the southern states. The low pelt price in the south has

failed to stimulate adequate trapping pressure, and thus, resulted in increased beaver population and

nuisance.

The low trapping pressure and the resulting hike in the beaver nuisance activities have forced

property owners to start undertaking their own control measures. The experiences from few eradication

efforts, however, have demonstrated that beavers from neighboring parcels tend to immigrate continually



into less populated controlled parcels (Houston). This backward migration of beavers from uncontrolled

habitat to controlled habitat imposes a negative diffusion externality on the owners of controlled parcels

because they have to incur the future cost of trapping immigrating beavers. The owners incurring

trapping costs have no means to exclude the non-acting neighbors from enjoying the benefits of beaver

control and damage/cost saving advantage. The problems of non-exclusion, free riders and diffusion

related externality are present in their classical form inherent in most common property resources. The

concurrence of these classical problems of a common property nature has severely affected the cost

effectiveness of trapping operation. As the beaver population is mobile, the affected owners are aware

of their inability to influence the population on their own parcel or the entire region. This has resulted

in a low incentive for control of beaver population on the part of individual land owners, causing a

wedge between social and private needs for controlling beaver population.

Because of the transboundary nature of the beaver nuisance problem, beaver-affected land

owners require to consider how neighboring land owners view the beaver population, while designing

their management strategy. While recognizing various management scenarios based on the objectives

of neighboring owners, this study concentrates on the situation where all the owners in the given beaver

habitat consider the beavers as a nuisance. Under such circumstance, they would better serve their

common interests from a collective action by way of placing the responsibility of region-wide regulation

in the hands of a single, public manager, on a cost sharing basis. Such a policy enables the public

manager to explicitly consider costs of operation and beaver diffusion-related externalities into a suitable

management strategy which would maximize the social welfare of all the land owners involved.

A number of studies are available in the literature where the optimal harvesting of biological

renewable resources is cast under the capital-theoretic framework. The harvesting of a biological

resource has been studied as an intertemporal resource allocation problem. Unlike the classical capital

control problem, the current problem needs a special focus on the spatial diffusion aspects of beaver.

Because of the mobility of beavers, present harvesting of beaver at a given location can affect future

availability and biological productivity of beaver stock through out the entire habitat. The public
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manager, in charge of controlling timber damage, therefore is required to make simultaneous choices

of present and future trapping of beavers at all the locations. Thus, an ideal strategy needs to consider

both temporal and spatial dynamics of beaver population together.

In the current study, the dynamic optimal harvesting of structured beaver population was

modelled as a distributed parameter control problem. The time and spatial evolution of beaver

population was simulated by the parabolic diffusive Volterra-Lotka partial differential equation. The

diffusion term was added to classical logistic growth equation to capture the beaver diffusion across the

spatial locations. The dichotomy between density dependent beaver damage and cost of trapping was

expressed in the objective total cost function. The economic goal of the public manager was to minimize

the present value combined cost of beaver damage and trapping over a finite period of time subject to

the spatiotemporal population dynamics summarized in the above partial differential equation. This

optimization model characterized the beaver control strategy that left enough beavers taking into account

the net migration at each location and time so as to strike the optimal balance between timber damage

and trapping cost. The marginality condition governing this tradeoff required that the marginal damage

savings from the beavers trapped at each location equal the marginal costs of trapping. The marginal

savings from trapping activity, in turn, was measured as the imputed nuisance value (shadow price) of

the beaver stock in a unit area (the product of the adjoint and state variables of the model).

The optimality system of the beaver trapping model developed in this study turned out to be

a complicated system of two nonlinear partial differential equations. Therefore, a computer numerical

simulation was developed to solve the nonlinear optimality system using the finite difference technique.

Under this technique, the entire representative management region was subdivided into numerous

operational units, and the time evolution of the optimal beaver population and trapping levels were

characterized for each unit.

The empirical application of the model was constrained by non-availability of economic and

biological information for the beaver population in the Southeast. However, in order to explore model's

economic and practical implications, the same was applied to the beaver population in the Wildlife

77



Management Regions of the New York State Department of Environmental Conservation. The most

of the comprehensive data needed for the model were available for this one region. Certain

bioeconomic assumptions were made regarding the study area in order to make best use of the available

information.

The current study is a rare application of a nonlinear distributed parameter control in the area

of natural resources. No work has been located that integrates dispersive population dynamics of a

small-mammal into an optimization framework capable of characterizing area-wide trapping strategies.

Such an integration would make an interesting addition to bioeconomic research on optimal harvesting

of diffusive species.

Empirical Results

The empirical simulation of the area-wide distributed beaver trapping model usmg a set of

baseline parameters generated discrete values for the optimal beaver densities and trapping rates across

all the individual operational units over time. The entire distribution of optimal beaver densities did

gradually and smoothly decline over the period of time. The unevenness of the initial population

distribution smoothed out eventually across the beaver habitat. At each geographical location, towards

the end of the planning period optimal trapping rate became zero, whereas the population density

asymptotically approached zero.

The sensitivity analysis where the cost and damage parameters of the model were alternated

between high and low values indicated that an increase in the damage potential of beavers could

substantially increase the net present value total cost. On the other hand, an increase in the cost of

beaver trapping added only marginally to the total cost, conserving more number of beavers. The

geographical variation in the beaver damage potential had a noticeable reflection on the spatial

distribution of trapping rates, with little impact on the optimal densities. The areas with higher beaver

damage potentials required more intensive trapping operation.
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Beaver Management Implications

An ideal beaver management strategy in the southeastern forest needs to recognize beaver stock

as a (harmful) common property resource. The diffusion externality associated with isolated trapping

effort doesn't result in socially acceptable levels of beaver damage and control. If timber land owners

agree to cooperate, a centralized decision policy that internalizes the diffusion externality can be

instituted.

There might exist several institutional and political obstacles to the actual implementation of

the centralized area-wide control strategy. Details have to be worked out as to how the central authority

should be constituted. One possibility is that the land owners might delegate the decision power to the

respective wildlife agency of the State. Alternatively, any existing or new timber owners organization

might take the responsibility. In either case, the administrative procedure on collecting the service

charges from the participating land owners and executing trapping operations needs to be designed.

Coming to the actual functioning of the trapping activity, the land owners have several choices.

The individual owners may hire trappers to trap beavers on their respective parcels as per the quotas

decided by the central authority. This option may fail if any single owner attempts to breach the

agreement. Alternatively, the central authority may itself assume the responsibility of trapping operation

on the lands of all the participating members and collect the users' fee. In recent years, professional

firms specialized in wildlife damage control have emerged (Braband). The public manager may find it

more convenient in hiring such professional firms for the area-wide control, holding the right of

supervision.

The proposed centralized trapping policy entails certain initial investment. An extensive

inventory of existing beaver population and assessment of biological and economic parameters are

essential to institute the control policy. Nevertheless, the economic loss from beaver-inflicted timber

damage may far exceed these investments.

Although it was not explicitly dealt in the current beaver trapping model, beaver benefits at low

levels of population in the southeast can be considered in the area-wide control policy. Such a
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modification would be useful in the states where wildlife agencies are managing beaver population with

confhcting goals of beaver damage control and overharvest. The results of empirical analysis suggested

that in the event of extreme environmental adversity, a suitable tax policy making trapping more

expensive helps conserve beavers without much additional burden to the land owners. Since the optimal

trapping model is designed for a finite period, reassessment of biological and environmental relationships

at the end of every planning period may be essential.

Limitations and Suggested Extensions

The model analyzed in this study, though already complicated, is a simple formulation of the

distributed beaver trapping strategy. For theoretical and analytical simplicity, several assumptions were

made. This model can be refined in several directions in order to be more realistic. First, the beneficial

aspects of beavers in terms of their ability to create wetlands, provide recreation, and supply pelt and

meat may be considered. Second, the diffusion coefficient adopted in this study is nonvariant in space.

This coefficient may, perhaps will, vary across the ecological zones. Third, the model developed here

is purely deterministic. Perhaps, more insight and objectivity can be gained by analyzing the beaver

dynamics under the conditions of uncertainty.

Fourth, the distributed centralized strategy is based on the assumption that all the participants

agree to cooperate. If any individual participants don't cooperate, the outcome of the centralized policy

would be entirely different. This type of noncooperative mode can be analyzed under game-theoretic

framework with several ramifications like binding and nonbinding agreements. The game-theoretic

analysis of managing transboundary biological resources has become populsir in the recent fishery

economics literature. To best of our knowledge, little or nothing has been done to design an optimal

management strategy for a diffusive small-mammal population the djmamics of which is governed by

partial differential equation. Finally, the current model is treated as a finite time problem. An attempt

to extend this problem to infinite planning horizon may be worth considering.
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From an empirical view point, the task of testing this model for the Southeast still remains

undone. This necessitates developing a reliable information base on the damage and cost parameters

for forest ranges in this region. Perhaps, this will enable one to evolve location-specific management

plans.

Some or all of the above extensions may require more powerful analytical techniques. Until

now, the management of beavers has been the concern of land owners, biologists and state agencies.

Because of the economic implications and complexity of the problem, it is time that economists and

applied mathematicians be involved in designing a suitable control policy.
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Proofs of Existence and Uniqueness of Solutions to the State Equation
and the Optimality System
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1. Statement of the Problem

The density of the beaver population is governed by the following parabolic partial differential
equation with Lotka-Volterra growth term:

z,-aAz=z(a-bz-p) in Q=Qx(0,T) (1.1)

z(x,0)=Zo(a) on Q, f=0 (1.2)

z(xj)=0 on dQx(0,7) (1-3)

The problem is posed for QcR". For practical applications, the habitat sits in R^, i.e. QcR^
numerical example is set in R^. The function Zg gives the initial density distribution of the beaver
population. Assuming that beavers do not live on the edge of the region, we have zero boundary
conditions on the sides of the region, 0Qx(O,7). The solution space for the state equation (1.1) - (1.3)
is wf'«?) n , using notation from Ladyzenskaya, Solonnikov, and Ural'ceva (p. 5). The control
variable is />(x,f), which represents the proportion of the beaver population to be trapped.

Given the control set,

0^p(x,t)<:Af },

we seek to minimize the cost functional:

•^(P) = /p'" ̂yz}*cp^^dxdt

We will characterize the optimal control that minimizes the cost functional:

min J(p).

The I Y term represents the damage due to beavers, and cph term represents the cost of trapping
the beavers.

Section 2 gives the existence of solutions to the state equation (1.1)-(1.3) and the existence of
an optimal control. In section 3, an optimal control is characterized in terms of the optimality system.
Uniqueness and existence results for the optimal system that yield an analytic construction of the unique
optimal control are presented in section 4.

This method using optimality systems with iteration schemes to construct the optimal control
was introduced by Stojanovic. See Leung and Stojanovic for results on optimal control of elliptic Lotka-
Volterra tjpe equations with different payoff functional than the one used here. Background concerning
diffusive Volterra-Lotka equations and monotone schemes can be found in Fife and Leung.
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2. Existence of a Solution to the State Equation and an Optimal Control

To guarantee solutions of the state equation, the following assumptions are made throughout
this discussion:

Zoeffo'W, Zo^O (2-1)

a, b, c, yeL'iO), a, b, yiO, (2-2)

c(x, 0 i Cj > 0 (2.3)

a e R, a > 0 (2.4)

3Q is smooth. See Ladyzenskaya, Solonnikov and Ural'ceva for notation explanations.

The following lemma constructs solutions of the state equation.

Lemma 2.1: Given p c Uy, there exists a solutions = z(p) to (1.1) - (1.3) with z in wI'\Q) (1

Proof: Choose C, > 0 large enough such that aCj - hcf s 0 and Cj i. |Zoli-(a)-
Choose Cj such that

sup(2bCy) + supip-a) < Cj

Denote z° = Cj. Inductively define z*, k=l,2,... as the solution in W^^CQ) of

z*-aAz*+C2Z* = z*"Ha-fe*'^-p)+C2Z*"' in Q (2-5)

z* = Zq when t=0

z* = 0 on dfix(0, 7)

The RHS of (2.5) is non-decreasing function ofz* for Oi z* ̂  z®. By comparing RHS of (2.5) forz*'^'
and z*, we obtain inductively

z**' s z* i z®, k = 1,2,...

Usmg (2.1) and the uniform boundedness of the RHS of (2.6),

^ C(IZolff« » Cj).
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The weak convergence of the z* sequence in and z strongly in L\Q) can be obtained. Using
this convergence, z is the desired solution of (1.1) - (1.3).

Remark: Solutions to (1.1) - (1.3) are unique under the given assumptions. Use the construction in the
proof of the previous lemma to define the map:

p e Uy " z=z(p),

where z(p) solves (1.1) - (1.3) with p as control. Assume an a priori bound on z(p), from the
construction,

zip) i s ,

which is independent of the bound M on Uy.

Next a minimizing sequence argument is used to prove the existence of an optimal control.

Lemma 2.2: With the cost functional J(p) defined in (1.4), there exists an optimal control in Uy and
corresponding state equation solution, which minimizes the cost functional.

Proof: Let [p^] , k=l,2,..., be a minimizing sequence with corresponding solutions = zip,). Since
the sequences and {z^^}, are bounded independent of k, the right hand sides of (1.1) for these
sequences are bounded independent of k. Thus we obtain

^ C*Cik).

There exists p* and z* such that

Pic " p* weakly in L (Q)

z^ " z* weakly in PP^\<?)

Z^ " z* strongly in L\Q).

In the weak formulation of (1.1) - (1.3),

we need the strong convergence of for the convergence of the quadratic terms on the RHS. We havez * =z(p').
Then using lower semicontinuity of the cost functional.
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Jip*) s lim Je'"(-yz^ * lim je'^cp^z^ = min J(p).

^ p

Thus j?' is a minimizer of J(p).

3. The Derivation of the Optimality System (OS)

Now the optimality system is derived by differentiating the cost functional with respect to the
control. Since the state variable z, solution of (1.1) - (13), is contained in the functional, we first need
to show that z depends on the control in a differentiable way. Then we will characterize the optimal
control in terms of the solution of the optimality system, which consists of the state equation coupled
with an adjoint equation.

Proposition 3.1: The mapping

Z'z(p) e lJ'j-°(Q)

is differentiable in the following sense:

In iJ','■»«?)

as e - 0 for any p e Uj^, and h e L'CQ) such that p+eh e for e small. Also is a solution of
the following problem:

(3.1)i|r, = aAi|r + ai|r - Ibzip) t|r - p i|r - hzip) in Q

i|r = 0 on Qx{0) U aQx(0,7) (3-2)

Proof: For p e p*th e for t small, denote z = z(p) and z* = zip* th). The quotient

satisfies

[-a*biz**z)*p] = - hz* in Q (3-2)

= 0 on £lx{0} U aQx(0,7).

Since the -a * b(z'*z) * p is bounded independent of e, one obtains
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+ V
z*-z

^ C(A)
LhOi

and then following Ladyzenskaya, Solonnikov and Ural'ceva

—) I ^ E (—] I ^ c
We obtain the desired weak convergence,

z -z - i|r. in

Noticing z*-'Z strongly in L\Q), we have satisfying (3.1).

Proposition 3.2: For an optimal control p* and corresponding solution z*=z(p*), there exists

A in n satisfying the adjoint equation

-A, = oAA + aA - 2hz*A - rX - pX * yz* + c(p'r in Q (3.3)

X(x,T) = 0 on Q (3.4)

X(x^) = 0 on 3Qx(0,7), (3.5)

and p* - —.
2c

Proof: Suppose /»* is an optimal control and z * is its corresponding solution of (1.1) - (1.3) whose
existence are guaranteed by Lemmas 2.1 and 2.2. Consider control p' + th e with associated

solution z* = zip'*eh). Since the minimum of the cost functional / is achieved at />*,

Q ̂  J(p'*eh) -Jip')
e

= Um - f f e-" Ih[(z')'-Cz')^]*c[(p')h'*2p'ehz'*e^hh'J-c(p')h'ldxdt
t-o e [2 j
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= lm - ff (z*+z*) + c -2p*hz'*thh* (dxdt

= jj e'"* ['if['iz*+cip*)^]^2cp*hz*)dxdt (3.6)

where
z*-z* - i|r. Using standard linear parabolic results (Ladyzenskaya, Solonnikov and Ural'ceva),

there exists a solution D satisfying the adjoint equation (3.3) - (3.5). Substituting
from the adjoint equation into the above inequality (3.5), we obtain

0 i J^Je''|*|»(-A,,-oAA-aA.+2te*X+rA,+/>*X)+ 2cp*Az']<£cdf.

Integration by parts together with equations (3.1), (3.2) yields

0 s r e-'*hz\-y.*2cp')dxdt (3.7)
J Q

Considering the form of the state equation and the adjoint equation, the parabolic maximum
principle (Protter and Weinberger) implies

0 < z and 0 i k on Q.

Consider the following three cases:

(i) On the set {(x,r) e Q | p'(x,t) = 0}, we can choose non-negative variations with

support on this set. Inequality (3.7) implies -X+2cp* i 0 and -k i 0 on this set,
which is a contradiction unless A = 0. Thus A = 0 on this set.

(ii) On the set {(x,r)eQ|0 < p'(x,t) < A/}, we can choose variations h with arbitrary
sign and with support on this set. Thus inequality (3.7) implies

-A+2cp*=0, p''4-
2c

on this set.

(iii) On the set {{x,t)eQ\p*{x,t)=M\, we can choose non-positive variations h with

support on this set. Using inequality (3.7) gives - A + 2cp * i 0 on this set.

In this case, M = p* ̂
2c

Putting the three cases together.
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,• =min(M.A)

Claim: There exists Mj > 0 independent of M such that

\ i on Q.

Since the bound on z * is independent of M, the only possible "M" dependence in the \ bound could

come from the p' terms. But the terms involving p' pull the solution X down:

p'icp'-X) ^ 0.

Thus, A is bounded above by the bounded solution of

-A, = aAA + oA + rz* in Q

A = 0 on t = T

A = 0 on 3fJx(0,7).

This bound of X finishes the claim.

Now we choose M so large that

— i — < M.
2c 2c

The relationship between p * and X becomes

2c

Considering the relationship between an optimal control and the associated adjoint variable
from this theorem, we now consider the following optimality system (OS):
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z, = aAz+z(a-fcz— in Q (OS)

12
-X, = aAX+aX-2faX-rX +yz in Q

4c

z(x,0) = Zo(Jc) on Q

k(x,T) = 0 on Q

z(x^) = X(xJ) = 0 on 0Qx(O,I)

4. The Existence and Uniqueness Results for the OS

Now we prove the existence and uniqueness results for the OS, which will give us a
characterization of the unique optimal control.

Proposition 4.1: When T is sufficiently small, solutions of OS are unique.

Proof: Suppose (Zi,X,), are two solutions. Let

= z,, e''"A, = X,, = Zj, = Xj.

where p > 0 to be chosen below. Let Mj be an upper bound on z^ Xj, Zj and Xj. Multiply
w, PDE by w,-Wj, A, PDE by A,-Aj, Wj PDE by Wj-w, and Aj PDE by Aj-Aj, integrate on Q,
and add all four equations together. The w, and Aj equations are written for illustration.

^2
-e'l^CA,), - e''^aA(A,) + p«''"Aj = - Ibw^h^ -re'^^Aj

4c

-(A a A A j+p A j = (a -r) A1 -2fm'j A jC ""-c ^
4c

2(H',),-aAWj+pw, = oWj-be ""w,-e "''Vj—
2c

96



The result after adding the four PDEs is:

Iq [ K "Az)
+ |l(lVi-M'2f + ll(A,-A2)2]

e'^^(WjAj-WjA,)—(Wi-Wj)

+2(w A - w,A,)he "'(A, -Aj)

n«'"(w,-»',XA,-A,)-^(A|-4)(A,-A,)]

(4.8)

Simplifying the time derivative terms,

/<, [("■i-»'2),(»'.->'2)-(A,-A,),(A,-AJ]

■L
ft

(A,A)'.2^

't

I /o [ ("^1 -»»'2f 1^1 Af(Jf'O) ]

The Laplacian terms become

j'(a|V(H'i-W2)l^ + a|V(AiA)P)-
The terms on RHS of (4.8),

- ^ (a^A^)(A,A) and -be'^iwf-w^lw^-w^)

are non-positive. Using the positivity of the time derivative and Laplacian terms,
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+-^ kA-'^A Ih -Wjl+afee "VjAj-WjA, I |A, -A21

■^^^'"YlwrWzl lAiAl]

Estimating terms from (4.9), we have

^IwjA^-w.A, I |w,-Wj| s ^ |w2(Aj-A,)+(Wj-w,)(A,)| Iwj-wjl

^ (l»^2l.|A,I) ((A2-A,f+3(>v,-Wjf)
M.^i, ((A,-A,f.3(w,-w,f)

2i<!'^|WjA2-vi',A,| |Ai-Aj|ifM!'^ sup (|w2|,|Aj).

• (3(AAf i»»'i-^2f)

1^1-^2! ^ «^''^(A-'»'2)'iA,-A2f).

Combining these estimates, (4.9) implies

where depends on y» b, Cg, and depends on a. If p > then the solution is
unique. Rearranging and taking natural logarithm of both sides,

Infp-Q-lnfMCj)

which can be satisfied if p is large and T is sufficiently small.
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Theorem 4.2: If T is sufficiently small, there exists a solution pair z and A satisfying the optimality
system (OS).

Proof: Define

and

y(z.X) =

= X(a-2bz) + yw + (R-r)k-—.
4c

For R large enough,

/ is an increasing function of z,

/ is a decreasing function of X,
g is an increasing function m X and in w, and
g is a decreasing function in z,

for 0 s z s Cj and 0 s A s A/, (where C,, M, are the upper boimds on our solutions of the state and
adjoint equations.).

Define z* and A* *=1,2 as solutions of

z,*-aAz*+/iz* =y(z*'^ A**^) in Q

z = Zq on r = 0

Z = 0 on 3Qx(0,7)

-aJ - aAA* + /?A* = g(A*'^ z*, z*"') in Q

A = 0 on t=T

A = 0 on 3Qx(0,7)

where z® = 0, z"'=Cj, A"'=0, A®=A/,. Comparing the RHS ofz* PDE and the RHS ofz^ PDE and
using the properties of /, we obtain
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^ z^

Notice that all iterates are non-negative. Also

z,* - aAz"' + Rz'^ ̂  f(z'^. A.*') = z,' - aAz^ + Rz^

implies z' s z"^ = Cj. By choosing large enough (depending on a, y, and c), we can similarly
obtain

^ A«

Comparing RHS of A^ PDE and RHS of A^ PDE and using properties of g, we obtain

Ai i k\

Continuing we have

z" S S z"^'

and

A"'' i , A"^^ i A"

With uniform a priori estimates as in Lemma 2.1 and Proposition 3.1, we obtain

z^ r z , z"*' •. z

and

A" s A , A"*' >■ A

and the limiting functions (z. A, z. A) satisfy
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z, - aAz + Rz = fiz, k) in Q

-X, - aAX + /?X = ̂ (X, z, z)

z, - aAz + rz = yK A) (4.10)

-A, - aAA * RX = g(X, z, z)

z = z = Zq wAe/i r=0

A = A = 0 when t=T

z=z = A = A= 0 on 3Qx(0,7).

Notice (zi A, z. A) is also a solution of that system. A uniqueness result, similar to Proposition 4.1,
gives that solutions of system (4.10) are unique. Hence, we conclude z = z and X = A, and (z^ X) is
the desired solution to the optimality system.

Combining Proposition 4.1 and Theorem 4.2, we have our desired characterization of the unique
optimal control,

2c

where (p*,A) is the unique solution of OS.
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APPENDIX II

The Computer Algorithm for Numerical Simulation
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THIS PROGRAM SIMULATES THE GROWTH OF OPTIMAL BEAVER POPULATION AND TRAPPING OVER

TIME AND SPACE SUBJECT TO THEIR GROWTH AND SPATIAL DIFFUSION FOLLOWING PARTIAL

DIFFERENTIAL EQUATION IN ORDER TO MINIMIZE DISCOUNTED SOCIAL COST TO SOCIETY.

POPULATION IN THIS PROGRAM IS DEFINED AS HEADS PER SQUARE MILES.

X AND Y ARE SPATIAL CORDINATES (SPACE VARIABLES).

VARIABLE DECLARATION

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

REAL*8

REAL*8

REAL*8

REAL*8

REAL

REAL

REAL

REAL

REAL

I, J. K
M, N, T
V

II

III

DX, DY, DT
Z(40, 40, 200,2)
LD(40, 40,200,2)
P(40, 40,200,2)
ALPHA, A,B
R, C, GEMA
ZSUM LSUM

SLOS

NBT

! LOOP VARIABLES CORR. TO X, Y, AND TIME VARIABLES
! NUMBER OF GRID POINTS ON X, Y, AND TIME VARIABLES^

I

INDEX DENOTING CURRENT AND PREVIOUS ITERATIONS

INDEX COUNTING THE # OF SIMULATIONS

INDEX COUNTING THE TIME PERIODS

CHANGE IN X, Y AND TIME VARIABLES
STATE VARIABLE

COSTATE (ADJOINT) VARIABLE
RATE OF HARVEST (CONTROL VAREABLE)

BIOLOGICAL PARAMETERS

ECONOMIC PARAMETERS

COMPARISION VARIABLES FOR Z AND LD

SOCIAL LOSS FUNCTIONAL VALUE

NUMBER OF BEAVERS TRAPPED

I INPUT FILE FOR INITIAL PARAMETER

! INPUT FILE FOR INITIAL POPULATION

! OUTPUT FILE

CHARACTER INTPAR

CHARACTER INTPOP

CHARACTER OPTSOLN

READING INPUT PARAMETERS

OPEN (7, FILE = 'INTPAR', STATUS = 'OLD')

READ (7, *) ALPHA, A, B
READ (7, *) C, GEMA, R
READ (7, *) M, N, T
READ (7, *) DX, DY

CLOSE (7)

V = 1

II = 0

DT = (0.48)*(((DX**2)*(DY**2))/(((DX**2)+(DY**2))*ALPHA))

INVOKING INITIAL POPULATION INPUT FILE. NOTE THAT POPULATIONS ON SIDE

BOUBDARIES ARE ZERO

OPEN (8, FILE = 'INTPOP', STATUS = 'OLD')

K = 1

DO J s 1, N

READ (8, *) (Z(I,J,K,V), I = 1, M)

END DO

CLOSE (8)

INITIALIZING Z AS ZERO ON ALL THE GRID POINTS INCLUDING SIDE BOUNDARIES

FROM PERIOD K = 2 TO T SO AS TO PROVIDE A BASIS FOR COMPARISION OF

THE RESULTS OF FIRST ROUND ITERATION OF STATE EQUATION

DO K = 2, T
DO J = 1, N

^The actual planning period starts from time zero. But in this program, the initial values of all the loop variables are set
to 1. Therefore, the values M, N and T may be set one more than the actual number of grid points on each of the axes.
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(LD(I+1,J,T+1-K,V)

- 2.0*LD(1,J,T+1-K,V) +

LD(I-1.J,T+1-IC,V))

+ (1.0/(DY**2))*(LD(I,J+1,T+1-K,V) -

2.0*LD(1,J,T+1-IC,V) +

LD(1,J-1,T+1-K,V)))

+ DT*LD(I,J,T+1-K,V)*(-R + A

-(2.0*B*Z(I,J,T+1-<,V)) -

(LD(I,J,T+1-K,V)/(4.0*C)))

+ DT*GEMA*Z(I,J,T+1-K,V)

+ LD(I,J.T+1-K,V)

END DO

END DO

END DO

* CHECKING FOR CONVERGENCE OF Z AND LD BETWEEN TWO SUCCESSIVE ITERATIONS. ITERATION STOPS IF
* DIFFERENCE OF WEIGHTED VALUES OF Z AND LD BETWEEN TWO ITERATIONS IS LESS THAN OR EQUAL TO

* PRESPECIFIED TOLERANCE LIMIT.

DO K = 1, T

ZSUM = 0.0

LSUM = 0.0

DO J s 2, N-1
DO I = 2, M-1

ZSUM = ZSUM + ABS(LD(I,J,K,V) - LD(I,J,K,V+1))
LSUM = LSUM ABS(Z(I,J,K,V)-Z{I,J,K,V+1))

END DO

END DO

IF ( ZSUM*(DX*DY) .GT. .0001) GO TO 30
IF ( LSUM*(DX*DY) .GT. 0.001) GO TO 30

END DO

FINDING OPTIMAL RATE OF TRAPPING P

DO K = 2, T
DO J = 1, N

DO I = 1, M

P(I,J,K,V) = LD(I,J,K,V)/(2.0*C)

END DO

END DO

END DO

COMPUTATION OF THE VALUE OF SOCIAL LOSS FUNCTIONAL.

SLOS = 0.0

NBT = 0.0

III = 0

DO K = 2, T
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lU = 111 + 1

DO J = 1, N
DO I = 1, M

SLOS = SLOS + (Z(I,J,K.V)*(0.5*GEMA*Z(I,J,K,V) +

1 C*(P(I,J,K,V)**2))*DX*DY*

1 DT)*exp(-R*DT*III)

NBT = NBT + Z(I,J,K,V)*P(I,J,K,V)*DX*DY

END DO

END DO

END DO

* SENDING THE RESULTS TO OUTPUT FILE NAMED 'OPTSOLN'.

OPEN (12, FILE = 'OPTSOLN', STATUS = 'NEW )

WRITE (12,*) 'ALPHA = ', ALPHA, ' A = ', A, 'B = ', B
WRITE (12,*) 'R = ', R, 'C = ', C, 'GEMA= ', GEMA
WRITE (12,*) 'H= ', M, 'N = ', N, ' T = ',T
WRITE (12,*) 'DX = ', DX, 'DY = ', DY, 'DT = ',DT
WRITE (12,*) 'NUMBER OF SIMULATIONS = ', II
WRITE (12,*) 'VALUE OF THE SOCIAL LOSS FUNCTIONAL = ', SLOS
WRITE (12,*) 'NUMBER OF"BEAVERS TRAPPED', NBT

WRITE (12,*) 'OPTIMAL POPULATION DENSITIES OF BEAVERS, Z(x, y, t)'

III = 0

DO K = 1, T

WRITE (12, *) 'TIME PERIOD = ', III

DO J = 1, N

WRITE (12, 100) J, (Z (I,J,K,V), I = 1, M)
100 FORMAT (I3,6X,7F8.4)

END DO

III =111+1

END DO

WRITE (12,*) 'OPTIMAL TRAPPING RATES OF BEAVERS, P(x, y, t)'

III = 1

DO K = 1, T

WRITE (12,*) 'TIME PERIOD = ', III

DO J = 1, N

WRITE (12, 101) J, (P (I,J,K,V), I = 1, M)
101 FORMAT (13,6X, 7F7.3)

END DO

III =111+1

END DO

END
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APPENDIX III

The Baseline Simulation Values of the Optimal Beaver Population
and Trapping Rates
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This is the result of baseline simulation with constant parameters and fine grid intervals:

Simulation Parameters:

a = 725.27 a = 0.335 b = 0.2066315

r = 0.056 c = 182.71 Y = 144.59

M = 12 N = 20 T = 40

dx == 6.27 dy = 6.27 dt =! 0.01302

Number of Simulations = 7

The value of the Objective Function = $136,500.80

The number of Beavers Trapped = 2,314

Opti

( s

imal population densities of beavers, Z{x^

n

ft

*0 *1 *a *a *4 *s *8

Vio 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Vs 0.0000 0.0000 0.0000 2.1326 3.4528 3.3613 0.0000

Vs 0.0000 1.2282 1.3075 2.1642 3.5443 3.5443 0.0000

y? 0.0000 1.0260 0.8862 1.3457 2.1335 0.7227 0.0000

Ve 0.0000 1.1827 0.9300 0.7271 0.7768 0.7768 0.0000

Vs 0.0000 0.7290 0.8539 0.9391 0.9391 0.9391 0.0000

fA 0.0000 0.7510 0.7939 0.9391 0.9391 0.9391 0.0000

Va 0.0000 0.7613 0.8700 0.9391 0.9391 0.9391 0.0000

Va 0.0000 0.9391 0.9391 0.9391 0.9391 0.9391 0.0000

Vi 0.0000 0.9391 0.9391 0.9391 0.9391 0.9391 0.0000

Vo

^ s

0.0000

1

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1

*0 *1 *a *a *4 *5 *8

yio 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ys 0.0000 0.2584 0.6505 1.4708 2.1511 1.7555 0.0000

ye 0.0000 0.6592 1.1360 1.9143 2.5738 2.0202 0.0000

y? 0.0000 0.7775 1.1025 1.4588 1.7292 1.2278 0.0000

ys 0.0000 0.7263 0.9332 0.9944 1.0307 0.7098 0.0000

ys 0.0000 0.6295 0.8517 0.8937 0.8973 0.6655 0.0000

y4 0.0000 0.5815 0.8288 0.9089 0.9192 0.6897 0.0000

ya 0.0000 0.6113 0.8587 0.9222 0.9236 0.6923 0.0000

ya 0.0000 0.6526 0.8893 0.9205 0.9088 0.6792 0.0000

yi 0.0000 0.5025 0.6780 0.6924 0.6793 0.5046 0.0000

yo

{ s

0.0000

2

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

*0 *1 *2 *a *4 *s *8

^10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

yg 0.0000 0.3059 0.6867 1.1995 1.5261 1.1457 0.0000

ys 0.0000 0.5609 1.0765 1.6570 1.9900 1.4587 0.0000

y? 0.0000 0.6470 1.0771 1.4229 1.5652 1.0976 0.0000

ya 0.0000 0.6076 0.9241 1.0649 1.0643 0.7158 0.0000

ys 0.0000 0.5494 0.8272 0.9116 0.8765 0.5888 0.0000

y4 0.0000 0.5222 0.8028 0.8944 0.8619 0.5843 0.0000

ya 0.0000 0.5326 0.8166 0.9033 0.8652 0.5860 0.0000

ya 0.0000 0.5219 0.7892 0.8570 0.8107 0.5461 0.0000
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yi 0.0000 0.3602 0.5413 0.5820 0.5460 0.3657 0.0000

Yo

t s X

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

V — J

*0 *1 Xj *3 *4 *5 *8

yio 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

y9 0.0000 0.3061 0.6415 0.9872 1.1355 0.8030 0.0000

ya 0.0000 0.5135 0.9962 1.4314 1.5851 1.1035 0.0000

Y? 0.0000 0.5759 1.0220 1.3373 1.3952 0.9433 0.0000

Ye 0.0000 0.5437 0.8993 1.0743 1.0472 0.6839 0.0000

Ye 0.0000 0.4983 0.8021 0.9150 0.8570 0.5494 0.0000

Y4 0.0000 0.4774 0.7696 0.8729 0.8117 0.5196 0.0000

Y3 0.0000 0.4738 0.7632 0.8621 0.7981 0.5100 0.0000

Yi 0.0000 0.4351 0.6967 0.7796 0.7156 0.4550 0.0000

yi 0.0000 0.2806 0.4478 0.4979 0.4539 0.2872 0.0000

yo

t s ̂

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

*0 *1 *2 *3 *4 *5 *8

yio 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ye 0.0000 0.2890 0.5770 0.8209 0.8794 0.5942 0.0000

Ye 0.0000 0.4746 0.9079 1.2397 1.2945 0.8651 0.0000

Y'r 0.0000 0.5291 0.9580 1.2334 1.2363 0.8089 0.0000

Ye 0.0000 0.5029 0.8659 1.0484 1.0013 0.6375 0.0000

Ye 0.0000 0.4634 0.7758 0.9026 0.8323 0.5191 0.0000

Ya 0.0000 0.4419 0.7345 0.8435 0.7680 0.4754 0.0000

Ye 0.0000 0.4269 0.7082 0.8098 0.7335 0.4527 0.0000

Yi 0.0000 0.3736 0.6182 0.7032 0.6334 0.3893 0.0000

Yx 0.0000 0.2302 0.3803 0.4309 0.3863 0.2364 0.0000

Yo

t = s

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

*0 *1 Xj *3 *4 *5 *8

Vio 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ye 0.0000 0.2658 0.5121 0.6908 0.7031 0.4587 0.0000

Ye 0.0000 0.4372 0.8209 1.0787 1.0788 0.6983 0.0000

Yi 0.0000 0.4914 0.8912 1.1272 1.0956 0.6982 0.0000

Ye 0.0000 0.4722 0.8272 1.0032 0.9420 0.5879 0.0000

Ye 0.0000 0.4368 0.7473 0.8778 0.8010 0.4908 0.0000

Ya 0.0000 0.4125 0.6987 0.8088 0.7274 0.4414 0.0000

Ye 0.0000 0.3883 0.6556 0.7548 0.6749 0.4077 0.0000

Yi 0.0000 0.3274 0.5520 0.6335 0.5640 0.3395 0.0000

Yx 0.0000 0.1952 0.3290 0.3767 0.3343 0.2006 0.0000

Yo

^ S A

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

u • 0

*0 *1 *2 *3 *4 *5 *6

yio 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

yo 0.0000 0.2413 0.4529 0.5881 0.5764 0.3661 0.0000

ys 0.0000 0.4007 0.7398 0.9441 0.9141 0.5773 0.0000

y? 0.0000 0.4571 0.8250 1.0263 0.9739 0.6080 0.0000

ye 0.0000 0.4455 0.7852 0.9487 0.8781 0.5396 0.0000

yj 0.0000 0.4141 0.7164 0.8446 0.7644 0.4626 0.0000

Ya 0.0000 0.3871 0.6630 0.7708 0.6881 0.4124 0.0000

Ye 0.0000 0.3557 0.6070 0.7016 0.6223 0.3711 0.0000

Yi 0.0000 0.2910 0.4962 0.5720 0.5056 0.3005 0.0000
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Vi
Vo

Vio

yg
Ya
Yi

Ye
Ys
Ya

Yi
Ys

Vi
Yo

t = 8

Vio
Ya
Ya

Yi

Ya

Ys
Ya

Ya
Ys
Y^

Yo

t = 9

Y^o

Ye
Ya

y?
ye
ys
Ya
Ya

Ys
Yy
Yo

t = 10

0.0000 0.1693 0.2887 0.3324 0.2930 0.1737 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

*0 *1 *2 *3 *4 *5 *e

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.2177 0.4007 0.5061 0.4822 0.3000 0.0000

0.0000 0.3659 0.6661 0.8313 0.7854 0.4867 0.0000

0.0000 0.4246 0.7612 0.9333 0.8693 0.5341 0.0000

0.0000 0.4204 0.7413 0.8906 0.8146 0.4946 0.0000

0.0000 0.3931 0.6835 0.8061 0.7246 0.4347 0.0000

0.0000 0.3641 0.6276 0.7313 0.6495 0.3862 0.0000

0.0000 0.3276 0.5626 0.6518 0.5752 0.3403 0.0000

0.0000 0.2615 0.4487 0.5186 0.4561 0.2690 0.0000

0.0000 0.1492 0.2560 0.2956 0.2595 0.1527 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

*0 *1 *2 *3 *4 *5 *6

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.1959 0.3554 0.4397 0.4101 0.2511 0.0000

0.0000 0.3335 0.6002 0.7363 0.6826 0.4168 0.0000

0.0000 0.3936 0.7009 0.8492 0.7794 0.4730 0.0000

0.0000 0.3960 0.6970 0.8322 0.7538 0.4534 0.0000

0.0000 0.3728 0.6494 0.7647 0.6835 0.4073 0.0000

0.0000 0.3428 0.5930 0.6914 0.6118 0.3618 0.0000

0.0000 0.3029 0.5223 0.6057 0.5328 0.3136 0.0000

0.0000 0.2369 0.4080 0.4721 0.4140 0.2429 0.0000

0.0000 0.1330 0.2291 0.2649 0.2319 0.1358 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

*0 *1 *2 *3 *4 *5 *6

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.1763 0.3163 0.3852 0.3535 0.2138 0.0000

0.0000 0.3036 0.5417 0.6557 0.5992 0.3617 0.0000

0.0000 0.3642 0.6449 0.7737 0.7018 0.4217 0.0000

0.0000 0.3720 0.6533 0.7755 0.6967 0.4159 0.0000

0.0000 0.3528 0.6147 0.7223 0.6424 0.3807 0.0000

0.0000 0.3228 0.5593 0.6520 0.5752 0.3388 0.0000

0.0000 0.2810 0.4856 0.5634 0.4945 0.2900 0.0000

0.0000 0.2159 0.3727 0.4316 0.3777 0.2209 0.0000

0.0000 0.1196 0.2065 0.2390 0.2088 0.1219 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

yio 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

79 0.0000 0.1588 0.2826 0.3400 0.3082 0.1846 0.0000

ye 0.0000 0.2765 0.4899 0.5869 0.5303 0.3172 0.0000

Yj 0.0000 0.3365 0.5931 0.7060 0.6345 0.3784 0.0000

Ye 0.0000 0.3486 0.6107 0.7214 0.6438 0.3820 0.0000

Ys 0.0000 0.3330 0.5801 0.6800 0.6022 0.3554 0.0000

Ya 0.0000 0.3037 0.5268 0.6136 0.5400 0.3170 0.0000

Ya 0.0000 0.2613 0.4521 0.5246 0.4596 0.2688 0.0000
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0.0000 0.1978 0.3420 0.3961 0.3461 0..2020

yi 0.0000 0.1084 0.1874 0.2169 0.1892 0..1102

Vo 0.0000 0.0000 0.0000 0.0000 0.0000 0..0000

Optimal trapping rates of beavers, P(x^,Vj . t)

*0 *1 *2 *3 *4 *5 Xa

Vio 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ya 0.000 0.031 0.060 0.082 0.087 0.059 0.000

Ya 0.000 0.055 0.099 0.128 0.130 0.086 0.000

Yj 0.000 0.065 0.112 0.137 0.132 0.084 0.000

Ya 0.000 0.065 0.109 0.129 0.119 0.074 0.000

Ys 0.000 0.061 0.103 0.118 0.107 0.066 0.000

Ya 0.000 0.057 0.095 0.110 0.099 0.061 0.000

Ya 0.000 0.052 0.087 0.099 0.089 0.055 0.000

Yz 0.000 0.043 0.071 0.081 0.072 0.045 0.000

Y^ 0.000 0.026 0.043 0.048 0.043 0.027 0.000

Yo

t s 7

0.000 0.000 0.000 0.000 0.000 0.000 0.000

*0 *1 *2 *3 *4 *5 Xa

Vio 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ys 0.000 0.028 0.052 0.069 0.069 0.045 0.000

ya 0.000 0.048 0.087 0.110 0.107 0.069 0.000

Yj 0.000 0.056 0.099 0.121 0.114 0.072 0.000

Ya 0.000 0.057 0.098 0.116 0.106 0.065 0.000

Ys 0.000 0.054 0.092 0.107 0.096 0.058 0.000

Ya 0.000 0.050 0.085 0.098 0.088 0.053 0.000

Ya 0.000 0.045 0.076 0.088 0.078 0.047 0.000

Yz 0.000 0.037 0.062 0.070 0.063 0.038 0.000

Y^ 0.000 0.021 0.036 0.041 0.036 0.022 0.000

Yo 0.000 0.000 0.000 0.000 0.000 0.000 0.000

t = 3

*0 *1 *2 *3 *4 Xs Xa

yio 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ys 0.000 0.024 0.045 0.057 0.055 0.035 0.000

ya 0.000 0.041 0.074 0.093 0.089 0.056 0.000

Yj 0.000 0.049 0.086 0.105 0.098 0.061 0.000

Ya 0.000 0.050 0.086 0.102 0.093 0.057 0.000

Ys 0.000 0.047 0.081 0.094 0.084 0.051 0.000

Ya 0.000 0.044 0.075 0.086 0.077 0.046 0.000

Ya 0.000 0.039 0.066 0.076 0.068 0.040 0.000

Yz 0.000 0.031 0.053 0.060 0.053 0.032 0.000

yi 0.000 0.018 0.030 0.034 0.030 0.018 0.000

yo

t s 4

0.000 0.000 0.000 0.000 0.000 0.000 0.000

*0 *1 *2 *3 *4 Xj Xa

yio 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ys 0.000 0.021 0.037 0.047 0.044 0.028 0.000

ya 0.000 0.035 0.063 0.077 0.073 0.045 0.000

y7 0.000 0.042 0.074 0.089 0.082 0.050 0.000

ya 0.000 0.043 0.074 0.088 0.079 0.048 0.000

0.0000

0.0000

0.0000
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Ys 0.000 0.040 0.070 0.081 0.073 0.044 0.000

y4 0.000 0.037 0.064 0.074 0.066 0.039 0.000

Ya 0.000 0.033 0.056 0.065 0.057 0.034 0.000

Y2 0.000 0.026 0.044 0.051 0.045 0.026 0.000

Y, 0.000 0.015 0.025 0.029 0.025 0.015 0.000

Yo

* — e

0.000 0.000 0.000 0.000 0.000 0.000 0.000

t — j

*0 *1 *2 *a *4 *5 Xg

^10 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Y9 0.000 0.017 0.030 0.038 0.035 0.022 0.000

Yg 0.000 0.029 0.052 0.063 0.058 0.036 0.000

Y7 0.000 0.035 0.061 0.073 0.067 0.041 0.000

Yg 0.000 0.035 0.062 0.073 0.066 0.040 0.000

Yg 0.000 0.034 0.058 0.068 0.061 0.036 0.000

Y4 0.000 0.031 0.053 0.062 0.055 0.033 0.000

Ya 0.000 0.027 0.047 0.054 0.048 0.028 0.000

Ya 0.000 0.021 0.036 0.042 0.037 0.022 0.000

Yi 0.000 0.012 0.020 0.023 0.020 0.012 0.000

Yo

t S i.

0.000 0.000 0.000 0.000 0.000 0.000 0.000

W •0

*0 *1 *a *g *4 *5 Xg

Y10 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Yg 0.000 0.013 0.024 0.029 0.027 0.016 0.000

Yg 0.000 0.023 0.041 0.049 0.045 0.028 0.000

Yy 0.000 0.028 0.049 0.058 0.053 0.032 0.000

Yg 0.000 0.028 0.050 0.059 0.053 .  0.032 0.000

Yg 0.000 0.027 0.047 0.055 0.049 0.029 0.000

Y4 0.000 0.025 0.043 0.050 0.044 0.026 0.000

Yg 0.000 0.022 0.037 0.043 0.038 0.022 0.000

Ya 0.000 0.017 0.029 0.033 0.029 0.017 0.000

Yi 0.000 0.009 0.016 0.018 0.016 0.009 0.000

Yo

t — 7

0.000 0.000 0.000 0.000 0.000 0.000 0.000

f

*0 *1 *a *a *4 *s Xg

Y10 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Yg 0.000 0.010 0.018 0.021 0.020 0.012 0.000

Yg 0.000 0.017 0.030 0.037 0.033 0.020 0.000

Y7 0.000 0.021 0.037 0.044 0.039 0.024 0.000

Yg 0.000 0.021 0.037 0.044 0.040 0.024 0.000

Yg 0.000 0.020 0.035 0.041 0.037 0.022 0.000

Y4 0.000 0.019 0.032 0.038 0.033 0.020 0.000

Yg 0.000 0.016 0.028 0.032 0.028 0.017 0.000

Ya 0.000 0.012 0.021 0.025 0.022 0.013 0.000

Y, 0.000 0.007 0.012 0.014 0.012 0.007 0.000

Yo

^ s 0

0.000 0.000 0.000 0.000 0.000 0.000 0.000

b "• 0

*0 *1 Xj *a *4 *5 Xg

Vio 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Yg 0.000 0.007 0.012 0.014 0.013 0.008 0.000

Yg 0.000 0.011 0.020 0.024 0.022 0.013 0.000

Yy 0.000 0.014 0.024 0.029 0.026 0.016 0.000

Yg 0.000 0.014 0.025 0.030 0.026 0.016 0.000
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Ys
Ya
Va
Y2

Vi
Yo

t = 9

^10

Yb
Yb

Yr

Ya
Yi

Ya
Va

Y2

Vi
Vo

t = 10

0.000 o.ou 0.024 0.028 0.025 0.015 0.000

0.000 0.012 0.022 0.025 0.022 0.013 0.000

0.000 0.011 0.019 0.022 0.019 0.011 0.000

0.000 0.008 0.014 0.016 0.014 0.008 0.000

0.000 0.004 0.008 0.009 0.008 0.005 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

*0 *1 *2 Xa *4 *5 *8

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.003 0.006 0.007 0.006 0.004 0.000

0.000 0.006 0.010 0.012 0.011 0.007 0.000

0.000 0.007 0.012 0.015 0.013 0.008 0.000

0.000 0.007 0.013 0.015 0.013 0.008 0.000

0.000 0.007 0.012 0.014 0.012 0.007 0.000

0.000 0.006 0.011 0.013 0.011 0.007 0.000

0.000 0.005 0.009 0.011 0.009 0.006 0.000

0.000 0.004 0.007 0.008 0.007 0.004 0.000

0.000 0.002 0.004 0.004 0.004 0.002 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000

Vio 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Yb 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ys 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Yy 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Yb 0.000 0.000 0.000 0.000 0.000 .  0.000 0.000

Yb 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ya 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Yb 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Y2 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Yi 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Yo 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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