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ABSTRACT

Mycorrhizal colonization can alter stomatal behavior of host leaves

during drought without obvious changes in plant size or nutrition. This may

be related to an altered production or reception of a chemical signal of soil

drying. I tested whether intact root systems were required to observe a

mycorrhizal effect on leaf transpiration (£), or whether some residual

mycorrhizal influence on leaves could affect E of foliage detached from root

systems. Transpiration assays were performed in the presence of several

possible candidates for a chemical signal of soil drying. Although

colonization alone did not alter E of detached leaves of Vigna unguiculata

(cowpea), colonization interacted significantly with ABA and pH in regulating

transpiration. Colonization affected E of detached Rosa hybrida (rose)

leaves but had no effect on E of detached leaves of Pelargonium hortorum

(geranium). In each species tested, increasing the ABA concentration

decreased E. In cowpea, calcium appeared to alter stomatal sensitivity to

ABA, as well as regulate stomatal activity directly. The pH of the feeding

solution affected E in rose, but did not change E independently in cowpea or

geranium. Adding phosphorus to the feeding solution did not alter E, but did

change the apparent sensitivity of cowpea stomata to ABA. Colonization of

roots by mycorrhizal fungi can result in residual effects in detached leaves,

that can alter the stomatal reception of chemical signals in both rose and

cowpea.
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I. INTRODUCTION AND LITERATURE REVIEW

Arbuscular mycorrhizal fungi

Arbuscular mycorrhizal (AM) fungi play important roles in the plant

community, colonizing the roots of most plants, and markedly affecting their

physiology. One example is their ability to relieve certain stresses imposed

on a plant. AM fungi probably have their greatest impact when plants are

exposed to "growth-limiting environmental stress" (Sylvia & Williams 1992)

and are most often found in soils of low productivity, especially where water

and nutrient stress prevail (Gerdemann 1976, Hayman et al. 1976).

Water is the single most important element limiting plant productivity

throughout the world (Kreeb et al. 1989). Influences by AM fungi change a

plant's ability to absorb and conduct water, and should thus be examined.

Plants take up water from the soil through roots and deliver it through xylem

to leaves where it exits leaves via transpiration. It is widely accepted that

one of the greatest benefits to the plant from AM fungi is increased

phosphorus nutrition, and most early studies attributed influences on water

relations to such (Safir et al. 1971, Safir et al. 1972, Graham & Syvertsen

1985). Because of this, it became important to design experiments so that

uncolonized plants would have adequate phosphorus to attain similar growth

rates as AM plants. Differences in water relations between colonized and

uncolonized plants appearing in light of these controls suggested an even
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more complex effect on plants infected with AM fungi (Auge et al. 1986b,

Auge 1989). Now there is conclusive evidence that AM fungi have both

nutritional and non-nutritional effects on plants.

Transpiration (E) can be affected by AM colonization (Druge and

SchOnbeck 1992). When compared, mycorrhizal rose plants had

transpiration rates 12.2 mg m'^ s'^ to 14 mg m"^ s"^ higher than

nonmycorrhizal rose plants of similar size and phosphorus content (Auge

1989), under similar conditions in either a greenhouse or growth room.

Such a change may have been related to osmotic adjustments occurring in

the leaf upon colonization. This idea has been explored (Allen & Boosalis

1983, Auge et al. 1986b) and it was found that mycorrhizal leaves had

decreased osmotic potential (*FJ at full turgor and at the turgor loss point.

This was associated with a corresponding increase in the pressure potential

(*Fp) at full turgor. Colonization apparently enabled plants to maintain leaf

turgor at larger tissue water deficits, and lower leaf and soil water potentials

(T) compared to uncolonized plants. Mycorrhizae also influence

photosynthesis, by increasing COj assimilation rates (Droge and SchOnbeck

1992).

Additionally, the uptake of water by the root can be altered by

colonization. Mycorrhizae have hyphae, some of which extend away from

the root, penetrating into and between soil aggregates. Besides greatly

increasing the absorptive surface area (Gerdemann 1975), these may



increase the root hydraulic conductivity of mycorrhizai plants (Hardie and

Leyton 1981), with substantial increases in water uptake being associated

with decreased root resistance (Faber et al. 1991). These extraradical

hyphae may be acting as tiny conduits, exploring and scavenging water from

portions of the soil environment where root hairs cannot reach. Mycorrhizai

roots are able to maintain greater turgor across a range of tissue hydration,

following drought, although under well-watered conditions mycorrhizai roots

had lower solute concentrations in root symplasm than nonmycorrhizal roots

(Auge and Stodola 1990).

Stomatal conductance (g^), the inverse of the resistance of water loss

from a leaf, can also be affected by mycorrhizai colonization (Levy and

Krikun 1979, Hardie and Leyton 1981, Allen and Boosalis 1983, Auge et al.

1986a, Aug6 et al. 1987, Auge et al. 1991, Ebel et al. 1996). Usually,

mycorrhizai symbiosis increases g^. Early studies attributed changes in to

increased root length, surface area and lower root resistances in mycorrhizai

plants (Hardie and Leyton 1981), or alternatively to altered stomatal

regulation independent of root resistance (Levy and Krikun 1979). Higher g^

has been demonstrated in both wet and dry conditions, where stomatal

closure occurred at lower leaf water potentials in mycorrhizai plants (Allen

and Boosalis 1983). Well-watered rose plants colonized by AM fungi, and

given low rates of P, had higher g^ even when there was no apparent

difference in leaf water potential of colonized and uncolonized plants (Auge



et al. 1986a). Foliar leaf P levels did not appear to be the controlling

factor. When plants were artificially manipulated by changing the soil to

achieve similar low levels, AM plants also had higher g^, suggesting that the

colonized root systems either scavenged water of low activity more

effectively or influenced nonhydraulic root-to-shoot communication differently

than the non-infected root systems (Auge et al. 1992).

AM influence on "nonhydrualic", chemical signals of soil drying has

been examined. Currently, the idea is that such a signal originates in roots

in response to soil drying and is transported to the leaves. Infection of roots

by mycorrhizal fungi has led to increases in gibberellin-like substances and

decreases in ABA-like substances, both plant hormones with signal

characteristics (Allen et al. 1981). In-split root experiments, mycorrhizal

plants with one side of the root system dried displayed declines in before

any change was observed in leaf water potential, possibly due to altered

chemical signal production associated with a change in the rate of turgor

decline (Auge and Duan 1991). However, quantitative studies with an

indirect ELISA have shown a considerably higher level of free ABA in AM

infected plants (Danneberg et al. 1992). Zeatin riboside, another possible

signal, did not differ with colonization (Danneberg et al. 1992). AM fungi

may also eliminate the growth inhibition to chemical signals communicating

dry soil conditions (Auge et al. 1994).



Mycorrhizal fungi historically have been shown to increase plant

uptake of phosphorus and calcium (Gerdemann 1978). Both ions have

been implicated in drought-induced chemical signaling as has the pH

change potentially stimulated in the xylem by this increased accumulation

(Davies et at. 1990, Hartung & Radin 1989).

Chemical signals and stomatal behavior

The idea of chemical signals affecting plant water relations can be

best described by comparing it to the traditional idea of hydraulic limitation.

Hydraulic limitation occurs when soil water content drops, causing root

dehydration. Eventually, water loss rate from leaves exceeds replacement

rate by root water absorption. This is followed by declines in leaf Y, Tp, and

relative water content (RWC). Stomata then close, which minimizes further

leaf dehydration (Figure 1). The nonhydraulic, root-to-shoot signaling

hypothesis asserts that a chemical(s) alerts the leaf to changing soil

conditions. This can occur before soil is dry enough for leaf water relations

to have changed. Upon reception of the signal, stomata can close, reducing

further water loss and potential damage (Figure 2) (Blackman and Davies

1985, Saab and Sharp 1989, Zhang and Davies 1989, Zhang and Davies

1990).

Researchers have used various procedures to test for the presence

of chemical signals. One involves splitting the root system of one plant



�
Hydraulic

Limitation

Leaf water potential T

Leaf water content T

Stomatal conductance T

Leaf growth 

11.0

\

Figure 1. Illustration of hydraulic limitation of stomatal behavior. Arrow size
represents relative water movement. Brown areas are dryer soil, blue areas are
moister soil.



Nonhydrauiic

Limitation

l .eaf water potential unchanged

Leaf water content unchanged

Stomalal conductance T

Leaf growth T

Root turgor T

[ABA] A

Figure 2. Illutration of nonhydrauiic limitation of stomatal behavior. Arrow size
represents relative water movement, blue areas are moist soil and brown areas
are dry soil.
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between two pots (Zhang et al. 1987, Saab and Sharp 1989, Gowing and

Davies 1990, Zhang and Davies 1990). One pot would be dried and the

other watered regularly, providing enough moisture to shoots to maintain

normal leaf water status (Zhang et al. 1987, Zhang and Davies 1989), while

simultaneously drying part of the root system sufficiently to produce the

chemical signal. Severing the dry side would result in restored due to a

decreased signal concentration. To further test for the signal, plants were

grown with roots under pressure to force normal hydration (Gollan et al.

1986, Passioura 1988), or in deep containers so that only a portion of the

root system dried (Zhang and Davies 1989, Blum et al. 1990, Zhang and

Davies1990). In both situations, where normal or control leaf hydration was

maintained, declined relative to controls, supporting the existence of a

chemical signal affecting water relations of a plant.

Several possibilities exist for the nature of the signal, but it is likely a

positive inhibitor conveyed by hormonal, nutritional, or ionic means (Gowing

et al. 1990). ABA is a positive inhibitor of g^ and is currently considered a

chemical signal of soil drying (Davies et al. 1994). Other possible signals

include calcium, phosphorus, or pH changes in the xylem sap (Radin 1984,

Hartung and Radin 1988, Atkinson et al. 1990,). As mentioned previously,

calcium and phosphorus are affected by AM colonization which could

change xylem sap pH levels. The objective of my study was to examine the

effect of AM fungi on the reception of these suspected signals at the
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stomata when the roots are not connected to the plant. To do this,

detached leaf transpiration assays were performed. This study was

conducted to determine if AM fungi, upon colonization, cause metabolic or

biochemical changes that alter the sensitivity of stomata to these chemical

signals, changes that remain even after the fungi are separated from the

leaf.



II. MATERIALS AND METHODS

In situ leaf conductance

Plant material and culture. Seeds of Vigna unguiculata (L.) Walp.

'White acre' (cowpea) were planted and grown in 1-liter pots, containing a

medium composed of two parts autoclaved silica sand, and one part

calcined montmorillonite clay (Turface) (v:v). This medium was chosen

because it promotes extensive mycorrhizal colonization, it can be readily

removed from the roots allowing quantification of the fungus, and the soil

moisture characteristics are known (Auge et al. 1994). To this mixture was

added pot culture which contained medium and roots from either cowpea

plants whose roots were colonized by mycorrhizal fungi {Glomus intraradices

Schenck & Smith) or cowpea plants whose roots were not colonized. The

added medium was mixed one part pot culture to three parts of the

sand/turface mixture (v:v). Work benches, utensils, and containers were

sterilized with a 10% bleach mixture to prevent contamination of the

nonmycorrhizal pot culture and newly planted plants. Plants were put under

high intensity sodium lights on a greenhouse bench to grow until sufficiently

colonized.

With every watering (usually every day), the plants received a 0.21

M concentration of Peter's (Grace-Sierra, Milpitas, CA, USA) 15-0-15

10



fertilizer and a 1 mM concentration of magnesium as MgClj. To adjust for

similar size, mycorrhizal plants received less phosphorus, generally 1mM,

with nonmycorrhizal plants receiving either 2, 3, or 4 mM P as K2PO4 once a

week. Soluble trace elements were supplied once a week at 1 pM Mn

(STEM, Peters Fertilizer Products, W.R. Grace, Fogelsville, PA, USA). Fe

was provided at 1.0 mM as Sprint (Ciba-Geigy, Greensboro, NC, USA).

Between 2 April and 28 April, 1995 mycorrhizal cowpea plants with

high colonization and nonmycorrhizal plants of similar size were tested for

differences in abaxial gj. Four to five leaves per plant were measured

using a diffusion porometer (AP4, Delta-T Device, Cambridge, Great Britain)

placed adjacent to the mid-vein, gg readings were taken between 9:00 am

and 3:00 pm for ten days. Leaf temperatures ranged from 16.6 °C to 32.6

°C. Relative humidities in the greenhouse ranged from 30 % to 55 %. This

was a preliminary test to verify that AM fungi do in fact alter g^.

Photosynthetic flux density was recorded with each measurement using the

light sensor on the porometer; values ranged from 10 to 2400 pmol m"^ s"\

Upon completion of the experiment total leaf area was determined with a

leaf area meter (Li-Cor LI-3000A, Lincoln, NE, USA). Plants were oven

dried at 80° 0 and dry weight was determined.

11



 Preliminary assay to test transpiration assay procedure

Fifty mycorrhizal and 50 nonmycorrhizal cowpea (White acre) plants

of similar size, grown and cultured as described in the in situ leaf

conductance experiment, were used for a second preliminary test to verify

the effectiveness of the detached leaf transpiration assay procedure used to

follow stomatal activity. These tests were performed on 15 and 17

February, 1995. For each assay the terminal leaflet from the third leaf of

each plant was excised under distilled water. Once detached, the leaf was

trimmed and transferred to a storage vial containing only distilled water and

allowed to rehydrate in the dark. When turgid, a leaf would be transferred

into a treatment vial containing a concentration of abscisic acid (ABA) (10"^

10"®, 10"® M) or a control vial containing only distilled water. The vials were

then moved to a benchtop space illuminated by high intensity sodium halide

lamps (PPFD 200-400 pmol m"^ s"^). The vials were weighed every 30

minutes on a Sartorius analytical balance, with the weight and time being

recorded into a spreadsheet template by Sartowedge software and an

RS232 interface. This continued for three hours. The area of the

transpiring part of the leaf was measured using a leaf area meter and

recorded. The transpiration rate (£) was calculated using the following

formula:

E= AW

leaf area * At

12



where W was weight of water in grams and t was time in seconds. Leaf

areas were recorded as square meters. Light levels for this and following

assays were maintained close to 325 p.mol m"^ s'^ PPFD. Air temperatures

for all assays were about 27 °C and relative humidity in the study area

ranged from 26 % to 62 %.

Cowpea pH transpiration assay, mycorrhizal vs nonmycorrhizal

To test the effect of changing pH levels in the xylem sap as a

possible chemical signal affecting stomatal opening, 50 mycorrhizal and 50

nonmycorrhizal cowpea (White acre) plants were grown and cultured

similarly to those in the preliminary experiment. The exception was that

these plants were transferred to a controlled growth chamber (M75,

Environmental Growth Chambers, Inc., Chagrin Falls, OH, USA) shortly after

germination to grow until the experiment was complete. The chamber was

set on a 14 hour day/10 hour night program with day temperature set at 25

°C and night temperatures of 18-20 °C, with relative humidity levels set to 65

%. Light levels at bench height were approximately 400 mmol m"^ s'^ PPFD

during the light cycle. Here also the terminal leaflet from the third leaf of

each plant was excised under distilled water, trimmed and transferred to a

storage vial containing only distilled water and allowed to rehydrate. Once

turgid, the leaflet was transferred into a treatment vial containing a 10'^, 10"®,

10"® M concentration of ABA or a control vial containing only distilled water.

13



Each solution had been adjusted to one of three predetermined pH values

(5.5, 6.0, and 6.5). In one day, two complete replications could be done.

To obtain eight replications of each treatment, the assay was repeated for

four days. The assay was completed in 3 hours and the E was calculated.

After the experiment, total leaf area, percent root colonization by AM fungi

and shoot dry weight of ten mycorrhizal and ten nonmycorrhizal plants were

determined.

Cowpea phosphorus transpiration assay, mycorrhizal vs nonmycorrhizal

Cowpea (White acre) plants planted 19 June, 1995 were grown and

cultured as described in the cowpea pH experiment, fifty mycorrhizal and

fifty nonmycorrhizal. For this assay, the terminal leaflet from the third leaf of

each plant, after being excised under distilled water, trimmed, and

transferred to a storage vial containing only distilled water, and allowed to

rehydrate, was transferred into a treatment vial containing a concentration of

ABA ranging from 10"^ to 10 ® M or a control vial containing only distilled

water. Each vial contained one of three phosphorus concentrations (0 mM,

0.4 mM, and 8 mM). Phosphorus was added as KH2PO4. The pH of each

solution was adjusted to 6.0. Two complete replications were completed

each day and the assay was repeated for four days between 13-19

September, 1995 to obtain eight replications of each treatment. The assay

was completed in 3 hours and the £ was calculated. At the end of this

14



experiment, shoot dry weight, percent root colonization by AM fungi and

total leaf area were measured.

Cowpea calcium transpiration assay, mycontiizal vs nonmycGrrhizal

Fifty mycorrhizal and 50 nonmycorrhizal cowpea (White acre) plants

planted 1 November, 1995 were grown and cultured as described in the

cowpea pH experiment. The assay solutions in which the terminal leaflets

were place in after rehydration contained three levels of calcium (0 mM, 1

mM and 5 mM) and either ABA at a concentration of 10*^, 10"® or 10 ® M or

only distilled water as a control. The calcium was supplied as CaClj. The

pH of each solution was adjusted to 6.0. There were eight replications of

each treatment, requiring four days (20 December, 1995 to 3 January, 1996)

to complete the experiment. At the end of the experiment, plant dry weight,

percent colonization and total leaf area were measured.

Rose pH transpiration assay, mycontiizal vs nonmycontiizal

Plant material and culture. Rose plants {Rosa hybirda) were donated

by Jackson and Perkins (California). One hundred plants were transplanted

and grown in 5.8-liter pots, containing a medium composed of two parts

autoclaved silica sand, and one part calcined montmorillonite clay (Turface)

(v:v) on 10 January, 1995. To this mixture was added pot culture which

contained medium and roots from either cowpea plants whose roots were

15



colonized by mycorrhizal fungi {Glomus intratadices Schenck & Smith) or

cowpea plants whose roots were not colonized (50 of each). The added

medium was mixed one part pot culture to three parts of the sand/turface

mixture (v:v). Special precautions were made to prevent contamination of

the nonmycorrhizal pot culture and newly planted plants. Plants were

allowed to grow on a greenhouse bench until the experiment was

completed.

With every watering (usually every day), the plants received a 0.21

M concentration of Peter's (Grace-Sierra, Milpitas, CA, USA) 15-0-15

fertilizer and a 1 mM concentration of magnesium as MgClj. To adjust for

similar size, mycorrhizal plants received less phosphorus, generally 1 mM,

with nonmycorrhizal receiving 2, 3, or 4 mM depending on the particular

experimental conditions. Phosphorus was applied as K2PO4 once a week.

Soluble trace elements were supplied once a week at 1 |i,M Mn (STEM,

Peters Fertilizer Products, W.R. Grace, Fogelsville, PA, USA). Fe was

provided at 1.0 mM as Sprint (Ciba-Geigy, Greensboro, NC, USA) once a

week.

To test the effectiveness of pH as a chemical signal, leaves from

each plant were excised under distilled water and transferred to a storage

vial containing only distilled water and allowed to rehydrate. Turgid leaves

were transferred into a treatment vial containing a concentration of ABA

ranging from 10"^ to 10 ® M or only distilled water that had been adjusted to

16



one of three predetermined pH values (5.5, 6.0, and 6.5). The assay was

completed in three hours and the E was calculated. There were eight

replications of each treatment, requiring four days between 23 June, 1995

and 30 June, 1995 to complete the experiment. After the experiment total

leaf area, percent root colonization by AM fungi and shoot dry weight were

determined.

Geranium pH transpiration assay, mycontiiza! vs nonmycontiizal

Plant material and culture. Geranium, Pelargonium hortorum

(Designer Scarlet) stem cuttings were taken from the trial garden located at

the University of Tennessee Agricultural campus. One hundred cuttings

were started under mist in nursery trays in low light. Later the cuttings were

transplanted and grown in 1-liter pots, containing a medium composed of

two parts autoclaved silica sand, and one part calcined montmorillonite clay

(Turface) (v;v). To this mixture was added pot culture which contained

medium and roots from either cowpea plants whose roots were colonized by

mycorrhizal fungi {Glomus intraradices Schenck & Smith) or plants whose

roots were not colonized (50 of each). The added medium was mixed one

part pot culture to three parts of the sand/turface mixture (v:v). Precautions

were made to prevent contamination of the nonmycorrhizal pot culture and

newly planted plants. Plants were allowed to grow on a greenhouse bench

until the experiment was completed on 21 August, 1995.

17



With every watering (usually every day), the plants received a 0.21

M concentration of Peter's (Grace-Sierra, Milpitas, CA, USA) 15-5-15

fertilizer and a 1 mM concentration of magnesium as MgClg. Phosphorus

was applied as K2PO4 once per week. Soluble trace elements were

supplied once per week at 1 pM Mn (STEM, Peters Fertilizer Products, W.R.

Grace, Fogelsville, PA, USA). Fe was provided at 1.0 mM as Sprint (Ciba-

Geigy, Greensboro, NC, USA) weekly.

To test the effectiveness of pH as a chemical signal, leaves from

each plant were excised at the petiole under distilled water, transferred to a

storage vial containing only distilled water and allowed to rehydrate. When

turgid, the leafs petiole was placed into a treatment vial containing a

concentration of ABA ranging from 10'^ to 10 ® M (or distilled water) that had

been adjusted to one of three predetermined pH values (5.5, 6.0, and 6.5).

This assay also was completed in three hours and the E was calculated.

There were eight replications of each treatment, requiring four days between

14 August, 1995 and 21 August, 1995 to complete the experiment. After

the experiment total leaf area, percent root colonization by AM fungi and

shoot dry weight were determined.

Shoot dry weight leaf phosphorus concentration, and root colonization

Degree of colonization of root systems by AM fungi was determined

at the end of each experiment with eight mycorrhizal and nonmycorrhizal
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plants from each experiment. A clearing and staining procedure was used

as described by Brundrett et al. (1983). The percentage of root colonization

was determined using 50 pieces of stained root segments per treatment.

The pieces were mounted onto a slide and the mycorrhizal vesicles,

arbuscules and hyphae intersecting the line were counted. The scope was

set to lOOx magnification. Colonization was calculated by dividing colonized

roots by total roots examined and expressed as a percentage. Phosphorus

concentration of oven-dried (70 °C) leaves was assayed using the vanadate-

molybdate-yellow method (Chapman & Pratt, 1961). Samples of leaves

were dry-ashed with magnesium nitrate at 700 °C for 2 hours, then digested

in nitric acid. Shoots were oven-dried at 80 °C for at least 48 hours and the

dry weight measured.

Statistical analysis

Data was analyzed as a completely randomized design using the

Analysis-of-Variance (ANOVA) procedure of the Statistical Analytical

Services (SAS) programs.
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III. RESULTS

In situ leaf conductance

Stomatal conductance of two groups of well-watered cowpea plants

were compared, one extensively colonized by AM fungi and one not

colonized (Figure 3). Mean for these two group differed significantly after

the 10 days of sampling (Table 1). Leaf age also affected g^, (Table 1), and

so I used only the 3rd leaflet throughout all cowpea experiments. The day

the sample was taken also changed g^, thus each replication was always

completed in one day. These data, proving AM fungi alter g^ of plants,

allowed the experiments to proceed: if I was going to test for a residual

effect of mycorrhizal colonization on leaves, first I had to demonstrate that

the mycorrhizal effect was present in intact leaves.

Preliminarv assav to test assav procedure

In this preliminary assay, mycorrhizal and nonmycorrhizal cowpea

leaves did not have different E (P = 0.1305) (Figure 4). Likewise, the

sensitivity of the stomata to ABA supplied to the mycorrhizal leaves in the

assay solution did not differ from the nonmycorrhizal leaves (P = 0.3962),

as monitored by E. Increasing the concentration of ABA supplied in the

assay solution from 10'^ to 10 ® pM caused a decrease in E of 53 % for

nonmycorrhizal and 47 % for mycorrhizal cowpea plants. ABA did have a
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Table 1. In situ conductance of intact cowpea plants. Significant differences in
bold.

SOIIITIA PR > F

DAY 0.0001

LEAF AGE 0.0001

COLONIZATION 0.0393

DAY*LEAF AGE 0.0001

DAY*COLONIZATION 0.3028

LEAF AGE*COLONIZATION 0.2363

DAY*LEAF AGE*COLONIZATION 0.5679

AM = 370

NonAM = 346

Nonmycorrhizal

o Mycorrhizal

j 1 1-

92 96 100 104 108 112 116 120

Time (days)

Figure 3 In situ leaf conductance of intact mycorrhizal and nonmycorrhizal
leaves measured on 10 separate days. Numbers on the x axis refer to Julian
days (the number of days into the year). Mean given for each treatment.
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Figure 4. Absolute transpiration of detached mycorrhizal and nonmycorrhizal
cowpea leaves at varying ABA.
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significant effect on E overall, causing a decrease of 48 % with an increase

in [ABA] from 10'^ to 10'® |jM. This proved that the assay procedure was

satisfactory.

AM fungi

Statistically significant differences (Table 2) in E were observed

between mycorrhizal and nonmycorrhizal rose leaves (Figure 5). Average

values were 2.14 mmol m"^ s'^ for mycorrhizal and 1.98 mmol m'^ s"^ for

nonmycorrhizal. Combining the data from the cowpea pH, calcium and

phosphorus experiments gave no significant difference (P = 0.764) in E of

mycorrhizal and nonmycorrhizal cowpea plants (Figure 6). However,

colonization did alter the way ABA and pH interacted to affect stomatal

opening in cowpea plants (Table 3). Detached mycorrhizal cowpea leaves

had an E that was decreased to a lesser extent than nonmycorrhizal leaves

fed the same concentration of ABA (Figure 7). At an [ABA] of 10"® pM, AM

leaves had an average E of 1.94 mmol m"^ s'^ whereas nonmycorrhizal

leaves had an average E of 1.69 mmol m'^ s'\ At a pH level of 6.0,

mycorrhizal leaves' average E was 2.09 mmol m"^ s'\ 0.28 mmol m"^ s'^

higher than the nonmycorrhizal average E. Changing the pH level to 5.5

caused mycorrhizal leaves to average 0.18 mmol m"^ s"^ lower than the

nonmycorrhzial leaves. The rates were almost identical at pH 6.5.

Colonization of geraniums did not alter either the overall E or the sensitivity
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Table 2. ANOVA showing main effects and their interactions for rose pH
experiment. Sigificant differences (P < .05) in bold.

sniiRnp PR>F

COLONIZATION 0.0094

pH LEVEL 0.0001

[ABA] 0.0001

COLONIZATION*pH 0.1144

COLON IZATION*[ABA] 0.0760

DH*rABA1 0.3575

cn

O

s
B

a

es

'a
cn

e
es
L-

H

Rose pH 5.5

a><:

3^ose pH 6.0
-o

Nonmycorrhizai
o Mycorrhizal

Rose pH 6.5

0 10' 10' 10*

ABA (M)

Figure 5, Absolute transpiration of detached mycorrhizal and nonmycorrhizal
rose leaves at varying pH and ABA.

24



 
 

 
 

� 

vx

O

S 3
B'
a
o
•- 2

cd

'q.
^ 1
B 1
cd

Nonmycorrhizal
o-o Mycorrhizal

10' 10* 10'

ABA (M)

Figure 6. Absolute transpiration of detached mycorrhizal and
nonmycorrhizal cowpea leaves combining data from pH,
calcium and phosphorus experiments.
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Table 3. ANOVA showing main effects and their interactions for cowpea pH
experiment. Significant differences (P< .05) in bold.

«50URCE PR>F

COLONIZATION 0.6020

pH LEVEL 0.2587

[ABA] 0.0001

COLONIZATION*pH 0.0001

COLONIZATION*[ABA] 0.0056

DH*rABAl 0.7866

Cowpea pH 5.5

o

B
B

B
O

'o.
B
CQ
U

H

Cowpea pH 6.0

Nonmycorrhizal
o Mycorrhizal

1 L

Cowpea pH 6.5

0 10' 10* 10*

ABA fM)

Figure 7. Absolute transpiration of detached mycorrhizal and
nonmycorrhizal cowpea leaves at varying pH and ABA
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of their stomates to changes in [ABA] or pH (Table 4, Figure 8).

ABA

Transpiration declined similarly in each host species as the

concentration of ABA in the feeding solution increased from 10'^ to 10 ® pM

in a near linear manner (Figures 3-10). The E for each level of ABA was

significantly different (Pr < 0.05) for each species in all the transpiration

experiments (Tables 2-6 ). The average decrease in E accompanying an

increase of lOx in the [ABA] was 18.9% for cowpea, 26.4% for geranium

and 15.5% for rose. In rose (Figure 5), adding 10"^ pM was not sufficient to

decrease E.

Level of pH

Cowpea and rose E were also partially controlled by pH. For rose

(Figure 5), solutions with a pH of 6.0 were significantly separated from the

other pH levels (Table 2) and resulted in the greatest E of 2.36 mmol m"^ s'\

Increasing or decreasing the pH by 0.5 caused an 83 % and 73 %

decrease, respectively. In cowpea leaves (Figure 7) pH alone did not alter

E, but as mentioned in the AM fungi section, there was a significant

interaction between pH and colonization (Table 3). Geranium E was not

affected by changes in pH (Table 4, Figure 8).
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Table 4. ANOVA showing main effects and their interactions for geranium pH
experiment. Significant differences (P < .05) in bold.

<50lJRnF PR>F

COLONIZATION 0.4069

pH LEVEL 0.09791

[ABA] 0.0001

COLONIZATION*pH 0.5469

COLONIZATION*[ABA] 0.7117

oHnABAl 0.6949

o

B
B

a

es

'a,
cn

a
ea
u

H

3

2

1

0

3

Geranium pH 5.5

Geranium pH 6.0

V
Nonmycorrhizarv,.

o Mycorrhital

Geranium pH 6.5

\
0 10' 10* 10*

ABA (M)

Figure 8. Absolute transpiration of detached mycorrhizal and nonmycorrhizal
geranium leaves at varying pH and ABA.
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Table 5. ANOVA showing main effects and their interactions for cowpea
calcium experiment. Significant differences (P < .05) in bold.

SOIIRHF PR>F

COLONIZATION 0.5195

CALCIUM LEVEL 0.0074

[ABA] 0.0001

COLONIZATION*CALCIUM 0.4927

COLONIZATION*[ABA] 0.9871

CALCIUM*fABAl 0.0272

0.0 mM Ca^

o

E
E,

B

U

B

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

1.0 mM Ca*

Nonmycorrhizal
o Mycorrhizal

i I ^

5.0 mM Ca^

0 10^ 10* 10®

ABA (M)

Figure 9. Absolute transpriation of detached mycorrhizal and nonmycorrhizal
cowpea leaves at varying calcium and ABA.
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Table 6. ANOVA showing main effects and their interactions for cowpea
phosphorus experiment. Significant differences (P < .05) in bold.

55niiRnF PR>F

COLONIZATION 0.1665

Phosphorus LEVEL 0.7123

[ABA] 0.0001

COLONIZATION*Phosphorus 0.2321

COLONIZATION*[ABA] 0.5954

PhosDhorus*rABAl 0.0222

o

E
B

C

ei
k.

'a.
C/3

c
ea
Im

4

3

2

1

0

3

2

1

0

3

2

1

0

0.0 mM PO4

0.8 mM PO«

Nonmycorrhizal
o Mycorrhizal

4.0mMPO4

0 10' 10* 10*

ABA (M)

Figure 10. Absolute transpiration of detached mycorrhizal and nonmycorrhizal
cowpea leaves at varying phosphorus and ABA.
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Level of Calcium

E of detached cowpea leaves was responsive to varying levels of

Ca""^ supplied in the assay solution (Figure 11). When the concentration

was 1.0 mM, the average E was 3.63 mmol m'^ s"\ Increasing the

concentration to 5.0 mM or decreasing the concentration to 0.0 mM caused

a decrease in E of 87%. A significant interaction with ABA also appeared

(Table 5). Stomata of cowpea have an apparently different sensitivity to a

1.0 mM concentration of Ca"^"^ at 0.0 pM ABA than to either 5.0 mM or no

Ca"^" at the same ABA concentration. The average difference in E between

1.0 mM Ca"^"^ at 0.0 pM ABA and 0.0 mM Ca"^^ was 1.27 mmol m'^ s"\ For

1.0 mM Ca"^^ and 5.0 mM Ca^^ the difference is 1.14 mmol m"^ s"^ at 0.0 pM

ABA.

Level of phosphorus

Cowpea stomata did not differ in their sensitivity to phosphorus

supplied in the assay solution (Table 6, Figure 10). Mean E for both 0.8

mM and 4.0 mM PO4 only differed from controls by 0.03 mmol m'^ s'\ The

two concentrations differed from each other by an average of 0.06 mmol m"^

s'\ There were no significant interactions between the level of colonization

and level of phosphorus supplied (Table 6). Phosphorus did alter stomatal

sensitivity to ABA but only the 0.8 mM at a 10'^ concentration (Table 6).
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Shoot dry weight leaf phosphorus concentration, total leaf area and root

colonization

Data for total leaf area and percent root colonization by AM fungi for

all experiments are given in Table 7. Shoot dry weight, and leaf phosphorus

data for all experiments are give in Table 8. Only in the cowpea experiment

with added phosphorus did leaf phosphorus concentration differ between

mycorrhizal and nonmycorrhizal leaves. Since mycorrhizal colonization did

not alter stomatal sensitivity to phosphorus, I do not consider such a

difference relevant. Shoot dry weight of mycorrhizal plants was significantly

higher than nonmycorrhizal plants (P = 0.016) in the cowpea pH experiment,

but by only 11.7%. Such a difference is not usually enough to account for

the difference associated with mycorrhizal colonization in that experiment.

For all other experiments, no differences were found in these variables,

suggesting that nutrition was not the controlling influence here.
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Table 7. Percent colonization and leaf area for each experiment.
% Colonization: VAM Only Leaf Area

Experiment Vesicles Arbuscules Hyphae AM NonAM

AM vs 66.7 68.3 88.3 - -

NonAM

Cowpea 59.5 85 94.5 3071.5 3286.8

pH

Cowpea 55.3 77.8 95.5 954.5 1246.3

Phos

Cowpea 57 83.5 98 182.5 223.8
Ca

Geranium 19 23.3 60.8 1608.0 1704.9

pH

Rose 78.7 6.7 67.7

Table 8. Shoot dryweight and leaf phosphorus for each experiment. Significant
differences in bold.

Experiment
Shoot

AM

Dry weight
NonAM AM

Leaf Phos

NonAM

AM vs

NonAM

1.7 2.3

Cowpea
pH

27.1 30.7 3.5 4.3

Cowpea
Phos

6.36 9.25 2.3 4.3

Cowpea
Ca

2.08 1.96 0.8 1.1

Geranium

pH
17.3 17.3 3.7 4.2

Rose - - 1.4 1.2
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IV. DISCUSSION

Transpiration assays were performed using three host species to test

for any residual mycorrhizal effects on stomatal sensitivity to the potential

chemical signals ABA, pH, calcium, and phosphorus, as well as the ability of

these factors to independently affect stomatal behavior. Finding a difference

in gj, between mycorrhizal and nonmycorrhizal plants with intact leaves

(leaves still attached to plants) was necessary in order to continue this

study. If no effect was present in intact leaves, one would not be expected

in detached leaves. Previously, colonization by mycorrhizal fungi has led to

increased gj in intact leaves of both rose and cowpea (Auge et at. 1986a,

Ebel et al. 1996). Similar results were found in the preliminary gg

experiment performed at the beginning of this study, gj was consistently

higher in AM colonized plants for the 10 days of the test. Several

possibilities exist as to the nature of the mycorrhizal influence on stomatal

activity. Most authors relate such changes to root functions often altered by

mycorrhizal colonization: for example, altered radial or axial hydraulic

conductivity (Hardie and Leyton 1981), altered root system architecture

(Kotari et al. 1990), increased water uptake via soil hyphae (Faber et al.

1991), and altered root-to-shoot hormonal relations (Hardie and Leyton

1981). This study investigated whether AM fungi imposes a persistent

influence on stomata that remains after the fungi (i.e. the roots) are removed
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and, if this influence would change the sensitivity of the stomata to the

potential chemical signals in question.

One change in leaf water relations that could possibly be brought

about by AM fungi colonization is altered leaf osmotic potential. In rose

leaves, colonization by either the AM fungi Glomus deserticola Trappe,

Boss, and Menge or G. intraradices Schenck and Smith led to lower vj/„ at

full turgor and at the turgor loss point (Aug6 et al. 1986b). Consequently,

the plant was able to maintain leaf turgor and g^ at greater tissue water

deficits and lower leaf and soil water potentials, compared to nonmycorrhizal

plants In my study, the only host species to have detached leaves with

altered transpiration due directly to AM colonization was rose plants.

Although leaf \|/„ was not monitored in this study, it may be that these

differences were due to altered v|/„ similar to that found in Auge's 1986

study.

Previously, AM colonization did not alter E of unstressed cowpea

leaves (Duan et al. 1996). Similar results were found in my study when E

and colonization were the only variables. When the [ABA] and pH level are

also considered, AM fungi colonizing plant roots do influence cowpea

stomata of detached leaves. Here again, no tests were performed to

determine if the biochemistry or the metabolism of the leaves had been

altered, thus no conclusions as to the specific nature of the mycorrhizal

effect can be made. It is possible that cowpea undergoes changes in leaf
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\j/„ similar to those in rose, except that the reception of ABA and/or pH

changes at the stomata is the specific parameter changed and not just

overall E. It appears that these changes in stomatal sensitivity were not

due to phosphorus nutrition, as the leaf concentration of P did not differ

between AM and nonmycorrhizal cowpeas.

The E of geranium leaves was not altered by AM colonization, nor did

mycorrhizae change the apparent sensitivity of geranium stomata to ABA or

pH. Similarly, colonization did not alter the sensitivity of stomata in cowpea

leaves to Ca""^ or P, either independently or in conjunction with ABA.

ABA is a potent inhibitor of g^ (Davies and Zhang 1991). Root-

sourced ABA is most likely the molecule acting as the chemical signal of soil

drying in plants whose leaves have not yet suffered drought-induced

dehydration. Roots produce ABA in sufficient quantities to decrease

stomatal activity in the leaf (Zhang et a/. 1990). ABA in the assay solution

simulates root-sourced ABA by traveling through the xylem tissue and does

decrease E of the three test species dramatically in proportion to the amount

supplied. This would seem to support the idea of root-sourced ABA being

the primary signal but whether or not this depicts actual leaf physiology

accurately is unknown.

Leaves also produce ABA, which may be the molecule responsible

for inhibiting stomatal opening before any dehydration stress is suffered. If

so, some other signal must alert the leaf of drying conditions which would
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then stimulates the release of leaf ABA from symplastic compartments into

the apoplast, and thence to guard cells. A possible candidate is pH. In the

leaf, ABA is in two forms - membrane impermeable ABA and permeable

ABAH. The impermeable form is the active stomatal closing form and the

permeable form is stored in alkaline compartments (Hartung et al. 1990).

With increasing stress, pH values change causing ABAH to be

deprotonated and allowing the active form to function in closing the stomata.

The pH of the assay solution in my study was altered in rose, cowpea and

geranium to find if such changes can function as a signal or alter stomatal

sensitivity to supplied ABA. If pH increases acted as a signal, a near linear

change in E should be associated with sequential changes in pH. This did

not happen, thus the leaf-sourced ABA is most likely not the active form of

ABA controlling stomata. Rose leaves were sensitive to pH changes, but

not in a correlated pattern as expected. Instead the pattern shows that, for

rose, a pH of 6.0 gives the optimal E of the 3 pH's examined. Cowpea and

geranium stomata were not sensitive to pH changes, nor to interactions

between pH and ABA.

Calcium has also been shown to inhibit stomatal conductance

(Atkinson et al. 1990) and was examined as a possible chemical signal

affecting stomata. Although Ca""^ applied directly to or fed to transpiring

leaves can cause decreased gj and transpiration (Atkinson 1990), its

function as a chemical signal is uncertain. Plants grown in conditions of

38



high rhizospheric Ca""" can show higher g^ (Atkinson 1991). This type of

incongruity limits the hypothesis that Ca""" is a chemical signal alerting the

plant of soil conditions. Similar results were found in this study. Calcium

did inhibit £ at the highest concentration, but the lowest concentration

actually increased E over the control [Ca"^"^]. Again, if Ca*"^ was a chemical

signal, a near linear decrease in E would be expected with increasing

concentration.

Finally, phosphorus has been shown to influence the sensitivity of

stomata to ABA. Plants grown in low P conditions had stomata with

increased sensitivity to ABA (Radin 1984). Phosphorus was examined as a

potential chemical signal in my study primarily because AM colonization

often alters leaf [P]. Colonization did not alter the reception of P and P did

not alter E. Phosphorus did interact significantly with ABA, but not in a

signal manner. Increasing the [P] did not cause a linear change in E as

expected by a chemical signal.

With the exception of rose plants, there appears to be no consistent

mycorrhizal effect on g^ that remains in leaves once they are detached form

the plant. Duan et al. (1996) came to a similar conclusion and suggested

that in their study, AM effects on host g^ had to be mediated by the root

system.
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