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ABSTRACT

An experiment was performed to determine the stage of

embryonic development detrimentally affected by elevated

prostaglandin Fa,, (PGFjq) in the presence or absence of

luteal oxytocin. Ninety-one beef cows had their estrous

cycles synchronized and were bred by natural service and

artificial insemination (Day 0). Cows were randomly

assigned to receive either 3 ml saline (CON), 15 mg PGF2„

(PGF) or 15 mg PGFza + lutectomy (P+L) administered i.m. at

8 h intervals on either Days 5-8, 10-13 or 15-18 (3X3

factorial). Lutectomies were performed by transrectal

digital pressure before initiation of treatment on Day 5, 10

or 15 for Days 5-8, 10-13 and 15-18, respectively. All cows

were fed 4 mg/d of melengesterol acetate (MGA) from two days

prior to initiation of treatment until Day 30. Lutectomies

were performed on nine CON cows to verify the ability of MGA

to sustain pregnancy. Seven of these nine animals were

diagnosed pregnant by transrectal ultrasonography at Day 30.

All cows were bled by jugular venipuncture at 0600 and 2200

h of their respective treatments for determination of

progesterone (P4) , estradiol-173 (E2) , and 13,14-dihydro-15-

keto-PGF2a (PGFM) . Additionally, cows were bled at 30 min
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following initiation of treatment for determination of

oxytocin (OT) concentrations. Concentrations of P4 were

reduced (p < 0.05) in all cows administered PGF and P+L by

2200 h on the first day of treatment. Mean concentrations

,of PGFM were increased in cows administered PGF and P+L

treatments (456 + 35 and 398 ± 35 pg/ml, respectively; p <

0.01) compared to CON cows (84 + 58 pg/ml) regardless of

daygroup. Mean concentrations of OT were significantly

increased in cows administered PGF when compared to CON and

P+L in the Day 5-8 (P < .07) and in the Day 10-13 and 15-18

groups (P = .0001). Pregnancy rates were reduced (p = 0.03)

in the PGF(5-8) group (3/13, 23%) compared to CON (5/7,

72%). Lutectomy tended to improve pregnancy rate in P+L(5-

8; 6/11, 55%) compared to PGF(5-8; p = 0.1). Pregnancy

rates tended (p = 0.07) to increase across daygroups in the

PGF treatment (3/13, 23%; 5/10, 50%; and 6/10, 60% for Days

5-8, 10-13 and 15-18, respectively). Pregnancy rates did

not differ between CON, PGF and P+L groups for Days 10-13

and 15-18. In conclusion, the most susceptible period of

embryonic growth to the negative effects of PGFj^ appears to

be during morula to blastocyst development. Removal of the

luteal source of oxytocin diminishes the negative effects of

V



PGFjc, administration on the bovine embryo during early

development, possibly through interruption of the luteal.

oxytocin-uterine PGFjo feedback loop.
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INTRODUCTION

Pregnancy failure in beef cows is a vital concern to

producers and consumers. For a cow to be profitable, she

must produce and wean a calf annually. Embryonic loss

results in the animal either not producing an offspring or

causing a delay in the time of a "maintained" pregnancy

resulting in the failure of weaning a calf every 365 days.

In the United States, the net calf crop has been estimated

to be between 65 to 81% (Bellows et al., 1979). Increasing

the calf crop to 85% has been projected to produce an annual

savings of $558 million in the United States (Gerrits et

al., 1979). Furthermore, Inskeep and Peters (1982)

estimated the cost of wintering nonpregnant cows to be $1.1

billion per year. Several factors influence conception rate

including breed, age, season, length of postpartum anestrus,

nutrition, management, lactation, and disease.

Although results have been variable in establishing the

exact time of embryonic death in beef cattle, several

studies have reported the majority of loss occurs prior to

Day 18 after mating. According to Ayalon (1978), the

majority of the loss occurs between Days 6-7 postestrus (the

time period in which the embryo is developing from a morula



to a blastocyst). Maurer and Chenault (1983) observed that

67% of the mortality had occurred or was occurring by Day 8

of gestation. However, Roche et al. (1981) suggested a

gradual loss occurs between Day 8 to 18 after mating.

For pregnancy to be established in cattle, the

corpus luteum (CL) must be maintained beyond the time of

normal luteolysis (Days 15-19). The presence of a live

embryo in the horn ipsilateral to the CL capable of

secreting conceptus proteins during the time of normal

luteolysis in a nonpregnant animal is a necessity (for

review see Bazer et al., 1986; Thatcher et al., 1986).

Possible reasons for embryonic loss include failure of

normal embryonic development (d 1-16) , failure of embryo-

derived signals initiating maternal recognition of pregnancy

(d 16-24), or luteal dysfunction (d 5-parturition).

Embryonic mortality in either of these periods may be

associated with toxic factors in the uterine environment

which destroy the embryo and/or the CL.

Following estrus, concentrations of PGFjc decrease to

basal levels with slight increases on Day 5 (as determined

by PGFM) which are associated with metestrus bleeding in

cattle (Kindahl et al., 1976). Elevated concentrations of



PGFja have been observed in association with thermal stress

(Malayer et al., 1990; Dunlap and Vincent, 1971), uterine

manipulation and irritation (typically encountered with

artificial insemination and embryo transfer techniques;

(Seguin et al., 1974; Roberts et al., 1975), and

administration of oxytocin for milk letdown (Armstrong and

Hansel, 1959; Farin and Estill, 1993).

Administration of PCFj^ will result in the release of

oxytocin (OT) from the regressing CL (Flint and Sheldrick,

1982). This luteal oxytocin is believed to stimulate

further release of uterine PGFjc, which then feeds back to

stimulate further release of luteal OT, thus setting up a

"positive-feedback loop" (for reviews see Flint et al.,

1990; Silvia et al., 1991).

The first ovulation in the postpartum cow is associated

with a decrease in the length of the luteal phase due to a

premature release of PGFj^ (Ramirez-Godinez et al. , 1981,

1982; Pratt et al., 1982; Cooper et al., 1991). In cows

which were bred or had "good" embryos transferred to their

uteri at their first postpartum ovulation, pregnancies were

not maintained even with progesterone supplementation to

replace the short-lived CL (Breuel et al., 1993b; Butcher



et al., 1992). Schrick et al. (1993) observed elevated

luminal uterine concentrations of PGF2a in cows with short

luteal phases which was negatively correlated with embryo

quality (r=-.42; P < .07). A rapid deterioration of embryo

quality between Day 3 (Breuel et al., 1993b) and Day 6

(Schrick et al., 1993) in cows with short luteal phases

suggests that the problem must be occurring after the embryo

enters the uterus. From these findings in cows with short

luteal phases, PGFza may be having a direct negative effect

on embryonic survival in cows as suggested in other species:

rabbit (Maurier and Beier, 1976), mice (Harper and Skarnes,

1972) and rats (Breuel et al., 1993a).

Elevated concentrations of PGFjc have been observed in

heifers up to Day 6 after mating (Schallenberger et al.,

1989) and during maternal recognition of pregnancy (Days 16

and 19; Bartol et al., 1981). Buford et al. (1996)

reported that administration of PGFjq to normal, cycling

beef cows from Days 4-7 or 5-8 after mating decreased

pregnancy rates even with exogenous progestogen

supplemented. Furthermore, removal of the regressing CL

improved pregnancy rates to control values. Inhibition of

PGFzc with flunixin meglumine, a prostaglandin



endoperoxidase synthase inhibitor, was ineffective in

increasing pregnancy rates in postpartum cows (Buford et

al., 1996). However, lutectomy in combination with flunixin

meglumine treatment increased pregnancy rates in postpartum

cows (Buford et al., 1996). Therefore, the objective of

this study was to determine the effect of elevated

prostaglandin at different stages of embryonic

development in the presence or absence of luteal oxytocin on

establishment of pregnancy.



REVIEW OF THE LITERATURE

Endocrine Events of the Bovine Estrous Cycle

The bovine estrous cycle consists of four distinct

phases: estrus, metestrus, diestrus and proestrus. Estrus

is the result of increased estradiol-173 (Ej) which is

produced by the ovulatory follicle and induces estrous

behavior and the luteinizing hormone (LH) surge. During

metestrus (d 1-5), the developing corpus luteum (CL)

increases progesterone (P,) concentrations with a slight

increase in uterine prostaglandin Fjc, (PGFjq; Kindahl et al. ,

1976). Diestrus (d 5-18) is associated with increased P4

along with a maturing CL. Decreasing concentrations of P4

and increasing concentrations of Ej and PGFjo are associated

with proestrus (d 18 until subsequent estrus; as reviewed by

Hansel and Convey, 1983).

Luteal Development and Progesterone

After ovulation of the dominant follicle caused by a

surge of luteinizing hormone (LH), theca and granulosal

cells luteinize to become small and large luteal cells,

respectively (Niswender and Nett, 1988). Weight and size of

the CL increase during metestrus and the first portion of

diestrus and attains its mature size by Day 7 (Henricks et



al., 1972). A mature CL will reach 20-25 mm diameter in

size and will produce P4 concentrations of "6.0 ng/ml in

serum. Luteal secretion of P4 is essential throughout

gestation for maintenance of pregnancy in cattle or compared

to som other species, such as sheep, that do not require

luteal function after Day 50 (Lauderdale, 1986; Niswender

and Nett, 1988) . In each case, Ej must prime the

reproductive tract, by inducing formation of P4 receptors

(Muldoon, 1980), to support the environment required for

normal embryonic growth and development (Niswender and Nett,

1988). Three days prior to estrus, P4 decreases

exponentially with subsequent increases in Ej (Wettemann et

al. , 1972) and a new estrous cycle begins.

Estrogen and Follicular Development

Estradiol exhibits a biphasic pattern during the

estrous cycle. The first rise in serum Ej (about d 8-10),

from the dominant follicle of the first follicular wave

(Ireland and Roche, 1983) , reaches concentrations of 10

pg/ml. After atresia of the dominant follicle, Ej decreases

to basal levels (2-5 pg/ml). The second rise in E2 occurs

about 2-3 days prior to estrus (Hansel and Convey, 1983).

This rise in Ej serves to induce the formation of oxytocin



receptors in the uterine endometrium such that a "positive

feedback loop" can occur between PGFzc, and oxytocin. For

ovulation to occur, a decrease in P4 and a decrease in Ej

(i. e., less than 1.0 ng/ml in serum) must occur, which

induces a LH surge.

Biosynthesis and Secretion of Prostaglandins

Milvae (1986) reviewed several pathways in which

prostaglandins are synthesized from arachidonic acid. These

pathways include the cyclooxygenase pathway, which produces

prostaglandins and thromboxanes, and the lipooxygenase

pathway, which produces hydroxyacids and leukotrienes.

Several pathways exist which can lead to the production of

PGF20, but the most energy efficient pathway is through

cyclooxygenase pathway.

The primary precursor of all prostaglandins are fatty

acids obtained from the diet or membrane lipids, mainly

arachidonic acid which is converted from linoleic acid by

desaturase enzymes (Moore, 1985). Prostaglandins are often

increased during uterine manipulation and irritation,

typically encountered with artificial insemination and

embryo transfer techniques (Schallenberger et al., 1989;

Seguin et al., 1974), heat stress (Malayer et al. , 1990),



and in the short luteal phase cow (Ramirez-GodInez et al.,

1981; Pratt et al., 1982; Cooper et al. , 1991) . New reports

indicate cows with gram negative mastitis have elevated

concentrations of milk PGFj^ and shortened interestrus

interval (reviewed by Cullor, 1990).

Luteal Regression

Prostaglandin Fja has been implicated as the primary

luteolysin in cattle as well as many other ruminant animals

(Goding, 1974). Prostaglandin Fjo must be released in a

series of five to eight pulses to initiate luteolysis in

cattle (Kindahl et al., 1976). These pulses appear just

prior to the initiation of luteolysis (i.e., significant

decreases in serum P^) . Transfer of uterine PGF^^ to the

ovary has been proposed to occur by a countercurrent

mechanism between the uteroovarin vein and ovarian artery

(McCracken et al., 1972). McCracken et al. (1971) provided

the first evidence of a countercurrent mechanism by

observing that tritium-labeled PGF2„ infused into the

ovarian pedicle was transferred from the uterine vein to the

ovarian artery.

In order for spontaneous luteolysis to occur, the

uterus requires a period of P^ exposure (approximately 10 d;
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Homanics and Silvia, 1988; Lafrance and Goff, 1988). This

period is needed to allow for accumulation of lipid droplets

in uterine epithelial cells and upregulation of the

cyclooxygenase enzyme, stimulation of IP3 turnover and

pulsatile release of PGFja during spontaneous luteolysis.

Furthermore, P4 inhibits the ability of E2 to stimulate OT

receptors (as reviewed by Silvia et al., 1991). McCracken

et al. (1984) suggested that luteolysis involves the

formation of endometrial OT receptors induced by a pulse of

E2 such that a positive feedback loop can occur. Following

P4 exposure, the receptor for P4 down regulates itself

causing the formation of OT receptors and allowing for OT to

enhance a pulsatile release of PGFza.

The positive feedback between OT and PGF2a causes the

decline in P4, growth of the ovulatory follicle and Ej to

increase. This increase in E2 helps to drive luteolysis to

completion by inducing the formation of additional OT

receptors, stimulation of arachidonic acid turnover in

phospholipid and triglyceride pools, stimulation of

cyclooxygenase enzyme production and further release of

PGF20, (Raw et al., 1988; as reviewed by Silvia et al.,

1991).
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Elevated concentrations of PGFjc, rnay cause embryonic

death through the actions of estrogen. Continued infusion

or twice daily injections of PGFja increased size and number

of large follicles in postpartum cows and ewes (Villeneuve

et al., 1988, 1989). Villeneuve (1990) observed increased

concentrations of E2 following PGEj^ treatment of early

postpartum cows. Therefore, caution must be used in

determining the cause of embryonic loss associated with

PGFjo, since elevated Ej has also been reported to cause

embryonic mortality in rats (Butcher, 1977), rabbits

(Stormshak and Casida, 1965) and cows (Butcher et al.,

1992) .

A direct relationship between concentrations of 13,14-

dihydro-15-keto PGFj^ (PGFM) , a metabolite of PGEj^, and

PGFzo, has been documented in cattle (Kindahl et al. , 1976).

However, Carver (1989) observed that concentrations of PGFM

measured in jugular or the posterior vena cava did not

accurately reflect the production of PGFjc by the uterus or

reproductive tract in cattle. However, measurement of PGFM

is still considered the best indicator of peripheral PGFjc

concentrations.

Following estrus, concentrations of PGFjc decrease to
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basal levels with slight increases on Day 5 (as determined

by PGFM concentrations) which is associated with metestrus

bleeding in cattle (Kindahl et al., 1976). Schallenberger

et al. (1989) also observed an increase in PGFjc until Day 6

after estrus following artificial insemination compared to

non-inseminated cyclic heifers.

Cellular Mechanisms of PGF^„

The receptor for PGFjc has been cloned and its presence

has been characterized throughout the estrous cycle in sheep

and cattle (Rao et al., 1979; Graves et al., 1995; Wiltbank

et al., 1995). The PGFz^ receptor is a G-protein coupled

receptor containing seven hydrophobic transmembrane spanning

regions which represent a-helices (Ostrowski et al., 1992).

The PGFjo, receptor has been primarily localized to the large

luteal cells of the CL (Balapure et al., 1989). Receptors

for PGFja are present as early as Day 3 after estrus (Rao et

al., 1979; Wiltbank et al., 1995) and increase in

concentration and binding affinity throughtout the estrous

cycle. However, the CL is non-responsive to administration

of PGFja until Day 5 postestrus (Rawson et al. , 1972) .

Furthermore, this effect does not appear to be due to a lack

of high-affinity receptors for PGFj^ on the CL (Wiltbank et

12



al., 1995) .

When PGFjo binds to its receptor, phospholipase C (PLC)

is activated and the receptor-PGFjo complex is translocated

to the plasma membrane (Wiltbank et al. , 1990) . PGFjo

increases phosphotidylinositol hydrolysis, specifically

hydrolysis of phosphoinositol bisphosphate to inositol

phosphate (IP3) and diacylglycerol (DAG), within the luteal

cell (Jacobs et al., 1991). DAG can act as a second

messenger through activation of protein kinase C (PKC;

Nishizuka, 1984). PKC may phosphorylate (and thereby

activate) enzymes involved in liberating free arachidonic

acid from intracellular storage pools to serve as a

substrate for prostaglandin synthesis. Cytosolic free

calcium is increased from the intracellular pool in the

large luteal cells in response to PGFz^ (Wegner et al. ,

1990) and luteal oxytocin is released. Sustained

intracellular concentrations of free calcium are cytotoxic

in numerous cell systems (Rasmussen and Barrett, 1984)

suggesting that the luteolytic effects of PGFj^ are mediated

in this manner.

PGFja also exhibits antisteroidogenic activity in

luteal tissue. PGFzc blocks LH induced stimulation of
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adenylate cyclase, thus reducing cyclic AMP (cAMP)

concentrations in luteal tissues (Lahav et al., 1976).

Henderson and McNatty (1977) suggested that this reduction

in cAMP concentrations causes the cholesterol esterase

enzyme to be converted from its active phosphorylated form

to an inactive dephosphorylated form. The net effect of

this step is a reduction of free cholesterol for P^

biosynthesis by luteal cell mitochondria. Furthermore, mRNA

for the LH receptor on the rat CL is decreased with the

process of luteolysis (Bjurulf and Selstam, 1996). LH is

the major luteotrophic hormone in the cow and ewe (Hansel et

al. , 1973; Niswender et al. , 1981) . LH is Jcnown to

stimulate P4 production by luteal tissues in vitro

(Kaltenbach et al., 1967) and frequent injection of LH at

mid-cycle prolonged the functional lifespan of the CL and

lengthened the estrous cycle.

PGF^a and Involvement with Oxytocin

Following a pulse of PCFj^, oxytocin (OT) is released

from the secretory granules of large luteal cells of the CL

(Fuchs, 1987). It is believed that OT (either from the CL

and/or posterior pituitary) stimulates uterine release of

PGFjc which feeds back to stimulate release of luteal

14



oxytocin, which then stimulates the uterus to release

additional PGFja, thus a "positive-feedback loop" is

established (for reviews see Flint et al., 1990; Silvia et

al., 1991).

Oxytocin is considered to only play a passive role in

luteolysis. Kotwica and Skarzynski (1993) reported heifers

infused with noreadreneline (induces release of OT from the

CD on Days 11 and 12 and on Days 15 and 16 of their estrous

cycle had increased release of OT with no effects on

spontaneous luteolysis or estrous cycle duration.

Therefore, ovarian OT may have a passive role rather than a

direct action on luteolysis.

Intrauterine infusion of ovine trophoblast interferon-x

(IFN-x; the major anti-luteolytic protein produced by the

trophoblast during maternal recognition of pregnancy) to

ewes between Days 11 and 15 of the estrous cycle reduced

estrogen receptor mRNA, OT receptors and well as affinity of

OT receptors for OT (reviewed by Bazer et al., 1994).

Furthermore, endometrial OT receptors are low in pregnant

versus cyclic cows during the luteolytic period (Jenner et

al., 1991). This trophoblast protein likely inhibits

synthesis of endometrial estrogen and OT receptors to slow

15



uterine production of luteolytic pulses of PGFjc,.

Utilizing a frequent bleeding regimen in ewes, an

endogenous pulse of PGFja occurred at an average of 17

minutes prior to a pulse of OT during luteolysis (Moore et

al., 1986). Furthermore, OT concentrations in ovarian,

utero-ovarian and jugular blood in sheep was increased

following an injection of cloprostenol (a PGFj^ analogue;

Flint and Sheldrick, 1983). Therefore, both endogenous and

exogenous sources of PGFz^ will result in OT release from

the regressing CL.

Cellular Mechanisms of Oxytocin

Oxytocin is synthesized and stored in the large luteal

cells as well as the posterior pituitary of several ruminant

animals (reviewed by Fuchs, 1988) . When OT binds with its

receptor in the uterine endometrium, activation of

phosholipase C (PLC) causes metabolism of

phosphotidylinositol phosphate to IP3 and DAG. These second

messengers enhance PGFza secretion by enhancing

phospholipase Aj (PLAj) activity (which increases

intracellular calcium concentrations) and providing an

additional source of arachidonic acid by metabolism of DAG

by DAG lipases, or through the action of PLC (Lafranee and

16



Goff, 1990).

Silvia and co-workers have dissociated the

responsiveness of the PLC signal transduction system from

OT-stimulated PGF20, release. Silvia and Raw (1993) observed

no rise in PLC activity from endometrial tissue from cycling

sheep from Days 12, 14 and 16; however, a clear rise in the

OT-stimulated release of PGFj^ occurred. Futhermore, Silvia

et al. (1994) observed the dose of OT required to increase

PLC activity was ten times more than needed to stimulate

PGFjc, release. Therefore, OT-stimulated PGFjo, release must

act through a mechanism other than phosphotidylinositol-

specific PLC. Lee and Silvia (1994) demonstrated that a

stimulator of PLA2 (melittin) enhanced PGF2a release

comparable to that of OT. Aristocholic acid (a PLA2

inhibitor) inhibited the rise in PGF20, secretion by OT and

PLA2; however, blocking of PLA2 only blocked OT-induced

release of arachidonic acid by 22% (Lee and Silvia, 1994).

Therefore, both PLAj and PLC appear to regulate PGF2a

release.
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Early Embryonic Development

Ovulation and Oocyte Maturation

Following the LH surge and ovulation of the dominant

follicle, the oocyte resumes meiosis and continues

maturation so that fertilization can occur. The developing

oocyte enters the oviduct where sperm capacitation, oocyte

maturation, transport of gametes, fertilization and early

cleavage of the embryo takes place (Ellington, 1991). The

oviduct consists of four distinct regions: infundibulum,

ampulla, isthmus and the ampullary-isthmic junction.

The oocyte undergoes the final stages of maturation in

the ampulla before fertilization. After capacitation of the

sperm in the isthmus, sperm penetrate the oocyte to form the

zygote (i.e., less than two cell divisions). The zygote

undergoes cleavage and development while traveling through

the isthmus until the 8- to 16-cell stage, at which time the

embryo is transported to the uterus (reviewed by Bazer et

al., 1993).

The proper uterine environment is necessary for correct

development of the embryo. Pregnancy rates in cattle that

had embryos placed into their uteri with embryos -3, -2, -1,

0, +1, +2 and +3 days out of synchrony with the uterus were
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0, 30, 52.2, 91.1, 56.5 40 and 20%, respectively (Rawson et

al., 1972). Furthermore, Newcomb and Rawson (1975) reported

that Day 3 embryos were too immature to survive in the

uterus. Elevated concentations of Ej, PGFja/ and OT are

possible reasons for accelerated rate of movement of embryos

through the oviduct (Chang, 1966; Booth et al., 1975) .

Therefore, accurate synchrony between the embryo and uterus

is necessary for survival and development of the early

embryo.

Morula to Blastocyst Development

The 8- to 16-cell embryo enters the uterus

approximately 96 hours after ovulation (Hamilton and Laing,

1946; Chang, 1952). During the first week of development,

the embryo increases in cell numbers, a switch occurs from

the maternal genome to the embryonic genome, and development

of the three germ layers (endoderm, mesoderm, and ectoderm)

is established. During morula development, the daughter

cells (blastomeres) flatten on each other to form a rounded

embryo and internal cellular components. The combined

flattening and polarization are referred to as "compaction".

Tight junctions form within the trophoblast when the

blastomeres are in close contact during compaction. This
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formation provides a permeability seal to allow fluids to

move from the outside to the inside of the embryo as the

result of solute gradient established by active ion

transport (i.e. Na^/K^ ATPase pump). The accumulation of

fluid induces the formation of the blastocoele and allows

development of the blastocyst to form cells (inner cell

mass) which give rise to the embryo proper and the

trophectoderm and the trophoblast which forms the

extraembryonic membranes (for review see Bazer et al.,

1993) .

Hatching of the Embryo

The developing blastocyst will be released (hatched)

from the zona pellucida (ZP) in the uterus at about 8 to 11

days postovulation in cattle (Chang, 1952) . Expansion and

contraction of the blastocyst appears to play a major role

in embryo hatching in cattle. Expansion of the blastocyst

involves hyperplasia and fluid acculmulation in the

blastocoele. The ZP becomes distended by the blastocyst and

breaJcs in a equitorial plane; however, enzymes may also play

an important role in ZP hatching. After the ZP ruptures,

the blastocyst will squeeze between the two edges of the

opening in the ZP (reviewed by Bazer et al., 1993). Biggers
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et al. (1978) suggested that prostaglandins (in particular,

the E series) are involved in the hatching process in mice.

Elongation Phase

The developing bovine blastocyst transforms from a 3 mm

sphere on Day 13 to a 25 cm filamentous shape on Day 17. By

Day 18, the embryo has entered both the ipsilateral and the

contralateral horns of the uterus. This elongation has been

suggested to be due to a cellular remodeling rather than a

change in cell numbers (Geisert et al., 1982).

Maternal Recognition of Pregnancy

The next major feat the embryo must complete is to

suppress uterine secretion of PGF^c, thus extending CL

lifespan. The pulsatile secretion of PGFjo, around the time

of expected luteolysis (Days 14-19) in pregnant versus

cyclic cows has been examined in great detail (Thatcher et

al., 1986, 1995).

To suppress uterine secretion of PGFj^, the conceptus

must produce a luteotrophic factor to alert the mother of

the presence of a viable embryo and extend luteal lifespan,

thus termed "maternal recognition of pregnancy". This

subject has received worldwide attention and has been the

subject of many reviews (Bazer et al. , 1986; Thatcher et
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al., 1986; Roberts et al., 1992; Bazer et al., 1995). In

ruminants, the trophoblast produces a protein called

Interferon-T (IFN-t; also termed bovine and ovine

trophoblast protein-1, bTP-1 and oTP-1, respectively).

Interferon-T is classified as a Type I interferon due to its

similarity in structure and anti-viral activity of other

interferons (Roberts et al., 1992). Interferon-x has been

characterized (Godkin et al., 1982) and is synthesized

specifically by the trophectoderm from Days 16-24 and 13-21

of pregnancy in cattle and sheep, respectively (Godkin et

al., 1984; Roberts et al., 1992). Godkin et al. (1982)

reported the presence of high-affinity receptors for IFN-t

on sheep endometrial tissue, specifically on the luminal

epithelial cells and on the outer glandular epithelial cells

(the two major sources of PGFj^) .

IFN-t reduces prostaglandin secretion by inducing an

intracellular endometrial inhibitor which inhibits the

cyclooxygenase enzyme complex (Gross et al., 1988) such that

the luteolytic pulses are not expressed during expected

luteolysis. Concentrations of PGFj^ in the uterine lumen

are high on Days 16 and 19 of pregnancy (Bartol et al.,

1981) . Thus, it seems unlikely that PGFjc, is detrimental to
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embryos as old as 14 days of age.

Early Embryonic Mortality

The Committee on Reproductive Nomenclature (1972)

defines embryonic mortality as any loss which occurs during

the first 42 days of pregnancy (i.e., period from conception

to completion of differentiation). Possible reasons for

embryonic loss include failure of normal embryonic

development (d 1-16), embryo-derived signals initiating

maternal recognition of pregnancy (d 16-24) or luteal

dysfunction (d 5-parturition). Embryonic loss in either of

these time periods may involve toxic factors in the uterine

environment which destroy the embryos and/or the CL.

Fertilization rates in cattle are accepted to be close

to 90 to 95%, but diagnosed pregnancy rates are between 50

and 60% (Sreenan and Diskin, 1983) . The majority of the

studies completed on embryonic or fetal loss have shown the

majority of the loss occur during the embryonic period.

Boyd et al. (1969) reported only a 5-8% fetal loss from Day

42 until parturition.

Several studies have been performed to establish the

exact timing in which embryonic loss actually occurs.

Embryonic loss has been estimated to be between 20 (Ayalon,

23



1978) and 42% (Diskin and Sreenan, 1980) . However, results

concerning the timing of embryonic loss have been variable

and very inconsistent. For example, Boyd et al. (1969)

reported an 8% loss before 25 days after artificial

insemination, whereas Roche et al. (1981) reported an

embryonic loss of 24% over the same time period. Maurer and

Chenault (1983) observed that 67% of the mortality has

occurred or was occurring by Day 8 of gestation.

Furthermore, Ayalon (1978) reported that the majority of

embryonic loss occurred before Day 8 postestrus, with Day 7

being the period with the majority of the loss. However,

Diskin and Sreenan (1980) reported the majority of the loss

occurs between Day 16 and 18 of pregnancy. To reconcile

these differences, Roche et al. (1981) suggested that a

gradual loss occurs between Day 8 and 16 of pregnancy.

Prostaglandin Effects on the Embryo

Prostaglandins have been implicated in both growth of

the embryo and the implantation process in rabbits (El-Banna

et al., 1976; Hoffman et al., 1978). Rabbits treated with

indomethacin, a cyclooxygenase inhibitor, did not maintain

pregnancy which suggests the importance of prostaglandins

for this species (Hoffman et al., 1978). Furthermore,
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treatment of hamsters, mice and rats with indomethacin

disrupted implantation (Evans and Kennedy, 1978; Oettel et

al. , 1979) .

However, Harper and Skarnes (1972) suggested that

elevated concentrations of PGFja increased the number of

fetal deaths and treatment with P4 prevented abortion, but

not fetal death in mice. Furthermore, treatment of rat

embryos with .1-10 ng/ml of PGFjc decreased blastocyst

formation and hatching (Breuel et al. , 1993a). Likewise,

Stormshak and Casida (1965) reported that treatment with P4

prevented abortion but not fetal death when Ej was used to

rescue the CL from LH-induced luteolysis in rabbits.

As documented by Lewis (1989), the blastocyst of

several species (porcine, ovine, bovine and laboratory

animals) secretes PGFja when incubated with arachidonic acid

in vitro. PGFjq from the conceptus is involved in

intrauterine migration, ZP hatching, ion transport across

the trophectoderm, fluid accumulation in the blastocoele,

increase endometrial permeability and glucose metabolism by

the blastocyst.

The Postpartum Cow as a Model

The first ovulation in the postpartum cow is associated
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with a short lived CL due to a premature release of PGFjo

(Ramirez-Godinez et al., 1981, 1982; Pratt et al., 1982;

Cooper et al., 1991). Cows bred at their first postpartum

ovulation were not able to maintain pregnancy even when

supplemented with exogenous progestogen (Breuel et al.,

1993b). Furthermore, Breuel et al. (1993b) reported the

occurrence of ovulation, fertilization and normal embryonic

development to Day 3 postmating did not differ in cows with

normal or short estrous cycles. Butcher et al. (1992)

reported that when two "good" embryos were transferred into

uteri of cows with short luteal phases supplemented with

exogenous progestogen, pregnancy rates were 50% lower when

compared to cows with normal luteal phases. Furthermore,

Schrick et al. (1993) reported that Day 6 embryos from cows

with short luteal phases were capable of producing

pregnancies when transferred to cows with normal luteal

phases.

Uterine luminal concentrations of PGFjj, were higher in

cows with short luteal phases when compared to cows with

normal luteal phases (Schrick et al., 1993). Those cows

with higher concentrations of RGFj^ had lower quality

embryos (r=-.42; P = .07). The significant deterioration in
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embryo quality between Day 3 (Breuel et al., 1993b) and Day

6 (Schrick et al., 1993) in cows with short luteal phases

suggests that the problem is likely after the embryo enters

the uterus. As stated previously, culture of rat embryos

with 0.1-10 ng/ml PGFjc prevented development to the

expanded or hatched blastocyst (Breuel et al., 1993a).

Buford et al. (1996) reported that postpartum cows (»28

days) supplemented with exogenous progestogen and

administered saline, flunixin megulmine (FM; a

cyclooxygenase inhibitor), or FM + lutectomy (lutectomy

performed on Day 6) from Days 4 to 9 after mating had

pregnancy rates of 21, 27 and 53%, respectively (P<.05 for

saline and FM vs FM+lutectomy). The surpise finding that

lutectomy increased pregnancy rate suggested that the

regressing CL was required for the embryotoxic effect of

PGF2„.

The Cyclic Cow

Cattle supplemented with exogenous progestogen and

administered either saline, 15 mg of PGFjc or 15 mg

PGF2„+lutectomy (lutectomy was performed on Day 5) every 8

hours from Days 5-8 had pregnancy rates of 67, 22 and 80%,

respectively (Buford et al., 1996). Lutectomy prevented the
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negative effects of PGFjc in both early postpartum and

normally cycling cows. Concentrations of PGFM did not

differ between cows administered PGFjc and PGFj^ + lutectomy.

Furthermore, lowered embryo survival during luteolysis were

not due to increased PGFj^ per se, but appears to be

manifested through the regressing CL. From these data, even

subluteolytic concentrations of PGFj^ (Schramm et al., 1983)

could play a role in embryonic loss during the early period

of embryonic development via release of an embryotoxin

(possibly luteal OT) from the CL. Therefore, the removal of

the luteal source of OT diminishes the negative effects of

PGFjc on the developing embryo in cattle.
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STATEMENT OF THE PROBLEM

Reports concerning the timing of embryonic loss have

been variable and very inconsistent. Ayalon (1978) reported

the majortiy of embryonic loss had occurred or was occurring

by Day 8. In contrast, Diskin and Sreenan (1980) reported

the majority of embryonic loss occurred from Days 16 to 18.

To reconcile these differences, Roche et al. (1981)

suggested that a gradual loss occurs between Days 8 and 16.

The first ovulation in the postpartum cow is associated

with a short luteal phase due to a premature release of

PGFzc (Ramirez-Godinez et al., 1981, 1982; Pratt et al.,

1982; Cooper et al., 1991). Previous experiments suggest

the presence of a regressing CL is required to manifest the

negative effects of increased concentrations of PGFza

(Butcher et al., 1992; Breuel et al., 1993b; Schrick et al.,

1993; Buford et al., 1996) in the postpartum cow as well as

normally cycling cattle. Furthermore, treatment of rat

embryos with 0.1-10 ng/ml PGFj^ prevented formation of

expanded or hatched blastocysts as well as formation of the

morula stage (Breuel et al., 1993a). Therefore, increased

concentrations of PGFjc during early embryonic development,

possibly mediated through OT, may reduce pregnancy rates by
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a direct action of PGFjo (retarded embryonic development) or

an embryotoxic factor from the regressing CL (luteal OT).

Few reports have been found on the effects of PGFjq on

older embryos (Day 10 until maternal recognition of

pregnancy) and if lutectomy would alleviate the effects (if

any) of elevated concentrations of PGF20,. To test this

hypothesis, an experiment was conducted to examine the role

of luteal regression on embryonic survival during three

periods of embryonic development in cattle supplemented with

exogenous progestogen. The objective was to determine if

embryo survival in the presence of luteolytic concentrations

of PGFja differs with developmental age of the embryo and if

presence of the CL is required to manifest the effects of

PGFzc on embryo survival.
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MATERIALS AND METHODS

General Methods

Ninety-one primiparous and multiparous cycling,

nonlactating cows (3 replicates) were randomly allotted to

receive saline (CON) , 15 mg of PGFja (PGF) , or 15 mg of PGF2„

+ lutectomy (P+L). Cows were further assigned to one of

three periods of embryonic development; Days 5 through 8,

Days 10 through 13 or Days 15 through 18 after mating using

a 3 X 3 factorial treatment arrangement (Figure 1).

All cows were in moderate body condition (Spitzer et

al., 1986) and estrus was synchronized with two injections

of 25 mg of PGFjc ten days apart (im, Lutalyse, The Upjohn

Company, Kalamazoo, MI). Cows were observed for estrus

twice daily and two Polled Hereford bulls of known fertility

were rotated twice daily for maximal detection of estrus.

Cows were artificially inseminated with semen from a single

Holstein bull of high fertility at estrus (Day 0) and bred

by natural service to Polled Hereford bulls. Furthermore,

cows were artificially inseminated again twelve hours after

first observed signs of estrus to remove any "male" effect

from the current study. All cows were fed 4 mg/day of

melangestrol acetate (MGA) in the a.m. beginning 2 days
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before initiation of their respective treatments (ie, Day 3,

8 and 13 for days 5-8, 10-13, and 15-18, respectively) and

continued until Day 30 after mating. Cows were allowed ad

libitum access to bermuda grass pasture, orchardgrass hay

and water. Furthermore, non-treated feed was also fed in

the p.m. to provide supplemental energy and to stimulate

appetite. The non-treated and the MGA-treated feed (l mg

MGA/lb feed) was in pelleted form and was purchased from

Tennessee Farmers Coop (see appendix 1 for exact composition

of feed).

Cows in the CON group received injections of 3 ml

sterile saline each day at 8 hour intervals (0600, 1400, and

2200 h) during their respective treatment periods. Cows in

PGF and P+L received intramuscular injections of 15 mg PGFj^

every 8 hours during their respective treatment periods.

Lutectomies were performed during rectal palpation in 9/22

CON cows(4, 3 and 2 in Days 5-8, 10-13 and 15-18,

respectively) and all cows in the P+L group at the

initiation of treatment. Lutectomies were performed in

these CON cows to verify that 4 mg/cow/d of MGA could

sustain a pregnancy. Lutectomies were performed

transrectally at 0600 on the first day of treatment prior to
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injection. The CL was removed by using digital pressure

with the thumb and forefinger and dropped into the abdominal

cavity. Verification of CL loss was determined by

ultrasonography at the time of lutectomy, progesterone and

oxytocin assays. All animals were intensively observed for

blood loss by monitoring changes in respiratory rate,

evidence of depression, feed refusal, abdominal pain and

mucous membrane color of the vulva every 8 hours for 24

hours following lutectomy. If evidence of possible blood

loss was apparent, then blood was drawn for determination of

packed-cell volume (PCV) count. No cows were removed due

to symptoms of blood loss. Pregnancy rates were determined

by ultrasonography 30 days after mating.

In a secondary study, eleven (11) cycling, nonlactating

cows which had exhibited at least two normal estrous cycles

were randomly allotted to one of three groups. The

objective of the second experiment was to determine

concentrations of uterine PCF^^ by flushing the uteri of

progestogen-supplemented cows. Treatments included saline

(CON; n=3), 15 mg of PGFse, (PGF; n=5) , and 15 mg of PGFj^ +

Lutectomy (P+L; n=3). All cows were treated as previously

described from Days 5 through 7 after mating (Figure 2),
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which corresponds to the stage when the embryo is developing

from a morula to a hatched blastocyst.

Synchronization and detection of estrus, breeding and

feeding of all cows was performed as in the previous

experiment. All cows were fed 4 mg/day of melengestrol

acetate (MGA) in a.m. beginning on Day 3 after mating and

continued until Day 7 after mating.

On Day 7 at 1000, a jugular blood sample was collected

and the uterine horn ipsilateral to the CL of all cows was

flushed with 500 ml of Dulbecco's phosphate buffered saline

(Gibco, Inc., Grand Island , NY) as described by Elsden and

Seidel (1982). Fifteen ml of flush medium was collected

from each cow and were centrifuged at 2500 X g to remove

debris present in the flush media. In analyses of

concentrations of uterine PGFjc, only data from cows with

recovery scores of 1 or 2 were utilized (Schrick et al.,

1993) . Recovery score refers to the ease of insertion of

the Foley catheter into the uterus and the degree of

difficulty the uterus had to evacuated of the media at the

time of flushing.

U1trasonography

Ultrasonograms were performed with an Aloka 500
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ultrasound unit equipped with a 7.5 MHz rectal probe

(Corometrics Medical Systems., Wallingford, CT; Model UST-

5561-7.5). Ultrasonography was used to verify loss of the CL

at the time of lutectomy and establishment of pregnancy

(presence of an embryo with a visible heartbeat) in all cows

10 days after mating.

Blood Preparation and Radioinununoassay

Approximately 12 ml of jugular blood was collected at

0600 and 2200 prior to injection and at 30 min and 1 hour

after the initial injection of PGFj^/saline and placed in

chilled tubes containing 200 (il of sodium citrate solution

(25 mg/ml; Baxter Scientific Products). Blood and uterine

flush samples were immediately placed on ice until arrival

at the Endocrine Laboratory. Blood samples were centrifuged

(2500 X g), plasma was harvested and both uterine flush and

plasma samples were stored at -20°C until assays were

performed. Plasma samples were assayed for determination of

concentrations of progesterone (P4) , estradiol-17P 2

reps of experiment one),and 13,14-dihydro-15-keto-PGF2„

(PGFM). Furthermore, plasma from samples collected at time

0 (initial injection), 30 min and 1 hour were assayed to

determine concentrations of oxytocin and P4 (verification of
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complete lutectomy). Additionally, uterine flush samples

were assayed for PCFj^.

Progesterone

Concentrations of in plasma were determined as

described by Plata et al. (1990). Sensitivity of the assay

was .05 ng/tube (100 fil) , with intra- and inter-assay

coefficients of variation of 8.6 and 13.6%, respectively.

Estradiol-17B

Concentrations of Ej in plasma were determined by the

procedure by Howard et al. (1990). Sensitivity of the assay

was .15 pg/tube (150 fxl) , with an intra-assay coefficient of

variation of 6.5%.

13,14-dihydro-15-keto-PGF2a

Concentrations of PGFM in plasma were determined as

described by Silvia and Taylor (1988) with modifications

described by Romanics and Silvia (1989). Sensitivity of

the assay was 15 pg/tube (200 fil) , with intra- and inter-

assay coefficients of variation of 10 and 12%, respectively.

Prostaglandin F^c,

Concentrations of PGFjc in the uterine flush samples

were determined by the procedure of Cooper et al. (1991) .

Sensitivity of the assay was 25 pg/tube (200 ^1), with an
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intra-assay coefficient of variation of 3%.

Oxytocin

Concentrations of OT in plasma samples were determined

by the procedure of Gorewit (1979) with modifications

described by Cooper et al. (1991). Sensitivity of the assay

was 3 pg/tube (100 fil) , with intra- -assay coefficient of

variation of 3%.

Statistical Analysis

Pregnancy data were analyzed using Chi-square test.

Changes in concentrations of plasma P4, Ej, OT and PGFM were

analyzed by analysis of variance for a RED split-plot design

with treatment as the main plot and time as the subplot

variable using the MIXED procedure of SAS (1989). Effects

of treatment were considered significant when P < .05.
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RESULTS

Pregnancy Rates

Pregnancy rates did not differ between CON and C+L,

therefore, these animals were combined into one CON group

per daygroup. Pregnancy rates were significantly reduced in

the PGF(5-8) groups when compared to CON (3/13, 23% and 5/7,

72%, respectively; P < .03). Lutectomy tended to increase

pregnancy rates in P+L(5-8) group (6/11, 55%) compared to

PGF(5-8) animals (3/13, 23%; P = .1). Furthermore,

pregnancy rates tended to increase across daygroups in the

PGF treatment groups (3/13, 23%; 5/10, 50%; and 6/10, 60%

for Days 5-8, 10-13 and 15-18, respectively; P = .07;

Figure 3). Pregnancy rates did not differ between any other

treatment*daygroup interactions.

Concentrations of Ej, P^, PGFM and OT

Differences in Ej, P4 and PGFM did not occur between

CON and C+L except for concentrations of P4, therefore,

these animals were combined into one CON group. The initial

P4 value collected for each daygroup was significantly

higher when compared across daygroups (1.2 ± .4, 3.9 ± .3

and 5.5 ± .4 for Days 5-8, 10-13 and 15-18, respectively; P

< .05) . Concentrations of P4 were significantly reduced by
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2200 of the first day of treatment in cows administered C+L,

PGF and P+L when compared to the 0600 sample. No

differences were observed in concentrations of Ej between

any treatment, daygroup or any of treatment*daygroup

interactions except for Days 10-13 (Fignre 4).

Concentrations of Ej for CON, PGF and P+L in the Day 10-13

daygroup were 2.8 ± .4, 3.7 + .4 and 3.3 ± .4 pg/ml,

respectively (P < .05).

Mean concentrations of PGFM were significantly elevated

in animals receiving PGF and P+L treatments (398 ± 23 and

413 ± 22 pg/ml, respectively) when compared to CON animals

(80 ± 29 pg/ml; P < .01; Figure 5). No differences were

observed between PGF and P+L across daygroups. Furthermore,

PGFM concentrations did not different between the first

sample collected between the PGF and P+L across all

daygroups (79 ± 43 and 92 ±43 pg/ml for PGF and P+L,

respectively). Also, no differences in PGFM concentrations

were observed 24 hours following the last administration of

PGFjo (94 ± 42 and 119 ± 42 pg/ml for PGF and P+L,

respectively). Therefore, endogenous PGFj^ did not appear

to be released before the first injection and after the last

injection.
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Oxytocin secretion thirty minutes after initiation of

treatment was increased in intact cows (PGF vs. CON; P < .07

for Days 5-8; P = .0001 for Days 10-13 and 15-18).

Furthermore, this increase was prevented by lutectomy (P+L

vs. PGF; P < .05 for Days 5-8; P = .0001 for Days 10-13 and

15-18; Figure 6).

Secondary Experiment

Concentrations of and PGFM

Concentrations of P4 were significantly reduced in

animals administered PGF and P+L by 2200 on the first day of

treatment when compared to the first sample collected on Day

5 (1.9 ± .2vs .5± .2 and 2.1 + .3 vs .3 ± .3 ng/ml for PGF

and P+L, respectively; P < .01).

Mean concentrations of PGFM were significantly higher

in cows administered PGF and P+L treatments (1368 ± 219 and

1443 ± 233 pg/ml, respectively) when compared to CON cows

46±248 pg/ml; P < .01). Furthermore, mean concentrations

of PGFM immediately prior to flushing was significantly

higher in cow receiving PGF and P+L treatments (2836 ± 287

and 1673 ± 335 pg/ml, respectively) when compared to CON

cows (21 ± 385 pg/ml; P < .001). Also, mean concentrations

of PGFM immediately prior to flushing were significantly
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higher in the PGF group when compared to the P+L group (P =

.001). Furthermore, mean concentrations of PGF2a in uterine

flush samples were 172 ± 62, 201 ± 41, and 207 ± 53 pg/ml

for CON, PGF and P+L, respectively (P > .6).
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DISCUSSION

The objective of this study was to determine if embryo

survival in the presence of luteolytic concentrations of

PGFja differed with developmental age of the embryo and if

the presence of the CL was required to manifest the effects

of PGFja on lowered embryonic survival. The results from

this study indicate the embryo developing from a morula to a

expanded blastocyst (Days 5-8) is the most susceptible to

the negative effects of PGF^^. Furthermore, removal of

luteal oxytocin tends to increase pregnancy rates within

this daygroup. Moreover, the embryo becomes less

susceptible to the effects of PGFjq as the embryo ages.

This finding was expected since uterine concentrations of

PGFja are known to be elevated from Days 16 and 19 of

pregnancy (Bartol et al., 1981) which suggests as the embryo

gets older it becomes more resistent to the detrimental

effects of PGFjq. The results from this experiment as well

as data from Buford et al. (1996) strongly suggest the

regressing CL is required to manifest the negative effects

of elevated concentrations of PGFjc on lowered embryonic

survival in cattle from Days 5-8 of pregnancy.

Several explanations are plausible to explain why
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bovine embryos become resistent to PGFja as they age.

Keefer and Rice (1992) reported that co-culture of 1 cell

bovine embryos with 4-8 cell bovine embryos improved the

blastocyst formation in the cell embryos. Thus, these

"helper" or older embryos may produce a factor that is

beneficial to younger developing embryos. Furthermore,

Hernandez-Hedezma et al. (1992) reported that bovine embryos

begin producing IFN-x or bTP-1 as early as the expanded to

hatched blastocyst stage of development. IFN-x is the anti-

luteolytic protein produced by the trophoblast to prevent

pulsatile release of PGFjc,.

Several mechanisms could be involved in the reduction

of embryonic survival in the presence of elevated

concentrations of PGFjc,. First, the CL may be releasing a

embryotoxic factor during luteolysis. Several products are

released from the regressing CL including one (Smith et al.,

1993, 1994) or two (Juengel et al., 1994) tissue inhibitors

of metalloproteinases-1 and -2, tumor necrosis factor-a

(TNFa; Mclntush et al., 1996), interleukins , interferon-y

(as reviewed by Pate, 1995) and oxytocin (Flint et al.,

1990) .

At the initiation of luteolysis, several immune cells
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including macrophage and neutrophils invade the CL and

release several products. These products include TNF-a and

several interleukins, which stimulate PGFzc, production

(Pate, 1995) by in vitro cultured bovine luteal cells

(Bagavandoss et al., 1988, 1990), but did not affect

steroidogenesis (Nothnick and Pate, 1990) . TNF-a is at its

highest concentrations at luteolysis (Mclntush et al., 1996;

Bagavandoss et al., 1990) and caused fetal death in pregnant

mice (Silver et al., 1994). Therefore, several mechanisms

may be involved during the regression of the CL and possibly

lowering embryonic survival in cattle.

Second, the embryotoxic effect may be due to elevated

concentrations of PGFjc,. Embryonic development was retarded

in rat embryos cultured with .1-10 ng/ml PGFjo (Breuel et

al., 1993a). Furthermore, rabbit embryos cultured with

PGFja prevented development to the hatched blastocyst stage

(Maurer and Beier, 1976). However, if only elevated

concentrations of PGFja were required to lower embryonic

survival, pregnancy rates should not have increased in the

P+L groups. Although, more frequent blood sampling may have

indicated a more sustained release of PGFja in PGF cows as

seen in the secondary experiment. Even though uterine
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concentrations of PGFjo did not differ, PGFM levels

collected immediately prior to flushing the uterus indicated

that PGFza was higher in PGF treated cows compared to P+L

(2836 ± 287 and 1673 ± 335 pg/ml, respectively; P < .001).

Furthermore, the nondifferences in uterine PGFj^

concentrations may be due to the release of PGFj^ during the

flushing procedure as well as the low numbers of cows per

treatment group. Thus, the regressing CL is required to

manifest the effects of elevated concentrations of PGFj^ on

lowering embryonic survival in cattle.

Thirdly, prostaglandins may cause lowered embryonic

survival indirectly through the actions of Ej (Thatcher et

al. , 1989) . Ayalon (1973) reported that in cows with

degenerated embryos, plasma concentrations of Ej were higher

on the day of estrus and Days 3 and 4 after insemination in

comparison to cows with normal embryos. Continued infusion

or twice daily injections of PGFj^ increased size and number

of large follicles in postpartum cows and ewes (Villeneuve

et al. , 1988, 1989). Villeneuve (1990) observed increased

concentrations of Ej following PGEja treatment of early

postpartum cows. Administration of gonadotropin releasing

hormone agonists 11 to 13 days postestrus, which results in
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follicular atresia, increased pregnancy rates of cows

inseminated at the previous estrus (MacMillan et al., 1986),

probably through a reduction in secretion of E2 when

follicles underwent atresia (Thatcher et al., 1989) .

Furthermore, cows with higher concentrations of E2 during

Days 14-17 had lower pregnancy rates than cows with lowered

concentrations of E2 (Pritchard et al. , 1993).

Exogenous E2 will increase uterine concentrations of OT

receptors (Hixon and Flint, 1987) and result in luteal

regression (Stormshak et al., 1969). Administration of Ej

will not induce complete luteal regression in

hysterectomized cows (Kaltenbach et al., 1964) indicating

that the involvement of in luteal regression is via the

uterus. However, elevated concentrations of Ej were not

observed during Days 5-8 in the present study which suggests

that the reduction in embryonic survival is due to the

effects of PGFjc,.

Lastly, the embryotoxic effect may be due to the

release of oxytocin from the regressing CL and thus,

stimulating further release of PGFja- Oxytocin

administration is known to increase concentrations of PGF2a

and shorten estrous cycle length in cattle (Armstrong and
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Hansel, 1959). The most convincing evidence that OT may be

acting as an embryotoxin was obtained by Lemaster et al.

(1996). Briefly, cattle supplemented with exogenous

progestogen were administered either saline (CON), 100 lU OT

+ 1 g flunixin meglumine (OT+FM; a prostaglandin

inhibitor), 100 lU OT (OT) or 100 lU OT + lutectomy (OT+LUT)

on Days 5-8 of pregnancy. PGFM was significantly elevated

in animals receiving OT+LUT when compared to CON and OT+FM

30 minutes after the initial injection. Furthermore, 50% of

OT animals had luteal phases of less than 14 d. Pregnancy

rates at 30 days were 80%, 80%, 33% and 30% for CON, OT+FM,

OT and OT+LUT animals, respectively. Thus, the additional

secretion of PGFjo, due to release of OT from the CL may be

having an effect on embryonic survival in cattle.

In summary, a model for studying embryonic survival in

cycling cattle was established with multiple injections of

PGFja at three different periods of embryonic development.

The results from this study as well as from Buford et al.

(1996) indicate that the regressing CL is required to

manifest the effects of PGFja in lowering embryonic survival

in cattle supplemented with exogenous progestogen. Removal

of the regressing CL (i. e., removal of luteal OT) may
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either interfere with the positive feedback loop of luteal

OT and uterine PGF2C, and prevent even higher concentrations

of uterine luminal concentrations of PGFj^. Moreover, the

embryo becomes resistant to the effects of PGFjc as the

embryo ages.
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Feed used in Experiments 1 and 2

Ingredients

Processed grain by-products, plant protein products, grain
products, forage products, cane molasses, calcium carbonate,
salt, lignin sulfonate, potassium sulfate, magnesium
sulfate, zinc, oxide, manganese oxide, ferrous sulfate,
magnesium oxide, copper sulfate, cobalt carbonate,
ethylenediamine dihydroiodide, calcium iodate, sodium
selenite, vitamin A acetate, vitamin D-3, vitamin E

supplement and mineral oil.

Guaranteed Analysis

Crude protein (min.) 25.00%
Crude fat (min.) 2.50%

Crude fiber (max.) 9.75%

Calcium (min.) 1.25%

Phosphorus (min.) 0.55%

Salt (min.) 1.30%

Potassium (min.) 1.00%

Vitamin A (min.) 5,000 lU/lb

Vitamin D (min.) 1,500 lU/lb

Active Ingredient

Melengesterol Acetate 2,000 mg/ton

Manufactured By

Tennessee Farmers Cooperative
200 Waldron Road

Lavergne, TN 37086
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