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Carotenoids in fresh and processed tomato
(Solanum lycopersicum) fruits protect cells from
oxidative stress injury
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Abstract

BACKGROUND: Lipophilic antioxidants in tomato (Solanum lycopersicum) fruits exert important functions in reducing the risk
of human diseases. Here the effect of thermal processing on the antioxidant activity of lipophilic extracts from the commercial
tomato hybrid ‘Zebrino’ was analysed. Carotenoid content and lipophilic antioxidant activity were determined and the ability
of tomato extracts in rescuing cells from oxidative stress was assessed.

RESULTS: Lipophilic antioxidant activity was completely retained after heat treatment and extracts were able to mitigate the
detrimental effect induced by oxidative stress on different cell lines. Lycopene alone was able to rescue cells from oxidative
stress, even if to a lower extent compared with tomato extracts. These results were probably due to the synergistic effect of
tomato compounds in protecting cells from oxidative stress injury.

CONCLUSION: The current study provides valuable insights into the health effect of the dietary carotenoids present in fresh and
processed tomato fruits.
© 2016 Society of Chemical Industry
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INTRODUCTION
Tomato (Solanum lycopersicum) is one of the most consumed
vegetables worldwide and nowadays its consumption has fur-
ther increased owing to the development of many processing
products such as soups, juices, purees and sauces. It has been esti-
mated that about 75% of tomatoes are consumed in processed
form.1 Among these processed tomatoes, 35% are consumed
as sauces, 18% as tomato paste, 17% as canned tomatoes, 15%
as juices and 15% as catsup.1 Epidemiological studies suggest
that consumption of tomato and tomato-based products reduces
the risk of chronic diseases such as cardiovascular disease and
cancer.2 In particular, intake of tomato and tomato-based prod-
ucts has been consistently associated with lower risk of prostate,
lung and stomach cancers.3 Typically, this protective action is
attributed to antioxidant components such as carotenoids, phe-
nols and polyphenols as well as synergistic interactions among
them.4 – 7 Tomato fruits are considered one of the main sources of
dietary antioxidants such as carotenoids, in particular 𝛼-carotene,
𝛽-carotene, lycopene, lutein and cryptoxanthin.8 Indeed, tomato
fruits contain 8–40 mg lycopene kg−1 fresh weight (FW), which
corresponds to about 80% of the total dietary intake of this
carotenoid.9,10 Carotenoids are lipophilic pigmented molecules
responsible for the different colours of fruits and vegetables and
are synthesized by plants and microorganisms but not by ani-
mals. In plants, carotenoids protect against photo-damage and
contribute to the photosynthetic machinery.11,12 Carotenoids are
important dietary sources of vitamin A, after 𝛽-carotene retinol
bioconversion into pro-vitamin A.13

Oxidative stress, induced by the imbalance between the gen-
eration of reactive oxygen species (ROS) and the cellular capac-
ity to detoxify these species with antioxidant molecules, has
been implicated in the causation and development of several
chronic diseases.7 ROS can be generated by normal metabolic
activity as well as by lifestyle factors such as smoking and diet.
Many recent studies have investigated the role of dietary antiox-
idants that can mitigate the damaging effects of ROS,8,14 and
carotenoids have been proposed as good antioxidants able to
act as free radical scavengers owing to their chemical structure.15

Indeed, recently, it has been demonstrated that tomato lipophilic
extracts were able to prevent hydrogen peroxide (H2O2)-induced
cell death in a cell-based model system using rat cardiac H9c2
cells.7 Generally, the carotenoid content of foods is not signifi-
cantly modified by common household cooking methods such

∗ Correspondence to: DM Monti, Department of Chemical Sciences, University of
Naples Federico II, Complesso Universitario Monte Sant’Angelo, Via Cinthia 4,
I-80126 Naples, Italy, E-mail: mdmonti@unina.it; or MM Rigano, Department
of Agricultural Sciences, University of Naples Federico II, Via Università 100,
I-80055 Portici (Naples), Italy, E-mail: mrigano@unina.it

† These authors contributed equally to the paper

a Department of Chemical Sciences, University of Naples Federico II, Complesso
Universitario Monte Sant’Angelo, Via Cinthia 4, I-80126, Naples, Italy

b Department of Agricultural Sciences, University of Naples Federico II, Via
Università 100, I-80055, Portici, Naples, Italy

J Sci Food Agric (2016) www.soci.org © 2016 Society of Chemical Industry

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/55148533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


www.soci.org R Del Giudice et al.

as microwave cooking, steaming and boiling, although extreme
and extended heat treatments could cause oxidative degradation
of carotenoids.16,17 Moreover, the carotenoid lycopene has been
demonstrated to be absorbed more efficiently from processed
tomato products than from raw tomatoes.18 However, only a few
works have focused on the impact of processing on the general
nutritional quality and antioxidant activities of tomato fruits.

In this study, the carotenoid content, lipophilic antioxidant activ-
ity and protective effects of tomato lipophilic extracts from the
commercial tomato hybrid ‘Zebrino’ were examined. This cultivar
has been selected since, during an on-going breeding program
carried out at the Department of Agricultural Sciences, it was
demonstrated that the fruits of this hybrid have a high content of
bioactive compounds (carotenoids, phenolic compounds, vitamin
C) endowed with antioxidant activity.19 The protective effects of
lycopene alone have also been evaluated in this study.

The current work seeks to evaluate the health-promoting prop-
erties of tomato fruits by evaluating both the antioxidant and
protective effects of lipophilic extracts obtained from unpro-
cessed and processed fruits. Consumers could benefit from the
results reported in this paper by increasing their awareness of
the health benefits of fresh and processed tomato fruits; more-
over, these results could be used by fresh and industrial tomato
producers for the development of tomato-based functional foods.

MATERIALS AND METHODS
Chemical reagents
Standards and reagents were purchased from Sigma (St Louis, MO,
USA), while solvents were from Fluka (Buchs, Switzerland).

Plant material
Plant material consisted of the tomato genotype Zebrino (ZBR)
(De Ruiters, Monsanto, St Louis, MO, USA). Plants were cultivated
according to a randomized design with three replicates (ten plants
per replicate) in an experimental field located in Acerra (Naples,
Italy) in the year 2014. Each sample consisted of 20 pooled fruits
per plot. The samples were harvested at the full ripe stage as used
in the industry. Fruits were chopped, ground to a fine powder in
liquid nitrogen using a Fimar FRI150 blender (Rimini, Italy) and
kept at−80 ∘C until analyses. The studied genotype was processed
according to a classical thermal treatment. Briefly, after washing
for 5 min in water, tomatoes were treated for 10 min at 92 ∘C. An
aliquot of treated tomatoes was passed through a pulper in order
to obtain a puree. Glass cans were filled with 60% of treated whole
tomatoes and 40% of puree and successively vacuum sealed. Then
the filled jars were pasteurized at 100 ∘C for 30 min and cooled by
water. The processed samples were homogenized using a Fimar
FRI150 blender and kept at −80 ∘C until analyses. Three cans for
each sample were collected and analysed.

Before chemical extraction, the dry matter content of all samples
was determined by vacuum drying the samples for at least 12 h at
60 ∘C to constant weight. The moisture content of both processed
and unprocessed samples was found to be around 900 g kg−1.
In particular, the mean dry matter content of fresh tomato was
100 g kg−1, while that of processed tomato was 96 g kg−1.

Extraction of lipophilic compounds
To obtain the lipophilic extract, 1 g of sample was extracted with
16 mL of acetone/hexane (40:60 v/v) using an IKA T 25 Ultra-Turrax
High-Speed Homogenizer 115VAC (Cole-Parmer, Vernon Hills, IL,

USA).20 The mixture was centrifuged at 3500× g for 5 min at 4 ∘C
according to a modified procedure reported by Rigano et al.21

Supernatants were collected and stored at −20 ∘C until analyses.

Carotenoid determination
For carotenoid determination, the absorbance of lipophilic
extracts was read at 663, 645, 505 and 453 nm. 𝛽-Carotene and
cis- and trans-lycopene isomer levels were calculated according to
the equations reported by Zouari et al.20 Total carotenoids were
calculated by reading the absorbance at 480, 648 and 666 nm
according to the formula reported by Wellburn.22 Results were
then converted into g kg−1 FW.

Antioxidant activity determination
Lipophilic antioxidant activity (LAA) was evaluated using the
2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)
test.23 The ABTS assay was performed as described by Rigano
et al.21 Briefly, 100 μL of supernatant, obtained from the extraction
reported above, was added to 1 mL of ABTS•+, the mixture was
incubated for 2.5 min and the absorbance was read at 734 nm. The
standard curve was linear between 0 and 20 μmol L−1 Trolox and
results were expressed as mmol Trolox equivalent (TE) kg−1 FW.

MTT test
Human HeLa adenocarcinoma cells, human hepatic carcinoma
HepG2 cells, human breast adenocarcinoma MCF-7 cells and
murine BALB/c 3 T3 and SV-T2 fibroblasts (ATCC) were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich,
St Louis, MO, USA) supplemented with 100 mL L−1 foetal bovine
serum (HyClone, Logan, UT, USA), 2 mmol L−1 L-glutamine and
antibiotics. Cells were grown in a 5% CO2 humidified atmosphere
at 37 ∘C and seeded in 96-well plates at a density of 2× 103 cells
per well. Lipophilic tomato extracts, obtained as reported above,
were dried by rotovapor (R-210, Buchi), re-dissolved in dimethyl
sulfoxide (DMSO) and then added to the cells 24 h after seeding for
dose-dependent cytotoxicity assays. After 48 h incubation, cell via-
bility was assessed by the MTT assay as described in Galano et al.24

Briefly, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) reagent dissolved in DMEM in the absence of phenol
red (Sigma-Aldrich) was added to the cells (0.5 mg mL−1 final con-
centration). Following 4 h incubation at 37 ∘C, the culture medium
was removed and the resulting formazan salts were dissolved by
adding isopropanol containing 0.01 mol L−1 HCl (100 μL per well).
Absorbance values were determined at 570 nm using an auto-
matic plate reader (Microbeta Wallac 1420, PerkinElmer, Waltham,
MA, USA). Cell survival was expressed as percentage of viable cells
in the presence of the tomato extract under test compared with
control cells grown in the absence of the extract. Three separate
analyses were carried out with each sample. Control experiments
were performed either by growing cells in the absence of the
extract or by adding to the cell cultures identical volumes of
DMSO. The method used avoids any possibility of a DMSO effect
on the final results.

Oxidative stress analyses
To evaluate the protective effect of lipophilic extracts against
oxidative stress, cells were plated at a density of 4× 104 cells cm−2,
incubated in the presence of 0.6 mg mL−1 lipophilic extracts or
0.4 μg mL−1 commercial trans-lycopene (Sigma) for 48 h and then
treated with 300 μmol L−1 sodium arsenite (SA) for 2 h. At the
end of incubation, cell viability was assessed by the MTT assay
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as reported above, ROS production was measured by the DCFDA
assay, glutathione (GSH) level was measured by the DTNB assay
and lipid peroxidation was assessed by the TBARS method.

DCFDA assay
To determine ROS levels within the cytosol, cells were incu-
bated with the cell-permeable redox-sensitive fluorophore
2′,7′-dichlorodihydrofluorescein diacetate (H2-DCFDA) (Sigma-
Aldrich) at a concentration of 25 μmol L−1 for 30 min at 37 ∘C. Cells
were then washed twice with warm phosphate-buffered saline
(PBS) supplemented with 1 mmol L−1 CaCl2, 0.5 mmol L−1 MgCl2

and 30 mmol L−1 glucose (PBS plus), detached by trypsin, cen-
trifuged at 1000× g for 10 min and re-suspended in PBS plus at a
density of 1× 105 cells mL−1. H2-DCFDA is non-fluorescent until, in
the presence of ROS, it is hydrolysed by intracellular esterases and
readily oxidized to the highly fluorescent 2′,7′-dichlorofluorescein
(DCF). DCF fluorescence intensity was measured at an emission
wavelength of 525 nm and an excitation wavelength of 488 nm
using a PerkinElmer LS50 spectrofluorimeter. Emission spectra
were acquired at a scanning speed of 300 nm min−1, with five slit
widths for excitation and emission. ROS production was expressed
as percentage of DCF fluorescence intensity of the sample under
test compared with the untreated sample. Three separate analy-
ses were carried out with each extract. Control experiments were
performed by supplementing cell cultures with identical volumes
of DMSO.

DTNB assay
The interaction of the sulfhydryl group of GSH with 5,5′-dithiobis-
2-nitrobenzoic acid (DTNB) produces a yellow-coloured com-
pound, 5-thio-2-nitrobenzoic acid (TNB), whose intensity can be
measured at 412 nm. Thus the rate of TNB production is directly
proportional to the concentration of GSH in the sample. To esti-
mate intracellular GSH levels, cells were detached by trypsin,
centrifuged at 1000× g for 10 min and re-suspendend in lysis
buffer (300 mmol L−1 NaCl and 5 mL L−1 NP-40 in 100 mM Tris–HCl,
pH7.4) containing protease inhibitors. After 30 min incubation on
ice, lysates were centrifuged at 14 000× g for 30 min at 4 ∘C.
Supernatant protein concentration was determined by the Brad-
ford assay. Then 50 μg of proteins were incubated with 3 mmol L−1

ethylenediaminetetraacetic acid (EDTA) and 144 μmol L−1 DTNB
in 30 mmol L−1 Tris HCl (pH 8.2) and centrifuged at 14 000× g
for 5 min at room temperature. Finally, the absorbance of the
supernatant was measured at 412 nm using a multiplate reader
(BioRad, Hercules, CA, USA). GSH levels were expressed as per-
centage of TNB absorbance of the sample under test compared
with the untreated sample. Three separate analyses were carried
out with each extract. Control experiments were performed by
supplementing cell cultures with identical volumes of DMSO.

Measurement of lipid peroxidation
Levels of lipid peroxidation were determined using the thiobar-
bituric acid (TBA)-reactive substance (TBARS) assay.25 Cells were
detached by trypsin and centrifuged at 1000× g for 10 min, then
5× 105 cells were re-suspendend in ice-cold PBS and mixed with
6.7 mL L−1 TBA and an equal volume of 200 mL L−1 trichloroacetic
acid (TCA). Samples were then heated at 95 ∘C for 30 min, incu-
bated on ice for 10 min and centrifuged at 3000× g for 5 min at
4 ∘C. TBA reacts with oxidative degradation products of lipids,
and complexes absorb at 532 nm. Lipid peroxidation levels were
expressed as percentage of absorbance at 532 nm of the sample

under test compared with the untreated sample. Three separate
analyses were carried out with each extract. Control experiments
were performed by supplementing cell cultures with identical
volumes of DMSO.

Statistical analyses
Biological replicates of samples were analysed in triplicate. Quan-
titative parameters were expressed as mean± standard deviation
(SD). Differences among unprocessed and processed samples were
determined using SPSS 6, Version 15.0 (SPSS Inc., Chicago, IL, USA).
Significance was assessed by Student’s t test at a significance level
of 0.05.

RESULTS AND DISCUSSION
In this study, the antioxidant and protective activities of lipophilic
extracts obtained from unprocessed and processed commercial
tomato hybrid ‘Zebrino’ (ZBR) were analysed. This cultivar is
characterized by a skin colour changing from dark green to dark
brown/red, with green tiger stripes when fully ripe. Carotenoid
content and LAA were examined and the ability of tomato
lipophilic extracts and lycopene alone in rescuing cells from
oxidative stress was assessed.

Carotenoid content and antioxidant activity
Figure 1A shows the change in the carotenoid content of ZBR
extracts before and after heat treatment. The mean amount of
total carotenoids in ZBR was 0.095 g kg−1 FW, and this value did
not change significantly after thermal processing. Lycopene and

Figure 1. In vitro characterization of carotenoid tomato extracts. (A)
Carotenoid content (g kg−1 FW) and (B) lipophilic antioxidant activity
(mmol TE kg−1 FW) of ZBR lipophilic extracts before (unprocessed, black
bars) and after thermal processing (processed, grey bars).
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𝛽-carotene represented about 47 and 45% of total carotenoids
in unprocessed samples respectively. Frusciante et al.26 and Rig-
ano et al.21 found that lycopene constituted about 90% of total
carotenoids in different varieties of red tomatoes. On the contrary,
the ZBR genotype shows a different lycopene/total carotenoid
ratio and a higher content of 𝛽-carotene compared with common
red tomatoes. These values correlate well with the presence of
green tiger stripes on the skin and the deep green/brown flesh
of the fully ripe fruit. After processing, the amount of lycopene
did not change significantly, whereas a significant (P < 0.05)
decrease of 17% in 𝛽-carotene level was recorded. In the liter-
ature, controversial data on carotenoid stability during thermal
processing are reported. In accordance with our data, it has
been reported that carotenoid content was stable in processed
tomatoes.16 Capanoglu et al.27 reported a significant decrease in
both lycopene (32%) and 𝛽-carotene (36%) levels, whereas Re
et al.28 reported an increase in lycopene levels in several tomato
products. These contrasting results may depend on the different
genotypes evaluated and on the temperature and time adopted
in the processing methods.

Figure 1B shows the LAA in ZBR extracts before and after ther-
mal processing. The mean LAA was 0.96 mmol TE kg−1 FW before
processing and did not change after heat treatment. The lipophilic
tomato extract may contain other antioxidant phytochemicals
such as vitamin E. Our results, together with results from Li et al.,7

demonstrated that carotenoids constitute the major fraction of
lipophilic compounds in tomato fruits and contribute significantly
to their overall antioxidant activity. The LAA reported in this study
for the ZBR cultivar was higher than those reported for other
tomato cultivars. Indeed, Cano et al.29 measured an antioxidant
activity of 0.81 mmol TE kg− 1 FW in tomato mature red fruit,

whereas Toor and Savage30 found mean levels of LAA equal to
0.18, 0.07 and 0.09 mmol TE kg−1 FW in the skin, pulp and seeds
respectively of several tomato commercial cultivars.

Free radical scavenger activity of lipophilic tomato extracts
Afterwards, the maximum concentration of lipophilic extracts at
which no significant cytotoxic effect is observed was evaluated. For
this purpose, one normal cell line (immortalized murine fibroblast
cell line BALB/c 3 T3) and four cancer cell lines were selected:
BALB/c 3 T3 murine fibroblasts transformed with SV40 virus (SVT2),
human adenocarcinoma cells (HeLa), human hepatic carcinoma
cells (HepG2) and human breast adenocarcinoma cells (MCF-7).
The viability of cells treated for 48 h with increasing amounts of
tomato extracts was tested by the MTT reduction assay as an
indicator of metabolically active cells.

The results of dose–response experiments are shown in Fig. 2.
The values are the average of three independent experiments,
each carried out with triplicate determinations. It was observed
that 0.24 and 0.6 mg mL−1 lipophilic tomato extracts did not affect
cell viability significantly, whereas at 1.2 mg mL−1 a cytotoxic
effect was observed on all cell lines analysed. The concentration at
which a cytotoxic effect was observed (1.2 mg mL− 1) was lower
than that reported on rat cardiomyoblasts,7 but in that study a
different cell viability assay and incubation time (24 h) were used.
Interestingly, both the extracts from unprocessed and processed
fruits showed a similar effect on cell survival; however, on MCF-7
cells, a cytotoxic effect of the lipophilic extract obtained from
fresh fruits was observed even at the lowest extract concentra-
tion. Based on these experiments, 0.6 mg mL−1 lipophilic tomato
extract was selected as the optimal concentration to analyse the
free radical scavenger activity against oxidative stress induced by

Figure 2. Effects of lipophilic tomato extracts on normal and cancer cells. BALB/c 3 T3, SVT2, MCF-7, HepG2 and HeLa cells were treated with increasing
concentrations of lipophilic tomato extracts from unprocessed (black bars) and processed (grey bars) samples for 48 h. Cell viability was assessed by the
MTT assay and expressed as described in the ‘Materials and Methods’ section. All values are given as mean± SD (n≥ 3).
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Figure 3. Effects of lipophilic tomato extracts on normal and cancer cells. BALB/c 3 T3, SVT2, MCF-7, HepG2 and HeLa cells were pre-incubated with
0.6 mg mL−1 lipophilic tomato extracts from unprocessed (black bars) and processed (grey bars) samples for 48 h and then treated with 300 μmol L−1 SA
for 2 h. White bars refer to control cells, untreated (−) or treated with SA (+). Cell viability was assessed by the MTT assay and expressed as described in
the ‘Materials and Methods’ section. All values are given as mean± SD (n≥ 3). Asterisks (*) indicate values that are significantly different from SA-treated
cells (P < 0.01) as determined by Student’s t test.

sodium arsenite (SA). Among health hazards, inorganic arsenic,
present in drinking water, is a major threat to human health,
particularly in Asian countries (Bangladesh, Taiwan, Vietnam and
India), Argentina, Chile and several states of the USA (Arizona,
California and Nevada).31,32 To inspect the ability of lipophilic
tomato extracts to contrast SA-induced oxidative stress, cells
were pre-incubated in the presence of lipophilic tomato extracts
obtained from fruits processed by thermal treatment or from
fresh fruits. Cells were then treated with SA as described in the
‘Materials and Methods’ section.

Cytoprotective activity of lipophilic tomato extracts
Cell viability was assessed by the MTT assay. As shown in Fig. 3,
after SA treatment, cell viability was dramatically reduced com-
pared with control cells in all cell lines analysed (white bars).
Noteworthy, when cells were pre-incubated in the presence of
lipophilic tomato extracts from either processed (grey bars) or
unprocessed (black bars) samples, a strong protective effect
was recorded. No significant differences were observed in the
protective effect of extracts from unprocessed or processed
fruits, thus suggesting that heat treatment does not affect the
antioxidant power of tomato extracts. The recovery observed
was about 50% in all cell lines analysed (Fig. 3, black and grey
bars versus white bars). It is interesting to note that the unpro-
cessed lipophilic tomato extract was able to significantly protect
MCF-7 cells against oxidative stress even though, when tested
in the absence of stress, it exerted a slight cytotoxic effect.
The protective effect of the lipophilic extract observed in this
study is in line with that reported on rat cardiomyoblasts in the
presence of H2O2.7

Lipophilic tomato extracts mitigate SA-induced ROS
production
We chose SVT2 cells as cancer cell line and BALB/c 3 T3 cells as
normal cells to deeply inspect the effects of SA on cell redox home-
ostasis. Since perturbation in the cellular redox status is related
to ROS production, we measured ROS levels in cells pre-treated
with lipophilic tomato extracts, exposed to SA and treated with
H2-DCFDA. This cell-permeable oxidation-sensitive dye is con-
verted to its fluorescent form in the presence of ROS. As shown
in Fig. 4A, in normal cells, no significant ROS production was
observed upon exposure to the lipophilic extracts, whereas SA
induced an increase of 50% in ROS levels compared with control
cells (white bars). Noteworthy, SA-induced ROS production was
strongly decreased when cells were pre-treated with both unpro-
cessed (58% decrease) and processed (48% decrease) lipophilic
ZBR extracts. No significant difference was observed between
unprocessed and processed tomato lipophilic extracts in protect-
ing cells from ROS production. In cancer cells (Fig. 4B), instead, a
slight increase in ROS levels was observed when cells were incu-
bated with lipophilic extracts compared with untreated cells (20
and 40% increase for unprocessed and processed extracts, respec-
tively). SA treatment resulted in a high increase in ROS levels (70%)
compared with control cells, and pre-treatment with lipophilic
extracts induced a significant reduction in ROS production (about
41 and 74% decrease for unprocessed and processed ZBR extracts,
respectively). The unprocessed and processed extracts were able
to protect cells from ROS production to the same extent. These
results suggest that pre-treatment with lipophilic extracts is
able to abolish ROS production induced by oxidative stress and
that heat treatment does not affect the antioxidant activity of
lipophilic extracts. This is particularly interesting considering that

J Sci Food Agric (2016) © 2016 Society of Chemical Industry wileyonlinelibrary.com/jsfa
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Figure 4. DCFDA assay for detection of intracellular ROS produced in
response to oxidative stress in (A) normal and (B) cancer cells. Cells
were pre-incubated with 0.6 mg mL−1 lipophilic tomato extracts from
unprocessed (black bars) and processed (grey bars) samples for 48 h and
then treated with 300 μmol L−1 SA for 2 h. White bars refer to control cells,
untreated (−) or treated with SA (+). Values are expressed as fluorescence
intensity compared with untreated cells. Asterisks (*) indicate values that
are significantly different from SA-treated cells (P < 0.01) as determined by
Student’s t test.

carotenoids such as lycopene are mainly found in trans conforma-
tion in fresh tomato fruit, whereas they are normally transformed
into the more bioactive cis form after food processing.6

Lipophilic tomato extracts prevent GSH depletion and lipid
peroxidation
Since intracellular glutathione (GSH) is the most important antioxi-
dant defence molecule and its depletion is the first hallmark of the
progression of apoptosis, we evaluated GSH intracellular levels.

As shown in Fig. 5, pre-treatment of normal (Fig. 5A) and can-
cer (Fig. 5C) cells with lipophilic extracts had no significant effect
on intracellular GSH levels. Oxidative stress induced by SA resulted
in about 30% GSH depletion in both cell lines, but GSH intracel-
lular levels were not affected when cells were pre-incubated with
lipophilic extracts obtained from either processed or unprocessed
samples.

GSH level is directly related to the degree of lipid peroxidation
in the cell membrane,33 as it participates in eliminating lipid per-
oxidation products by forming a GSH conjugate.34 Therefore, we

analysed lipid peroxidation levels in our experimental system by
TBARS assay (Figs 5B and 5D). No lipid peroxidation was observed
when cells were incubated in the presence of either unprocessed
or processed lipophilic tomato extracts, whereas lipid peroxida-
tion showed a 120 and 150% increase in normal and cancer cells
respectively after SA treatment (Figs 5B and 5D). Noteworthy,
pre-incubation of cells with lipophilic extracts completely abol-
ished the effect of SA on lipid peroxidation, and no significant
difference was observed between cells treated with extracts from
processed or unprocessed samples. These results clearly indicate
that treatment of cells with lipophilic extracts, either unprocessed
or processed, is able to prevent the negative effect of SA-induced
oxidative stress.

Lycopene role in protective effects of ZBR extracts
It has been hypothesized that lycopene was the compound
responsible for the observed protective effect.

To verify the specific role of lycopene in protecting cells from
oxidative stress, ROS production and intracellular GSH levels
were analysed by following the same experimental proce-
dure described above. The lycopene concentration used was
0.4 μg mL−1, since this represents the amount of lycopene present
in ZBR extracts when used at 0.6 mg mL−1. As shown in Figs 6A and
6B, pre-treatment of cells with lycopene lowered ROS levels after
SA treatment to 58% in normal cells and 33% in cancer cells. These
values are in agreement with those reported for ZBR extracts.
In Figs 6C and 6D, the results of intracellular GSH levels before
and after SA treatment are reported. In cancer cells, a strong
protective effect of lycopene from oxidative stress was found, as
intracellular GSH levels were slightly higher than those of control
cells in SA-treated samples. On the contrary, when normal cells
were incubated in the presence of SA, no significant protective
effect was observed after lycopene treatment. We hypothesize
that the higher sensitivity of normal cells compared with cancer
cells results in a lower ability of cells to rescue from stress. Alto-
gether, these results demonstrated that other compounds are
present in ZBR lipophilic extracts that could play a role in protect-
ing cells, such as 𝛽-carotene and vitamin E, thus supporting the
idea of a synergistic effect among structurally different lipophilic
compounds.35

CONCLUSIONS
The results reported in this paper are particularly interesting
since carotenoids are known to regulate different cellular path-
ways and functions,8 but their bio-absorption is strongly influ-
enced by several factors, including break-up of the food matrix
and cooking temperatures. Here it was demonstrated that ZBR
lipophilic extracts were able to counteract the detrimental effects
induced by oxidative stress on different cell lines and that the high
LAA exhibited by ZBR hybrid was mainly due to the presence of
lycopene. However, it is noteworthy that ZBR extracts were more
effective than lycopene alone in protecting cells, thus supporting
the importance of a synergistic effect among antioxidants present
in tomatoes.

To date, only a few reports are available on the protective effects
of lipophilic tomato extracts on cells. A direct correlation between
carotenoid content and antioxidant activity of tomatoes on rat
cardiomyoblasts has been previously found.7 In addition, it was
demonstrated that tomato lipophilic and hydrophilic extracts pro-
tected cells from H2O2-induced cell death and that the antioxidant

wileyonlinelibrary.com/jsfa © 2016 Society of Chemical Industry J Sci Food Agric (2016)
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Figure 5. Determination of intracellular GSH and lipid peroxidation in (A, B) normal and (C, D) cancer cells. Cells were pre-incubated with 0.6 mg mL−1

lipophilic tomato extracts from unprocessed (black bars) and processed (grey bars) samples for 48 h and then treated with 300 μmol L−1 SA for 2 h. White
bars refer to control cells, untreated (−) or treated with SA (+). A and C refer to intracellular GSH levels (DTNB assay) and B and D refer to lipid peroxidation
levels (TBARS assay). In each experiment, values are expressed as fold increase compared with control (i.e. untreated) cells. Asterisks (*) indicate values
that are significantly different from SA-treated cells (P < 0.01) as determined by Student’s t test.

Figure 6. Protective effects of lycopene against oxidative stress in (A, C) normal and (B, D) cancer cells. Cells were pre-incubated with 0.4 μg mL−1 lycopene
(light grey bars) for 48 h and then treated with 300 μmol L−1 SA for 2 h. White bars refer to control cells, untreated (−) or treated with SA (+). (A, B) DCFDA
assay; (C, D) intracellular GSH levels. In both experiments, values are expressed as fold increase compared with control (i.e. untreated) cells. Asterisks (*)
indicate values that are significantly different from untreated cells (P < 0.05) as determined by Student’s t test.
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activity did not change significantly after in vitro digestion, thus
supporting the hypothesis that gastrointestinal digestion does not
alter the antioxidant power of carotenoids.36 Although many stud-
ies report the beneficial effects of lycopene and 𝛽-carotene on dif-
ferent cell lines after oxidative stress induction, as far as we know,
this study is the first to demonstrate this ability by using lipophilic
tomato extracts obtained from fruit before and after heat treat-
ment. This work supports the beneficial role of carotenoids in ame-
liorating several chronic diseases in which oxidative stress can be
considered a hallmark, thus suggesting a therapeutic potential for
tomato-based products.

In the future, the study performed here on ZBR cultivar could
be carried out also on other tomato genotypes characterized by
high LAA in order to verify if they exhibit properties analogous
to those exerted by ZBR on different cells. This analysis could be
used by breeders to generate new hybrids characterized by higher
nutritional levels.
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