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According to the latest literature, the SARS-CoV-2 virus 
is not confined to the respiratory tract, and can affect both 
the central (CNS) and the peripheral (PNS) nervous systems, 
leading to neurological symptoms, manifestations and com-
plications after acute infection [1]. Systemic hematogenous or 
retrograde neuronal spreads are the main mechanisms con-
tributing to short- and long-term neurological impairments 
after SARS-CoV-2 infection [2–4]. 

The main neurological symptoms include taste and 
olfactory dysfunction, myalgia, headache, altered mental 
status, confusion, delirium, and dizziness, which may present 
separately. Moreover, neurological manifestations and compli-
cations such as stroke, cerebral venous thrombosis, seizures, 
meningoencephalitis, Guillain–Barré syndrome, Miller Fisher 
syndrome, acute myelitis, and posterior reversible encephalop-
athy syndrome (PRES) have also been observed [5].

Clinical and structured assessments are critical to identify 
neurological impairments after COVID-19; however, several 
non-invasive neuroimaging techniques can be used to confirm 
findings on neurological examination, facilitate diagnosis, 
understand prognosis, and assist in long-term rehabilitation. 
Non-invasive brain imaging techniques can be classified into 
structure-based [e.g. computer tomography and magnetic 
resonance imaging (MRI)], metabolic-based (functional 
magnetic resonance imaging — fMRI, near-infrared spectros-
copy — NIRS, etc.), and electrophysiological-based (mainly 
electro- and magneto-encephalography). 

Structural and metabolic techniques are classically con-
sidered as having a very good spatial ‘resolution’ but a rather 
poor temporal one, while electrophysiological techniques are 
seen as having an excellent temporal resolution but a poor 
spatial one [6].

Among the neuroimaging techniques with high temporal 
resolution, electroencephalography (EEG) is mainly used in 
the evaluation of patients after COVID-19. EEG abnormalities 
are common in patients with COVID-19 and can be correlated 
with disease severity and pre-existing neurological conditions 
[7]. EEG studies focus on both cortical excitability (i.e. a qual-
itative study), and brain electrical activity patterns and their 
interference in cognitive behaviour (i.e. a quantitative study). 
Qualitative EEG studies have found frontal sharp waves in 
nearly all patients with COVID-19 who presented epileptiform 
discharges [8], bifrontal monomorphic diphasic periodic delta 
slow waves [9], diffuse background slowing, focal slowing, and 
frontal intermittent rhythmic delta activity (FIRDA) [10]. In 
addition, Gogia et al. [11] found that 50% of deceased patients 
had generalised diffuse severe slowing, indicating a global 
process. EEG abnormalities have been frequently observed 
in the frontal region and may serve as potential biomarkers 
of COVID-19 encephalopathy [7].

Concerning quantitative EEG studies, Cecchetti et al. [12] 
showed that patients with COVID-19 were characterised by 
a lower individual alpha frequency (power spectrum) com-
pared to healthy subjects, and patients who showed stronger 
connectivity in the delta band at baseline concomitantly had 
better cognitive performance. Some authors have reported 
brainstem damage after COVID-19, mainly in the reticular 
activation system and cortical cholinergic projections, which 
have been previously related to changes in the tonic alpha 
rhythm in a healthy brain [13–16]. In addition, delta oscilla-
tions, especially in the anterior regions of the brain, have been 
associated with better performance on attention shifting and 
working memory tasks [17]. Based on nonlinear EEG features, 
Appelt et al. [18] observed a reduction in brain activity at rest 
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in the F2–F4 areas and during high cognitive demands in the 
F3–F7 areas. In the COVID-19 group at 6–12 months after 
acute infection, a reduction in signal complexity was found in 
F3–F7 areas at rest. During the same period, cognitive function 
worsened, and correlations between nonlinear EEG features 
and cognitive tests were also observed [18].

Structural and functional brain images have also been used 
in several studies to understand the impact of SARS-CoV-2 in-
fection on the brain. At the structural level, images can be eval-
uated through visual or quantitative inspection (volumetry), 
and previous findings have revealed a lower cortical volume in 
the orbitofrontal, frontal, and cingulate regions of patients with 
COVID-19 compared to controls. In addition, cerebrospinal 
fluid analysis has shown that regional grey matter volume and 
thickness decrease were negatively associated with neuroin-
flammation [19]. Multimodal brain imaging data, obtained 
as part of the UK Biobank imaging study, showed three main 
changes in SARS-CoV-2 cases: (1) a greater reduction in grey 
matter thickness and tissue contrast in the orbitofrontal cortex 
and parahippocampal gyrus; (2) greater changes in markers of 
tissue damage in regions functionally connected to the primary 
olfactory cortex; and (3) a greater reduction in global brain size 
[20]. At the functional level, studies have shown frontoparietal 
hypometabolism based on 18F-fluoro-2-deoxy-D-glucose, pos-
itron emission tomography (18FDG PET) analysis [21]. Esposito 

et al. [22] showed that an increased functional segregation of 
the olfactory network around the anterior piriform cortex 
node, besides calibrating the clinically observable olfactory 
impairment, might eventually trigger a counteracting reaction 
to a more widespread neurological involvement.

These findings support the idea that the PNS should be sys-
tematically evaluated after COVID-19, using electrophysiolog-
ical and structural techniques. Patients with COVID-19 more 
frequently present absent F waves, which has been attributed 
to motor neuron hypoexcitability [23], and many authors have 
reported myopathic patterns on electromyography (EMG), 
suggesting a direct action of COVID-19 on muscular fibres [24, 
25]. In addition, peripheral nerve injury can occur secondarily 
to post-infectious inflammatory neuropathy, prone position-
ing-related stretch and/or compression injury, systemic neu-
ropathy, or nerve entrapment from haematoma. Considering 
these cases, structural imaging, such as high-spatial-resolution 
MRI of peripheral nerves and high-spatial-resolution ultra-
sound, can be an excellent diagnostic tool [26].

A summary of the mechanisms of CNS and PNS infection 
by SARS-CoV-2, as well as the main neuroimaging tools used 
for evaluation, are described in Figure 1. It must be under-
lined that clinical and neurological assessments are essential 
at any stage of COVID-19, and that neuroimaging is a com-
plementary set of techniques with the aim of understanding 

Figure 1. Mechanisms of CNS and PNS infection by SARS-CoV-2, and main neuroimaging tools used for evaluation
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the clinical evolution and prognosis of patients, in addition 
to providing readouts that may serve as potential biomarkers 
for neurodegenerative diseases occurring after COVID-19.
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