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Abstract. Univariate imputation methods are defined as imputation methods that only use the information of the target 

variable to estimate missing values. While univariate imputation methods are convenient and flexible since no other 

variable is required, multivariate imputation methods can potentially improve imputation accuracy given that the 

other variables are relevant to the target variable. Many multivariate imputation methods have been proposed, one 

of which is the Vector Autoregression Imputation Method (VAR-IM). This study aims to compare the imputation 

results of VAR-IM-based methods and univariate imputation methods on time series data, specifically on long lag 

seasonal data such as daily weather data. Three modified VAR-IM methods were studied using simulations with three 

steps: deletion, imputation, and evaluation. The deletion step was conducted using six different schemes with six 

missing proportions. The simulations were conducted on secondary daily weather data collected from the 

meteorological station of Citeko from January 1, 1991, to June 22, 2013. Nine weather variables were examined, that 

is the minimum, maximum, and average temperatures, average humidity, rainfall rate, duration of solar radiation, 

maximum and average wind speed, as well as wind direction at maximum speed. The simulation results show that the 

three modified VAR-IM methods can improve the accuracy in around 75% of cases. The simulation results also show 

that imputation results of VAR-IM-based methods tend to be more stable in accuracy as the missing proportion 

increase compared to the imputation results of univariate imputation methods. 
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1. INTRODUCTION 

Weather data have been collected since 1659 [1] and is one of the oldest data types still used today. 

Despite the old origin, weather data nowadays still have many quality problems [2], [3], one of which is 

missing values. Since weather data is time series data, missing values is a significant issue to address in 

weather data. Simple methods such as deletion are often avoided as the order of the data will be changed, 

which can introduce bias. Therefore, imputation, a process of filling missing values using estimation methods 

[4], becomes one of the most common methods of dealing with missing values in time series data. 

Previous studies have proposed many imputation methods. Some simplest methods are mean, median, 

and mode imputation [5]. However, these methods can lead to bias, especially if the proportion of the missing 

values is significant [6]. Not to mention that these imputation methods are not explicitly designed for time 

series imputation, which also needs to consider the time factor. Some of the methods that are more suitable 

for time series data are interpolation [7], MA [7], Kalman Filters [7], [8], last observation carried forward 

(loft) [8], or model-based imputation methods such as ARIMA-based method [9]. Some imputation methods 

are specifically designed for seasonal data, such as seasonally decomposed missing value imputation (seadec) 

and seasonally split missing value imputation (seasplit) [10]. These methods can only be used to impute one 

variable at a time; thus, they will be referred to as univariate imputation methods hereafter. These imputation 

methods are flexible because they do not require any variable other than the target variable itself. 

On the other hand, some proposed imputation methods can impute multiple variables at once. These 

methods will be referred to as multivariate imputation methods. These methods are ideally used when there 

is multiple relevant time series variable. In such cases, the imputation accuracy may be improved. One of the 

prevalent examples of multivariate imputation methods is variants of nearest neighbor-based methods [11]–

[14]. The main advantage of nearest neighbor-based methods is the ability to deal with categorical data. Some 

variants of nearest neighbor-based methods can even deal with univariate time series data by introducing 

covariates using lags and leads [12] or by clustering the trend, seasonality, cyclical, and residual features of 

the target variable [13]. However, the imputation time tends to be longer the bigger the data are [11]. Neural 

network-based methods, such as RNN [15], BRITS [16], E2GAN [17], or NAOMI [18], are also quite popular 

methods with high accuracy. However, neural network-based methods are complex and can overfit if used in 

a small dataset. 

One of the alternative multivariate imputation methods with a simpler model and shorter imputation 

time is Vector Autoregression (VAR)-based imputation methods [19], [20]. Liu and Molenaar [19] developed 

a VAR-based imputation package in R, which they referred to as iVAR. They compared the imputation 

performance of iVAR with listwise deletion, sample mean imputation, and multiple imputation (MI) method. 

The simulation results showed that iVAR could produce better estimation than the other three methods. Bashir 

and Wei [20] also developed an algorithm which they referred to as VAR-IM and compared the imputation 

performance with listwise deletion, linear regression imputation, Multivariate Auto-Regressive State-Space 

(MARSS), and Expectation-Maximization algorithm (EM). The results also showed an improvement 

compared to the other methods. Both studies were also implemented in real-world data, that is, on 

Electrodermal Activity (EDA) data in [21] and Electrocardiogram (ECG) data in [20]. Neither data is seasonal 

data with long lags similar to daily weather data. 

This study will be focused on daily weather data collected from the Indonesian Agency for 

Meteorological, Climatological, and Geophysics (Badan Meteorologi, Klimatologi, dan Geofisika or simply 

BMKG). This case study is chosen because of its different characteristics from real-world data used in [19] 

and [20], especially in its seasonality with long seasonal lags. The other reason is the limited literature on 

imputation methods that specifically study daily BMKG data. Some of such studies are [22] and [8]. Both of 

these are imputation studies on BMKG data. However, [22] and [8] use monthly data, which have different 

characteristics than long seasonal lagged data such as daily weather data. For instance, daily data fluctuate 

much more and is more prone to missing values. Some weather stations of BMKG have shown multiple cases 

of consecutive missing values on daily data. There are even some weather stations with consecutive missing 

values for months. 

Based on this background, this study aimed to compare the imputation results of modified VAR-IM 

with imputation results of univariate imputation methods, specifically for long seasonal lagged data such as 

daily weather data. We found that the three modified VAR-IM can improve the imputation accuracy of the 

six missing data schemes simulated in this study. We hope this study can improve the data quality of daily 

weather data so that other researchers can improve the quality of their studies. 
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2. RESEARCH METHODS 

2.1 Data 

This study uses daily weather data collected from Stasiun Meteorologi (Meteorological Station) Citeko. 
The data were collected from January 1, 1991, to June 22, 2013. The location and time range were chosen 
because of their completeness since data must be complete to be compared to the later imputation results. 
The raw data have nine variables. Three of them are temperature-related variables: minimum temperature 
(Tn), maximum temperature (Tx), and average temperature (Tavg). All of these temperature-related variables 
are in Celcius. Three other variables are wind-related: maximum wind speed (ff_x) in m/s, average wind speed 
(ff_avg) in m/s, and wind direction at maximum speed (ddd_x) in degrees. The others are average humidity 
(RH_avg) in percent, rainfall rate (RR) in mm, and duration of solar radiation (ss) in hour. 

 

2.2 Research Procedure 

The study started with data exploration. The goal is to ensure the completeness and study characteristics 

of the data, such as trend and seasonality. The study was then continued to the pre-simulation stage, a stage 

to determine variable combinations that will be simulated. Since there are nine variables, there are 255 

combinations that can be made. Therefore, to simplify the simulation process, we focused on combinations 

of rainfall rate (RR) and variables significantly affecting it. We specifically choose combinations that involve 

rainfall rate (RR) because of its frequent use in literature. Moreover, rainfall rate (RR) is one of the variables 

that frequently have missing values among the nine variables in BMKG.  

The optimal combination was determined using Forecast Error Variance Decomposition (FEVD). 

FEVD itself was calculated using VAR model that we fit in the ideal condition, that is when the data are 

complete. FEVD is defined in [23] as Equation (1) 
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   (1) is the 𝑗-th column of 𝐼𝐾, an identity matrix of size 𝐾 × 𝐾. Θ𝑖 =

Φ𝑖𝑃, where 𝑃 is a lower triangular matrix obtained from decomposition of residual covariance matrix Σ𝑢 using 

Cholesky decomposition so that Σ𝑢 = 𝑃𝑃′. Φ𝑖 = 𝐽𝐴𝑖𝐽
′, where 𝐽 = [𝐼𝐾 0 ⋯ 0] of size 𝐾 × 𝐾𝑝. 

There are three stages in the simulation process: randomized deletion stage, imputation stage, and 

evaluation stage. These three stages are repeated 1000 times. 

1. Randomized deletion stage 

In this stage, the data will be deleted randomly with various proportions. The proportions are 7, 30, 90, 

180, 270, and 365 days. There are six deletion schemes: 

a. Scheme 1: Consecutive missing values on a variable (RR) 

b. Scheme 2: Consecutive missing values on all variables (simultaneous) 

c. Scheme 3: Consecutive missing values on all variables (not simultaneous) 

d. Scheme 4: Random missing values on a variable (RR) 

e. Scheme 5: Random missing values on all variables (simultaneous) 

f. Scheme 6: Random missing values on all variables (not simultaneous) 

“Consecutive” means that the selected variable(s) will have consecutive missing values, but the first 

missing value will still be randomly chosen. On the other hand, “random” means that all missing values 

will be randomly chosen, thus, will likely not be consecutive. “Simultaneous” means that all variables 

will have missing values on the same observations, while “not simultaneous” means that the missing 

values for each variable will be chosen separately. 
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2. Imputation stage 

Imputation was done using VAR-IM algorithm proposed by Bashir and Wei in [20]. The forecasting 

phase, however, will follow a rolling forecasting process as proposed by Liu and Molenaar in [19]. 

Rolling forecasting process was chosen because of the nature of missing values in BMKG data, especially 

for rainfall rate, which often has a long gap of missing values. Three modified VAR-IM methods will be 

used, that are, the original VAR-IM (VAR), differenced VAR-IM (VARD), and decomposed VAR-IM 

(VAR Dec). Seasplit, seadec, Moving Average (MA), and linear interpolation are four univariate 

imputation methods used as comparison methods.  

 

The three modified versions of VAR-IM are defined as the following algorithm: 

i. Initial imputation, since VAR model cannot be estimated on data with missing values; 

ii. Data preprocessing, using either differencing or decomposition; 

iii. Determining VAR order. VAR is defined in [4] as Equation (2) 

 𝒀𝒕 = 𝝁 + ∑ 𝑨𝒊𝒀𝒕−𝒊
𝒑
𝒊=𝟏 + 𝜺𝒕   (2) 

𝒀𝒕 is a vector of variables at time 𝑡, 𝝁 is an intercept vector, 𝐴𝑖 is a parameter matrix of size 

𝐾 × 𝐾 for order 𝑖 = 1,2, … , 𝑝, and 𝜺𝑡 is a residual vector at time 𝑡; 

iv. Expectation step: impute the missing values; 

v. Maximization step: reestimate VAR model using the newest set of data; 

vi. If convergence is met, continue to the next step. If convergence is not met, repeat steps ii to iv. 

Convergence is defined as Equation (3) 

 𝜷𝒓+𝟏 − 𝜷𝒓 < 𝜻   (3) 

𝜷 is a coefficient vector, while 𝑟 is the number of iterations. 𝜻 is a predefined threshold; 

vii. Rolling forecasting for the missing values. 

 

3. Evaluation stage 

Imputation results of the three VAR-IM-based methods and four univariate methods were evaluated using 

Root Mean Square Error of Prediction (RMSEP). RMSEP is defined as Equation (4) 

 𝑹𝑴𝑺𝑬𝑷 = √∑ (�̂�𝒕−𝒚𝒕)𝒏
𝒕=𝟏

𝟐

𝒏
   (4) 

�̂�𝑡 are the imputed values while 𝑦𝑡 is the actual values at time 𝑡. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Data Exploration 

One of the essential characteristics that data for this simulation must have is completeness since 

imputation results need a comparison to measure the accuracy. Figure 1 shows the time series plots of all 

variables. If there were any missing values, the date of the missing values would have been marked in the 

plots. Figure 1 shows that there is no missing value in the data. 
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Figure 1. Time Series Plot of all Variables 

Figure 1 also shows no trend in all variables, except for duration of solar radiation (ss) with some 

anomalies around 2004 and 2005. There also seems to be a slight seasonality, except for wind-related 

variables. This seasonality can also be observed in Figure 2. 

 
Figure 2. ACF Plot of all Variables 

Various approaches can be used to deal with seasonality in data, one of which is by using differencing. 

Figure 3 shows the ACF plot of differenced data (d = 1) on the non-seasonal component. Figure 3 shows that 

all variables are cut off on some early lags. Hence there is no seasonality in the differenced data. 

 
Figure 3. ACF Plot of Differenced Data (d = 1) on Non-Seasonal Component 
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Another approach that can be used to deal with seasonality is by using decomposition. The 

decomposition method used in this study was Seasonal and Trend decomposition using Loess (STL). Figure 

4 shows the ACF plot of decomposed data using STL decomposition method. Unlike ACF of differenced 

data shown in Figure 3, ACF plots of decomposed data are slowly decaying. However, the seasonality patterns 

in Figure 4 are not as visible as those in the original data (Figure 2). 

 
Figure 4. ACF Plot of Decomposed Data Using STL 

Based on these ACF plots, three variants of VAR-IM methods will be simulated: the original VAR-

IM, differenced VAR-IM, and decomposed VAR-IM. The best variable combinations for each variant were 

determined using FEVD. Figure 5 shows the FEVD plot. Figure 5 shows that rainfall rate (RR), average 

humidity (RH_avg), average temperature (Tavg), maximum temperature (Tx), and minimum temperature (Tn) 

are five variables that dominantly contribute to rainfall rate (RR) variation in the original and decomposed 

data. On the other hand, only rainfall rate (RR), average temperature (Tavg), and maximum temperature (Tx) 

dominantly contribute to rainfall rate (RR) variation in the differenced data. 

 

 
Figure 5. FEVD Plot of Rainfall Rate (RR) 

 

3.2. Simulation 

As stated in the research procedure, there are three stages for the simulation: deletion stage, imputation 

stage, and evaluation stage. These are repeated 1000 times with various missing proportions and schemes. 

Every imputation method had the exact incomplete data for each repetition, so the imputation results can be 

compared and evaluated. 
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Figure 6. The Number of Times each Imputation Method had the Lowest RMSEP Shown in Percentage 

The evaluation stage was started by choosing the best imputation method for each repetition, that is, 

the imputation method with the lowest RMSEP. Error! Reference source not found. shows the number of 

times each imputation method became the best. The number of times is shown in percentage. As shown in 

Figure 6, on data with 7 missing days, the proportions of each method are pretty balanced, except for schemes 

3 and 6, where differenced VAR-IM becomes the best method for more than 50% of the cases. Since schemes 

3 and 6 correspond to the “not simultaneous” type of schemes, it shows that differenced VAR-IM can have 

more accuracy if all variables are not simultaneously missing. 

Figure 6 also shows that, as the missing proportion increase in Schemes 4, 5, and 6, the frequencies of 

differenced VAR-IM becoming the best method also increase. On the contrary, the frequencies decrease for 

Schemes 1, 2, and 3. As Schemes 1, 2, and 3 are “consecutive” types of schemes, and Schemes 4, 5, and 6 

are “random” types of schemes, this shows that differenced VAR-IM has a high accuracy for data with 

random missing values, but worse accuracy for data with consecutive missing values. It also shows that the 

accuracy of differenced VAR-IM for data with random missing values tends to be better than the other 

methods. This tendency is especially true for Scheme 6 (non-simultaneous random missing values on all 

variables), where differenced VAR-IM becomes the best method in almost all cases. 

On the other hand, the original VAR-IM and decomposed VAR-IM also shows good accuracies, 

especially for scheme 1, 2, and 3. In these schemes, decomposed VAR-IM shows a similar tendency as the 

one in differenced VAR-IM; decomposed VAR-IM tends to outperform the other methods as the missing 

proportion increases. Decomposed VAR-IM even outperformed the original VAR-IM in these schemes, 

which is expected as no seasonality treatment has been done for the original VAR-IM. Combining all these 

three variants of VAR-IM, it can be concluded that variants of VAR-IM outperform the comparative 

univariate methods, including seasplit and seadec, which are designed explicitly for seasonal data. 

 
Table 1. Mean RMSEP for all Imputation Methods on Scheme 1 

Missing values (days) VAR VAR Dec VARD Seasplit Seadec MA Interp. 

7 10.940 10.930 10.495* 13.807 16.979 12.585 12.723 

30 12.938 12.750* 2.19E+149 15.568 19.344 14.994 15.028 

90 13.955 13.617* 9.00E+79 16.306 20.564 16.456 16.127 

180 14.675 14.210* 2.68E+70 16.933 21.010 17.166 16.818 

270 14.847 14.361* 2.92E+62 16.995 21.456 17.826 17.673 

365 14.961 14.481* 2.24E+51 17.023 21.325 18.418 18.471 
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Table 2. Mean RMSEP for all Imputation Methods on Scheme 2 

Missing values (days) VAR VAR Dec VARD Seasplit Seadec MA Interp. 

7 6.355 6.312* 7.073 8.423 9.792 7.576 7.621 

30 7.133 7.000* 2.25E+149 8.971 10.807 8.680 8.666 

90 7.640 7.395* 2.98E+149 9.287 11.433 9.422 9.223 

180 8.023 7.656* 1.64E+143 9.507 11.528 9.799 9.548 

270 8.172 7.716* 8.38E+138 9.500 11.754 10.183 10.053 

365 8.244 7.753* 1.19E+108 9.498 11.652 10.536 10.491 

 
Table 3. Mean RMSEP for all Imputation Methods on Scheme 3 

Missing values (days) VAR VAR Dec VARD Seasplit Seadec MA Interp. 

7 6.902 6.852* 7.021 9.359 10.063 7.937 8.329 

30 8.463 8.376* 1.20E+141 10.819 12.799 10.288 10.326 

90 9.198 9.040* 2.25E+136 10.893 13.632 10.600 10.640 

180 9.599 9.382* 9.16E+108 11.657 15.261 11.729 11.604 

270 9.814 9.560* 2.60E+113 11.586 15.024 11.842 11.783 

365 9.996 9.733* 6.50E+118 11.766 15.539 12.071 12.089 

 
Table 4. Mean RMSEP for all Imputation Methods on Scheme 4 

Missing values (days) VAR VAR Dec VARD Seasplit Seadec MA Interp. 

7 12.272 12.199* 38.404 15.219 16.839 12.736 13.566 

30 14.022 13.906* 3.51E+4 16.749 19.437 14.466 15.154 

90 14.495 14.317* 5.02E+10 17.224 20.683 14.890 15.515 

180 14.692 14.504* 5.73E+11 17.384 21.140 15.081 15.649 

270 14.728 14.532* 1.67E+13 17.376 21.112 15.114 15.694 

365 14.708 14.512* 6.95E+3 17.398 21.072 15.087 15.670 

 

Table 5. Mean RMSEP for all imputation methods on scheme 5 

Missing values (days) VAR VAR Dec VARD Seasplit Seadec MA Interp. 

7 6.264 6.239* 23.141 8.911 9.120 7.066 7.464 

30 6.832 6.788* 7015.69 9.414 10.209 7.742 8.081 

90 7.001 6.931* 3.49E+9 9.601 10.767 7.917 8.227 

180 7.083 7.006* 3.98E+9 9.672 10.980 8.001 8.290 

270 7.097 7.016* 7.85E+6 9.663 10.952 8.010 8.307 

365 7.096 7.015* 2317.973 9.674 10.940 7.999 8.298 

 
Table 6. Mean RMSEP for all Imputation Methods on Scheme 6. 

Missing values (days) VAR VAR Dec VARD Seasplit Seadec MA Interp. 

7 4.824 4.799* 6.579 7.605 7.049 5.750 6.071 

30 6.098 6.063* 50.979 8.702 8.774 7.039 7.429 

90 6.623 6.569* 21.722 9.364 9.933 7.636 8.040 

180 6.889 6.827* 9.937 9.495 10.278 7.793 8.137 

270 6.969 6.898 3.261* 9.563 10.526 7.880 8.205 

365 7.007 6.936 1.411* 9.594 10.618 7.905 8.214 

 

Table 1 to Table 6 provide details of RMSEP for each method on each proportion and scheme. Bold 

and asterisk (*) values indicated the lowest mean RMSEP for a certain missing proportion. Another 

interesting result, as shown in these tables, is the large mean RMSEP that differenced VAR-IM generally 

achieved on all schemes, including Schemes 4, 5, and 6, where the majority of the best method is differenced 
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VAR-IM. These large mean RMSEP are caused by large RMSEP on some cases/repetitions, dragging the 

overall mean of RMSEP to such large values. These results are also illustrated in Figure 7. 

 

 
Figure 7. RMSEP Distribution of Differenced VAR-IM 

Figure 7 shows the distribution of RMSEP values of 1000 repetitions for differenced VAR-IM. It can 

be seen clearly that the distributions are highly skewed. Although the RMSEP of schemes 4, 5, and 6 are not 

as highly skewed as the RMSEP of schemes 1, 2, 3, the RMSEP for schemes 4, 5, and 6 are still too high 

compared to the other methods, as Figure 7 are shown in log
10

. 

The reason for the skewed RMSEP of differenced VAR-IM can be explained by Figure 8. Figure 8 

shows the skewness of residual distribution for each repetition. Differenced VAR-IM is much more skewed 

than decomposed VAR-IM, especially for Schemes 1, 2, and 3. This skewness explains the large mean 

RMSEP that differenced VAR-IM achieved in Table 1 to Table 6. 

 

 
Figure 8. Skewness of Residuals for each Repetition 

By comparing Figure 7 and Figure 9, it is clear that decomposed VAR-IM has more stable imputations 

than differenced VAR-IM. Moreover, it can be seen from Table 1 to Table 6 that decomposed VAR-IM has 

the best RMSEP on average compared to the other methods. Therefore, it can be concluded that decomposed 

VAR-IM is the safest imputation method in terms of imputation. 
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Figure 9. RMSEP distribution of decomposed VAR-IM 

Figure 10 shows the comparison of RMSEP between decomposed VAR-IM and each univariate 

method. The comparison is shown in percentages where negative values indicate lower RMSEP for 

decomposed VAR-IM. In other words, a negative percentage means that decomposed VAR-IM can improve 

the imputation accuracies compared to the univariate methods. Figure 10 also shows that decomposed VAR-

IM can improve the accuracies up to 20% in around 50% of cases and even more than 20% in another 25% 

of cases. This improvement is specifically true for data with “consecutive” type missing values, that is, data 

from Schemes 1, 2, and 3. 

 

 
Figure 10. Comparison of RMSEP between Decomposed VAR-IM and each Univariate Imputation Method. 

Some of the Outliers have been Omitted for the Clarity of the Plot. 

 

 

 

4. CONCLUSIONS 

Based on the simulation results, it can be concluded that three variants of VAR-IM have better 

accuracies compared to the four univariate imputation methods. We strongly recommend using any of the 

three variants of VAR-IM for imputation, especially for long seasonal lagged data such as daily weather data 

with a significant missing proportion. For “random” type missing data, that is, data with non-consecutive 

missing values, we recommend using differenced VAR-IM since the methods have shown an outstanding 
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performance compared to the other methods. However, in terms of stability of imputation accuracies, we 

recommend using decomposed VAR-IM as the method has shown similar accuracies but far higher stabilities 

to those of differenced VAR-IM.  
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