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Abstract. El Gamal encryption was introduced in 1985 and is still commonly used today. Its hardness is based on a 
discrete logarithm problem defined over the finite abelian cyclic group. The group chosen in the original paper was 

ℤ𝑝, but later it was proven that using the group of Elliptic Curve points could significantly reduce the key size 

required. The modified El Gamal encryption is dubbed its analog version. This analog encryption bases its hardness 

on Elliptic Curve Discrete Logarithm Problem (ECDLP). One of the fastest attacks in cracking ECDLP is the Pollard 

Rho algorithm, with the expected number of iterations √
𝜋𝑛

2
, where 𝑛 is the number of points in the curve. This paper 

proposes a modification of the Pollard Rho algorithm using a negation map. The experiment was done in El Gamal 

analog encryption of elliptic curve defined over the field ℤ𝑝, with different values of small digit 𝑝. The modification 

was expected to speed up the algorithm by √2 ≈ 1.4 times. The average of speed up in the experiment was 1.9 times. 

Keywords: El gamal encryption, elliptic curve cryptography, negation map, pollard rho algorithm. 
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1. INTRODUCTION 

Cryptography studies mathematical techniques for transmitting secret messages through insecure 

channels [1]. In cryptography, the message to be sent is called plaintext. The encryption process is carried 

out with a key to produce ciphertext, which can only be returned to the original message through decryption. 

An encryption and decryption algorithm, along with all possible plaintext, ciphertext, and keys, is called a 

cryptosystem [2]. 

Cryptography can be categorized into two, namely symmetric and asymmetric cryptography. 

Symmetric cryptography uses only one secret key for decryption and encryption. In contrast, asymmetric 

cryptography uses a public key for encryption and a secret key for decryption. In practice, asymmetric 

cryptography, which is generally slower than symmetric cryptography, is used to distribute symmetric 

cryptographic keys. [3]. 

The asymmetric cryptographic scheme requirement is computationally very difficult to decrypt without 

knowing the secret key. The difficulty of this process can be guaranteed by selecting mathematical problems 

that have proven difficult to solve [4]. One of the commonly used asymmetric encryption algorithms is El 

Gamal. Taher El Gamal introduced this algorithm around 1985 [5]. The frequently used El Gamal 

cryptosystem is defined on the ℤ𝑝 field, where p is prime and is based on the Diffie Hellman key exchange 

algorithm. [6]. 

The El Gamal cryptosystem can not only be applied to the ℤ𝑝 field, but also to any cyclic commutative 

group [7]. We will explain later about Elliptical Curves and that the points on these curves form cyclic groups. 

The El Gamal algorithm can also be applied to elliptic curves, called an El Gamal encryption analog [8]. This 

analog algorithm has the advantage that the required key size is smaller than the initial algorithm with the 

same level of security. For example, the El Gamal cryptosystem with public and secret key sizes of 3072-bit 

and 256-bit, respectively, is equivalent to El Gamal's analog algorithm with a key size of 163-bits [9]. 

The difficulty of attacking the El Gamal encryption analog lies in the Elliptic Curve Discrete Logarithm 

Problem (ECDLP), namely the difficulty of getting the secret key value 𝑘 ∈ ℤ+ if the public key is known, 

at points P and 𝑄 = 𝑘𝑃 on the curve [10]. However, to prove the security of our cryptosystem, we must try 

to crack the system. One of the fastest algorithms to attack ECDLP is the Pollard Rho algorithm [11], which 

will be explained in Chapter 2. This research modified the Pollard Rho algorithm by applying negation 

mapping to reduce iteration steps. It has the benefit of potentially reducing computational resources to carry 

out attacks against analogs of the El Gamal algorithm. 

 

 

 

2. RESEARCH METHOD 

This chapter discusses elliptic curve cryptography, analogs of the El Gamal algorithm, Pollard Rho 

algorithm, negation mapping, and modifications to the Pollard Rho algorithm using negation mapping. 

 

2.1 Elliptical Curve Cryptography 

The explanation of this elliptic curve is processed from [12] unless otherwise stated. 

Definition 1 

For prime numbers 𝑝 ≠ 2,3, elliptic curve 𝐸(ℤ𝑝) is the set of points (𝑥, 𝑦) ∈ ℤ𝑝 × ℤ𝑝 that fulfills 

 
𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵,        (1) 
 

with 𝐴,𝐵 ∈ ℤ𝑝 and 4𝐴3 + 27𝐵2 ≠ 0, that is added "dot at infinity" 𝒪 an identity to the sum of points.  

The following explains the addition of points on an elliptic curve. The image in this section is obtained 

from [13]. 

In Equation (1), there are 1 or 3 possible real values for 𝑥, so there are two possible sketches of the 

elliptic curve graph, which is given in Figure 1. 
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Figure 1. Elliptical curve graph sketch 

 

Addition of two points 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2) generate point 𝑃 + 𝑄 = (𝑥3, 𝑦3) with a 

calculation that is divisible by 4 cases. 

Case 1. 𝑥1 ≠ 𝑥2 (illustrated in Figure 2) 

Draw a line through 𝑃 and 𝑄 and intersect the curve 𝐸 back at point 𝑅. Point 𝑃 + 𝑄 is a reflection of 

𝑅 to the 𝑥-axis. The explicit formula is given in Equation (2). 

 

𝑥3 = 𝑚
2 − (𝑥1 + 𝑥2), 𝑦3 = 𝑚(𝑥3 − 𝑥1) + 𝑦1, with  𝑚 =

𝑦2−𝑦1

𝑥2−𝑥1
                             (2) 

    

 
Figure 2. Case 1 point sum 

 
 

Case 2. 𝑥1 = 𝑥2, 𝑦1 = −𝑦2 (illustrated in Figure 3) 

In the case of 𝑃1 and 𝑃2, they are negated by each other. The straight line joining the two points is 
vertical, so 

𝑃1 + 𝑃2 = 𝒪         (3) 
 

 
Figure 3. Case 2 point sum 

 
 
 

Case 3. 𝑥1 = 𝑥2, 𝑦1 = 𝑦2 with 𝑦1 ≠ 0 (illustrated in Figure 4) 

In this case, the point 𝑃1 = 𝑃2. The line drawn is a tangent at the point 𝑃1 and                                                   

𝑃1 + 𝑃2 = 2𝑃1 = (𝑥3, 𝑦3) can be obtained by Equation (4). 
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𝑥3 = 𝑚
2 − 2𝑥1, 𝑦3 = −𝑚(𝑥3 − 𝑥1) − 𝑦1, with 𝑚 =

3𝑥1
2+𝐴

2𝑦1
   (4) 

 
Figure 4. Case 3 point addition 

 
 

Case 4. 𝑥1 = 𝑥2, 𝑦1 = 𝑦2 = 0  (illustrated in Figure 5) 

In this case, the line drawn is a tangent at point 𝑃1 and is a vertical line, so as in Case 2, 

𝑃1 + 𝑃2 = 2𝑃1 = 𝒪        (5) 

 

 
Figure 5. Case 4 point sum 

 

From Case 1 to 4, it can be shown that the points on the elliptic curve form a commutative group for 

summation. Evidence of this statement is found in [12]. Here is defined the product of a non-negative integer 

by a point on the elliptic curve. 

 

Definition 2 

Let 𝑃 be a point on the elliptic curve 𝐸, then for every integer 𝑘, the point 𝑘𝑃 is defined in      Equation 

(6). 

𝑃 + 𝑃 + ⋯𝑃⏟        
𝑘

         (6) 

Given any point 𝑃 and point 𝑄 = 𝑘𝑃, it is very difficult to find the value of 𝑘. This mathematical 

problem is called the Elliptic Curve Discrete Logarithm Problem (ECDLP). It guarantees the difficulty of 

solving the El Gamal encryption analog. The following describes the analog algorithm: 
 
 

2.1 El Gamal Analog Encryption Algorithm 

This algorithm is reprocessed from [14]. Suppose Alice is to send a message to Bob. 

1. Alice and Bob agree on an elliptic curve 𝑬: 𝒚𝟐 = 𝒙𝟑 + 𝑨𝒙 + 𝑩 and a large prime number to form the field 

ℤ𝒑. They also have one point 𝑷 ∈ 𝑬. 

2. Bob and Alice choose arbitrary integers k1 and k2, respectively. These two numbers are the secret key. 

3. Bob and Alice each count 𝑸 = 𝒌𝟏𝑷 and 𝑹 = 𝒌𝟐𝑷, which is then used as the public key. 

4. Alice turns her message into points on the curve 𝑬 (in a way that is not discussed in this paper) then encrypt 

each point, for example, 𝑴 ∈ 𝑬, become 𝑺 = 𝑴 + 𝒌𝟐𝑸 (using Bob's public key Q) then sends it. 
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5. Bob decrypts S to 𝑺 − 𝒌𝟏𝑹 = 𝑴+ 𝒌𝟐𝑸− 𝒌𝟏𝑹 = 𝑴+ 𝒌𝟏𝒌𝟐𝑷 − 𝒌𝟏𝒌𝟐𝑷 = 𝑴. This process requires 

Alice's public key R and Bob's secret key k1. 

As mentioned earlier, the difficulty of breaking the analog of El Gamal encryption lies in ECDLP is 

obtaining the secret key value 𝑘1  if the public keys 𝑃 and 𝑄 are known. However, to prove the security of 

our cryptosystem, we must try to crack the system. 

One commonly used algorithm to attack ECDLP is the Pollard Rho algorithm, which will be explained 

in Chapter 2. This study will modify the Pollard Rho algorithm by applying a negation mapping to reduce the 

iteration step. 

 

 

2.2 Pollard Rho's Algorithm 

For example, 𝐸(ℤ𝑝) elliptic curve over the field ℤ𝑝 so that |𝐸| = 𝑛, and 𝑃 and 𝑄 point on 𝐸 so that 𝑄 =

𝑘𝑃. The purpose of the Pollard Rho algorithm is to get k [14]. 

1. Use a hash function to partition E into three sets 𝑆1, 𝑆2, 𝑆3 with the same relative size, and Ο ∉ 𝑆2. 
2. Define random walk: 

𝑅𝑖+1 = 𝑓(𝑅𝑖) = {

𝑄 + 𝑅𝑖 , 𝑅𝑖 ∈ 𝑆1
2𝑅𝑖 ,        𝑅𝑖 ∈ 𝑆2
𝑃 + 𝑅𝑖 , 𝑅𝑖 ∈ 𝑆3

       (7) 

3. For example, 𝑅𝑖 = 𝑎𝑖𝑃 + 𝑏𝑖𝑄, then from the equation (7), 

𝑎𝑖+1 = {

𝑎𝑖,          𝑅𝑖 ∈ 𝑆1
2𝑎𝑖 ,        𝑅𝑖 ∈ 𝑆2
𝑎𝑖 + 1,   𝑅𝑖 ∈ 𝑆3

, 

             (8) 

𝑏𝑖+1 = {

𝑏𝑖 + 1,   𝑅𝑖 ∈ 𝑆1
2𝑏𝑖 ,        𝑅𝑖 ∈ 𝑆2
𝑏𝑖,          𝑅𝑖 ∈ 𝑆3

. 

Start with 𝑅0 = 𝑃, 𝑎0 = 1, 𝑏0 = 0 and pair figure (𝑅𝑖, 𝑅2𝑖) using equation (8) to find similarities 

𝑅𝑚 = 𝑅2𝑚 for a 𝑚. 
After finding the similarities, then we get 𝑅𝑚 = 𝑎𝑚𝑃 + 𝑏𝑚𝑄 and 𝑅2𝑚 = 𝑎2𝑚𝑃 + 𝑏2𝑚𝑄, so that 

𝑘 =
𝑎2𝑚−𝑎𝑚

𝑏𝑚−𝑏2𝑚
 (𝑚𝑜𝑑 𝑛)         (9) 

Based on [15], the estimated number of iterations until a similarity is found is √
𝜋𝑛

2
. This study modified 

the Pollard Rho algorithm to reduce the number of iterations by applying a negation mapping. 

 

 

2.3 Pollard Rho Algorithm Mapping and Modification 

Definition 3 

For example, 𝑃 = (𝑥, 𝑦) ∈ 𝐸. A negation mapping is a mapping 𝜓(𝑃) = −𝑃 = (𝑥,−𝑦). 

 

When viewed as a subgroup automorphism constructed by P, i.e. P〉, this mapping has an order of 2, 

because 𝜓2(𝑃) = 𝜓(𝜓(𝑃)) = 𝜓(−𝑃) = −(−𝑃) = 𝑃, back to the starting point. 

To speed up the algorithm, random walks are defined in subgroups 〈𝑃〉 instead of at point P. If the 

order of the automorphism is u, then the expected number of iterations is √
𝜋𝑚

2𝑢
, so the expectation for the 

negation mapping is 
√𝜋𝑚

2
, or around √2 faster than the initial algorithm [16]. The following is the proposed 

modification algorithm. 

1. Choose any prime number p. 
2. Choose a value 𝐴, 𝐵 ∈ ℤ𝑝 with 4𝐴3 + 27𝐵2 ≠ 0 

3.  Find all points on the elliptic curve 𝐸(ℤ𝑝),  namely, all (𝑥, 𝑦) ∈ ℤ𝑝 × ℤ𝑝 which fulfill           Equation 

(1). 
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4. Calculate 𝑛 = |𝐸|, and check if 𝑛 is prime. If not, repeat step 2. This prime value ensures that inverse 

multiplication mod n is always possible. In addition, the prime value of n avoids vulnerability to 

Pohlig-Hellman and MOV attacks [17]–[19]. 

5. Choose a point 𝑃 at random from the points found in step 3. Choose any natural number k and 

calculate 𝑄 = 𝑘𝑃. 
6. Use the following hash function for Step 1 algorithm 3.2: 

a. Calculate value 𝜙 namely approximation 
√5−1

2
 up to 50 digits after comma [20]. 

b. Define function  𝜈∗: 𝐸 → [0,1) where  

𝜈∗(𝑃 = (𝑥, 𝑦)) = {
𝜙𝑦 − ⌊𝜙𝑦⌋,   𝑃 ≠ 𝒪
0,                   𝑃 = 𝒪

     (10) 

c. Define a hash function 𝜈: 𝐸 → {1,⋯ , 𝑟} from the equation (10): 

𝜈(𝑃) = ⌊𝑟 ⋅ 𝜈∗(𝑃)⌋ + 1       (11) 

d. Partition 𝑆1, 𝑆2, 𝑆3 from the equation (11): 

𝑆1{𝑃 ∈ 𝐸|𝜈(𝑃) = 1} 
𝑆2{𝑃 ∈ 𝐸|𝜈(𝑃) = 2}       (12) 

𝑆3{𝑃 ∈ 𝐸|𝜈(𝑃) = 3} 
7. Suppose 𝑅𝑖 = 𝑎𝑖𝑃 + 𝑏𝑖𝑄, then from (7), 

𝑎𝑖+1 = {

𝑎𝑖,          𝑅𝑖 ∈ 𝑆1
2𝑎𝑖 ,        𝑅𝑖 ∈ 𝑆2
𝑎𝑖 + 1,   𝑅𝑖 ∈ 𝑆3

 

and          (13) 

𝑏𝑖+1 = {

𝑏𝑖 + 1,   𝑅𝑖 ∈ 𝑆1
2𝑏𝑖 ,        𝑅𝑖 ∈ 𝑆2
𝑏𝑖,          𝑅𝑖 ∈ 𝑆3

 

8. Start with 𝑅0 = 𝑃, 𝑎0 = 1, 𝑏0 = 0 and pair figure (𝑅𝑖, 𝑅2𝑖) until the similarities are found         𝑅𝑚 =
𝑅2𝑚 or  𝑅𝑚 = −𝑅2𝑚 for a m. 

9. Suppose 

𝑅𝑚 = 𝑎𝑚𝑃 + 𝑏𝑚𝑄 

𝑅2𝑚 = 𝑎2𝑚𝑃 + 𝑏2𝑚𝑄        (14) 

If obtained 𝑅𝑚 = 𝑅2𝑚, so 

𝑥 =
𝑎2𝑚−𝑎𝑚

𝑏𝑚−𝑏2𝑚
 (𝑚𝑜𝑑 𝑛)       (15) 

If obtained 𝑅𝑚 = −𝑅2𝑚 , so 

𝑥 = −
𝑎2𝑚+𝑎𝑚

𝑏𝑚+𝑏2𝑚
 (𝑚𝑜𝑑 𝑛)       (16) 

 

 

 

3. RESULT AND DISCUSSION 

In this study, 10 prime p numbers were randomly selected, with 5 numbers with 2 digits and the 

remaining 5 with 3 digits. The selection of the p-value with small digits was made due to the limitations of 

the computational device. However, this experiment can provide a comparison between the many iterations 

of the initial algorithm and its modifications, i.e., in the worst case, the number of iterations of the modified 

Pollard Rho algorithm is equal to the number of iterations of the initial algorithm. In the best case, the 

modified algorithm has 6 iterations, while the initial algorithm has 26 iterations, meaning that it has succeeded 

in speeding up the process to 6.5 times. The experimental results are presented in Figure 5. 
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Figure 6. Experiment Results 

 

In the experiment, the values A and B for the elliptic curve Equation (1) are chosen such that the 

number of points on the elliptic curve 𝐸(ℤ𝑝) is prime. Next, a random point is chosen 𝑃(𝑥, 𝑦) ∈ 𝐸 and any 

natural number k for further calculation 𝑄 = 𝑘𝑃  according to (2)-(6). According to (9), (15), and (16), it can 

be concluded that the value of k can be obtained after finding the value of i in iteration so that a "collision" 

occurs. 

𝑅𝑖 = 𝑅2𝑖          (17) 

Therefore, the two rightmost columns are assigned the value of 2𝑖 when the collision occurs. It means that 

both algorithms execute many iterations. Therefore, the rightmost column is the number of iterations of the 

modification algorithm. 

The worst case, where the number of iterations of the modified algorithm is the same as the initial 

algorithm, occurs several times, for example, in the case of 𝑝 = 23 and 𝑝 = 541. The best case occurs at 

𝑝 = 293, where the modified algorithm runs 6.5 times faster than the original algorithm. It is much better 

than the modification algorithm's expected acceleration, i.e.√2 ≈ 1.4 times. 

This study is a research development by [14] and [21]. Research [14] used the Pollard Rho algorithm 

without negation mapping, while research [21] used negation and Frobenius mapping but applied it to 

different fields, namely 𝐺𝐹(2𝑛). This study does not write down the results of the application of the Frobenius 

mapping because it does not change the number of iterations. 

 

 

 
4. CONCLUSION 

The application of negation mapping to the Pollard Rho algorithm can reduce the number of iterations 

that must be run until the ECDLP is solved. In the worst case, the modified algorithm is as fast as the original 

algorithm, while it runs 6.5 times faster in the best case. The average acceleration of the modified algorithm 

is 1.9 times, greater than the theoretical expectation i.e., √2 ≈ 1.4 times. It can provide resource savings 

when carrying out attacks with the Pollard Rho algorithm, especially when the field selected for the Elliptical 

Curve uses large prime numbers. 
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