
United States Military Academy United States Military Academy 

USMA Digital Commons USMA Digital Commons 

West Point Research Papers 

12-8-2022 

Algorithmic Methods for Covering Arrays of Higher Index Algorithmic Methods for Covering Arrays of Higher Index 

Ryan Dougherty 
United States Military Academy, ryan.dougherty@westpoint.edu 

Kristoffer Kleine 
MATRIS, SBA Research, kris.kleine@yahoo.de 

Michael Wagner 
MATRIS, SBA Research, mwagner@sba-research.org 

Charles J. Colbourn 
Arizona State University, charles.colbourn@asu.edu 

Dimitris E. Simos 
MATRIS, SBA Research, DSimos@sba-research.org 

Follow this and additional works at: https://digitalcommons.usmalibrary.org/usma_research_papers 

 Part of the Discrete Mathematics and Combinatorics Commons 

Recommended Citation Recommended Citation 
Dougherty, Ryan; Kleine, Kristoffer; Wagner, Michael; Colbourn, Charles J.; and Simos, Dimitris E., 
"Algorithmic Methods for Covering Arrays of Higher Index" (2022). West Point Research Papers. 753. 
https://digitalcommons.usmalibrary.org/usma_research_papers/753 

This Article is brought to you for free and open access by USMA Digital Commons. It has been accepted for 
inclusion in West Point Research Papers by an authorized administrator of USMA Digital Commons. For more 
information, please contact dcadmin@usmalibrary.org. 

https://digitalcommons.usmalibrary.org/
https://digitalcommons.usmalibrary.org/usma_research_papers
https://digitalcommons.usmalibrary.org/usma_research_papers?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/usma_research_papers/753?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@usmalibrary.org


Journal of Combinatorial Optimization           (2023) 45:28 
https://doi.org/10.1007/s10878-022-00947-x

Algorithmic methods for covering arrays of higher index

Ryan E. Dougherty1 · Kristoffer Kleine2 ·Michael Wagner2 ·
Charles J. Colbourn3 · Dimitris E. Simos2

Accepted: 27 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Covering arrays are combinatorial objects used in testing large-scale systems to
increase confidence in their correctness. To do so, each interaction of at most a spec-
ified number t of factors is represented in at least one test; that is, the covering array
has strength t and index 1. For certain systems, the outcome of running a test may
be altered by variability of the interaction effect or by measurement error of the test
result. To improve the efficacy of testing, one can ensure that each interaction of t or
fewer factors is represented in at least λ tests. When λ > 1, this leads to covering
arrays of higher index. We explore two algorithmic methods for constructing covering
arrays of higher index. One is based on the in-parameter-order algorithm, and the other
employs a conditional expectation paradigm. We compare these two by performing
experiments on real-world benchmarks and on uniform parameter sets.
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1 Introduction

Informally, we are concerned with systems that have k factors {F1, . . . Fk} that may
affect correctness, individually or by interactions among the factors. Each factor Fi
has a fixed, finite number vi of levels (or values or options) that determine the manner
in which the factor is set; we always have vi ≥ 2. When each of the k factors is
assigned one of its admissible levels, we obtain a test. Our objective is to choose a
set of N tests so that, by running each test and examining the responses, we can gain
confidence that the system is operating as required.

A formal model is developed next. Let N , t, k, and λ be positive integers with
k ≥ t ≥ 2 and λ ≥ 1. Let v1, . . . , vk be positive integers with vi ≥ 2 for 1 ≤ i ≤ k.
Let A be an array with N rows, k columns, in which each column contains symbols
from a vi -ary alphabet�i . (Symbols in the alphabets are arbitrary, and can be driven by
the intended application.) For every t-tuple (c1, . . . , ct ) of distinct column indices and
every t-tuple (a1, . . . , at ) ∈ �c1 × · · · × �ct , the set I = {(ci , ai ) : 1 ≤ i ≤ t} is an
interaction of strength t , or a t-way interaction.Array A s-covers interaction I if there
exist (at least) s distinct row indices r1, · · · , rs such that A(rm, ci ) = ai for all 1 ≤
i ≤ t and 1 ≤ m ≤ s. When every t-way interaction is λ-covered, A is a mixed-level
covering array of strength t and index λ, denoted byMCAλ(N ; t, (v1, . . . , vk)). When
v1 = · · · = vk = v, A is uniform, and is a covering array, denoted CAλ(N ; t, k, v).
The most frequently studied situations arise when λ = 1, for which we adopt the
simpler notation of CA(N ; t, k, v). Naturally we are concerned with running as few
tests as possible. The covering array number, CANλ(t, k, v), is the smallest N for
which a CAλ(N ; t, k, v) exists.

An example is provided in Table 1, in which N = 14, t = 3, k = 6, v = 2, and
λ = 1. In columns 2, 4, and 5, we box all 8 interactions that must appear in these
columns; because N > 8, some interactions appear more than once. In each set of 3
columns all 8 interactions are covered at least once, and so we have a CA(14; 3, 6, 2).
This example establishes that CAN1(3, 6, 2) ≤ 14.

Table 1 illustrates the applicationof covering arrays to testingof large-scale systems;
each column corresponds to a factor, and each row represents a configuration of the
system that can be used as a test. To evaluate the system, a tester runs each test,
resulting in either “Pass” or “Fail” for each. If a fault of size at most t exists within
the system, then the covering array will detect that such a fault exists.

Such an outcome does not ensure that we can determine the number of faults, or
the set of faulty interactions.

Detecting and locating arrays were introduced in Colbourn and McClary (2008) as
a specialization of covering arrays to support the localization of faults; see Colbourn
and Syrotiuk (2018) and Martínez et al. (2009/10), and for an application see Aldaco
et al. (2015). Although detecting arrays impose further combinatorial requirements, a
primary requirement is that the underlying covering array have higher index.

There are further reasons to ask for higher index. For example, executing tests may
fail to produce a viable response due to environmental issues. Then if an interaction is
covered in a single test, its effect cannot be observed. More seriously, an interaction
effect may cause intermittent faults; then the probability of its being detected depends
on the number of tests in which it is covered. In order to guard against the loss of test
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results and the effects of intermittent interactions, covering arrays of higher index are
of interest.

There is a substantial literature on the construction of covering arrays with index
1; see, for example, Colbourn (2011), Kuhn et al. (2013) and Nie and Leung (2011).
Current research on arrays of higher index is limited (see, for example, Akhtar et al.
(2021)). In order to address needs for additional interaction coverage, naturally one
could simply repeat each test λ times using a covering array of index 1. In Sect. 2
we show that this naïve strategy often runs far more tests than needed; in the process
we determine the extent of potential improvements over simple replication in order
to identify parameter sets on which to evaluate construction techniques. In Sect. 3 we
develop an IPO-style (one-column-at-a-time) algorithm, and in Sect. 4 we develop a
conditional expectation (one-row-at-a-time) algorithm. In Sect. 5 we present compu-
tational results from these algorithms applied to a variety of parameter sets, both from
real-world applications and from a range of uniform situations. In Sect. 6 we evaluate
the results obtained.

2 Asymptotic upper bounds on higher-index covering arrays

In order to understand the relationship between the number of tests in covering arrays
of index one and those of index λ, we first examine the asymptotics of the sizes for
MCAλs.

Very few exact covering array numbers are known; consequently, these are typically
bounded by considering the probability that a random array is a covering array with
the desired parameters.

We employ the well-known probabilistic method (Alon and Spencer 2004); see
also Deng et al. (2004). Let N , t, k, and λ be positive integers with t ≤ k, and let
v1, . . . , vk be positive integers, each at least 2. Let A be an N × k array in which
the entries of column i are chosen independently, and uniformly at random, from
a set of vi symbols. What is the probability that a specific t-way interaction I on
columns IC = (c1, . . . , ct ) is not λ-covered in A? The probability that I is covered
in a single row is φt,I = ∏

c∈IC
1
vc
, and so the probability that it is not covered in

any row is (1 − φt,I )
N . We write φ and 1 − φ when the parameters are clear from

the context. The number of rows that do not cover interaction I is equal to ρ with
probability

(N
ρ

)
(1−φ)ρφN−ρ . Define ψN ,t,I ,λ to be

∑λ−1
ρ=0

(N
ρ

)
(1−φ)ρφN−ρ . By the

linearity of expectation, the expected number of interactions that are not λ-covered
in A is precisely

∑
I ψN ,t,I ,λ. When this expected number is strictly less than 1, an

MCAλ(N ; t, (v1, . . . , vk)) exists.
We outline the proof of an asymptotically optimal bound, referring the reader to

Dougherty (2019) for further discussion.

Theorem 1 Let v1, . . . , vk, t be fixed. For λ ≥ 1, k sufficiently large, and any
MCAλ(N ; t, (v1, . . . , vk)) with N minimum, N is �(log k + λ), where the hidden
constants are independent of k, λ (but may depend on v1, . . . , vk, t).

Proof (Sketch) For the lower bound, CAN1(t, k, v) is 	(log k) Colbourn (2004), and
deleting any λ − 1 rows from covering array of index λ yields a covering array of

123



Journal of Combinatorial Optimization            (2023) 45:28 Page 5 of 21    28 

index one. Hence CANλ(t, k, v) is 	(log k + λ). For the upper bound, the expected
number of interactions that are not λ-covered in an N × k array, with entries chosen
uniformly at random, is

(k
t

)
vtψN ,t,v,λ, where ψN ,t,v,λ = ∑λ−1

ρ=0

(N
ρ

)
(1 − φ)ρφN−ρ .

We obtain an upper bound on ψN ,t,v,λ by applying the Cauchy-Schwarz inequality.
It suffices to obtain an upper bound on N in the following equation:

(
k

t

)

vt (1 − φ)N−λ

(
eN

λ

)λ

= 1.

We use the Lambert W -function W (x) (W is the inverse of the function f (W ) =
WeW ) to obtain:

N ≤ λ

log(1 − φ)
W

(
log(1 − φ)

e(
(k
t

)
vt (1 − φ))1/λ

)

.

By Alzahrani and Salem (2018), N is at most C log k + Dλ (for constants C, D
depending only on v and t), and hence is O(log k + λ). The extension to MCAλs is
routine, by considering covering arrays on min(v1, . . . , vk) and on max(v1, . . . , vk)
symbols. ��

For certain parameters, one could instead exploit concentration inequalities as in
Alon and Gutner (2007) to establish that within a t-set of columns, the difference
between the number of times that one interaction is covered and the number of times
that another is covered is ‘small’ with high probability. Requiring this to hold for all
t-sets of columns, each with large enough probability, would establish a lower bound
on the number of times each interaction is covered for some covering array. We do not
pursue this approach here.

In Sect. 4, our conditional expectation algorithm guarantees to meet the asymptotic
bound of Theorem 1. However, the asymptotics of Theorem 1 can be quite misleading
when k ≈ t . Indeed, using an approach from Ray-Chaudhuri and Singhi (1988), one
obtains:

Theorem 2 Let k, v1, . . . , vk, t be fixed integers such that v1 ≥ · · · ≥ vk and k ≥ t .
Then there is a sufficiently large constant λ0 such that for any λ ≥ λ0, there is an
MCAλ(N ; t, (v1, . . . , vk)) having N = λ

∏t
i=1 vi .

In summary, if the number of columns is sufficiently large, relatively few additional
rows are needed; and if the number of columns is sufficiently small, relatively many
more rows are needed. Scenarios ofmost interest therefore arisewhen k is “moderately
large.” Moreover, by considering Theorem 2 and also the need to run relatively few
tests, cases of most interest arise when λ is a “small” constant.

3 IPOG family

The In-Parameter-Order (IPO) strategy for covering array generationwas introduced in
Lei and Tai (1998) for pairwise testing and later generalized to arbitrary strengths (Lei
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et al. 2007). With this strategy, a covering array is constructed incrementally using
horizontal and vertical extension steps; see Algorithm 1. In horizontal extension, a
new column is added to the array and its values are assigned greedily to maximize the
number of newly covered interactions. If uncovered interactions remain after horizon-
tal extension, the algorithm attempts to cover all missing interactions by performing
vertical extension. This process is repeated until a CA with the desired number of
columns is constructed. In this paper, we consider three prominent algorithms of the
IPO family: IPOG, IPOG- F and IPOG- F2, as detailed in Forbes et al. (2008).

Vertical Extension
The vertical extension step is equivalent for all considered IPO variants. Its purpose

is to make sure all interactions are covered, if necessary by adding additional rows.
First, for each missing interaction, existing rows are examined in an effort to find one
to which the interaction can be added. This can be done if all entries in the row and
columns of the t-selection either match with the corresponding values in the missing
interaction or were not assigned previously by the algorithm. Such unassigned values
are called don’t-care or star-values. If such a row exists, the interaction gets added to
it. Otherwise, a new row is added and the interaction is placed in it. Upon completion
of vertical extension, a CA with the current number of columns has been constructed.

Horizontal Extension
The horizontal extension step is used to expand the array until the desired number

of columns is reached. Initially an empty column i is added to the CA with i − 1
columns. IPOG iterates over all rows in order and greedily assigns the values in the
newcolumn thatmaximize the number of newly covered interactions. IPOG- F extends
this by greedily selecting the order in which the rows are treated and the new values
are assigned. In IPOG- F2 the selection of values is done heuristically, removing the
need to search through uncovered interactions entirely. This can result in smaller run
times, but generally produces larger arrays.

3.1 Adaptations for higher-index

For the IPO algorithms to support the generation of covering arrays of higher index,
multiple adaptations are undertaken. First, the exact numbers of occurrences of inter-
actions must be taken into account. For CAs with λ = 1, the IPO algorithms can
represent the current coverage status of an interaction by a single bit, using 1 to indi-
cate an interaction that is already covered and 0 for one that is yet to be covered. The
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Fig. 1 State of the λ-coverage-map after the first four rows have been assigned a value for column c5 while
constructing a CAλ(N ; 2, 5, 2)

coverage status of all interactions is stored in a data structure called coverage map, in
which the state of each interaction is stored in a bit vector. In order to track the cov-
erage information of all possible t-tuples for each of the

(k−1
t−1

)
different t-selections

of columns that contain the newly added column,
∏t

i=1 vi bits are reserved in the bit
vector, where vi is the cardinality of the alphabet of the i-th column of the t-selection.
States can be updated by packing the values of the interaction into an integer used to
index the entry in the bit vector. For a detailed description of the coverage map and
the packing function, see Kleine and Simos (2018).

For higher-index arrays this is insufficient, so we track exactly how many times an
interaction is covered. Therefore, to support higher indices, the bit vector is replaced
by a vector of integers, each entry storing the total number of occurrences of each
interaction. The size of the integer can be chosen with as few bits as needed, e.g., to
support arrays of index ≤ 255 a vector of bytes is sufficient. An example of such a
coverage map can be found in Figure 1, which showcases the coverage status of all
interactions when column c5 is appended to a binary CA of strength two by means
of horizontal extension. For example, in the 2-selection consisting of columns c1 and
c5, both the (0, 0) tuple, which is packed into the integer 0, as well as the (1, 1) tuple,
encoded to 3, occur two times in the CA in rows 1 and 3 as well as 2 and 4 respectively,
while the (0, 1) and (1, 0) tuple do not currently appear in the CA.

Horizontal extension only requires small adjustments to the calculation of coverage
gains. In the IPOG algorithm, the selection of values based on the objective function
remains as in the λ = 1 case, including the tie-breaking behavior. However, the
objective function is modified to consider how often the interactions are covered.
Algorithm 2 describes the modified objective function. If an interaction is already
covered λ times or more, additional occurrences cannot improve the solution, and
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hence it returns a gain of 0. For all other interactions, the difference between λ and
the number of occurrences of the interaction is returned. This allows the algorithm to
prioritize interactions that need to be covered more frequently.

Adapting the horizontal extension steps of the algorithms IPOG- F and IPOG- F2 to
support higher index arrays is even simpler. Neither algorithm uses the coverage map
for calculating the coverage gain; instead they maintain a separate data structure for
counting/estimating the coverage gain for each row and value pair. When λ = 1, the
estimates start at

(



t−1

)
where 
 is the number of assigned columns in each row. This

is an upper bound on the number of interactions that could be covered by selecting
a value in the new column. Whenever a candidate value is selected for one of the
rows, the estimates are updated for all row/value pairs based on the newly-covered
interactions as well as the number of columns in which the rows share the same value.
While IPOG-F does this exhaustively in order always maintain a precise value for
the potential coverage gain of each row/value pair, IPOG-F2 uses a heuristic for this
update step and therefore can only provide an estimate. For an in-depth explanation
of the two algorithms as well as their differences we refer the interested reader to
Forbes et al. (2008). In order to handle λ > 1, it is sufficient to multiply this estimate
by λ. This invalidates the interpretation of the estimate as the number of potentially
coverable interactions in that row, however, since each interaction now needs to be
covered λ times, this approach still tracks which and how many interactions remain to
be covered. Moreover, this objective function prioritizes interactions that have been
covered fewer times in absolute terms.

Vertical extension requires themost substantial adaptation. First, interactions might
still need to be added multiple times, specifically λ minus the number of times it
already occurs in the array. Therefore, when merging interactions into existing rows,
we cannot limit our search to the first compatible row, because we could fall into the
trap of merging the interaction into a prior occurrence of itself and not increasing the
coverage. Thus, we skip occurrences of interactions that already appear in the array
when selecting a compatible row and only consider rows that contain a partial match,
where the corresponding entries in the row and t-selection of columnsmatch or are star
values and at least one of the entries is a star value. Lastly, when adding an interaction
to an existing row, care is needed to not mark interactions in the existing row multiple
times. This can be achieved by only considering newly added interactions. A schematic
of the procedure is given in Algorithm 3.
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4 Conditional expectation

One-row-at-a-time methods for constructing covering arrays were pioneered in the
AETG approach (Cohen et al. 1997). Using conditional expectations, Bryce and Col-
bourn (2007, 2009) established that suchmethods underlie polynomial time algorithms
to produce covering arrays meeting the asymptotic bounds. Such conditional expecta-
tion methods, also called density algorithms, have been extended to employ compact
representations of uniform covering arrays (Colbourn 2014; Colbourn et al. 2017) in
order to improve both the asymptotic guarantee on the size and accelerate the compu-
tations. They have also been explored for mixed levels and variable strength (Moura
et al. 2019), but our extension to higher index appears to be new.

The covering array is generated one-row-at-a-time, and the algorithm by Bryce
and Colbourn is both deterministic and efficient. Let F = {F1, . . . , Fk} be a set of
k factors, and I be the set of all t-way interactions with values from the factors in
F . Generate a row R of indeterminates, and consider each factor Fc and each t-way
interaction T ∈ I, both in any arbitrary order. Iterate through all levels 
1, . . . , 
vc

that can be set for factor Fc. For each assignable level 
i , calculate the probability that
T would be covered in this row R if we fix Fc to 
i . If among the columns that are
determined of R it is the case that T ’s values disagree with them, this probability is 0.
Otherwise, let f be the number of columns of T not fixed to an entry; if we set a level
to Fc in R (which is not fixed at this point), the probability that T is covered in R is
1/v f −1, if all other entries are independently randomly chosen. Finally, fix the level

max that maximizes the number of interactions covered for the first time in R if 
max

is the entry in factor Fc of R. When R has all of its entries determined, update I by
removing all interactions covered in R for the first time. The density of R at each step
is the expected number of t-way interactions that are covered for the first time in R.

When λ ≥ 2, the existing method is insufficient because coverage of an interaction
in a row does not imply that this interaction has been covered λ times. Indeed, the
probability of being λ-covered depends on how many times it has been covered in
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earlier rows. Although here we also employ the idea of conditional expectation, we
must correctly determine these probabilities. We first determine an upper bound for
the number of rows N ; for example, we could employ the elementary upper bound
λ
(k
t

)
vt , or compute the smallest value consistent with the analysis of Theorem 1. We

adopt the second approach mainly for efficiency.

4.1 Conditional expectation for higher index

We focus on several changes to the methods for λ = 1. We generate an array one-
row-at-a-time; suppose the currently formed array is A, and the factors are F =
{F1, . . . , Fk}. At each point in the construction, let M denote the number of rows
already constructed, and let T be the set of interactions that are not (yet) λ-covered.
We generate a row R of indeterminates. Then we examine each factor Fc in arbitrary
order, and iterate through its levels one at a time in any order. However, instead of
measuring the expected number of interactions covered for the first time, we require a
finer measure of progress. Provided that A is not already a covering array of index λ,
let T ∈ T be any interaction not λ-covered. Determine the probability that T would
be covered in R one more time if we fix Fc to 
i in R. If T was covered μ times prior
to row R, we now have the probability that it is covered μ + 1 times after row R,
and the complementary probability that it is covered μ times. Use these to calculate
the probability that T is (at least) λ-covered when the remaining N − M − 1 rows
are selected uniformly at random. This is the probability that T is λ-covered if the
termination of the algorithm occurs once N rows are constructed.

Summing such probabilities for all interactions in T produces the expected number
of uncovered interactions assuming all N rows are to be completed. Therefore we
choose a level for factor Fc in row R that minimizes this expectation. Having chosen
a level, we increase the coverage count for each interaction in T that is covered in R.
We also recalculate N to again be the smallest value such that the total expectation is
strictly less than 1; in this way, we may reduce the target number of rows but never
increase it. A more formal description is presented in Algorithm 4.

Lemma 1 Each row generated byMakeNextRow in Algorithm 4 covers at least one
interaction that is i-covered for some i < λ.

Proof Rows are only generated when at least one uncovered interaction remains. Sup-
pose to the contrary that a row R is generated that does not cover any interaction in
T . Let A be the array before the addition of R, and let A′ be the result of appending R
to A, so that A′ has one more row than A does. All values in R are chosen so that they
do not increase the expectation of the number of uncovered interactions at the end of
the algorithm. If R fails to cover an i-covered interaction for some 0 ≤ i < λ, this
expectation must increase, a contradiction. ��

Even though Lemma 1 guarantees that at least one uncovered interaction is covered
in each row generated, this may not ensure that the number of rows created does not
exceed the N bound calculated at the start. We address this next.
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Lemma 2 The ConditionalExpectation algorithm, presented as Algorithm 4,
generates an MCAλ(N ; t, (v1, . . . , vk)) where N is asymptotically optimal (i.e., it
asymptotically meets the bound from Theorem 1).
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Proof This follows from two crucial observations. First, the selection of a value for
a factor in row R cannot decrease the expectation for the current target value of N .
Secondly, treating the expected number of uncovered interactions as a function of
N , as N increases, the expected number may decrease or remain unchanged. Hence,
because selections of levels never increase the expected number, the target number of
rows is never increased. ��
Theorem 3 Let t, v1, . . . , vk, λ be fixed integers. Then Algorithm 4 generates an
MCAλ(N ; t, (v1, . . . , vk)) in time polynomial in k.
Proof ConditionalExpectation invokes MakeNextRow once per row con-
structed, which by Theorem 2 is O(log k + λ) times. In addition, it maintains the
coverage status of each interaction, of which there are polynomially many because
t, v1, . . . , vk , and λ are fixed.

MakeNextRow calls UnCoverProb for each member of T , again a polynomial
number. In addition, it calculates (and recalculates) the target number N of rows. This
can be efficiently handled by a binary search for the smallest value of N . UnCover-
Prob can be computed in O(log N ) time because λ is fixed.

Hence an MCAλ(N ; t, (v1, . . . , vk)) is produced in time polynomial in k. ��

5 Computational results

For the experiments using the In-Parameter-Order strategy, the algorithms FIPOG,
FIPOG-F and FIPOG-F2 were used, which implement the algorithmic and
implementation-level enhancements proposed in Kleine and Simos (2018). All three
algorithms are available as part of the tool (Wagner et al. 2020).

For all algorithms, we generated uniform covering arrays of higher index when-
ever 2 ≤ t ≤ 4, 2 ≤ v ≤ 5, k ∈ {10, 15, 20, 50, 100} and 1 ≤ λ ≤ 4. These
parameters have been chosen to demonstrate the logarithmic growth of covering array
sizes, and to show that the relative difference in the number of additional rows for
higher λ decreases as k increases. Additionally, they illustrate differences between the
implemented algorithms, because each has its own advantages and disadvantages.

In the presentation of results, we abbreviate FIPOG, FIPOG-F and FIPOG-F2 to
G, F, and F2, respectively; CE denotes the density/conditional expectation method.
Covering array sizes are reported in Table 2 for t ∈ {2, 3}, and in Table 3 for t = 4.

We also generate mixed-level covering arrays of higher index for certain parameter
sets arising from real-world scenarios; the notationv

j
i indicates that there are j columns

with vi symbols.

• mobile: 108918475610544639228

• wireless: 59453723

• flex: 5234223

• make: 61514234214

• grep: 211131101715141332114

• sed: 10182615343312711

• gzip: 341615142382814
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Fig. 2 Runtimes in seconds of the IPO algorithms are depicted for different values of k on a logarithmic
scale

• nanoxml: 61413621112

The resulting (mixed-level) array sizes are reported in Table 4; we again report their
sizes for 1 ≤ λ ≤ 4 and t ∈ {2, 3, 4, 5} (Fig. 2).

The experiments for the IPO family of algorithms were performed on a machine
with an Intel Core i7-4770 CPU clocked at 3.40 GHz with 64 GB of RAM; for the
conditional expectation algorithm, they were performed on a machine with an Intel
Core i9 CPU clocked at 3.6 GHz with 16 GB of RAM. While the infrastructures used
to evaluate the algorithms differ slightly, the run time results should still provide a
good estimation on the performance and scalability of the different algorithms. The
λ-coverage was verified using the CAmetrics combinatorial coverage measurement
tool (Leithner et al. 2018).
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6 Discussion and conclusion

In all instances, when k > t , all algorithms were able to create higher-index arrays
whose size is smaller than the size of a CA1(N ; t, k, v), found via the same methods,
times the index λ.

This behavior is apparent in both the uniform and mixed-level experiments. This is
not surprising, because in our experiments the largest t is somewhat smaller than the
smallest k, and we focus on small values of v. When k is larger than max(t, v), even
when λ = 1 some interactions necessarily must be covered multiple times. In these
situations, further rows may not need to consider as many interactions.

What is more remarkable is how few additional rows are needed even when k is
small. Consider the situation when t = 4, k = 10, and v = 3. All four algorithms
report a covering array size between 220 and 248 for λ = 1; but for λ = 2, the average
increase was 61%, and the increase diminishes for λ ∈ {3, 4}. We expect that if k is
smaller, but still larger than t , these increases are more pronounced.

There are obvious differences between CE and the IPOG algorithms. CE builds
rows of full length k, one-row-at-a-time. In contrast, the IPOG algorithms add columns
during the construction. One advantage of CE over the IPOGmethods is that an upper
bound is determined at the start (which may improve as rows are built), whereas the
IPOG methods do not make this determination. Nevertheless, neither method knows
in advance the actual number of rows to-be-generated.

One advantage of the IPOG methods over CE is that they are faster in practice.
CE repeatedly employs the number of times each interaction has been covered so
far. Either this information is stored, or is recomputed whenever needed by iterating
through the rows of the currently constructed array. This calculation cannot be avoided
if one wants to achieve the guaranteed upper bound on the number of rows. IPOG deals
with a substantially smaller number of interactions:

( k
t−1

)
vt versus

(k
t

)
vt for CE.

Both types of algorithms contain both local and global heuristics. Locally, each
algorithm chooses a value in a single row and column that maximizes some quantity,
but the choice made is based on what can occur after all interactions are considered.
For the IPOG methods, this is maximizing the coverage gain; and for CE, this is
maximizing the decrease of the expectation.

Wehave explored two algorithms for constructing higher-index covering arrays; one
is based on the in-parameter-order algorithm, and the other is based on conditional
expectation. Naturally, other methods for index one can (and should) be extended
to treat higher index. For uniform arrays, one promising direction is to extend the
methods of this paper to a very compact representation of (uniform) covering arrays,
the covering perfect hash families introduced in Sherwood et al. (2006) and extensively
explored in Colbourn et al. (2017). The extension to higher index is natural, and IPO-
like strategies are quite effective on this compact representation (Wagner et al. 2021).
In a similar way, the extension of the cyclotomic constructions (Colbourn 2010) to
higher index is routine; some steps in this direction are taken in Akhtar et al. (2021).
Finally, a major paradigm in recursive constructions employs other types of hash
families in column replacement methods (Colbourn 2011), and generalizations of
these to higher index have recently been considered (Dougherty and Colbourn 2020).
We expect that for some parameter sets, such extensions can lead to covering arrays
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with fewer rows than are found by our two sets of algorithms. However, the proposed
directions all concentrate on uniform covering arrays. Formixed-level covering arrays,
algorithms like those developed here appear likely to remain the most effective for
quickly generating tests.
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