United States Military Academy
USMA Digital Commons

West Point Research Papers

12-8-2022

Algorithmic Methods for Covering Arrays of Higher Index

Ryan Dougherty
United States Military Academy, ryan.dougherty@westpoint.edu

Kristoffer Kleine
MATRIS, SBA Research, kris.kleine@yahoo.de

Michael Wagner
MATRIS, SBA Research, mwagner@sba-research.org

Charles J. Colbourn
Arizona State University, charles.colbourn@asu.edu

Dimitris E. Simos
MATRIS, SBA Research, DSimos@sba-research.org

Follow this and additional works at: https://digitalcommons.usmalibrary.org/usma_research_papers

6‘ Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Dougherty, Ryan; Kleine, Kristoffer; Wagner, Michael; Colbourn, Charles J.; and Simos, Dimitris E.,
"Algorithmic Methods for Covering Arrays of Higher Index" (2022). West Point Research Papers. 753.

https://digitalcommons.usmalibrary.org/usma_research_papers/753

This Article is brought to you for free and open access by USMA Digital Commons. It has been accepted for
inclusion in West Point Research Papers by an authorized administrator of USMA Digital Commons. For more

information, please contact dcadmin@usmalibrary.org.

https://digitalcommons.usmalibrary.org/
https://digitalcommons.usmalibrary.org/usma_research_papers
https://digitalcommons.usmalibrary.org/usma_research_papers?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/usma_research_papers/753?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@usmalibrary.org

Journal of Combinatorial Optimization (2023) 45:28
https://doi.org/10.1007/s10878-022-00947-x

®

Check for
updates

Algorithmic methods for covering arrays of higher index

Ryan E. Dougherty' . Kristoffer Kleine? - Michael Wagner? -
Charles J. Colbourn? . Dimitris E. Simos?

Accepted: 27 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Covering arrays are combinatorial objects used in testing large-scale systems to
increase confidence in their correctness. To do so, each interaction of at most a spec-
ified number ¢ of factors is represented in at least one test; that is, the covering array
has strength ¢ and index 1. For certain systems, the outcome of running a test may
be altered by variability of the interaction effect or by measurement error of the test
result. To improve the efficacy of testing, one can ensure that each interaction of ¢ or
fewer factors is represented in at least A tests. When A > 1, this leads to covering
arrays of higher index. We explore two algorithmic methods for constructing covering
arrays of higher index. One is based on the in-parameter-order algorithm, and the other
employs a conditional expectation paradigm. We compare these two by performing
experiments on real-world benchmarks and on uniform parameter sets.

Keywords Covering array - Conditional expectation - In-parameter-order algorithm -
Software testing

B Dimitris E. Simos
DSimos @sba-research.org

Ryan E. Dougherty
ryan.dougherty @westpoint.edu

Kristoffer Kleine
kris.kleine @yahoo.de

Michael Wagner
mwagner @sba-research.org

Charles J. Colbourn
Charles.Colbourn @asu.edu

Department of Electrical Engineering and Computer Science, United States Military Academy,
West Point, NY, USA

2 MATRIS, SBA Research, Floragasse 7, 1040 Vienna, Austria

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Published online: 08 December 2022 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-022-00947-x&domain=pdf
http://orcid.org/0000-0001-8588-1924

28 Page2of21 Journal of Combinatorial Optimization (2023) 45:28

1 Introduction

Informally, we are concerned with systems that have k factors {F1, ... Fi} that may
affect correctness, individually or by interactions among the factors. Each factor F;
has a fixed, finite number v; of levels (or values or options) that determine the manner
in which the factor is set; we always have v; > 2. When each of the k factors is
assigned one of its admissible levels, we obtain a fest. Our objective is to choose a
set of N tests so that, by running each test and examining the responses, we can gain
confidence that the system is operating as required.

A formal model is developed next. Let N, ¢, k, and A be positive integers with
k>1t>2and A > 1. Let vy, ..., vx be positive integers with v; > 2 for 1 <i < k.
Let A be an array with N rows, k columns, in which each column contains symbols
from a v;-ary alphabet X;. (Symbols in the alphabets are arbitrary, and can be driven by
the intended application.) For every ¢-tuple (c1, . . ., ¢;) of distinct column indices and
every t-tuple (ay, ..., a;) € Ley X -+ X X¢,, theset I = {(¢cj,a;) : 1 <i <t}isan
interaction of strength t, or a t-way interaction. Array A s-covers interaction [if there
exist (at least) s distinct row indices ry, - - - , ry such that A(r,,, ¢;) = a; forall 1 <
i <tand 1 <m < s. When every 7-way interaction is A-covered, A is a mixed-level
covering array of strength t and index X, denoted by MCA, (N; ¢, (v1, ..., vk)). When
v] = -+ = v = v, Ais uniform, and is a covering array, denoted CA, (N; ¢, k, v).
The most frequently studied situations arise when A = 1, for which we adopt the
simpler notation of CA(N; t, k, v). Naturally we are concerned with running as few
tests as possible. The covering array number, CAN, (t, k, v), is the smallest N for
which a CA, (N; t, k, v) exists.

An example is provided in Table 1, in which N = 14,¢t =3,k = 6,v = 2, and
A = 1. In columns 2, 4, and 5, we box all 8 interactions that must appear in these
columns; because N > 8, some interactions appear more than once. In each set of 3
columns all 8 interactions are covered at least once, and so we have a CA(14; 3, 6, 2).
This example establishes that CAN; (3, 6, 2) < 14.

Table 1 illustrates the application of covering arrays to testing of large-scale systems;
each column corresponds to a factor, and each row represents a configuration of the
system that can be used as a test. To evaluate the system, a tester runs each test,
resulting in either “Pass” or “Fail” for each. If a fault of size at most ¢ exists within
the system, then the covering array will detect that such a fault exists.

Such an outcome does not ensure that we can determine the number of faults, or
the set of faulty interactions.

Detecting and locating arrays were introduced in Colbourn and McClary (2008) as
a specialization of covering arrays to support the localization of faults; see Colbourn
and Syrotiuk (2018) and Martinez et al. (2009/10), and for an application see Aldaco
et al. (2015). Although detecting arrays impose further combinatorial requirements, a
primary requirement is that the underlying covering array have higher index.

There are further reasons to ask for higher index. For example, executing tests may
fail to produce a viable response due to environmental issues. Then if an interaction is
covered in a single test, its effect cannot be observed. More seriously, an interaction
effect may cause intermittent faults; then the probability of its being detected depends
on the number of tests in which it is covered. In order to guard against the loss of test

@ Springer

28

Page 3 of 21

(2023) 45:28

Journal of Combinatorial Optimization

(Aexre SULIOA0D € ST ABIIR QU) JOYJAYM JOJJE JOU P[NOoM pue anfeA Kue 03 Jas aq

ued A3} 9'T) SALNUR 218D J UOP,, ABDIPUT ¥ Ik JBY) SALNUH "20UO JSLI[& SUONLUIqUIOd AeM-¢ [[€ SIOA0D PUE ‘UTIN|OI (OB JOJ SAN[BA OM) ‘SUWIN]0D § ‘SMOI 4] Sey Aelre o],

0*00T

TOX*Tx

00100

X

0

0

UStH
MO
YSTH
MO
Mo
Mo
MO
USTH
YStH
Mo
YStH
MO
USTH

MO

owory) ANV

XOJoI1] ¥

awoIy) [P]

| xoporrg | osuy

owory) ANV

awoIy) [Py

Xojoa ANV

x INAH
Yousoyg x
YUY IAQ
| wm | 1A
[rouomm| 1A
| gm | 1AQ
| wm | 1wan

gIM IAQ
[rowomg| NaH

gIM INAH
JouIaYyH IAQ
|ouwoyig | INaH
| wm | wan
|ouma| 1AQ

|oworyp [@y

|owonyy | Qv
| xopparg | Qv
7 XOJoI1,] 7 P
|oworqp | awy

| xoporrg | esuy

7 awoIy)) 7 e

X

Uty

um
| am
ES
ES
ES
eIy
ES
oIy
um
|u
RN

RN

[Pa0rT A199yeg I0M1dN S)I0J Ae[dSI(] Iosmolg I0ssad0ld SO

LSIN 4Aq papiaoid ‘(3y3ur) Aeirre 3urroaod Surpuodsaliod ay) pue (339]) 9ns 1593 ojdwexs uy | a|qe]

pringer

as

28 Page4of21 Journal of Combinatorial Optimization (2023) 45:28

results and the effects of intermittent interactions, covering arrays of higher index are
of interest.

There is a substantial literature on the construction of covering arrays with index
1; see, for example, Colbourn (2011), Kuhn et al. (2013) and Nie and Leung (2011).
Current research on arrays of higher index is limited (see, for example, Akhtar et al.
(2021)). In order to address needs for additional interaction coverage, naturally one
could simply repeat each test A times using a covering array of index 1. In Sect. 2
we show that this naive strategy often runs far more tests than needed; in the process
we determine the extent of potential improvements over simple replication in order
to identify parameter sets on which to evaluate construction techniques. In Sect. 3 we
develop an IPO-style (one-column-at-a-time) algorithm, and in Sect. 4 we develop a
conditional expectation (one-row-at-a-time) algorithm. In Sect. 5 we present compu-
tational results from these algorithms applied to a variety of parameter sets, both from
real-world applications and from a range of uniform situations. In Sect. 6 we evaluate
the results obtained.

2 Asymptotic upper bounds on higher-index covering arrays

In order to understand the relationship between the number of tests in covering arrays
of index one and those of index A, we first examine the asymptotics of the sizes for
MCA)LS.

Very few exact covering array numbers are known; consequently, these are typically
bounded by considering the probability that a random array is a covering array with
the desired parameters.

We employ the well-known probabilistic method (Alon and Spencer 2004); see
also Deng et al. (2004). Let N, ¢, k, and A be positive integers with # < k, and let
v1, ..., U be positive integers, each at least 2. Let A be an N x k array in which
the entries of column i are chosen independently, and uniformly at random, from
a set of v; symbols. What is the probability that a specific z-way interaction / on
columns Z¢ = (cq, ..., ¢;) is not A-covered in A? The probability that I is covered
in a single row is ¢; ;1 = [[.c7 - vi(and so the probability that it is not covered in
any row is (1 — ¢.7)". We write ¢ and 1 — ¢ when the parameters are clear from
the context. The number of rows that do not cover interaction / is equal to p with
probability (%) (1 —¢)?¢"~#. Define ¥y ;1.1 to be Y55 (1) (1 —$)?¢™ . By the
linearity of expectation, the expected number of interactions that are not A-covered
in A is precisely Y ; ¥n s, 1.». When this expected number is strictly less than 1, an
MCA, (N; t, (vi, ..., vr)) exists.

We outline the proof of an asymptotically optimal bound, referring the reader to
Dougherty (2019) for further discussion.

Theorem 1 Let vy, ..., v, t be fixed. For A > 1, k sufficiently large, and any
MCA, (N t, (v, ..., vr)) with N minimum, N is ®(logk + A), where the hidden
constants are independent of k, A (but may depend on vy, ..., vk, t).

Proof (Sketch) For the lower bound, CAN (¢, k, v) is Q2 (log k) Colbourn (2004), and
deleting any A — 1 rows from covering array of index A yields a covering array of

@ Springer

Journal of Combinatorial Optimization (2023) 45:28 Page 5 of 21 28

index one. Hence CAN; (¢, k, v) is Q(logk + X). For the upper bound, the expected

number of interactions that are not A-covered in an N X k array, with entries chosen

uniformly at random, is (I;)v’wNJ,v,;\, where ¥y ;0 = Zz;g) (2’)(1 — PPN L.

We obtain an upper bound on ¥y ; ».» by applying the Cauchy-Schwarz inequality.
It suffices to obtain an upper bound on N in the following equation:

K\ vox (eNY
(Jra-or () -

We use the Lambert W-function W (x) (W is the inverse of the function f(W) =
WeW) to obtain:

N < A log(1 — ¢) .
log(1 =)~ \e((¥)v'(1 — p))1/>

By Alzahrani and Salem (2018), N is at most Clogk + DA (for constants C, D
depending only on v and #), and hence is O (logk + A). The extension to MCA, s is
routine, by considering covering arrays on min(vy, ..., vx) and on max(vy, ..., vg)
symbols. O

For certain parameters, one could instead exploit concentration inequalities as in
Alon and Gutner (2007) to establish that within a 7-set of columns, the difference
between the number of times that one interaction is covered and the number of times
that another is covered is ‘small’ with high probability. Requiring this to hold for all
t-sets of columns, each with large enough probability, would establish a lower bound
on the number of times each interaction is covered for some covering array. We do not
pursue this approach here.

In Sect. 4, our conditional expectation algorithm guarantees to meet the asymptotic
bound of Theorem 1. However, the asymptotics of Theorem 1 can be quite misleading
when k =~ ¢. Indeed, using an approach from Ray-Chaudhuri and Singhi (1988), one
obtains:

Theorem2 Let k, vy, ..., vk, t be fixed integers such that vy > --- > vy and k > t.
Then there is a sufficiently large constant Lo such that for any A > A, there is an
MCA; (N t, (v1, ..., v)) having N = A[]i_; v;.

In summary, if the number of columns is sufficiently large, relatively few additional
rows are needed; and if the number of columns is sufficiently small, relatively many
more rows are needed. Scenarios of most interest therefore arise when k is “moderately
large.” Moreover, by considering Theorem 2 and also the need to run relatively few
tests, cases of most interest arise when A is a ““small” constant.

3 IPOG family

The In-Parameter-Order (IPO) strategy for covering array generation was introduced in
Lei and Tai (1998) for pairwise testing and later generalized to arbitrary strengths (Lei

@ Springer

28 Page6of21 Journal of Combinatorial Optimization (2023) 45:28

et al. 2007). With this strategy, a covering array is constructed incrementally using
horizontal and vertical extension steps; see Algorithm 1. In horizontal extension, a
new column is added to the array and its values are assigned greedily to maximize the
number of newly covered interactions. If uncovered interactions remain after horizon-
tal extension, the algorithm attempts to cover all missing interactions by performing
vertical extension. This process is repeated until a CA with the desired number of
columns is constructed. In this paper, we consider three prominent algorithms of the
IPO family: IPOG, IPOG- F and IPOG- F2, as detailed in Forbes et al. (2008).

Algorithm 1 TPO Algorithm

Array < cross-product of first ¢ columns
fori+—t+1,...,kdo
Array < HorizontalExtension(Array, 7)
if there are uncovered interactions then
Array < VerticalExtension(Array, i)
end if
end for

Vertical Extension

The vertical extension step is equivalent for all considered IPO variants. Its purpose
is to make sure all interactions are covered, if necessary by adding additional rows.
First, for each missing interaction, existing rows are examined in an effort to find one
to which the interaction can be added. This can be done if all entries in the row and
columns of the z-selection either match with the corresponding values in the missing
interaction or were not assigned previously by the algorithm. Such unassigned values
are called don’t-care or star-values. If such a row exists, the interaction gets added to
it. Otherwise, a new row is added and the interaction is placed in it. Upon completion
of vertical extension, a CA with the current number of columns has been constructed.

Horizontal Extension

The horizontal extension step is used to expand the array until the desired number
of columns is reached. Initially an empty column i is added to the CA with i — 1
columns. IPOG iterates over all rows in order and greedily assigns the values in the
new column that maximize the number of newly covered interactions. [IPOG- F extends
this by greedily selecting the order in which the rows are treated and the new values
are assigned. In IPOG- F2 the selection of values is done heuristically, removing the
need to search through uncovered interactions entirely. This can result in smaller run
times, but generally produces larger arrays.

3.1 Adaptations for higher-index

For the TIPO algorithms to support the generation of covering arrays of higher index,
multiple adaptations are undertaken. First, the exact numbers of occurrences of inter-
actions must be taken into account. For CAs with A = 1, the IPO algorithms can
represent the current coverage status of an interaction by a single bit, using 1 to indi-
cate an interaction that is already covered and 0 for one that is yet to be covered. The

@ Springer

Journal of Combinatorial Optimization (2023) 45:28 Page 7 of 21 28

Co C1 Co C3 C4 Chx

000O0O0O
011111
101010
110101
*0011
1100
(co, c5) (c1,¢5) ° (c2,c¢5) o (es,c5) (ca,c5) ° } t-selections

11 1 1{2 0 O 2|1 1 1 12 0 0 2|1 1 1 1|}coveragebits

Fig. 1 State of the A-coverage-map after the first four rows have been assigned a value for column c5 while
constructing a CA (N; 2, 5,2)

coverage status of all interactions is stored in a data structure called coverage map, in
which the state of each interaction is stored in a bit vector. In order to track the cov-
erage information of all possible ¢-tuples for each of the (1;:11) different ¢-selections

of columns that contain the newly added column, [/_; v; bits are reserved in the bit
vector, where v; is the cardinality of the alphabet of the i-th column of the ¢-selection.
States can be updated by packing the values of the interaction into an integer used to
index the entry in the bit vector. For a detailed description of the coverage map and
the packing function, see Kleine and Simos (2018).

For higher-index arrays this is insufficient, so we track exactly how many times an
interaction is covered. Therefore, to support higher indices, the bit vector is replaced
by a vector of integers, each entry storing the total number of occurrences of each
interaction. The size of the integer can be chosen with as few bits as needed, e.g., to
support arrays of index < 255 a vector of bytes is sufficient. An example of such a
coverage map can be found in Figure 1, which showcases the coverage status of all
interactions when column cs is appended to a binary CA of strength two by means
of horizontal extension. For example, in the 2-selection consisting of columns ¢; and
cs, both the (0, 0) tuple, which is packed into the integer 0, as well as the (1, 1) tuple,
encoded to 3, occur two times in the CA in rows 1 and 3 as well as 2 and 4 respectively,
while the (0, 1) and (1, 0) tuple do not currently appear in the CA.

Horizontal extension only requires small adjustments to the calculation of coverage
gains. In the IPOG algorithm, the selection of values based on the objective function
remains as in the A = 1 case, including the tie-breaking behavior. However, the
objective function is modified to consider how often the interactions are covered.
Algorithm 2 describes the modified objective function. If an interaction is already
covered A times or more, additional occurrences cannot improve the solution, and

@ Springer

28 Page8of21 Journal of Combinatorial Optimization (2023) 45:28

hence it returns a gain of 0. For all other interactions, the difference between A and
the number of occurrences of the interaction is returned. This allows the algorithm to
prioritize interactions that need to be covered more frequently.

Algorithm 2 Coverage Gain

procedure COVERAGEGAIN(7)
gain < 0
for all interactions in the row i being extended do
count < coverage_count(interaction)
if count < X then
gain <— gain + X — count
end if
end for
end procedure

Adapting the horizontal extension steps of the algorithms IPOG- F and IPOG- F2 to
support higher index arrays is even simpler. Neither algorithm uses the coverage map
for calculating the coverage gain; instead they maintain a separate data structure for
counting/estimating the coverage gain for each row and value pair. When A = 1, the
estimates start at (tfl) where ¢ is the number of assigned columns in each row. This
is an upper bound on the number of interactions that could be covered by selecting
a value in the new column. Whenever a candidate value is selected for one of the
rows, the estimates are updated for all row/value pairs based on the newly-covered
interactions as well as the number of columns in which the rows share the same value.
While IPOG-F does this exhaustively in order always maintain a precise value for
the potential coverage gain of each row/value pair, [IPOG-F2 uses a heuristic for this
update step and therefore can only provide an estimate. For an in-depth explanation
of the two algorithms as well as their differences we refer the interested reader to
Forbes et al. (2008). In order to handle A > 1, it is sufficient to multiply this estimate
by A. This invalidates the interpretation of the estimate as the number of potentially
coverable interactions in that row, however, since each interaction now needs to be
covered X times, this approach still tracks which and how many interactions remain to
be covered. Moreover, this objective function prioritizes interactions that have been
covered fewer times in absolute terms.

Vertical extension requires the most substantial adaptation. First, interactions might
still need to be added multiple times, specifically A minus the number of times it
already occurs in the array. Therefore, when merging interactions into existing rows,
we cannot limit our search to the first compatible row, because we could fall into the
trap of merging the interaction into a prior occurrence of itself and not increasing the
coverage. Thus, we skip occurrences of interactions that already appear in the array
when selecting a compatible row and only consider rows that contain a partial match,
where the corresponding entries in the row and ¢-selection of columns match or are star
values and at least one of the entries is a star value. Lastly, when adding an interaction
to an existing row, care is needed to not mark interactions in the existing row multiple
times. This can be achieved by only considering newly added interactions. A schematic
of the procedure is given in Algorithm 3.

@ Springer

Journal of Combinatorial Optimization (2023) 45:28 Page 9 of 21 28

Algorithm 3 Vertical Extension Algorithm for IPOG Methods

procedure VERTICALEXTENSION(Array, i)
for all uncovered interactions tuple do
count < coverage_count(tuple)
while count < A do
if 3 row such that its entries partially match tuple then
add tuple to Array[row]
increase coverage count of new interactions in row by one
else
add new row to Array containing only don’t-care values
add tuple to new row
end if
count < count + 1
end while
end for
end procedure

4 Conditional expectation

One-row-at-a-time methods for constructing covering arrays were pioneered in the
AETG approach (Cohen et al. 1997). Using conditional expectations, Bryce and Col-
bourn (2007, 2009) established that such methods underlie polynomial time algorithms
to produce covering arrays meeting the asymptotic bounds. Such conditional expecta-
tion methods, also called density algorithms, have been extended to employ compact
representations of uniform covering arrays (Colbourn 2014; Colbourn et al. 2017) in
order to improve both the asymptotic guarantee on the size and accelerate the compu-
tations. They have also been explored for mixed levels and variable strength (Moura
et al. 2019), but our extension to higher index appears to be new.

The covering array is generated one-row-at-a-time, and the algorithm by Bryce
and Colbourn is both deterministic and efficient. Let 7 = {Fy, ..., Fi} be a set of
k factors, and Z be the set of all 7-way interactions with values from the factors in
F. Generate a row R of indeterminates, and consider each factor F, and each t-way
interaction 7 € Z, both in any arbitrary order. Iterate through all levels £y, ..., £,,
that can be set for factor F,. For each assignable level ¢;, calculate the probability that
T would be covered in this row R if we fix F, to ¢;. If among the columns that are
determined of R it is the case that T"’s values disagree with them, this probability is O.
Otherwise, let f be the number of columns of 7 not fixed to an entry; if we set a level
to F,. in R (which is not fixed at this point), the probability that T is covered in R is
1/v/ =1, if all other entries are independently randomly chosen. Finally, fix the level
£max that maximizes the number of interactions covered for the first time in R if £,
is the entry in factor F, of R. When R has all of its entries determined, update Z by
removing all interactions covered in R for the first time. The density of R at each step
is the expected number of 7-way interactions that are covered for the first time in R.

When A > 2, the existing method is insufficient because coverage of an interaction
in a row does not imply that this interaction has been covered X times. Indeed, the
probability of being A-covered depends on how many times it has been covered in

@ Springer

28 Page 10 of 21 Journal of Combinatorial Optimization (2023) 45:28

earlier rows. Although here we also employ the idea of conditional expectation, we
must correctly determine these probabilities. We first determine an upper bound for
the number of rows N; for example, we could employ the elementary upper bound
A(lt‘)v’ , or compute the smallest value consistent with the analysis of Theorem 1. We
adopt the second approach mainly for efficiency.

4.1 Conditional expectation for higher index

We focus on several changes to the methods for A = 1. We generate an array one-
row-at-a-time; suppose the currently formed array is A, and the factors are F =
{F1, ..., Fr}. At each point in the construction, let M denote the number of rows
already constructed, and let 7 be the set of interactions that are not (yet) A-covered.
We generate a row R of indeterminates. Then we examine each factor F, in arbitrary
order, and iterate through its levels one at a time in any order. However, instead of
measuring the expected number of interactions covered for the first time, we require a
finer measure of progress. Provided that A is not already a covering array of index A,
let T € T be any interaction not A-covered. Determine the probability that 7 would
be covered in R one more time if we fix F, to ¢; in R. If T was covered u times prior
to row R, we now have the probability that it is covered u + 1 times after row R,
and the complementary probability that it is covered p times. Use these to calculate
the probability that T is (at least) A-covered when the remaining N — M — 1 rows
are selected uniformly at random. This is the probability that 7' is A-covered if the
termination of the algorithm occurs once N rows are constructed.

Summing such probabilities for all interactions in 7" produces the expected number
of uncovered interactions assuming all N rows are to be completed. Therefore we
choose a level for factor F, in row R that minimizes this expectation. Having chosen
a level, we increase the coverage count for each interaction in 7 that is covered in R.
We also recalculate N to again be the smallest value such that the total expectation is
strictly less than 1; in this way, we may reduce the target number of rows but never
increase it. A more formal description is presented in Algorithm 4.

Lemma 1 Each row generated by MAKENEXTROW in Algorithm 4 covers at least one
interaction that is i-covered for some i < A.

Proof Rows are only generated when at least one uncovered interaction remains. Sup-
pose to the contrary that a row R is generated that does not cover any interaction in
T . Let A be the array before the addition of R, and let A’ be the result of appending R
to A, so that A’ has one more row than A does. All values in R are chosen so that they
do not increase the expectation of the number of uncovered interactions at the end of
the algorithm. If R fails to cover an i-covered interaction for some 0 < i < A, this
expectation must increase, a contradiction. O

Even though Lemma 1 guarantees that at least one uncovered interaction is covered

in each row generated, this may not ensure that the number of rows created does not
exceed the N bound calculated at the start. We address this next.

@ Springer

Journal of Combinatorial Optimization (2023) 45:28 Page 11 of 21 28

Lemma 2 The CONDITIONALEXPECTATION algorithm, presented as Algorithm 4,
generates an MCA,(N; t, (v, ..., vk)) where N is asymptotically optimal (i.e., it
asymptotically meets the bound from Theorem 1).

Algorithm 4 Conditional Expectation (CE) Algorithm to Produce CAs of
higher index.

1. Factor levels Ly, ..., Ly, with |L;| = ¢;; Factors F = (Lq,..., Ly)

2. Interaction T' = {(y,, ;) : 1 <4 < t}, A(T) is #times left to cover

a3 function UNCOVERPROB(row, N, T = {(y;,v;) : 1 <i <t})

. cr+ 1;p (szl %)
e

5: for ¢ from 1 to ¢ (110 ‘
roo if rowly. =*
6: cr < cr X 1 if row[y.) =ve

0 if rowly] & {ve,*}
7 end for

8: return Z;‘:(:g)” ((Ni_l)pi(l - p)N_l_i) +(1—cr) ()\f\:[p;il)p’\(T)_l(l -
p)N—A(T)

0. end function

10: function MAKENEXTROW(T)

i1 Initialize row to be a vector of k entries equal to x

12: N < min(M :) ;.7 UNCOVERPROB(row, M, T) < 1)

13; for ce {1,...,k} do

14: for s € L. do

15: Form row, from row by setting column c¢ to s

16: ucs < Y per UNCOVERPROB(rows, N, T)

17: end for

18: row|c] + o for some o such that uc, = min(ucs : s € L)
19: end for

20: return row

21. end function

2. procedure CONDITIONALEXPECTATION(¢, F, A)

23: T « all t-way interactions on F, each having \(T') = A
24: while T 7& @ do

N

25: row < MAKENEXTRowW(T)

26: Output row

27: for each interaction T € T that appears in row do
28:)\(T) —)\(T) —1

29: if)\(T) =0 then

30: Remove T from T

31: end if

32 end for

33: end while

3. end procedure

@ Springer

28 Page 12 of 21 Journal of Combinatorial Optimization (2023) 45:28

Proof This follows from two crucial observations. First, the selection of a value for
a factor in row R cannot decrease the expectation for the current target value of N.
Secondly, treating the expected number of uncovered interactions as a function of
N, as N increases, the expected number may decrease or remain unchanged. Hence,
because selections of levels never increase the expected number, the target number of

rows is never increased. O
Theorem3 Let t, vy, ..., v, A be fixed integers. Then Algorithm 4 generates an
MCA, (N t, (v, ..., V) in time polynomial in k.

Proof CONDITIONALEXPECTATION invokes MAKENEXTROW once per row con-
structed, which by Theorem 2 is O(logk + X) times. In addition, it maintains the
coverage status of each interaction, of which there are polynomially many because
t,v1,..., U, and A are fixed.

MAKENEXTROW calls UNCOVERPROB for each member of 7, again a polynomial
number. In addition, it calculates (and recalculates) the target number N of rows. This
can be efficiently handled by a binary search for the smallest value of N. UNCOVER-
PROB can be computed in O (log N) time because A is fixed.

Hence an MCA, (N ¢, (v1, ..., vx)) is produced in time polynomial in k. O

5 Computational results

For the experiments using the In-Parameter-Order strategy, the algorithms FIPOG,
FIPOG-F and FIPOG-F2 were used, which implement the algorithmic and
implementation-level enhancements proposed in Kleine and Simos (2018). All three
algorithms are available as part of the tool (Wagner et al. 2020).

For all algorithms, we generated uniform covering arrays of higher index when-
ever2 <t < 4,2 <wv <5,k € {10,15,20,50, 100} and 1 < A < 4. These
parameters have been chosen to demonstrate the logarithmic growth of covering array
sizes, and to show that the relative difference in the number of additional rows for
higher A decreases as k increases. Additionally, they illustrate differences between the
implemented algorithms, because each has its own advantages and disadvantages.

In the presentation of results, we abbreviate FIPOG, FIPOG-F and FIPOG-F2 to
G, F, and F2, respectively; CE denotes the density/conditional expectation method.
Covering array sizes are reported in Table 2 for ¢ € {2, 3}, and in Table 3 for r = 4.

We also generate mixed-level covering arrays of higher index for certain parameter
sets arising from real-world scenarios; the notation vl.] indicates that there are j columns
with v; symbols.

mobile: 103918475610544639728
wireless: 59453723

flex: 5234223

make: 61514234214

grep: 21'131101715141332114
sed: 10'826'5%4331271!

gzip: 341615142382814

@ Springer

Journal of Combinatorial Optimization (2023) 45:28 Page 13 of 21 28

Runtime in Seconds to generate CA(N;2,k,5) with index 4

10% ¢ £
— 107t E =
0 - =
el - B
g r]
8 []
g 1072 4
Q r]
g 103k — IPOG | |
— IPOG-F | |
3 —IPOG-F2 |
107k — CE E
C | | | | | | | | | |
10 20 30 40 50 60 70 80 90 100
Number of Columns k&
Runtime in Seconds to generate CA(N;4, k, 3) with index 4
108 T T T T T T T
104 1)
0
T 10%} 8
2
&
é 10° | n
) — IPOG
1072 — IPOG-F | |
—IPOG-F2
1074 | — CE |-
| | | | | | | | | |
10 20 30 40 50 60 70 80 90 100

Number of Columns k

Fig. 2 Runtimes in seconds of the IPO algorithms are depicted for different values of k on a logarithmic
scale

e nanoxml: 6!413021112

The resulting (mixed-level) array sizes are reported in Table 4; we again report their
sizesforl <X <4andt € {2,3, 4,5} (Fig.2).

The experiments for the IPO family of algorithms were performed on a machine
with an Intel Core 17-4770 CPU clocked at 3.40 GHz with 64 GB of RAM; for the
conditional expectation algorithm, they were performed on a machine with an Intel
Core 19 CPU clocked at 3.6 GHz with 16 GB of RAM. While the infrastructures used
to evaluate the algorithms differ slightly, the run time results should still provide a
good estimation on the performance and scalability of the different algorithms. The
A-coverage was verified using the CAMETRICS combinatorial coverage measurement
tool (Leithner et al. 2018).

@ Springer

(2023) 45:28

Journal of Combinatorial Optimization

Page 14 of 21

28

S61 12¢ 81 11¢ 091 9¢ ¢Sl LT LTI L6l 811 LTl 06 eel €8 18 0015
SLT 1474 €91 Sol (34! 60T 9¢l 661 148! 191 SOl €1l SL (18! oL 89 0sS
Lv1 991 9¢l 0cl 611 6¢€l ort1 1481 6 oIt 98 €6 8¢ L €S IS 0cS
Sel 848 LTI ocl 601 LTT 01 CIl €8 06 LL L8 49 19 6% 87 St
Tl €Tl €Tl ocl L6 86 L6 SOl <L L €L 08 Sy 8 194 94 ors
LT 60T 811 9¢l 6 ELT 86 801 89 1€l LL 8 [49 8 €S 9¢ oot
86 So1 LOT Tl L8 ol 98 L6 19 LOT 69 YL w <L id 0¢ os?
96 48! 88 S6 €8 16 oL LL 8¢ €L S 09 LE 6% LE (04 oV
88 9 8 S8 0L 6L L 1L 139 9 s LS 143 w 9¢ (04 IS14
08 9 08 8 29 9 09 9 Ly IS (94 (94 0¢ €€ (43 (4 or?
(V13 ST 89 6L 8¢ S6 9¢ 29 a4 69 134 IS 0¢ Ly 0¢ €€ 001€
29 S6 19 69 IS 8L 6% 9¢ (14 19 84 144 8¢C 6¢ 9C 8¢C 0s€
€S 29 0¢ €S 194 [49 874 8 €€ (a4 €€ 6¢ 1T 8¢ 1C €C 0z€
oy [4S 14 59 (4 Pid 874 194 1€ 143 €¢ €€ 0cC €C 81 1C cr€
144 144 144 w ¢ LE LT LT 9T 9T 0¢ 144 91 61 81 ST or€
0¢ (34 (43 9¢ LT (014 8¢ (49 0C 6T (44 144 Sl 1T 91 91 001<
6T w 8¢ (43 144 143 9C 8¢ 91 9T 0C 0C €l LT 14! 14! 0s¢
144 (43 8¢C 8¢C 0¢ €C 0cC 144 4! 0¢ 91 91 0ol €l 4! cl 0z¢
(44 8¢C 144 144 61 IC 0¢ 0¢ cl 6l 4! 14! 6 Cl 0l 0l StY
(V14 14 ¥ ¥ L1 L1 81 0cC 4! SI 14! 14! 8 0l 0l oI 01¢

=1

40 ol D 40 cd D 40 cd D 40 cd
V= €= [=Y

¢ = 7 pue g = 7 (PSuams Jo Sy WIOJIUN I0J SINSAY g 3|qel

pringer

as

28

Page 15 of 21

(2023) 45:28

Journal of Combinatorial Optimization

LTyl 19€T L9€1 6Thl €€Tl 9s81 6LIT zigl LTOl S6EI SL6 866 €8L 886 L 9L 001S
Teel 9S0T ¥LIT LOST $¥OT 1091 T00T L9OT S8 811 TI8 618 €€9 708 €09 065 oS
L6 1S 116 ShOI 818 6611 89L 928 919 9.8 509 1€9 oSt 866 61 €6€ o0zS
68 ssel ves LL6 €L €901 889 SSL 9LS 1LL 9¢g L8S S6€ wr 69¢€ 3 ¢S
SLL 606 61L 669 8€9 6SL 8¢ 69 68 L8S vt 1S (43 L9€ 91¢ o€ 1S
81L 6L1T 689 1L) L£6 65 619 0zs 00L €6t 91¢ 66€ 66¥ 6LE 00F gort
919 v201 6§ 719 vzs S08 90S €28 ey L8S orv 8Th 61¢ L6€ €0€ 0ze oc?
€6t 9L vop 68 STy 09 63¢ 0% 9z€ ovy LO€g ¥43 87T SiT L1t 87T oz?
LSk €29 Sty oSt SLE LES (493 99¢ 88¢C L8€ e 18T 861 €€T 681 861 o
€6¢ 95z L9€ 8¢ Li€ ¥se 66C an we 062 62C &% 091 Ll 61 651 or?
967 Ly 08T v0g LST 98¢ 4T 0Lz 917 6T 0T L1T 891 60T 81 91 oor€
7se 60 we 89T SIT 133 Y0z LT LL 6vC 691 181 el 691 921 sl o€
€0C a3 161 0T 891 6+C 091 61 el 181 | el 6 LIl 68 16 0z€
81 997 A 881 051 e 8¥l 1L1 911 191 il 9z1 6L 66 08 08 i€
LS1 181 0S1 91 6C1 st 921 1L1 66 LIl 96 601 9 9L 9 89 o€
S8 8¢l 08 801 L 011 89 LL 19 98 LS €9 6 19 0s s 001%
L Ll 0L s01 9 €6 95 9 S o 8y € 184 6 ov b 0cC
IS S8 96 89 b oL & 8t g€ IS 9¢ It 9 g€ 8T 8T o0zl
o L§ 8 8 9¢ 9 It ov (3 St 73 LE €T 6C w@ T ¢rC
(43 8 (73 (43 3 6€ ov o€ T 8¢ T T 91 @ 0z 0z o1

c=1

ge) | d o)) | d o) ge) £ d D) | d o)
y=71 €=Y T=v 1=

penunuod ga|qel

pringer

As

(2023) 45:28

Journal of Combinatorial Optimization

Page 16 of 21

28

- - €0S6 T8L6 — - 86€8 Sp98 — - 161L 60bL - - ¥8LS €968 001S
€7S8 60STI LY8L 9¥98 98TL IS00I TH89 vLTL €019 IESL €9LS SP6S 6Ly LLSS YOS 98%b 0<S
196§ S6¥6 S89S TPL9 t60S 6EL €€8% T€LS €vIv €9€S 0T6E €LOv LWOE ¥6SE 8L8T 869T 0zS
€LTS ¥ST8 1€0S LE¥9 TSVY I¥S9 They S99y TLSE TT9Y PLEE VISE €9ST SL6T TEWT 0TTT S
6EEK P09 060 000S 9LSE 099 OLEE ¥S6€ S6LT LSE€E 619T IS8T LI6I T6OT 9081 TOLI orS
- - €8¢ PheE — - 88€€ P8PE — - 006 166T - vOST LEET TIVT oor?
L8T€ S6IS S9IE 68T€ 18T STV T9LT 698T 6IvT SIIE 0TET TThe 6881 bhTT €281 S681 os?
L6€T 110V ¥6TC 986 SHOT 660 L¥6l SE0T S991 8STT ¥8ST 0991 S€Tl 8Ll ILIT 9TTl oz
0€1z OvSE €20T 60l €6L1 L9LT €OLT I8LT TS¥I T86I $9EI STyl vvOl SSTI 186 7601 b
8TLI I¥81 TSI 6€LI SIPI ST6l wLEL 9spl 90IT 9L ¥90I 8OIT SSL 268 1L €91 o
vLIT LP8T 8911 80Tl 9SO1 v6vI 1€01 €01 €06 9SIT 88 206 ShL Ss8 SIL 1€L 001€
L66 9851 §96 101 L8 AT z16 seL 856 80L €L SLS 699 85§ 08S 0cE
TEL 07zl 869 66L 929 9t6 €65 $L9 s 69 €8 0€S I8¢ 6T 29¢ vLE o0z€
€69 8801 $T9 689 62S b8 sT$ 865 9zt 919 81 9Ly 0€ 95¢ €0€ 10€ €
§T8 989 018 995 132 €65 (i Sor 3 6 LEE €9¢ 1€z 8+C 0ze 0ze o€
S0z e 102 86T 81 9.T 8LI 981 091 01z €61 991 el 81 el 13 001C
IL1 88T 691 602 vl N%4 ¥l 0ST 811 0L 921 sl L6 g 66 101 0<C
el e 921 991 Y01 €Ll Y01 811 L el 16 L6 65 S8 €9 99 0l
€1l 81 €1l sl $6 0S1 6 L01 1L L01 28 L8 IS L SS 95 ciC
6 96 201 8Tl SL 16 08 €6 8 w SL 89 93 LS St b o1l
£l | d o) £ o d o) £l | d o) i) | d o)
r=1 €=Y = 1=

¥ =105 SINSAY € 3|qeL

pringer

A's

28

Page 17 of 21

(2023) 45:28

Journal of Combinatorial Optimization

601 Tl T60I T0l 618 618 618 618 9vS 9bS 9vS 9ps €LT €LT €LT €LT z dais

1065 9S8 €945 8¥8S ¥8Sy LOT9 TLEy SISK T9SE OSEy ¥SIE 9SE€E 08T €6cT OLIT 80T S

0z61 08TC 0T61 0T61 Ivpl $6L1 ObPl 9FPI LIOT 9811 L96 L66 269 619 88¢ £09 ¥

08 €€g 08 08y 09¢ Iy 09€¢ 09¢ ShT §sT T ¥t vl ovl Tl 8€l €

0zl el 0zl 0zl 06 06 06 06 19 09 09 09 1€ €€ 3 3 z e

986 698 TOLT LILT TSST ¥6SE 1L0T STIT 9S0T LSET 86ST 691 8€€l T9El 1Tl 911§

186 68€1 006 006 €08 S80I SL9 189 €69 0L 208 1S 60v 6t 1€ Lv€ ¥

00€ 29¢ 00 00€ 06T LT sTT %4 991 L81 IS1 €1 101 201 001 16 €

001 001 001 001 SL SL SL SL 0S 0s 0S 0s st 9z ST 9z z xay

8TIOC 89Y°TE +10°0C S9L'IT €T6'LI OF9'ST EILLT €OV'61 9L8%I €€0'ST 6LSHI 906°ST L9¥'0I TI9IT 9IT'0I +90°T1 S

60IF 9209 S88€ ST8E ISEE [I8F C9IE 88EE€ 08LT SLEE TOVT 6ELT 881 €SIT YOLT 48T ¥

0SL 6501 989 89 819 928 LSS 919 89t 119 Iy s Sre 8L€E 60€ Sre €

LTl 8Tl €zl 0zl 101 901 9% S0t o €8 o 08 8t S S S T ssopum

- - - 80L'629 — - - vrL'8TS — - - LS8 Ity — - - L88°V0E S

- SII'S6 TSO'LS 161°09 — 690°SL 990°Ly 966k — S06°TS TLY'9E €9T6E — €0E'VE LYL'ST SES'LT ¥

€0LS 0€I8 T9IS T8ES 609y L8T9 TyIy TSEF O€SE €SLy vPIE 9S€€ 68€T T6LT S80T 9€TT €

18 L6V 9bF 8ty LLS 90t 193 LS¢€ st vIg €rT ST 0Ll €0T IS1 LS1 7 enqow

£l ol o)) | o) g | o) ge) | D 1

r=Y €=Y =X =Y

suoneordde prrom [ear Sunsa) 10y sAelre pjeIouds Jo sINsAY d|qel

pringer

As

(2023) 45:28

Journal of Combinatorial Optimization

Page 18 of 21

28

6lee 8¥CS Ivie 8¢ELE 8LT S8LE LI¥C £96¢C 8LIT GEST 7881 0CIc (434! €8¢1 gscl 0cel S
£e01 0991 6001 8201 6¥8 8611 08L 9LL 659 8L 695 €09 (Y44 8¥y 6LE L8€E %
L6C 8y 88¢C 88¢C £ec Lce e (444 LLT I1e €51 191 Sl ST LO1 01 €
96 L6 96 96 L YL L CL 8 4 8 8 14 4 e 94 ¢ [wxoued
- LT6LOT 08T'S9 09€'S9 — ShvLL 6¥0'6F ¥00°0S — TI18°CS 80LvE T6S9E — vTS'6T 9L8°TT 069°€T €
0T€91 TTIST 0TE9L 0TE91 TOP'TI IEL'ST OVTTI €92°CI 8796 YCI'Cl 1€28 8¢68 Ge8¢s 8699 16¢s 8¢IS %
€01y LL6Y 0801 0801 L8I¢E LTSE 090¢ 090¢ €01¢C £9CC 0¥0C 10¢ L8I1 Ieel G801 8¢01 €
(44 918 918 918 L19 19 CI9 4] 601 80¥ 80% 80¥ L0T ¥0¢C 0¢ ¥0¢C [4 diz3
0089L ¥SO'TIT 008°9L 098°9L +I06S 9€S'I8 619°LS 6£8°8S 98S°ch 8vP'0S 6£L'6E S8Y'TY €66°9T S868C 9IL'ST 9¥8°ST ©
SOE'ST 9EL'LT 09€°ST 09¢°ST SESIT 8I¥'El 0TSIT 0€S'I1 SPLL 6816 ¥89L G88L Y69¥ 69y 68¢Y 1294 ¥
095¢C 986C 09s¢T 095¢C 0col LS61 0col 0col 08¢I LI€T 08¢I ¥8C1 LY9 LL9 w9 6L9 €
(1743 X4 0ce oce ()74 844 ore (074 1 091 091 091 c8 I8 08 I8 C pos
00TZ8¢ €89L8€ 00T'TSE 00T'T8E TOE LT OTE'E6T 0S9°98T 0S9°98C SIETOHI 191°L61 001°161 001°161 6¥C°L6 01066 089°S6 ¥TO'L6 S
OvP9L OPP'9L OFP'9L OvP'OL O0€ELS STY'LS O0€E'LS 0C€ELS 0TT'8E L6T'8E 0TT'8E 0TT'8E SII'61 vwI‘6l OI1'61 SL'I61
026°01 0T601 0601 0T6°01 0618 0618 0618 0618 091 091¢ 09S¢ 091 0¢LT 0€LT 0€LT eLT €
40 e 4 D 40 4 4 D 40 e d D 40 D 1
=X £E=Y =X =X

ponunuod {9|qel

-
I
50
=)
k=
a,
7
Al

Journal of Combinatorial Optimization (2023) 45:28 Page 19 of 21 28

6 Discussion and conclusion

In all instances, when k > ¢, all algorithms were able to create higher-index arrays
whose size is smaller than the size of a CA{(N; ¢, k, v), found via the same methods,
times the index A.

This behavior is apparent in both the uniform and mixed-level experiments. This is
not surprising, because in our experiments the largest ¢ is somewhat smaller than the
smallest k, and we focus on small values of v. When k is larger than max(¢, v), even
when A = 1 some interactions necessarily must be covered multiple times. In these
situations, further rows may not need to consider as many interactions.

What is more remarkable is how few additional rows are needed even when & is
small. Consider the situation when t = 4,k = 10, and v = 3. All four algorithms
report a covering array size between 220 and 248 for A = 1; but for A = 2, the average
increase was 61%, and the increase diminishes for A € {3, 4}. We expect that if k is
smaller, but still larger than ¢, these increases are more pronounced.

There are obvious differences between CE and the IPOG algorithms. CE builds
rows of full length &, one-row-at-a-time. In contrast, the IPOG algorithms add columns
during the construction. One advantage of CE over the IPOG methods is that an upper
bound is determined at the start (which may improve as rows are built), whereas the
IPOG methods do not make this determination. Nevertheless, neither method knows
in advance the actual number of rows to-be-generated.

One advantage of the IPOG methods over CE is that they are faster in practice.
CE repeatedly employs the number of times each interaction has been covered so
far. Either this information is stored, or is recomputed whenever needed by iterating
through the rows of the currently constructed array. This calculation cannot be avoided
if one wants to achieve the guaranteed upper bound on the number of rows. IPOG deals
with a substantially smaller number of interactions: (z f 1)v’ versus (lg)v’ for CE.

Both types of algorithms contain both /local and global heuristics. Locally, each
algorithm chooses a value in a single row and column that maximizes some quantity,
but the choice made is based on what can occur after all interactions are considered.
For the IPOG methods, this is maximizing the coverage gain; and for CE, this is
maximizing the decrease of the expectation.

We have explored two algorithms for constructing higher-index covering arrays; one
is based on the in-parameter-order algorithm, and the other is based on conditional
expectation. Naturally, other methods for index one can (and should) be extended
to treat higher index. For uniform arrays, one promising direction is to extend the
methods of this paper to a very compact representation of (uniform) covering arrays,
the covering perfect hash families introduced in Sherwood et al. (2006) and extensively
explored in Colbourn et al. (2017). The extension to higher index is natural, and IPO-
like strategies are quite effective on this compact representation (Wagner et al. 2021).
In a similar way, the extension of the cyclotomic constructions (Colbourn 2010) to
higher index is routine; some steps in this direction are taken in Akhtar et al. (2021).
Finally, a major paradigm in recursive constructions employs other types of hash
families in column replacement methods (Colbourn 2011), and generalizations of
these to higher index have recently been considered (Dougherty and Colbourn 2020).
We expect that for some parameter sets, such extensions can lead to covering arrays

@ Springer

28 Page 20 of 21 Journal of Combinatorial Optimization (2023) 45:28

with fewer rows than are found by our two sets of algorithms. However, the proposed
directions all concentrate on uniform covering arrays. For mixed-level covering arrays,
algorithms like those developed here appear likely to remain the most effective for
quickly generating tests.

Acknowledgements The views expressed in this article are those of the author(s) and do not reflect the
official policy or position of the Department of the Army, Department of Defense, or the U.S. Government.
This research of KK, DES, and MW was carried out partly in the context of the Austrian COMET K1
program and publicly funded by the Austrian Research Promotion Agency (FFG) and the Vienna Business
Agency (WAW). Research of CJC is funded by the U.S. National Science Foundation Grant #1813729.

References

Akhtar Y, Colbourn CJ, Syrotiuk VR (2021) Mixed covering, locating, and detecting arrays via cyclotomy
Springer Nature PROMS, accepted Jul 22

Aldaco AN, Colbourn CJ, Syrotiuk VR (2015) Locating arrays: a new experimental design for screening
complex engineered systems. SIGOPS Oper Syst Rev 49(1):31-40

Alon N, Spencer JH (2004) The probabilistic method. Wiley, Hoboken

Alon N, Gutner S (2007) Balanced families of perfect hash functions and their applications. In: Automata,
languages and programming. Lecture Lecture Notes in Computer Science, vol 4596, pp 435-446.
Springer, Berlin

Alzahrani F, Salem A (2018) Sharp bounds for the Lambert W function. Integr Transform Spec Funct
29(12):971-978

Bryce RC, Colbourn CJ (2007) The density algorithm for pairwise interaction testing. Softw Test Verif
Reliab 17:159-182

Bryce RC, Colbourn CJ (2009) A density-based greedy algorithm for higher strength covering arrays. Softw
Test Verif Reliab 19(1):37-53

Cohen DM, Dalal SR, Fredman ML, Patton GC (1997) The AETG system: an approach to testing based on
combinatorial design. IEEE Trans Softw Eng 23(7):437-444

Colbourn CJ (2011) Covering arrays and hash families. In: Information security, coding theory, and related
combinatorics. NATO Science for Peace and Security Series. IOS Press, Amsterdam, pp 99-135

Colbourn CJ, Lanus E, Sarkar K (2017) Asymptotic and constructive methods for covering perfect hash
families and covering arrays. Designs Codes Cryptogr 86(4):1-31

Colbourn CJ (2004) Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58:121-167

Colbourn CJ (2010) Covering arrays from cyclotomy. Des Codes Cryptogr 55:201-219

Colbourn CJ (2014) Conditional expectation algorithms for covering arrays. J Comb Math Comb Comput
90:97-115

Colbourn CJ, McClary DW (2008) Locating and detecting arrays for interaction faults. J] Comb Optim
15:17-48

Colbourn CJ, Syrotiuk VR (2018) On a combinatorial framework for fault characterization. Math Comput
Sci 12(4):429-451

Deng D, Stinson DR, Wei R (2004) The Lovész local lemma and its applications to some combinatorial
arrays. Design Codes Cryptogr 32(1-3):121-134

Dougherty RE (2019) Hash families and applications to ¢-restrictions. PhD thesis, Arizona State University

Dougherty RE, Colbourn CJ (2020) Perfect hash families: the generalization to higher indices. In: Raig-
orodskii AM, Rassias MT (eds) Discrete mathematics and applications. Springer, Cham

Forbes M, Lawrence J, Lei Y, Kacker RN, Kuhn DR (2008) Refining the in-parameter-order strategy for
constructing covering arrays. J Res Nat Inst Stand Technol 113(5):287

Kleine K, Simos DE (2018) An efficient design and implementation of the in-parameter-order algorithm.
Math Comput Sci 12(1):51-67

Kuhn DR, Kacker RN, Lei Y (2013) Introduction to combinatorial testing. Chapman & Hall/CRC Innova-
tions in software engineering and software development series. Taylor & Francis, Boca Raton

Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J (2007) IPOG: a general strategy for t-way software testing.
In: 14th annual IEEE international conference and workshops on the engineering of computer-based
systems, 2007. ECBS’07, IEEE. pp 549-556

@ Springer

Journal of Combinatorial Optimization (2023) 45:28 Page 21 of 21 28

Lei Y, Tai K-C (1998) In-parameter-order: a test generation strategy for pairwise testing. In: High-assurance
systems engineering symposium, 1998. Proceedings. Third IEEE International, pp. 254-261. IEEE

Leithner M, Kleine K, Simos DE (2018) CAMETRICS: a tool for advanced combinatorial analysis and
measurement of test sets. In: 2018 IEEE international conference on software testing, verification and
validation workshops (ICSTW), pp 318-327

Martinez C, Moura L, Panario D, Stevens B (2009/10) Locating errors using ELAs, covering arrays, and
adaptive testing algorithms. SIAM J Discrete Math 23:1776-1799

Moura L, Raaphorst S, Stevens B (2019) Upper bounds on the sizes of variable strength covering arrays
using the Lovasz local lemma. Theoret Comput Sci 800:146—-154

Nie C, Leung H (2011) A survey of combinatorial testing. ACM Comput Surv 43:1-29

Ray-Chaudhuri DK, Singhi NM (1988) On existence and number of orthogonal arrays. J Comb Theory Ser
A 47(1):28-36

Sherwood GB, Martirosyan SS, Colbourn CJ (2006) Covering arrays of higher strength from permutation
vectors. J Comb Des 14(3):202-213

Wagner M, Colbourn CJ, Simos DE (2021) In-parameter-order strategies for covering perfect hash families.
Appl Math Comput. https://doi.org/10.1016/j.amc.2022.126952

Wagner M, Kleine K, Simos DE, Kuhn R, Kacker R (2020) CAGEN: a fast combinatorial test generation
tool with support for constraints and higher-index arrays. In: Proceedings of 2020 IEEE international
conference on software testing, verification and validation workshops (ICSTW)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

https://doi.org/10.1016/j.amc.2022.126952

	Algorithmic Methods for Covering Arrays of Higher Index
	Recommended Citation

	Algorithmic methods for covering arrays of higher index
	Abstract
	1 Introduction
	2 Asymptotic upper bounds on higher-index covering arrays
	3 IPOG family
	3.1 Adaptations for higher-index

	4 Conditional expectation
	4.1 Conditional expectation for higher index

	5 Computational results
	6 Discussion and conclusion
	Acknowledgements
	References

