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Abstract—Adapting modern approaches for network intrusion
detection is becoming critical, given the rapid technological
advancement and adversarial attack rates. Therefore, packet-
based methods utilizing payload data are gaining much pop-
ularity due to their effectiveness in detecting certain attacks.
However, packet-based approaches suffer from a lack of stan-
dardization, resulting in incomparability and reproducibility
issues. Unlike flow-based datasets, no standard labeled dataset
exists, forcing researchers to follow bespoke labeling pipelines
for individual approaches. Without a standardized baseline,
proposed approaches cannot be compared and evaluated with
each other. One cannot gauge whether the proposed approach
is a methodological advancement or is just being benefited
from the proprietary interpretation of the dataset. Addressing
comparability and reproducibility issues, we introduce Payload-
Byte, an open-source tool for extracting and labeling network
packets in this work. Payload-Byte utilizes metadata information
and labels raw traffic captures of modern intrusion detection
datasets in a generalized manner. Moreover, we transformed the
labeled data into a byte-wise feature vector that can be utilized for
training machine learning models. The whole cycle of processing
and labeling is explicitly stated in this work. Furthermore, source
code and processed data are made publicly available so that it
may act as a standardized baseline for future research work.
Lastly, we present a brief comparative analysis of machine
learning models trained on packet-based and flow-based data.

Index Terms—Network intrusion detection, Traffic classifica-
tion, Packet capture, Cyber attack datasets, Payload extraction

I. INTRODUCTION

Advancement in Information and Communication Technolo-
gies (ICT) brings exceptional convenience to our daily life.
However, the world is becoming more dependent on these

technological adaptations, as it impacts every aspect of society
and people’s lives in one way or another. The world we used
to know is no longer similar, as it has transformed into a
collaborative network in which everything is interconnected
[1]. This inter-connectivity has led to an increase in cyber-
attacks on ICT systems [2]. Cyber-attacks on the network
of ICT systems often lead to data breaches and operational
halts for the company [3], [4]. Therefore, ICT systems require
effective and robust security solutions.

Network Intrusion Detection System (NIDS) is often con-
sidered a feasible option to protect against network-based
attacks [5], as it identifies attack behavior by analyzing the
network traffic of vital nodes in a network. NIDS utilizes
various approaches for the detection of malicious attack in-
stances. The most prominent of these approaches are rule-
based, flow-based, and packet-based methods [6]. Rule-based
methods are typically based on feature selection to construct
domain-specific rules. Anomalies are detected by comparing
the extracted signature of network flow with predefined rules.
Rule-based methods are effective for detecting known attacks
but they heavily rely on in-depth domain knowledge.

Recently, much attention has been diverted toward applying
machine learning (ML) approaches to NIDS as ML algorithms
are achieving striking results in domains where it is hard to
specify a set of rules for their procedures [7]. One of the
reasons for this shift from human-dependent approaches to
ML is that humans cannot incorporate every possible scenario,
and there will always be an unanticipated condition that might
be devastating for the system. Since ML approaches operate
differently, it utilizes the data it gets and attempts to learn
the patterns between occurrences [8]. Thus, ML approaches



become dynamic and adaptive to various scenarios without
human intervention [9]. Lately, many ML approaches have
been proposed in the domain of NIDS; however, most of
these approaches utilize flow-based information. In flow-based
methods, network traffic is analyzed over a period to extract
flow-based behavior features [10]. This approach can be imple-
mented in a centralized server to monitor massive traffic. The
anomalies are detected utilizing the correlation between the
traffic behavior and the corresponding characteristics. These
approaches require subject matter experts to select useful fea-
tures from data to detect malicious network traffic. Moreover,
the extracted features require a pre-processing application,
often requiring mathematical techniques to prepare the data
for the ML model [11], [12]. Another significant issue with
flow-based approaches is that they might end up learning
which IP addresses send malicious traffic or which ports are
frequently attacked. Flow-based approaches basically monitor
threats at the lower level of the TCP/IP protocol stack, thereby
diminishing the chance of detecting higher-level threats [13].
For such approaches, the methods used to extract and represent
the information in a packet are crucial and can affect the output
of ML models.

On the other hand, packet-based approaches can unveil
malicious network flow by inspecting the packet payload,
which refers to the network packet’s user data. The packet-
based approach tries to learn characteristics of normal as
well as possible attack instances that have potential abnormal
characteristics in the packet payload. The anomalies in attack
instances might appear as a number of specific strings. For
example, an SQL injection attack injects anomalous codes
such as “ or 1 = 1 - - ” into SQL queries to make
them always true [6]. Moreover, many attacks such as Worms,
Ransomware, and Trojans are based on payload delivery,
and these types of attacks might be hidden from flow-based
approaches. In short, models that utilize flow-based approaches
rely upon the tool’s correctness that extracts information from
packets. Thus, an inadequacy in the dependent tool propa-
gates to a complete failure whereas rule-based approaches
are completely dependent on in-depth domain knowledge and
can not cater every possible scenario. Therefore, packet-based
approaches seems like a viable option for NIDS.

Network packet payload analysis might be an effective
solution for detecting network attacks since application attacks
are embedded in the payload rather than the header portion of
the Internet Protocol (IP) packet [14]. However, the ability to
detect payload embedded attacks remains a challenge due to
the absence of properly labeled packet data, a standardized
dataset baseline, and dynamic structuring of protocols. Unlike
flow-based NIDS datasets, which are easily available and can
be utilized as a baseline for developing and comparing any
new proposition, packet-based datasets do not have standard
labeling or dedicated dataset publicly available for everyone.
This lack of standardization leads towards incomparable and
irreproducible research. In addition, there is a lot of ambiguity
in the process of labeling the raw packet capture (PCAP)
file, as every paper adopts its own processing method based

on their own set of rules. Therefore, addressing the issue of
standardization, we developed a tool (Payload-Byte) capable
of extracting and labeling raw packet data from PCAP files
of already available datasets like UNSW and CICIDS. This
tool, which is based upon initial work by Bierbrauer et al.
[15], is publicly available, and researchers can utilize the tool
to generate the data, which can be treated as a baseline for
future exploration in packet-based approaches. Our goal is
to provide standardization solution to the future researchers
so that reproducibility and comparability can be enhanced.
This will also enable researchers to directly compare new
approaches with the previous ones. The main contribution for
this paper is as follows:

• We developed a tool (Payload-Byte) for extracting and
labeling raw packet data of NIDS datasets. The complete
cycle of processing and labeling is explicitly stated in
this paper for ease of usage. This tool addresses the major
issue of comparability and reproducibility in packet-based
NIDS.

• Transformation of payload data into byte-wise data utiliz-
ing a generalized feature vector has been presented. This
feature vector is independent of any protocol structure.

• A processed packet-based dataset along with the tool is
made publically available to facilitate future researcher1.

• A brief comparative analysis has been performed utiliz-
ing the extracted payload data and flow-based data for
network intrusion detection.

The rest of this paper is organized as follows: Section
II covers the background knowledge related to the packet
structure. In Section III, an overview of related work and
gaps has been highlighted. Working and methodology has been
presented in Section IV. Furthermore, results are shown in
Section V. Finally, Section VI concludes the paper.

II. BACKGROUND

Libcap (PCAP) format is considered as the de facto standard
for network packet capture, which is widely utilized in packet
sniffers and analyzers [16]. This format is based on binary for-
mat, supporting nanosecond precision timestamps. Although it
may vary from implementation to implementation. A general
structure for PCAP format is shown in Fig.1.

Fig. 1. The general structure of PCAP format

1GitHub: https://github.com/Yasir-ali-farrukh/Payload-Byte.git



For understanding the information extraction from a raw
packet file, it is essential to develop an understanding of
the format in which packets are stored. The PCAP format
contains a global header followed by multiple packets con-
taining packet header and packet data. The global header
identifies the generic PCAP format and byte order using the
“Magic Number”, validates the time information stored for
each capture, and permits length checks to accommodate the
maximum length of captured packets (in octets). However,
the individual packet header comprises packet information,
like its origin, destination IP addresses, protocol, total length,
and other similar features. The packet data is the actual data
which is often referred as payload, containing the raw data.
In practice, packets have more than one header, and each
header is utilized by a different part of the networking pro-
cess. Simply, packet headers are attached by certain types of
networking protocols. Dividing packet into header and data is
high level representation of packets, whereas if we dive deeper
then there are several layers of additional information present
within the raw network data. Following the TCP/IP model,
each packet can be divided into four individual layers: Data
Link Layer, Network Layer, Transport Layer and Application
Layer. By referring to packet header, we are actually extracting
information from Network Layer and Transport Layer header
in our approach, which is covered in detail in Section IV. The
PCAP format packets are layered following the TCP/IP model.

III. RELATED WORK AND GAPS

Much work has been done in the domain of NIDS utiliz-
ing ML approaches. However, most proposed methods use
packet header information to extract features for training the
model, also known as flow-based approaches. The authors
in [17] present a comprehensive overview of the flow-based
techniques. However, in our work, we have only focused on
packet-based approaches.

A. Approaches Based on Outdated Data

Prior research has been performed utilizing several methods
for detecting anomalies in a network payload. As per [14],
the packet-based processing was first performed by [18], in
which the authors utilized the Self Organizing Map (SOM)
to distinguish between normal and abnormal characteristics of
the network employing payload data. Building upon it, many
payload-based approaches are presented based on Natural
Language Processing (NLP) concept called n-gram. PAYL,
an anomaly detector based on payload data, is presented in
[19]. This approach utilizes the byte frequency distribution of
normal packets to form a centroid model. However, the author
use a knowledge-based structure to store the probability range
occurrences of the n-gram technique to extract sequences from
payload data. McPAD proposed in [20] uses a modified n-gram
method to extract the features from the payload. Incorporating
neural networks with ann-gram approach, the authors in [21]
proposed Packet2Vec approach. In this approach, the authors
utilize Word2Vec to develop a vector representation for indi-
vidual most frequent n-grams. Another approach based on raw

packet data using Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) deep learning architectures
is proposed as HAST-IDS in [22]. This approach captures low-
level spatial and high-level temporal features through CNN
and LSTM. Utilizing the same concept, the authors in [23]
proposed AEIDS, based on an Autoencoder (AE), in which
a reconstruction error and modified z-score are employed for
classifying the incoming traffic instead of CNN and LSTM.

Other than these approaches, some modified approaches also
curtail the total length of payload on some basis. PCNAD
[24], modified version PAYL, utilizes Content-based portion-
ing (CPP) to determine the length of payloads for different
profiles. Similarly, authors in [25] proposed a payload-based
attribution scheme named Compressed Bitmap Index and Traf-
fic Down-sampling (CBID). CBID extracts feature utilizing
the combination of bitmap index table and bloom filters
from down-sampled traffic. Although all these approaches
use payload data to detect anomalies, there is still a huge
reproducibility and comparison analysis gap. Most methods
in the literature utilize proprietary data or datasets that have
been outdated and are already labeled. However, the obsolete
dataset is not the issue here. The main problem is compara-
bility and reproducibility. Since every method has utilized a
different approach for extracting and labeling raw data without
explicitly mentioning the whole process and assumptions, this
has led to branching of the same tasks in several different
ways [26].

B. Approaches Based on Modern Data

Since future research utilizes modern datasets containing
updated attacks and data instances, our goal is to provide
a standard baseline for researchers, just like flow-based ap-
proaches. Few works based on packet-based approaches have
utilized updated datasets such as UNSW-NB15 and CICIDS
datasets. A method based on a Recurrent Neural Network
(RNN) with the attention mechanism ATPAD is proposed in
[27]. This method employs the word embedding and RNN
to extract features used to capture the correlation between
detection results and the potential byte of the payload. This
approach makes use of the CIC-IDS2017 dataset and utilizes
binary classification. Moreover, no information is given regard-
ing the extraction and labeling of raw packet files. Similarly,
[6] also utilizes the CIC-IDS2017 dataset. In this approach,
the author employs the payload data to construct a block
sequence that contains two kinds of information that retain
short-term and long-term dependency relationships among the
malicious byte in payload data. In this approach, the author has
stated the number of instances utilized for model training and
testing. However, the amount of information given regarding
the payload extraction is minimal. In terms of the UNS-NB15
dataset, an approach utilizing the header and payload data has
been proposed in [8]. The authors have used a raw byte in
conjunction with a specified feature vector comprising only
TCP/UDP protocols. Since individual protocols have different
header byte numbers, authors have fixed a feature vector to
avoid ambiguity. Labeling information has been stated in this



Fig. 2. Workflow representation of developed tool (Payload-Byte). Raw PCAP files are passed with available metadata for labeling and transformation of raw
PCAP data into ML model readable form.

paper. However, the authors utilized only eight files of their
own choice for their model training and validation. Moreover,
there are more than 130 protocols in the UNSW-NB15 dataset
that the author neglects. Another approach covering additional
ICMP protocols has been presented in [28]. The authors
presented a unified packet representation using raw packet
information in this approach. The authors conducted their
evaluation over ten different datasets. However, the proposed
method utilizes every byte of the raw packet file, including
headers containing information about IP addresses and ports.
Using every byte of the packet may simply train the model to
learn which IP addresses send malicious traffic or which port
are attacked frequently, which is not a robust approach.

In short, every approach proposed in the literature utilizes
its own methodology for extracting and labeling raw packet
files for available data or its own proprietary dataset. In
addition, most of the approaches used for labeling do not
seem adequate and have a complication, as they use the 5-
tuple approach. There is no doubt that packet-based NIDS has
the potential to detect attacks in a network. Still, to gauge
the true applicability, researchers need a standardized baseline
that can utilized for the proposed scheme. In this way, the
problem of reproducibility and comparability will be resolved.
In this work, we developed a tool after undergoing a complex
process of in-depth analysis of the datasets and methodology
to provide a baseline solution for future researchers. The
objective of the developed tool is to provide a generalized
packet-based dataset that can be utilized by anyone according
to their model. The detail of our adopted methodology is
presented in Section IV. Moreover, labeled raw packet data
has also been made available for researchers’ ease.

IV. METHODOLOGY

A detailed overview of the adopted procedure for extracting
and labeling raw packet data is provided in this Section. Since
our goal is to provide ease and a frame of reference to future
researchers, we only considered the modern and preferred
network intrusion detection dataset to explain our tool. In
addition, a concise summary of available network intrusion

detection datasets and their characteristics is also presented.
Lastly, a brief overview of the selected approach for evaluating
packet-based approaches is also presented in this section.

A. Network Intrusion Detection Datasets

There are many publicly available datasets for researchers in
the domain of cybersecurity. However, most network intrusion
detection datasets only contain header information of network
packets. Several datasets comprising real network traffic either
do not have payload data or it has been removed due to privacy
concerns [5]. The unavailability of labeled packet data is a
significant issue in the packet-based NIDS. As a result, packet-
based approaches are evaluated on proprietary or self-labeled
data, resulting in reproducibility and comparability problems.
Table I provides a comprehensive summary of the available
datasets based on nine features. The features comprise the year
of publication, accessibility of the dataset (whether the dataset
is publicly available or not), format of the dataset (either flow
or packet), size of the dataset, availability of labeled packet
data, kind of traffic (real or emulated), whether the data is
balanced or not, availability of modern network attacks, and
whether the data contain metadata or not.

However, many datasets contain raw packet data informa-
tion, and not every dataset is being utilized in the ongoing
research. The reason is that every dataset has limitations and
challenges due to the methods and environment used for
creating them. Moreover, many of these datasets are outdated
due to the technological advancement accompanied by new
and more complex software and network structures. But still,
the most widely used and up-to-date datasets available are
CICIDS 2017 and UNSW-NB15 [29]. Therefore, we selected
these two datasets for the explanation of our tool.

B. Workflow Overview

The developed tool, Payload-Byte, consists of three main
components: python-based parser, labeling module, and pay-
load transformation module. Python-based parser and payload
transformation module are generalized components, and their
methodology and approach are similar for every dataset. How-
ever, the labeling module is dataset specific, and its approach



Fig. 3. Feature Vector representation of extracted data and data utilized for training the ML model. T-delta in employed feature vector is the time difference
between packets.

TABLE I
OVERVIEW OF THE WIDELY UTILIZED INTRUSION DETECTION DATASET IN THE LITERATURE

Dataset Year of Publication Accessibility Format Size Count Traffic Modern Attacks Balanced Metadata Labeled Packets
NSL-KDD [30] 1998 Public Other 150k points Emulated No No No -

DARPA [31], [32] 1998 Public Packets, logs 4.9M points Emulated No No Yes Yes
KYOTO 2006+ [33] 2006 Public Other 93M points Real No No No -

UNIBS [34] 2009 On Request Flow 79k flows Real No No No -
Botnet [35] 2010 Public Packet 14GB packets Emulated No No Yes Yes

ISCX 2012 [36] 2012 Public Packet, Flow 2M flows Emulated No No Yes No
CIC DoS [37] 2012 Public Packet 4.6GB packets Emulated No No No Yes
CTU-13 [38] 2013 Public Packet, Flow 81M flows Real No No Yes No

UNSW-NB15 [39] 2015 Public Packet,Flow 2M points Emulated Yes No Yes No
CIC-IDS2017 [40] 2017 Public Packet, Flow 4.6GB packets Emulated Yes No Yes No
CIC-IDS2018 [41] 2018 Public Packet, Flow, logs 450GB logs Emulated Yes No Yes No

differs from dataset to dataset, which is explained later. An
overview of the workflow is illustrated in Fig. 2. Raw PCAP
files and metadata are fed into Payload-Byte as input, where
processed and labeled payload data is received at the output.
Payload-Byte can also obtain parsed PCAP files in the form of
CSV and labeled PCAP file without transformation. Provision
of these files enables researchers to employ their own inferring
for the extracted payload data while still having that standard
baseline.

Several tools are available for analyzing and extracting in-
formation from packet capture files, such as Wireshark, Chaos
Reader, Tcpflow, Network miner, and many others. However,
most of these tools are Graphical User Interface (GUI) based
and require a lot of computation and processing power, which
is unsuitable for any tactical environment. A programming-
based parser is preferred for such an environment, which
can be operated on any resource-constraint device. Keeping
this need in view, we developed our parser based on the
Scapy python module [42]. Since the first step in labeling any
packet capture files is extracting information, we developed a
generalized PCAP file parser that can be utilized for parsing
PCAP format files.

There are many approaches for extracting information, as
mentioned in Section III. Since our focus is on a payload-
based intrusion detection system, we laid out our feature vector
for packet-based approaches in such a way that raw bytes are
captured from packet data, and features are extracted from the
packet header. We have not utilized the raw bytes of header
due to its dynamic structure. As there are many protocols,
each protocol’s header size and order are distinct. Therefore,

utilizing raw bytes for the header would lead to learning
complications for the model. Moreover, IP addresses in the
network layer and port fields in the transport layer can cause
the ML model to form an unreliable bias towards these bytes.
Since these features are commonly associated with preferences
and specific services, they can create a communication pattern.
But they can change anytime; therefore, these features are
unreliable for training a model. Unlike [11], in which the
authors limited their information extraction to the transport
layer and only involved two protocols, TCP and UDP, the
developed parser can extract information from the application
layer too. A pictorial representation of extracted feature and
feature vector utilized in training the model is presented in
Fig. 3. As shown in Fig. 3, IP addresses and ports are only
extracted for labeling the raw PCAP file data with reference
to available metadata. Since the length of the payload changes
with each packet, the maximum length that a packet can attain
is considered to avoid any overflowing or truncation of the
payload byte. As per the de facto packet size limit of 1500
bytes [43], [44], we set a 1500 bytes range for the payload
to incorporate every byte. Our goal is to extract the data in
such a way that it is complete and researchers can reduce this
range as per their need. Furthermore, the payload was divided
with respect to bytes, transforming into 1500 features. This
transformation is necessary for the training of the ML model.
The utilization of NLP techniques for payload data is not
adopted; instead, the payload is transformed from hex value to
integer having a range of 0-255. Zero padding was employed
where the number of payload bytes are less than 1500 to
maintain the standard structure of the feature vector. Further



detail on parsing concerning individual datasets is provided in
their subsequent heading.

The next step after extraction is labeling, which is performed
by comparing the extracted features from the PCAP file and
features from the ground truth table. However, the generalized
labeling approach is not possible for both datasets due to
dataset-specific complications explained in their respective
subheading. Inner merge (utilizing the divide and conquer
algorithm) is adopted for comparing and labeling the PCAP
file with CSV while preserving the order of PCAP files. Since
PCAP data has packets in the range of microseconds, the
number of labeled PCAP data is higher than the data instance
in the CSV file which is shown in Section V. Further, to
facilitate the availability of data publicly and ease the data
usage process, data reduction is carried out. All the data
instances whose packet data has no payload are removed.
Moreover, normal data instances are under-sampled to mitigate
the unbalanced issue of the dataset. The processed payload
data for both datasets are made available along with the source
code of the developed tool so that researchers can cross-check
the procedure or utilize it to generate the complete data without
data reduction. The further detail of labeling and parsing for
the individual dataset is explained below.

1) UNSW-NB15: The UNSW-NB15 intrusion detection
dataset encompasses nine modern attacks and network traffic
emulated in a small environment. The network traffic is
captured for more than 31 hours and is spread out in 79
different PCAP files, having more than 99GB of data. The
dataset comprises raw network traffic in the PCAP file format
and labeled flow-based data with additional attributes. We
have utilized the PCAP and CSV files having labeled data
instances for our tool. Moreover, an in-depth dataset analysis
was performed by deploying various approaches for accurate
and effective comparison and labeling. However, several am-
biguities were found in the dataset, which is discussed next.

First of all, CSV data requires a lot of prepossessing. There
are many missing and null values in the dataset. Furthermore,
there is inconsistency in the labeling of data instances. Similar
attack classes are labeled differently. Around 480,630 data
instances are duplicated, and more than 130 protocols are
present in the dataset. The protocols are from different layers:
the transport layer and the application layer. Secondly, some
corrupted data are present in the dataset, such as the source
and destination ports of ICMP protocols are in hex values.
Thirdly, the time stamping in the UNSW-NB15 dataset is in
Unix epoch format and has a starting and ending time for
the packets. But the epoch time is rounded up to integers,
losing its microseconds which could be useful for accurately
labeling the packets. Also, the dataset has a feature duration
which was used to generate the ending time for packets, but
for some data instances, this feature does not add up correctly.
Fourthly, several protocols, such as udt and any do not exist.

Several approaches were tried to achieve the most optimal
approach for comparing and labeling the PCAP data. The
first attempt was made by labeling the PCAP packets by
utilizing five features: Source IP, Destination IP, Source Port,

Destination Port, and Starting time. Protocol feature was
not included as there are more than 130 different protocols.
However, the obtained results were not satisfactory. Therefore,
different protocols having exact naming to the ones present in
the CSV file were incorporated into the python based parser.
Since these protocols are from different layers, python based
parser is programmed to extract the application layer protocols.
The top 45 protocols concerning attacks label counts are hard
coded in the program, and the rest of the protocols are mapped
under others. As the number of data instances after the top
20 protocols is insignificant, they are mapped under other
category. Similar mapping is performed for the CSV file too. In
addition to protocol, dur feature from CSV and t-delta feature
from pcap files is also utilized for mapping. Subsequently, the
results obtained are not to par. Manual data exploration was
performed and it was deduced that the dur feature also has
ambiguity. Therefore, t-delta feature is added to starting time
of the PCAP file to attain the ending time. Both of the Unix
time stamps are rounded-off to transform them into integers.
Here type casting is not performed directly, as type casting
would truncate the floating points, which is not the case in
the CSV file. While exploring data, it is also inferred that the
Time to Live (TTL) feature of the pcap file maps to the source
TTL feature of CSV. Therefore, eight different features are
utilized for comparing and labeling pcap files. These features
are: Source IP, Destination IP, Source Port, Destination Port,
starting time, ending time, protocol and time to live.

Since ICMP protocol has corrupted destination port and
source port, it was labeled without including these two fea-
tures. Similarly, ARP protocols also do not have a destination
or source port. Moreover, there are some protocols whose IP
addresses are not available in PCAP file format; therefore,
they were not labeled automatically. After labeling, duplicate
data instances are removed, and benign data is under-sampled
to 1.5 times of second highest attack instances. After that,
data is transformed into 1504 features, converting payload hex
string into 1500 byte-wise data represented in integers. The
remaining 4 features are from packet header as shown in Fig.
3.

2) CIC-IDS2017: The CIC-IDS2017 intrusion detection
dataset is specifically developed to represent more modern net-
work flows, and attacks than the preceding datasets mentioned
in Table I [40]. The dataset consists of 48.8GB of network
traffic captured in five separate files over five days. The dataset
is released in two different formats: raw network traffic in the
PCAP file format and extracted flow-based data having a set of
different features in CSV format. The authors have additionally
provided metadata about IP addresses and attack duration. We
utilized the PCAP and CSV files having labeled data instances
for our tool. However, some ambiguity in the CSV data files
and PCAP files led to labeling based on flow-ID (Source IP,
Destination IP, Source Port, Destination Port, and Protocol).
Some of the prominent ambiguities are highlighted below.

First of all, CSV data requires a lot of prepossessing, there
are several missing values in the dataset, and four columns
are duplicated. Secondly, only three protocols are available in



the CSV file: TCP, UDP, and others. Whereas, in PCAP files,
we found that there are Address Resolution Protocol (ARP),
Link Layer Discovery Protocol (LLDP), and Cisco Discovery
Protocol (CDP) which are not part of IPv4 or IPv6. Moreover,
the PCAP file also contains Internet Control Message Proto-
col (ICMP), Internet Group Management Protocol (IGMP),
and Stream Control Transmission Protocol (SCTP) packets.
These protocols are neglected as they are not included in the
CSV file. Thirdly, time-stamping in the CSV file is in the
general format of “dd/MM/YYYY HH:mm:ss” rather than
Unix epoch time stamping as in the UNSW-NB15 dataset.
However, 529,450 data instances (around 19%) in the CSV file
are missing seconds in time format. This leads to inaccurate
time calculation for comparison and labeling of the PCAP
file. Moreover, the time format in the CSV file follows the
12-hour clock format, but it is found that every data instance
is in AM, which is not the case with the PCAP file. Just
for experimentation, we labeled the data with the inclusion of
time-stamping, and found that only 80 data instances were
matched and labeled for one PCAP file. That is why we
have not utilized time stamping in our labeling approach
for CIC-IDS2017. Furthermore, one important thing observed
while labeling is that the time stamping in PCAP files is in
UTC±0:00. In contrast, the CSV files are in Atlantic Daylight
Time (ADT) which is equivalent to UTC−03:00. Therefore,
time stamping in CSV files are converted accordingly for
proper execution.

Keeping these issues in mind, we dropped the time stamp
feature as our tool’s comparison base for CIC-IDS2017. We
utilized the Source IP, Destination IP, Source Port, Desti-
nation Port, and Protocol feature for matching the packets
with labeled CSV data. After data instances are matched,
we utilized the time duration of each attack as specified in
metadata to cross-validate the data instances. Here we used
the time-stamp of the CSV file rather than the PCAP file
since metadata is based on CSV file time-stamps. For the
given time of attacks as per metadata, we removed benign
instances from them to eliminate complications. However, the
CSV file also contains benign data instances in the time frame
of attacks as specified by metadata. After cross-validation of
labeled PCAP data, duplicated values are removed and benign
data is under-sampled to 1.5 times of second highest attack
instances. After that, data was transformed into 1504 features,
converting payload hex string into byte-wise data represented
in integers.

The adopted approach for both datasets is deduced after
extensive exploration of the dataset and methods. Therefore,
the extracted data can be utilized as a standard baseline for
future and current work. The finding of the processed data is
presented in the next Section.

C. Incorporated Models

We performed a comparative analysis using several ML
approaches between packet-based and extracted flow-based
data. The objective of this comparative analysis is to provide a
comparison between both types of data. Therefore, no hyper-

TABLE II
MODEL ARCHITECTURE FOR THE CNN-LSTM AND DNN

Parameter Description
Activation Function Softmax

Loss Function Categorical cross entropy
Optimizer Adam & lr=default

Epochs 30
DNN CNN-LSTM

Number of Layers 3 5
Layer 1 Fully Connected (None,1024) Conv1D (None, 1504, 64)
Layer 2 Fully Connected (None,512) Maxpooling1D (None, 752, 64)
Layer 3 Fully Connected (None,10) BatchNormalization (None, 752, 64)
Layer 4 - LSTM (None, 64)
Layer 5 - Fully Connected (None,10)

parameter tuning has been performed for the approaches,
and default parameters are used. The goal here is not to
achieve the best results but to provide a brief comparison.
Moreover, the results are not compared with recent available
payload-based approaches as they have not explicitly stated
their data extraction and assumptions approach. Therefore, it is
not a feasible option. Additionally, available approaches have
only utilized binary class classification and presented it as an
anomaly detector. However, we have performed a multi-class
classification and results are provided in the results Section.

The approaches that are adopted are: Random Forest, Lo-
gistic Regression, K-Nearest Neighbour, AdaboostClassifier,
Multilayer Perceptron, Deep Neural Network (DNN) and a
simple combination of Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM). The architecture
utilized for DNN and CNN-LSTM is shown in Table II.
Similar architecture is utilized for the CSV and labeled PCAP
files. However, input of the model is different for CSV and
PCAP files.

Fig. 4. An overview of the data processing and achieved outcome of the
Payload-Byte. Both of the datasets are plotted side by side for better inferring.

V. RESULTS

A comprehensive overview in the form of quantitative
data is presented in this Section, along with the comparative
analysis of results obtained by packet and flow-based data.
For the implementation of our developed tool, CSV files of
both datasets are pre-processed before passing them into the
Payload-Byte, whereas PCAP files are directly fed into it. The
output of the Payload-Byte is a transformed and labeled pcap
file, having 1504 features as shown in Fig. 3. However, initial
stage files can also be extracted from the tool, such as parsed



Fig. 5. A comparison of data instances for individual attack classes in Labeled PCAP and Processed CSV file. Numbers on the bar graph represents the data
instances in labeled PCAP file. Normal instances are under-sampled for ease of data representation and usage.

PCAP files and labeled PCAP files having hex valued payload.
An overview of the processed data is presented in the next
heading.

A. Data Processing

Available CSV files for both datasets are distributed among
several files. Therefore, they are combined into a single file
for an individual dataset before any processing. Data prepos-
sessing is also performed, cleaning and removing erroneous
data instances. The crux of the whole processing is illustrated
in Fig. 4 where data in CSV file represents the data instances
in the available CSV file before prepossessing it. The total
number of available packets in all PCAP files is shown as
data in the PCAP file. Moreover, labeled data represents data
instances obtained after labeling and removing non-payload
data instances.

It can be deduced by looking at the statistical data provided
in Fig. 4 that labeled data is dependent on the number of
data instances present in the CSV file rather than the PCAP
file. Moreover, the data instance in the PCAP file of UNSW
is exceptionally high due to the number of available PCAP
files. There are 79 PCAP files for the USNW-NB15 dataset,
whereas only 5 PCAP files in CIC-IDS2017. Another reason
for more labeled data instances in the CIC-IDS2017 dataset is
that we only utilize five features for comparing and labeling,
whereas eight features are utilized in UNSW-NB15.

TABLE III
SUMMARY OF UNSW-NB15 PCAP FILES

22-01-2015 17-02-2015
Data Instances in CSV 1,082,221 1,036,218
Data Instances in PCAP 93,384,964 92,559,915
Unprocessed Labeled PCAP 11,084,503 9,745,079
Processed Labeled PCAP 6,691,105

A detail summary of data processing based on individual
PCAP files for respective dataset is presented in Table III and
Table IV. Since there are 79 PCAP files in the UNSW-NB15
dataset, collective results are shown based on a particular day.
On the other hand, CIC-IDS2017 only contain 5 PCAP files

spanning over 5 days; therefore, they are shown individually.
Data Instances in CSV in Table III and Table IV represents
number of data points that CSV file contain in the time span of
that individual PCAP file. Unprocessed Labeled PCAP depicts
the number of packet instances labeled and Processed Labeled
PCAP shows the number of remaining packets after processing
and removal of non-payload data from Unprocessed Labeled
PCAP.

TABLE IV
SUMMARY OF CIC-IDS2017 PCAP FILES

Monday Tuesday Wednesday Thursday Friday
Data Instances in CSV 306794 335,415 590,692 285,825 675,965
Data Instances in PCAP 11,626,492 11,469,736 13,705,555 9,240,723 9,915,680
Unprocessed Labeled PCAP 17,096,760 20,692,983 48,931,426 15,727,986 19,740,075
Processed Labeled PCAP 5,633,567 3,516,569 16,436,931 4,071,767 5,848,193

Data instances obtained after labeling involve several du-
plicated values and instances where packets have no payload.
Since the number of labeled packets is extensively high, they
are processed by removing duplicates and instances having
no payload. Afterward, the data is under-sampled to reduce
its size by decreasing normal instances. The data obtained
after labeling has a high number of normal instances, since
normal instances in CSV files are also in significant quantity.
Consequently, attack instances are not under-sampled to avoid
any information loss. The total number of data instances
for each attack class in CSV file and labeled PCAP file is
illustrated in Fig. 5. In the figure, data labels on bar graph
show the number of data instances in labeled PCAP files.
The number of data instances shown in Fig. 5 is of the
finalized file, processed and under-sampled. The final version
of both the datasets is publicly available and can be utilized
by future research work as a standard baseline. Furthermore,
the complete data can also be generated by using the Payload-
Byte.

B. Comparative Analysis

Labeled PCAP files and processed CSV files of the UNSW-
NB15 dataset are utilized to compare both approaches briefly.
The processing of CSV files include removal of features



Fig. 6. A comparison of macro averaged F1-score for several ML model,
utilizing packet(PCAP Data) and flow(CSV Data) based data. All models
utilized have default parameters and no hyper-parameter tuning is performed.

Source IP, Destination IP, Start time, and Last time, as
they can force the ML model to learn the relation between
these features and attacks. Moreover, there are many missing
values for the feature ct ftp cmd, therefore, it is also omitted
from the CSV file. Additionally, normal data instances of
CSV files are under-sampled just as PCAP files to maintain
coherence. Both approaches’ data is scaled utilizing Standard-
Scaler before being implemented into the ML models. The
resulting outcome of the comparison is shown in Fig 6.
However, the overall performance of individual models can
be improved by tuning hyper-parameter, which will be carried
out in our future research work. The F1-score illustrated in
Fig 6 is macro averaged, as it represents performance better
in terms of multi-class classification. Through Fig 6 it can be
deduced that PCAP data is performing well for almost every
model compared to the available CSV data. A detailed result
comprising of macro averaged Precision, Recall and F1-score
for each model is presented in Table V.

TABLE V
DETAIL RESULT FOR PERFORMANCE COMPARISON

Models CSV Data PCAP Data
Precision Recall F1-Score Precision Recall F1-Score

Random Forest 62% 56% 58% 66% 67% 67%
Logistic Regression 48% 42% 42% 57% 55% 55%

K-Nearest Neighbour 54% 44% 47% 63% 62% 62%
AdaboostClassifier 37% 54% 40% 34% 34% 31%

Multilayer Perceptro 54% 51% 52% 72% 68% 67%
DNN 56% 51% 52% 74% 66% 66%

CNN LSTM 61% 56% 56% 75% 69% 69%

VI. CONCLUSION

In this work, we highlighted the issue of comparability
and reproducibility for packet-based NIDS. Since payload-
based approaches can be an effective solution for detecting
different network attacks, several works have been proposed
in the literature. However, the data utilized for such work
is either proprietary or processed data based on undefined
procedures and assumptions. Moreover, there is no properly
labeled packet-based dataset available that can be utilized as a
standard baseline. Therefore, every new approach follows its
own method for extracting and labeling packet data without

explicitly stating the whole process and notion, which leads to
branching the same tasks in many different ways. Addressing
the issue, we developed an open-source tool (Payload-Byte)
for parsing and labeling modern raw network traffic datasets.
Payload-Byte standardizes dataset curation and provides a
standardized baseline for future researchers to reproduce and
compare other packet-based proposed approaches. Payload-
Byte eliminates the engineering and language errors that stem
from current datasets. Our tool can also parse high-level layers,
extracting information from application layers. Since UNSW-
NB15 datasets involve application layer protocols, Payload-
Byte can extract and label every available protocol, which is
being done for the first time. Moreover, any future datasets
can also be parsed utilizing Payload-Byte as we developed
a generalized parsing approach that is applicable for every
packet capture file.

Furthermore, we stated the complete cycle of parsing and
labeling of CIC-IDS2017 and UNSW-NB15 datasets so that
it can be adopted for future research work. Payload-Byte
can be utilized to reproduce the entire data and transform it
accordingly. However, for ease of usage, we transform the
payload data into a feature vector comprising features from
the packet header and payload data, transformed into byte-
wise (1500) features. Lastly, a brief comparison of flow-based
and transformed packet-based data has been presented to show
the effectiveness of packet-based approaches.

For our future work, we will carry out an in-depth compari-
son analysis of available proposed approaches on the extracted
data. Moreover, we will look into additional transformation
methods that can result in effective solution for packet-based
approaches.
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