
United States Military Academy United States Military Academy 

USMA Digital Commons USMA Digital Commons 

ACI Journal Articles Army Cyber Institute 

12-2-2022 

Context-aware Collaborative Neuro-Symbolic Inference in Internet Context-aware Collaborative Neuro-Symbolic Inference in Internet 

of Battlefield Things of Battlefield Things 

Tarek Abdelzaher 

Nathaniel D. Bastian 
Army Cyber Institute, U.S. Military Academy, nathaniel.bastian@westpoint.edu 

Susmit Jha 

Lance Kaplan 

Mani Srivastava 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.usmalibrary.org/aci_ja 

 Part of the Applied Mathematics Commons, Artificial Intelligence and Robotics Commons, Data 

Science Commons, Operational Research Commons, Probability Commons, Signal Processing Commons, 

Statistical Theory Commons, Systems Architecture Commons, Systems Engineering Commons, and the 

Theory and Algorithms Commons 

Recommended Citation Recommended Citation 
Abdelzaher, Tarek; Bastian, Nathaniel D.; Jha, Susmit; Kaplan, Lance; Srivastava, Mani; and Veeravalli, 
Venugopal, "Context-aware Collaborative Neuro-Symbolic Inference in Internet of Battlefield Things" 
(2022). ACI Journal Articles. 216. 
https://digitalcommons.usmalibrary.org/aci_ja/216 

This Conference Proceeding is brought to you for free and open access by the Army Cyber Institute at USMA Digital 
Commons. It has been accepted for inclusion in ACI Journal Articles by an authorized administrator of USMA 
Digital Commons. For more information, please contact dcadmin@usmalibrary.org. 

https://digitalcommons.usmalibrary.org/
https://digitalcommons.usmalibrary.org/aci_ja
https://digitalcommons.usmalibrary.org/aci
https://digitalcommons.usmalibrary.org/aci_ja?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/212?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usmalibrary.org/aci_ja/216?utm_source=digitalcommons.usmalibrary.org%2Faci_ja%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@usmalibrary.org


Authors Authors 
Tarek Abdelzaher, Nathaniel D. Bastian, Susmit Jha, Lance Kaplan, Mani Srivastava, and Venugopal 
Veeravalli 

This conference proceeding is available at USMA Digital Commons: https://digitalcommons.usmalibrary.org/aci_ja/
216 

https://digitalcommons.usmalibrary.org/aci_ja/216
https://digitalcommons.usmalibrary.org/aci_ja/216


Context-aware Collaborative Neuro-Symbolic
Inference in IoBTs

Tarek Abdelzaher
Department of Computer Science

University of Illinois, Urbana-Champaign
zaher@illinois.edu

Nathaniel D. Bastian
Army Cyber Institute
U.S. Military Academy

nathaniel.bastian@westpoint.edu

Susmit Jha
Computer Science Laboratory

SRI International
susmit.jha@sri.com

Lance Kaplan
DEVCOM Army Research Laboratory

U.S. Army Futures Command
lance.m.kaplan.civ@army.mil

Mani Srivastava
ECE Department

University of California, Los Angeles
mbs@ee.ucla.edu

Venugopal V. Veeravalli
ECE Department

University of Illinois, Urbana-Champaign
vvv@illinois.edu

Abstract—IoBTs must feature collaborative, context-aware,
multi-modal fusion for real-time, robust decision-making in
adversarial environments. The integration of machine learning
(ML) models into IoBTs has been successful at solving these prob-
lems at a small scale (e.g., AiTR), but state-of-the-art ML models
grow exponentially with increasing temporal and spatial scale of
modeled phenomena, and can thus become brittle, untrustworthy,
and vulnerable when interpreting large-scale tactical edge data.
To address this challenge, we need to develop principles and
methodologies for uncertainty-quantified neuro-symbolic ML,
where learning and inference exploit symbolic knowledge and
reasoning, in addition to, multi-modal and multi-vantage sensor
data. The approach features integrated neuro-symbolic inference,
where symbolic context is used by deep learning, and deep
learning models provide atomic concepts for symbolic reasoning.
The incorporation of high-level symbolic reasoning improves data
efficiency during training and makes inference more robust,
interpretable, and resource-efficient. In this paper, we identify the
key challenges in developing context-aware collaborative neuro-
symbolic inference in IoBTs and review some recent progress in
addressing these gaps.

Index Terms—Neuro-symbolic inference, robust learning

I. INTRODUCTION

A central challenge in deploying artificial intelligence (AI)
and machine learning (ML) in IoBTs is the lack of principled
approaches for context-aware (collaborative) multi-modal fu-
sion and robust decision-making in adversarial environments.
The scale and speed of acquisition, assessment, aggregation,
state estimation, and decision-making in IoBTs operating
in a rapidly-evolving high-tempo and adversarial battlefield
environment necessitate the use of human-on-the-loop arti-
ficial intelligence (AI) across the span of short-time scale
perception to high-level C3I decision-support. But AI/ML
models are known to be vulnerable to adversarial attacks and
lack generalization – a problem that increases in severity as
the span of modeled phenomena increases in time and in
space. Unlike commercial applications, the failure of AI/ML
in IoBTs can have catastrophic consequences. At the same
time, the resources available for executing AI/ML models may

Funding ack to be added in the final version

be significantly more constrained. Hence, a responsible, safe,
and ethical use of machine intelligence in the context of multi-
modal fusion (within the MDO effects loop in IoBTs) requires
innovations that substantially improve efficiency, while at
the same time offering uncertainty/confidence quantification
in results. This challenge requires the development of new
methods to significantly advance both resource efficiency and
confidence estimation in distributed IoBTs. We posit that
neuro-symbolic learning and inference (that combines sym-
bolic reasoning with uncertainty-quantified deep learning) can
achieve this end, and identify challenges, develop hypotheses,
and present initial indicative results.

While traditional machine learning typically relies on purely
bottom-up inference from sensors treating each observation
as independent uncorrelated input, our neuro-symbolic ML
approach interleaves bottom-up inference with top-down pre-
dictions from the learned neuro-symbolic context. Any sur-
prise arising from the mismatch between the top-down predic-
tion and the bottom-up inference is used for self-supervised
training and continual adaptation. This neuro-symbolic ap-
proach is aided by techniques for uncertainty quantification
to detect out-of-distribution (OOD) and novel inputs. The
top-down inference using context and well-calibrated uncer-
tainty quantification facilitates distributed inference, where
edge sensor resources are queried to corroborate inferences
and do not need to stream data continuously. Moreover, the
exploitation of symbolic knowledge dramatically reduces the
required neural network model size while allowing models to
reason about phenomena that extend over substantial ranges in
time and/or in space. Our hybrid neuro-symbolic approach to
machine learning is thus particularly suited for heterogeneous
distributed IoBT nodes, allowing us to select the appropriate
combination of symbolic reasoning and deep learning from
the spectrum of neuro-symbolic methods depending on the
resource limitations, modality of the data, and the availability
of background data. Thus, neuro-symbolic machine learning
can provide tactical edge coordination to increase scalability,
corroboration, and context-aware intelligence.



II. CHALLENGES AND KEY RESEARCH QUESTIONS

In this section, we identify the main challenges in devel-
oping a context-aware collaborative neuro-symbolic inference
in IoBTs and summarize these challenges into two central
research questions.
Research Question 1. How do we develop scalable context-
aware neuro-symbolic learning and inference that span the
spectrum of combinations of symbolic reasoning with data-
driven deep learning, and enables the selection of an appro-
priate combination for a given resource-constrained IoBT?

Inference in IoBTs requires collaborative multi-modal fu-
sion where sensors are not continuously streaming data but,
instead, there is a context-dependent sharing of data over a
dynamic and contested IoBT network. Traditional machine
intelligence techniques have successfully fused data and shared
insights when the measured phenomena were localized in
space and time (e.g., Aided Target Recognition). However, the
requirements of such models grow exponentially as the size
of the modeled phenomenon increases, leading to substantial
scalability problems. Neuro-symbolic methods naturally repre-
sent knowledge at varying levels of abstraction, allowing the
symbolic representation to model a larger and interpretable
context that can be fused with background knowledge to allow
reasoning over longer spatial and temporal scales. Thus, these
approaches can be used for context-aware sensing and ex-
ploit the flexibility of heterogeneous, multi-modal, and multi-
vantage data in IoBTs. The use of context and corroboration
of predictions from different data sources and modalities also
makes inference robust.

While specific neuro-symbolic ML approaches have been
developed previously, the heterogeneity of IoBT nodes re-
quires a flexible neuro-symbolic framework that can span
different levels of the combination of symbolic reasoning and
data-driven learning. At one end of the spectrum, we can
consider mostly symbolic inference using rules over entities
that are identified using deep learning, and at the other end,
we can consider methods where logical rules are compiled
into the deep learning presentation either as a regularizing loss
function or a differentiable DNN representation. The selection
of appropriate combinations for different inference tasks and
resource constrained IoBT nodes would help create an adaptive
IoBT.
Research Question 2. How do we create and integrate neuro-
symbolic ML models into IoBTs with guarantees on their
predictions, robustness to new environments, and resilience to
adversarial examples?

The battlefield environment and context of an IoBT will
change rapidly, and hence, the responsible deployment of
ML in IoBTs necessitates the detection of OOD and novel
inputs, and quick adaptation of the ML models. Beyond this
lack of robustness, DNNs are also susceptible to adversarial
attacks. Physically realizable attacks can exploit this vulnera-
bility without cyberattacks. An adversary will readily exploit
any vulnerability on a battlefield; hence, ML in IoBTs must
be resilient to adversarial attacks. Traditional approaches to

building high-assurance systems using formal methods and
control theory are insufficient to reason about ML models.
These shortcomings create unique challenges for ensuring the
robustness and resilience of ML-enabled IoBTs. In particular,
the inference in neuro-symbolic models does not follow the
usual acyclic propagation in feedforward neural networks,
which creates new challenges for uncertainty quantification.
Thus, there is a need to develop methods to analyze the pre-
diction performance and robustness of neuro-symbolic models.

We formulate the following two hypothesis that forms the
basis of our technical approach to address the above research
questions:

• A multi-layered neuro-symbolic architecture inspired by
Predictive Processing (PP) - a theory of mind, will
enable context-aware data-efficient robust ML models
with tight integration between symbolic reasoning and
deep learning that can be tailored to resource constraints
on an IoBT node and the needs for specific task and
modality.

• Robust and resilient ML models must be able to detect
“surprise” by observing their own inference patterns when
subjected to novel or adversarial inputs. Information-
theoretic approaches can be combined with computation-
ally lightweight runtime monitors to detect such surprises
and yield guarantees on IoBT’s robustness and resilience.

We elaborate on these two hypotheses below. First, the PP-
inspired architecture relies on building a “world model” that
captures context (such as spatiotemporal relationships) and
uses this context to hypothesize and confirm predictions over
the sensor data. We use a hierarchical representation of the
world model, varying from neural models (capturing local con-
text but at a higher level of detail) to symbolic abstract models
(capturing broader contexts that may extend more broadly in
space and time). Different learning and inference tasks and
modalities running on heterogeneous IoBT nodes can benefit
from varying extent of symbolic knowledge. For example,
tracking a vehicle can exploit well-understood physics models
while detecting a vehicle of a particular type can rely on “is-
part-of” relationships such as “wheel is-part-of vehicle” or spa-
tial co-occurrences such as vehicles co-occur with roads. This
choice of the right level of fusing symbolic knowledge with
deep learning can also enable resource-efficient inferences on
different IoBT nodes with varying computational power.

Second, the safe and trustworthy integration of neuro-
symbolic ML models into IoBTs requires methods to char-
acterize the generalization and robustness of these models,
and the creation of runtime monitors that detect when the
environment has evolved outside the training context and
the models cannot be trusted. We hypothesize that runtime
monitors can observe the inference pattern of the learning
model to detect inputs that are surprising to the model,
and such monitors are more effective in detecting OOD and
adversarial inputs when compared with traditional anomaly
detection approaches that attempt to learn the training distri-
bution without taking into account the model. Developing such



monitors will require sound and systematic generation and a
combination of statistics to measure the surprise of a model.
Further, the deployment of the ML models and these runtime
monitors on the IoBT edge nodes require these models to be
computationally lightweight. Thus, generating fast-to-evaluate
monitors is critical to making ML models more robust to novel
and adversarial inputs without sacrificing inference speed.

III. RELATED WORK

A plethora of ad-hoc neuro-symbolic approaches have been
proposed in the literature. A common approach is to use
differentiable approximations of logical formulas, such as
the CLIP system [10] (developed in 1990s and precursor
to Logic Tensor Networks [24]), ILP [8], DFOL [9], and
our prior work Neuroplex [30]. Such approximations without
guarantees on the gap between original and differentiable
representations can be created through either direct fuzzy
logic-style compilation, such as in LTN [28] or via projected-
gradient/mirror descent, such as program induction [6], and
our prior work [11]. Another approach arising from Statistical
Relational AI [18] is to use the categorical output of deep
neural networks as atomic predicates of a probabilistic and/or
logical reasoning system, such as DeepProbLog [26] and our
prior work DeepProbCEP [22]. These approaches have shallow
integration between neural and symbolic representations with
limited scalability, and without any assurance guarantees.

Apart from the focus on assurance, we argue the need for
iterative training and inference in neuro-symbolic learning and
inference. Most neuro-symbolic methods are at one of the
two ends of the spectrum of how logical symbolic models are
integrated with deep learning. At one end are the techniques
such as DeepProbLog [26], and program induction [6], where
the symbolic inference using rules or programs are layered on
the top of entities recognized by deep learning models. At the
other end, there are methods such as LTN [28] and TNNs [11]
that compile logic into deep learning representations (as a
regularizing loss or differential DNN representation).We hy-
pothesize that an ideal neuro-symbolic approach would not
use such a layered architecture. Instead, the neuro-symbolic
inference needs to be bidirectional – learning-based bottom-up
push that is uncertainty-driven and reasoning-based symbolic
top-down pull that is decision-driven. This allows a more
flexible architecture where both the neural and symbolic layers
make an integrated inference. This is crucial for assurance and
robustness as it avoids any assumption by symbolic layer on
the correctness of the neural inferences, or vice versa.

Several ML models have been recently proposed based on
hierarchical predictive processing (PP) including our own prior
work on Trinity [1], [14], [16], [23], which was one of the
first practical implementation of PP. These recent attempts to
implement PP or HPP [3], [12], [19] are not neuro-symbolic
and unable to benefit from symbolic knowledge or reasoning.
We advocate a neuro-symbolic architecture with bidirectional
flow of information supported by equilibration [2] for training
and inference, instead of stitching separately trained layers.

IV. TECHNICAL APPROACH AND INITIAL RESULTS

A cognitive architecture aimed at continuous learning,
reasoning, comprehension, and robust inference in contested
environments such as IoBTs must provide the necessary goal-
directed knowledge representation, inference, and decision-
making mechanisms to allow distributed inference where
edges nodes of the IoBT can quickly adapt. The heterogeneity
of IoBT nodes in their resource limitations and modality
of data requires an ML paradigm that supports a flexible
cognitive architecture with varying knowledge representation,
goal structure, and inference methods. Motivated by this need
to consider varying levels of information, we have devel-
oped TrinityAI [1], [4], [13]–[17], [23], [29] framework for
trustworthy, resilient, and interpretable AI. We sketch this
framework and the planned extensions that will address the
challenges identified in this paper for developing a context-
aware collaborative neuro-symbolic learning and inference
approach.

Fig. 1. Overview of the neuro-symbolic TrinityAI Architecture

TrinityAI (Figure 1 uses an architecture akin to dual
processing theory [7] in human psychology (often referred
to as System-1 and System-2) where System-1 is a reflex
neural layer, and System-2 is a more deliberative symbolic
layer. System-1 is built on a generative distribution learning
model (based on our recently proposed Principal Component
Flows [4]) that learns the conditional distribution of inter-
mediate features from high dimensional data. System-2 is a
deliberative symbolic AI implemented using Graph Neural
Networks [20] or ProbLog [5] – a combination of inductive
logic [25] logical modeling and probabilistic programming.
Based on our prior work [27], we customize ProbLog with
predicates corresponding to elements in event calculus for in-



ference tasks related to perception and situation understanding.
A key technical component of our approach is a principled
approach to quantifying uncertainty of such a neuro-symbolic
ML architecture.

Another significant challenge is to explore how the interac-
tions between the reflex layer (System-1) and the deliberative
longer timescale symbolic layer (System-2) should inform data
communication in the distributed IoBT system. Addressing
this challenge will result in algorithms and theoretical founda-
tions for tactical edge coordination (over a dynamic and con-
tested network) that determine what data to share, at what level
of abstraction, and with which entities to optimize mission
performance. Our approach to building neuro-symbolic models
can be viewed as an example of “analysis by synthesis” [31],
meaning that we formulate hypotheses (i.e., candidate world
models) and favor those whose predictions match the input
data.

In our recent work on TrinityAI [23], we built such a neuro-
symbolic model. The first layer in Trinity currently uses a fea-
ture density model (implemented via either simple statistical
models such as Mahalanobis distance or using more expressive
deep learning-based distribution models such as extensions
of normalizing flows [4]) that learns a joint distribution of
the input, predicted class output and the explanation provided
by the model. The second layer uses a symbolic model
such as graph Markov network to learn spatial and temporal
relationships between the objects for an object detection task.

In our initial results, this architecture is shown to exhibit
several characteristics suitable for IoBT:

1) Robustness: Layer 1 detects OOD, novel and adversarial
inputs. For example, for a WideResNet model trained
on CIFAR10 and SVNH as OODs, our approach detects
86.8% of OODs, compared to the state-of-the-art 57.2%.
OOD detection has been also extended to other modali-
ties such as audio, time-series data, and video [17] (for
e.g., drifting car in Figure 2 where OODness is temporal
and not in a single frame).

Fig. 2. Temporal Novelty corresponds to novelty in the time-series data
where individual states (such as frames of a video) are in distribution, but
the sequence of states is an OOD.

2) Context-awareness: Layer 2 makes our approach
context-aware, and it can also detect out-of-context
inputs [1] where the individual components (such as
objects in a scene) are not new, but they appear in
a context that is novel and is likely to confuse even
a context-based ML model. Figure 3 shows examples
of such out-of-context inputs for an object detection
problem.

Fig. 3. Example of out-of-context inputs where the objects are in-distribution
but they are composed in a manner that creates out-of-context scenes, such
as an airplane in a room or a keyboard where we expect a traffic sign.
TrinityAI [1] can detect such anomalies.

3) Data-efficiency: The context-aware ML model exhibits
better generalization and is able to correctly identify
objects even with small data. We evaluated this using
NuScenes dataset with traffic images from Boston and
Singapore. The dataset is unbalanced with less than 1%
examples of bicycles, some of which are occluded (see
Figure 2c). Our approach improves detection of bicycles
from 2.4% to 31.4% and 12.5% to 66.6% for 50% and
30% occlusions while retaining a high overall accuracy
of 95.5%.

Fig. 4. Classes such as bicycles are underrepresented in the NuScenes dataset.
Real-world applications such as IoBT will often have unbalanced datasets

4) Adaptive communication, coordination, and col-
laborative decision-making: For an active, resilient,
communication-efficient and fighting IoBT, we envision
a fundamental shift in how sensor data is communica-
tion, collected and used for decision-making. Instead of
all sensors streaming their observations to processing
nodes, we will investigate the use of the principle of
predictive processing in designing the IoBT architecture.
The individual decision-making nodes running machine
learning models based on predictive processing can
query sensors to provide information needs to confirm
their current hypothesis and in the event of surprise,
query additional sensors or other learned models to
provide further observations and evidence. This would
reduce the required communication in the IoBT and
make it an active network that builds model of the world
and queries sensors when needed to update its model and
make decisions. Thus, the sensing and communication
in IoBTs is guided by the uncertainty quantification of
the machine learning models.



V. FUTURE RESEARCH DIRECTIONS

In this section, we identify directions of future research that
builds on our technical approach and addresses the research
challenges in developing a collaborative context-aware neuro-
symbolic robust machine learning and inference in IoBTs. We
categorize these future directions into three thrusts.

• Integration of deep learning with a richer symbolic
reasoning and inference framework: Building on our
recent work on DeepProbCEP [27], we argue for extend-
ing our Layer 2 symbolic models from graphical models
to a richer logical reasoning framework. This is critical
to data efficiency in IoBTs by incorporating knowledge.
It is also vital to support reasoning to derive context
and enable context-sensitive adaptation that considers the
resource constraints of the IoBT nodes. This will also go
beyond the initial generation of two-tier symbolic-after-
neural neuro-symbolic architectures with hub-spoke orga-
nization to develop more general neuro-symbolic archi-
tectures suited for IoBT settings. Specifically, leveraging
advances in neuro-symbolic architecture search, transla-
tion across neural and logic domains, and efficient ten-
sorized implementation of logic models, this integration
will develop neuro-symbolic architectures that harness
richer information flows among collaborating IoBT edge
devices to meet resource constrained. Lastly, we argue
for developing methods by which the neuro-symbolic
architectures can be rapidly fine-tuned to environment
characteristics and tactics, techniques, and procedures of
a new IoBT deployment via an approach that combines
injection of expert knowledge into symbolic components
with transfer learning-based adaptation of neural compo-
nents. This integration of symbolic reasoning will incor-
porate background knowledge and symbolic reasoning for
data-efficiency, and generalization to hub-spoke neuro-
symbolic architecture. It will also enable adapting neuro-
symbolic framework to resource constraints of the IoBT
nodes where inference needs to be performed.

• Principled uncertainty-quantification of neuro-
symbolic models: Prior work has mostly been focused
on identifying promising test statistics and corresponding
thresholds, motivated primarily by empirical observations
of the values taken by these statistics. In our recent
work [17], [21], we have attempted to provide guarantees
on false alarm detection for such methods using methods
from conformal prediction and multiple testing.
Continuing this line of investigation, we suggest the
need to develop principled approaches to combine
test statistics that reduce the computational burden in
learning distributions using complex models such as
normalizing flows. There is a need to focus on methods
for uncertainty propagation in neuro-symbolic models
with iterative cyclic inference. In particular, we can use
prediction sets at the perception layers, satisfying explicit
finite-sample guarantees on uncertainty, which are refined
through iterations with information from the symbolic

layers. Uncertainty quantification in neuro-symbolic
learning is a challenging and relatively explored area
in machine learning requiring the development of basic
sciences and fundamental research.

• Neuro-symbolic-architecture-inspired algorithms and
foundations of edge coordination: A remarkable anal-
ogy exists between neuro-symbolic architecture and
what’s known as System-1 and System-2 in human
psychology, where the former refers to fast instinctive
processing, whereas the latter to more deliberate cognitive
processing (often at a slower time-scale). Often the fast
intuitive processing occurs below the threshold of con-
scious awareness, whereas anomalies and unusual events
(besides invoking a local System-1 reaction) are reported
at some higher level of abstraction to invoke a more de-
liberative slower cognitive response. This analogy offers
a starting point for designing the strategy for allocat-
ing neural (System-1) and cognitive/symbolic (System-
2) components in the distributed IoBT system and for
orchestrating the communication among them. In such
an architecture, common-case processing is delegated to
the local components, whereas uncommon events are
processed more globally at a higher-level of (symbolic)
abstraction, thus minimizing network use in the common
case, and offering some autonomy to distributed local
components. We need to build on anomaly/quickest-
change detection (to detect conditions for a bottom-up
information push) as well as decision-driven communi-
cation (that produce a symbolic top-down pull).

While the context-aware collaborative neuro-symbolic in-
ference approach advocated here is driven by building a
neuro-symbolic model of the world, quantifying uncertainty
in perception and risk-aware decision-making, we emphasize
that our approach does not require any explicit manual building
of the environment. Complex and rapidly evolving environ-
ments such as IoBTs cannot be modeled manually. Instead,
our approach relies on maintaining a continuous machine
learned model of the environment. Using a neuro-symbolic
representation of this model makes our approach:

• interpretable that is necessary for IoBT application which
often requires symbiotic human-in-the-loop or human-on-
the-loop decision-making

• data-efficient because the amount of supervision available
to quickly learn in a rapidly evolving environment is
sparse and the use of background symbolic knowledge
is crucial

• robust because the purely neural representations that do
not capture the full context are known to be fragile to
small perturbations

The development of this context-aware neuro-symbolic ap-
proach needs a validation approach that can be used to drive
research across these different thrusts. Such a validation can
use a combination of simulators such as AirSim, CARLA,
and Gazebo. CARLA simulator provides data from a va-
riety of modalities including RGB/depth cameras, LiDAR,



Radar, IMU and GNSS. In addition to multimodal simulation,
we can use a plethora of multimodal datasets such as the
Ford AV Dataset with camera/3LIDAR modalities recorded in
Michigan, nuScenes dataset comprising visual, 3D LiDAR and
Radar modalities and KAIST multispectral pedestrian dataset
comprising visual and thermal camera.

VI. CONCLUSION

The complexity and the tempo of contested and conflict
areas such as battlefields or even purely cyberspaces such as
computer networks, have created demands for rapid and pre-
cise information dissemination, and created unique challenges
in Command, Control, Communication, Computers, Cyber,
Intelligence, Surveillance and Reconnaissance (C5ISR). While
a large volume of sensed data gathered through a plethora
of sensors across different modalities are readily available,
the time available to interpret and understand this information
correctly and robustly is becoming prohibitively smaller. This
necessitates the development of cognitive processing capability
that can integrate background knowledge with learning from
data.

The adoption of AI capabilities in warfighting will make the
battlefield even more dynamic and rapidly evolving beyond
human capability of comprehension and reaction. ML models
are crucial to facilitate holistic perception of conflict that
integrates information from different heterogeneous sensors
and ensures timely autonomous decision-making to implement
command-by-intent. This requires ML models to be robust and
resilient to change in battlefield environments and adversarial
perturbations. Our neuro-symbolic approach to addressing this
challenge focuses on IoBT-specific requirements of robustness
to natural and adversarial perturbations, data-sparsity, low
supervision, addressing rapid change in environment from
the training distribution, and ensure compliance with rules of
engagement and safety requirements.
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