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Abstract

Wound healing is an articulated process that can be impaired in different steps in chronic
wounds. Chronic leg ulcers are a special type of non-healing wounds that represent
an important cause of morbidity and public cost in western countries. Because of
their common recurrence after conventional managements and increasing prevalence
due to an ageing population, newer approaches are needed. Over the last decade, the
research has been focused on innovative treatment strategies, including stem-cell-based
therapies. After the initial interest in embryonic pluripotent cells, several different types
of adult stem cells have been studied because of ethical issues. Specific types of adult
stem cells have shown a high potentiality in tissue healing, in both in vitro and in vivo
studies. Aim of this review is to clearly report the newest insights on tissue regeneration
medicine, with particular regard for chronic leg ulcers.

Introduction

Chronic leg ulcers (CLUs) affect 1% of the adult population
and 3⋅6% of people older than 65 years representing one of
the main cause of morbidity among older subjects, especially
women in the western world; the prevalence of leg ulcers in
Europe is about 0⋅18–1% (1–3).

CLUs occur more commonly in elderly people and their
prevalence, in western countries, is rising due to an increase
in both life expectancy and risk factors for atherosclerotic
stenosis, that is smoking, obesity and diabetes (4). They are
responsible for the high cost of caring for leg ulcers, including
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diagnosis, investigations, treatment, nursing care and rehabil-
itation: approximately 1% of the total health care costs in the
western world are likely to be used for management of CLUs.

Key Messages
• chronic leg ulcers are a special type of non-healing

wounds that represent an important cause of morbidity
and public cost in western countries

• adult tissue-derived stem cells have a pivotal role in
wound repair and regeneration and may be used to heal
chronic leg ulcers

• considering the current available evidence regarding the
therapeutic potential of adult stem cells in tissue healing,
in the next future, they may represent an effective target
in clinical practice
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Venous ulcers are the most common type of leg ulcers, account-
ing for approximately 70% of cases. Arterial disease accounts
for another 5–10% of leg ulcers; most of the others are due to
either neuropathy (usually diabetic) or a combination of those
diseases (5–8). They are characterised by significant morbid-
ity, loss of productivity and reduced quality of life, especially
among women (9). Furthermore, although the exact amount is
not well established (10), the direct and the indirect social costs
for the health care system associated with CLUs are very high,
with the only diabetic ulcer costing $30 000 to $50 000 (11,12).

Various approaches have been developed for wound healing,
but most of these have centred on one facet of wound healing,
such as inflammation or growth factors (13–16). Furthermore,
evidences have shown that stem cell therapy can be an excel-
lent option for patients with CLUs (17–19): these therapies
can provide a comprehensive solution by addressing multiple
factors during wound healing, including cell proliferation,
extracellular matrix (ECM) synthesis, growth factor release
and vascularisation (20).

The aim of this study is to perform a systematic analysis
of the most recent scientific literature on the role of adult
tissue-derived stem cells in CLUs and the future prospects in
regenerative medicine.

Materials and methods

PubMed and ScienceDirect databases were searched for articles
using the terms: Chronic Leg Ulcers, Stem Cells Therapy,
Angiogenesis, Wound Healing and Adult Tissue-Derived Stem
Cells.

Only publications in English were included. Titles and
abstracts were screened by one author (F. F.) to identify poten-
tially relevant studies. All potentially eligible studies were sub-
sequently evaluated in detail by one reviewer (F. F.) through
consideration of the full text. Reference lists of retrieved arti-
cles were also searched for relevant publications.

Inclusion required clinical trials, case reports, meta-analysis
and systematic reviews in which therapy with adult
tissue-derived stem cells were provided in CLU patients.
Studies were excluded if performed in languages other than
English, if the patient cohort, in human studies, was defined
by the presence of CLU and an additional confounding disease
process or if CLU-specific results could not be distinguished
from those of a larger population consisting of individuals
without CLU. Studies were also excluded when the primary
focus was other than chronic wounds.

Results

Study selection

Initial database searches yielded 34 studies from PubMed and
2302 from Science Direct in the last 5 years. We evaluated 115
eligible full text articles (Figure 1).

The pathophysiology of CLUs and their correlation with
delayed wound healing, the current therapeutic approaches for
CLUs found in literature, and the description of the application
of the adult tissue-derived stem cell therapy in patients with
CLUs are given below.

2336 articles identified in initial search

34 via PUBMED

2302 via SCIENCE DIRECT

After removal of duplicates 
and inclusion criteria 

application

691 articles assessed for 
elegibility

115 articles included

After application of 
exclusion criteria

97 reference of retrieved 
articles

Figure 1 Flow of papers identified from search strategy.

Pathophysiology of chronic wound and CLUs

Both local and systemic factors can be involved in chronic
wound etiopathogenesis. Among local factors infection,
ischaemia, arterial/venous insufficiency, local toxins, trauma
and radiations are of great importance and inevitably char-
acterise all the cases of CLUs in different amounts. Among
systemic factors ageing, chronic diseases, alcoholism, smok-
ing, drugs, nutritional deficiencies, chronic kidney disease and
neuropathies appear to be the most important (21). Non-healing
wounds usually result from an impairment of one or more of
the four phases of normal healing (haemostasis, inflammation,
proliferation and remodelling). They are characterised by an
incessant inflammation of which neutrophils represent a marker
(22). This chronic inflammatory state is the base of the ECM
degradation and is due to loss of important wound healing
products such as platelet-derived growth factor (PDGF) and
hepatocyte growth factor (HGF), respectively broken down by
reactive oxygen species or MMPs and elastases secreted by
neutrophils (23). This picture is confirmed by the analysis of
chronic wound fluid (CWF) that, when compared with acute
wound fluid (AWF), presents enhanced pro-inflammatory
cytokines, MMPs, neutrophil elastases along with reduced
amount of growth factors (22,24,25) and characterises, in par-
ticular, both chronic diabetic and venous ulcers (26). Moreover,
in case of chronic venous insufficiency, fibroblasts appear to
be qualitatively altered (27,28).

Wound healing in diabetic ulcers appears to be affected in a
more specific way. First of all, the cellular activity is altered,
with keratinocytes, epidermal cells and fibroblasts showing
increased level of apoptosis and impaired migration and func-
tioning (29–31). In addition, epidermal stem cells present a
lower capacity of differentiation (32), while adipose-derived
stem cells (ADSCs) were not impaired. Because of their abil-
ity to produce growth factors, cytokines and type I collagen,
the latter cells can represent a potential role in diabetic ulcers
treatment (33). ECM synthesis is reduced in diabetic wounds,
mainly because of an impaired fibroblast activity (34). In the
same time, its degradation is faster because of the higher levels
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of MMPs (31). Both angiogenesis and neovascularisation are
impaired in diabetic wounds, the latter because of a senesce
in endothelial progenitor cells (EPCs) (17). Macro and micro
angiopathy further complicate this picture.

The dermal layer is the main source of keratinocytes (35). If
this structure in the depth of the wound is destroyed (e.g. deep
CLUs), the only source of new regenerating cells is the dermal
region all around the injury and reepithelialisation is slow,
uncompleted and complicated by scarring and the conventional
treatment is more often failing (36).

Current treatments for CLUs

The treatment of chronic ulcers of the lower extremities
presents a therapeutic challenge. First of all, it should be
focused on the causal conditions. Sanitary measures together
with both surgical and medical strategies represent the basic
of a comprehensive management of CLUs. In particular (i) leg
elevation, compression therapy and anticoagulant treatment
and surgical reduction of reflux are employed in case of venous
ulcers; (ii) revascularisation, antiplatelet medications and
management of risk factors are the targets in case of arterial
disease; (iii) neuropathic ulcers are managed with off-loading
of pressure and with topical growth factors; (iv) debridement is
frequently performed in diabetic ulcers; and (v) pressure ulcers
require an off-loading of pressure and reduction of excessive
moisture, sheer and friction along with adequate nutrition.
However, ulcers frequently recur (9). Of note, although topi-
cally applied growth factors (e.g. PDGF, EFG and FGF) assist
the chronic wound by speeding the formation of the granulation
tissue or improving epidermal cell function and giving some
benefits (37–39), these are frequently unsatisfactory probably
because of the local degradation of such mediators due to the
chronic inflammation (40).

CLUs surgery consists of: (i) skin transplantation, includ-
ing skin autograft and allo/xenografts and (ii) tissue-engineered
skin substitutes. Autografting is usually performed with a
split-thickness skin graft (STSG), that is, a tangential excision
of a skin graft that includes the epidermis and part of the dermis.
The autologous origin of the graft guarantees a nil risk of rejec-
tion (41). However, although this procedure improves the early
healing rate of the wound and the quality of life of the patient,
the rate of success of such therapy is only partial (42) even if
it can be improved by a topical application of PDGF (8). Allo-
or xenografts are used as a temporary alternative to autograft-
ing and serve as barrier and potential source of tissue-healing
factor. However, they are inevitably rejected by the host after
1 week (41). Another approach for the management of tissue
injuries consists of tissue-engineered substitutes. An example is
represented by the culture of allogeneic neonatal dermal fibrob-
lasts on a polyglactin scaffold. These cells produce ECM pro-
teins which, in turn, replace the previous mesh that is ultimately
degraded. The final result is an allogenic dermal analogue that
can be used to dress the wound. Being particularly used on
diabetic foot ulcers, this allograft is punctually rejected, but
appears to promote keratinocyte migration and restore of the
dermis, with good outcomes. Another allogeneic skin graft con-
sists of two layers, both dermis and epidermis, respectively

obtained with fibroblast and keratinocytes taken from neona-
tal foreskin (43). As in the previous case, this skin substitute is
also ultimately rejected. However, in recent years the treatment
of CLUs has shown good clinical results (44). Despite their
general good therapeutic outcomes, tissue-engineered skin sub-
stitutes are characterised by important limitations for clinical
purposes. The specific disadvantages such as slow vasculari-
sation with poor integration, rejection an high cost, poor han-
dling properties, a short life and an inability to reconstitute skin
appendages (45,46) make these strategies far from being the
conclusive solution for wound healing. With such evidences,
great interest has been directed towards potential application of
stem cell biology in ulcer care.

Stem cells and CLUs

The most widely accepted stem cell definition is an undiffer-
entiated cell with three unique capacities: (i) self-renewal (i.e.
the ability to produce unaltered daughter cells by symmetric cell
division), (ii) long-term viability and (iii) potency (i.e. the possi-
bility to generate different specialised cell types) (47,48). Those
cells that are capable of giving rise to a whole, intact organ-
ism (including both somatic and germal cell types) are defined
as totipotent; pluripotent and multipotent (organ-specific) stem
cells can instead give rise to cells belonging to all three germ
layers or a single organ or tissue, respectively (49).

As they can be harvested from embryonic or adult tissues,
two types of stem cells can be identified: (i) pluripotent embry-
onic stem cells (ESCs), derived from the inner mass of the blas-
tocysts or primordial germ cells in the germinal ridges of later
embryos and (ii) uni- or multipotent adult stem cells (ASCs),
which reside in some differentiated, adult tissues, do not com-
plete their differentiation programme and are able to give one or
few cell lineages (50). These two categories can be recognised
by different expression of cell surface receptors and transcrip-
tion factor, along with morphological, cytological and histolog-
ical characteristics.

After the initial enthusiasm due to the possibility to obtain
epidermal and dermal components, ESCs had to face essential
problems that have limited their clinical applicability. First,
there are important ethical issues regarding the use of human
embryos for cell harvesting. However, nowadays this aspect
can be, at least in part, circumvented by using a single-cell
biopsy and a single blastomer without interfering with the
embryo’s developmental potential (51). Second, as for the
ESCs derived from other species, those obtained from human
embryo are highly incapable of differentiating in specific
tissues, both in vivo (52) and in vitro (50). The former phe-
nomenon demonstrates that adult tissues cannot provide a
complete environment to direct the site-specific differentiation
of ESCs (50). Nevertheless, reports have recently showed a
successful differentiation of ESC-derived skin in vitro, giving
hope and drive for future researches in this field (53). Third,
teratocarcinomas have arisen from the ESCs (54). Fourth, and
may be more importantly, ESC-derived skin still represents an
allogeneic substitute and cannot guarantee permanent wound
coverage. As allogeneic and xenogeneic grafts are already
available at more moderate cost, the clinical advantage of using
ESC-derived skin in not clear.

© 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd 3
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Table 1 Stem cells and their therapeutic effects

Cell type Cell markers Role in wound healing

BM-MSCS CD105+, CD73+, CD90+, CD45−, CD34−, CD14−,
CD11b−, CD79 alpha, CD19− and HLA-DR−

Increase cell proliferation, collagen synthesis, growth factor
release, wound contraction, neovascularisation and cellular
recruitment to wounds

ADSCs CD31−, CD34+/−, CD45−, CD90+, CD105− and CD146− Promote cell proliferation, collagen synthesis, promote
neovessel formation and tissue remodelling

EPCs CD34+, VEGFR-2+ and CD133+ Promote vascularisation secrete proangiogenic growth factors
and cytokines, and differentiate into endothelial cells

BM-MNCs haematopoietic progenitor cell markers: CD133+, CD117+
and CD34

Secrete angiogenic growth factors decrease local inflammation,
and promote vascularisation differentiate into endothelial cells

MSCs markers and endothelial progenitor population:
CD34+/−, CD133+ and VEGFR2+

Fibrocytes CD 34+, CD11b+, CD13+, MHC II+, CD86+, CD45+,
collagen-1+, procollagen-1+, CD3−, CD4−, CD8−,
CD19− and CD25−

Increasing cell proliferation ECM deposition, wound contraction
and vascularisation.

Secrete of growth factors and chemokines

ADSCs, adipose-derived stem cells; BM-MNCs, bone-marrow-derived mononuclear cells; BM-MSCs, bone-marrow-derived mesenchymal stem cells;
EPCs, endothelial progenitor cells.

In view of these evidences, research has largely focused its
attention on ASCs. ASCs can have an endodermal, mesodermal
or ectodermal origin and reside in several tissues such as central
nervous system, epidermis, intestine, liver, lung and retina (55).
The primary function of these cells is to serve as self-renewing
stem cells and regenerate site-specific tissues in case of both
physiological and pathological stimuli.

The rationale of the speculated employment of such cells
in the clinical practice of CLUs is that: (i) despite traditional
comprehensive wound management, including vascular recon-
struction, many patients present non-responding wounds, which
often resulting in amputation; (ii) ASCs could help replace lost
tissues as well as create those skin appendages missing in the
tissue-engineered skin substitutes (45,46).

We will now focus on ASC therapies, including mesenchy-
mal stem cells (MSCs), EPCs, bone-marrow-derived mononu-
clear cells (BM-MNCs) and fibrocytes (Table 1). The large
majority of preclinical studies regarding MSCs and CLUs have
been conducted on murine diabetic wounds because of the more
feasible nature of such models.

Mesenchymal stem cells

Mesenchymal stem cells (MSCs), also called mesenchy-
mal stromal cells, are a group of non-haematopoietic ASCs
that have a mesodermal origin. First described in 1966 by
Friedenstein et al. (56), they are capable of differentiating in
a far greater number of lineages than their normal mesoderm
fate and can give arise to endodermic and ectodermic cells,
skin included (57–60). MSCs can be found in almost every
tissue (periosteum, tendon, muscle, synovial membrane and
normal skin among the others) (61). To date, neither surface
nor stemness marker allowing an accurate classification of
these cells have been found, and the exact identity of MSCs
in vivo is not yet clear (62). The Mesenchymal and Tissue
Stem Cell Committee of the International Society for Cellular
Therapy defines MSCs as cells that (i) are plastic adherent in
standard culture conditions; (ii) express CD105, CD73 and
CD90 while lacking CD45, CD34, CD14 or CD11b, CD79

alpha or CD19 and HLA-DR molecules; (iii) can differentiate
into chondroblasts, osteoblasts and adipocytes in vitro. This
definition is the most commonly used in research (63). Their
wide distribution along with multipotency firmly suggests an
important role for MSCs in wound healing and replacement
of cells that are lost in both physiological and pathological
conditions. They also contribute to the digestive system, liver,
musculoskeletal system, periodontal tissue and neurological
homeostasis (64).

An important characteristic of MSCs is their capacity to
be home to the damaged tissue sites, even when adminis-
tered from an exogenous source. Central in this phenomenon
is the inflammation at the site of wound, with chemokines (e.g.
CXCL12, CXCL4 and CCR2) (65,66), adhesion molecules
(such as P-selectin and VCAM-1) (67) and matrix metallopro-
teinases (MMPs, such as MMP-2) being the most implicated.
Furthermore, all these molecules are induced by inflammatory
cytokines such as TNF and IL-1 (68,69), which ultimately con-
trol stem cells’ contribution at the site of injury.

Along with a multilineage differentiation potentiality, MSCs
are involved in all four phases of wound repair. First, they
can interact with cells of both the innate and adaptive immune
systems and possess anti-inflammatory responses (70–72). In
one study, the application of MSCs to an active inflamma-
tory site resulted in a decrease of pro-inflammatory cytokines
(such as TNF-α and interferon-γ) with a concomitant increase
of anti-inflammatory cytokines (namely IL-10 and IL-4) and
T-reg cells (73). Moreover, MSCs possess an anti-microbial
activity that is of great importance in wound and CLUs heal-
ing. This is mediated by both direct (i.e. the secretion of
anti-microbial factors) and indirect (i.e. the enhancement of the
immune response of the host) mechanisms (74). The secretion
of paracrine mediators at the site of inflammation is another
way of the mesenchymal cell support in wound healing. In
particular, growth factors (such as VEGF, PDGF, EGF, bFGF,
FGF-23 and TGF-β) (75,76) and cytokines (such as IL-6 and
CCL-2) (77–79) are responsible for angiogenesis and both
recruitment and functioning of macrophages, endothelial cells,
keratinocytes and fibroblasts, which are the main actors of
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the physiological wound healing process. Of note, the secre-
tion of VEGF and HGF, together with the maintenance of a
good balance between tween TGF-β1 and TGF-β3 makes MSCs
important in prevention of scarring (80–82). Although capa-
ble of transdifferentiating into vascular endothelial cells and
skin components (83), it is currently believed that the paracrine
activity of MSCs represents the primary mechanism by which
these cells contribute to tissue healing mainly because of poor
engraftment and survival of MSCs at the site of injury (75).

The unique anti-inflammatory activity of MSCs is capable
of limiting the host immunoreaction against themselves in case
of allogeneic transplantation. In addition, although presenting
MHC Class I alloantigens, MSCs are characterised by mini-
mal levels of surface immunostimulatory antigens such as MHC
Class II alloantigens and co-stimulatory molecules including
CD80 (B7-1), CD86 (B7-2) and CD40 (84). These evidences
support a low immunogenicity and a high anti-rejection activity
of the allogeneic MSCs, at least in the short term and in partic-
ular transplanting routes and microenvironments (84–86) and
little or no rejection was observed after transplantation when
allogeneic MSCs were administered systemically (87,88).

In view of the above, MSCs have been employed in tissue
regeneration medicine in two different ways: (i) replacing the
lost tissue, via transplantation or construction of bio-engineered
tissues and (ii) attracting in vivo resident stem cells of the
patient to the site of injury.

MSCs can easily be obtained from the bone marrow, adipose
tissue, umbilical cord, human placenta, muscle, dermis, nerve
tissue and lung, and can be further expanded in vitro and cryop-
reserved (87,89–96). Thus, at least in theory, all the above can
be used in tissue regenerative medicine. However, because of
practical and ethical issues, most of the preclinical and clinical
studies were conducted on bone-marrow-derived mesenchymal
stem cells (BM-MSCs) and ADSCs and to date there is a huge
amount of data exalting their important contribution to tissue
healing, including limb ulcer models, in every route of admin-
istration (97–106).

BM-MSCs, also known as marrow stromal cells, are
self-renewing stem cells that are localised in the bone
marrow. They represent a rare population of bone marrow
cells (0⋅001–0⋅01% of the nucleated figures and 1/10 of
HSCs), but are expandable in vitro (83). Although there is still
a paucity of clinical data, their contribution to CLU healing is
easily conceivable in light of the above. In their study, Kwon
et al. demonstrated that systemic and local administration of
BM-MSCs improved wound healing in a diabetic rat; this was
mainly because of an increased production of collagen types I
and V at the site of injury (107).

ADSCs, also known as adipose-derived stromal cells,
adipose-derived mesenchymal progenitor cells and processed
lipoaspirate cells (PLAs), have such variegated nomenclature
mainly because of a lack of consensus and a still changing
knowledge of both phenotype and function of these cells (17).
However, as reported in Table 1, the International Society for
Cellular Therapy considers both CD34+ and CD34 as ADSCs
(108). Recent evidences suggest that CD34+ ADSCs can be
characterised as having a greater proliferative potentiality,
while CD34− ADSCs have a greater differentiating capacity
(108,109).

As they can be extracted in large amounts with minor donor
site morbidity and they have major proliferative capacities when
compared to BM-MSCs, ADSCs represent an intriguing tool
for both chronic wound and CLU treatment. However, clinical
trials on CLUs are still lacking (110,111).

An important limitation of MSC employment in both chronic
wound and ulcer management is represented by the long dura-
tion and complex procedures required for their expansion in
vitro (17).

Endothelial progenitor cells

Human EPCs are a subset of circulating bone-marrow-derived
figures that have been generally defined as cells (i) expressing a
surface antigenic panel similar to that characterising the vascu-
lar endothelial cells; (ii) capable of adhering to the endothelium
at the site of hypoxia/ischaemia; and (iii) capable of partici-
pating in neovascularisation (112). To date no specific marker
has been known by which EPCs can be defined, although they
express CD34, KDR (VEGFR-2) and CD133 markers (17).

Since EPCs can be recruited from bone marrow and periph-
eral blood to the sites of hypoxia/ischaemia and are able
to participate in neovascularisation processes, it is currently
believed that these cells can be important actors in tissue heal-
ing and numerous preclinical studied have been published to
this effect (113,114). They indirectly participate in wound
healing by secreting important mediators such as VEGF, hep-
atic growth factor (HGF), angiogenin 1, stroma derived factor
(SDF)-1α, insulin-like growth factor (IGF)-1, along with induc-
ing endothelial nitric oxide synthase (eNOS)/inducible nitric
oxide synthase (iNOS) (115).

Clinical data regarding EPCs and leg ulcers is still lack-
ing. Several works performed in murine models of diabetic
wounds have found that both augmented neovascularisation
and re-epithelialisation can be linked to the direct and indirect
effects of ESC-derived EPCs applied on wounds (116).

However, EPCs are characterised by similar problems as in
MSCs when applied to clinical practice (117).

Bone-marrow-derived mononuclear cells

The term BM-MNCs identifies a wide group of cells encom-
passing both staminal and differentiated figures in which
haematopoietic stem cells, MSCs, EPCs and precursor cells
along with their progeny are included (118). Because of their
abundance in both peripheral blood and bone marrow, MNCs do
not need in vitro expansion and are therefore a feasible source
of staminal cells (118).

Because of their heterogeneity, several cell markers char-
acterise BM-MNCs. Two cell sets are mostly involved
in the angiogenetic process: (i) haematopoietic progeni-
tor cells, which are CD133+, CD117+ and CD34+, and
MSCs, particularly the endothelial progenitor population
composed mainly of CD34−/CD133+/VEGFR2+ and
CD34+/CD133+/VEGFR2+ cells (119).

Several clinical trials firmly demonstrate that MNCs improve
leg ulcers (120,121). However, the specific therapeutic mech-
anisms still remain unknown. One hypothesis suggests that
an augmented angiogenesis represents a central point in
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MNC-mediated wound healing. Such speculation is supported
by the elevated expression of angiogenic growth factors found
after MNC transplantation (17). It appears that MNCs can
even differentiate into endothelial cells, thus improving the
neovascularisation at the wound site (119,122–124). Finally,
an anti-inflammatory role of MNCs has been invoked (83). It
can be concluded that although the complex makeup of MNCs
makes it difficult to study them in a detailed manner, these cells
represent a practical future tool for the clinical setting mainly
because of their avoidance of an in vitro expansion.

Fibrocytes

In 1994, Bucala et al. (125) found that circulating, bone-
marrow-derived ‘fibrocytes’ had the ability to adopt a mes-
enchymal phenotype and participated in scar formation. Fibro-
cytes represent a small subset (0⋅1–0⋅5%) of leukocytes and
can be mostly found in the peripheral blood (126). They are
characterised by a spindle shape when cultured in vitro and
present a combination of markers (such as CD34, CD11b+,
CD13+, MHC II+, CD86+ and CD45+) which is common
to both fibroblasts and monocytes. Stromal cell markers (like
collagen I, vimentin and fibronectin) further distinguish these
cells (17).

Fibrocytes showed a great capacity to migrate to wound or
chronic inflamed sites and localise to areas of ongoing ECM
deposition (127) and an important role of these cells in wound
healing is supported by several works. In some studies fibro-
cytes showed increase in ECM deposition, vascularisation and
wound contraction (128). Moreover, they have been found capa-
ble of improving reepithelialisation, angiogenesis and local
cell proliferation (127). A paracrine secretion is also spec-
ulated, with growth factors (VEGF, bFGF, TGF-β, ODGF),
chemokines and ECM augmented in wounds treated with fibro-
cytes (127–129). Although differentiation into mesenchymal
cells and contractile myofibroblast has been reported (126,127),
their ability to do it in vivo is still controversial.

Fibrocytes are currently studied in several diseases, such
as human hypertrophic scars, nephrogenic systemic fibrosis,
human atherosclerotic pulmonary diseases characterised by
repeated cycles of inflammation and repair (such as asthma),
chronic pancreatitis, chronic cystitis and tumour metastasis
(126,127). To date there are still few studies exploring the ther-
apeutic potential of circulating fibrocytes in CLUs. However, in
their study, Behjati et al. (130) were not able to use the patient’s
fibrocytes on leg diabetic ulcers because of the rarity of such
cells in the peripheral blood.

Stem cells and the future of regenerative medicine

The aim of the novel field of regenerative medicine is to restore
structure and function of damaged tissues, and stem cells rep-
resent a promising approach to wound healing through the
release of soluble mediators that modulate chronic inflam-
mation thereby speeding up healing processes. However, sig-
nificant drags remain on improving progenitor cell selection
and tissue delivery. Innovative techniques such as microfluidic
single-cell characterisation seem to be promising for identify-
ing and isolating the most appropriate cells for therapeutic use,

as well as new and effective delivery vehicles in order to ame-
liorate the targeting of damaged tissues (131).

In the new era of regenerative medicine a new class of stem
cells, has recently been discovered, the induced pluripotent
stem cells (iPSCs). The use of iPSCs may allow the generation
of autologous pluripotent stem cell population derived from
differentiated adult tissues, being also non-immunogenic. In
this context, iPSCs have at the same time combined advantages
of the pluripotency of ESCs and the availability of ASCs,
but still some concerns remain with the utilisation of ASCs:
difficulties with genetic manipulation, safety profile, efficiency
and cost-effectiveness (131,132).

Conclusions

Chronic leg ulceration still represents an important prob-
lem, especially in the western countries, and new therapeutic
strategies are needed. The stem-cell-based tissue regenera-
tion medicine is proving its potentiality in tissue healing and
regeneration. Although functional stem cell units have been
described throughout all layers of human skin, other niches
can be found throughout the body. Both bone marrow and
adipose tissue derived stem cells appear to be important in
tissue healing, but a necessity of a long-lasting and complicated
in vivo expansion still limits their clinical practice. BM-MNCs
are easily found in the peripheral blood, do not need a culture
and are now extensively evaluated for leg ulcer treatment.
Finally, more studies are needed to completely understand
the physiological and pathological role of EPC fibrocytes and
the new promising iPSCs. Considering the current available
evidence regarding therapeutic potential of ASCs in tissue
healing, we are strongly convinced that, in the next future, they
will represent a reality in clinical practice of leg ulceration.
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