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The stiff Neumann problem: asymptotic specialty and
“kissing”domains

V. Chiadò Piat∗, L. D’Elia ∗ and S.A. Nazarov †

Abstract
We study the stiff spectral Neumann problem for the Laplace operator in a smooth

bounded domain Ω ⊂ Rd which is divided into two subdomains: an annulus Ω1 and a core
Ω0. The density and the stiffness constants are of order ε−2m and ε−1 in Ω0, while they
are of order 1 in Ω1. Here m ∈ R is fixed and ε > 0 is small. We provide asymptotics for
the eigenvalues and the corresponding eigenfunctions as ε → 0 for any m. In dimension 2
the case when Ω0 touches the exterior boudary ∂Ω and Ω1 gets two cusps at a point O is
included into consideration. The possibility to apply the same asymptotic procedure as in
the “smooth” case is based on the structure of eigenfunctions in the vicinity of the irregular
part. The full asymptotic series as x→ O for solutions of the mixed boundary value problem
for the Laplace operator in the cuspidal domain is given.

1 Introduction
Let Ω be a smooth bounded domain in Rd and let Ω1 and Ω0 be two bounded domains
in Rd with smooth boundaries Γ1 and Γ0 respectively such that ∂Ω = Γ1, Ω0 ⊂ Ω and
Ω = Ω0 ∪Ω1 ∪ Γ0. We refer to Ω1 as the annulus and Ω0 as the core. A typical geometrical
situation is drawn in Fig. 1, where the annulus is shaded. We consider the spectral Neumann
problem in Ω1 ∪ Ω0 with natural transmission conditions for a second order differential
operator with piecewise constant coefficients

−∆xu
ε
1(x) = λεuε1(x), x ∈ Ω1, (1)

−ε−1∆xu
ε
0(x) = λεε−2muε0(x), x ∈ Ω0, (2)

∂ν1u
ε
1(x) = 0, x ∈ Γ1, (3)

uε0(x) = uε1(x), ε−1∂ν0u
ε
0(x) = ∂ν0u

ε
1(x), x ∈ Γ0, (4)

where ∂ν1 and ∂ν0 denote the derivatives along outward and inward normal vectors ν1 and
ν0 to Γ1 and Γ0 respectively, λε is the spectral parameter and −2m ∈ R a fixed exponent.
From a physical point of view, the factor ε−2m reflects the dead-weight of the material,
i.e. increasing m makes the material heavier. In the first part of the paper, we discuss the
asymptotic behavior as ε → 0 of the eigenpairs (λε, uε) of problem (1)-(4). We identify
the (real) eigenfunctions uε with the pairs of functions {uε0, uε1}, where uεi stands for the
restriction of uε to Ωi, i = 0, 1.
Depending on the orders of the relative density, namely ε−2m, we predict a different asymp-
totic behaviour of the eigenpairs (λε, uε), as ε → 0, putting a special emphasis on the case
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0 < m < 1/2. We also characterize the eigenpairs of all the limit spectral problems which
have a discrete spectrum. Both for m ∈ (0, 1/2) and m ≤ 0, the limit problem is described
by an eigenvalue problem for the Laplace operator in the annulus Ω1 with mixed boundary
conditions, while in Ω0 the zero-order term of asymptotics of eigenfunction uε0 is a solution
of the Laplace equation with Neumann condition. For m > 1/2 an eigenvalue problem for
the Laplace operator posed in the core Ω0 characterizes the limit problem for ε = 0, while
the leading term in the annulus Ω1 is a harmonic function. The case m = 1/2 is investigated
in the book [32] in more general setting. Here we give an independent proof for the reader’s
convenience. In this case the stiffness and the density constants are of the same order, i.e.
ε−1, in the equation (2); two limit problems appear: the spectral Neumann problem for
the Laplace operator in Ω0 and the spectral problem with the mixed Dirichlet-Neumann
boundary conditions in Ω1. We derive estimates of convergerce rates in different situations.
The spectral problems (1)-(4) are of interest in many area of physiscs. For instance, they are
considered in the study of reinforcement and elasticity problems (cf. [1, 3, 4, 29]). In [20],
estimates of convergence rates of the spectrum of stiff elasticity problems are obtained. We
also mention the papers [12, 14], where the authors deal with the asymptotics of spectral stiff
problem in domains surrounded by a thin band depending on ε. For a study of asymptotics
for vibrating systems containing a stiff region independent of the small parameter ε, we refer
to Sections V.7-V.10 in [32] and the papers [13, 21, 31]. The problem considered in this
paper arises also in the study of different properties of porous media. They are particularly
treated in the homogenization theory (cf. [2, 8, 9, 10, 30]). In the context of second order
differential operator with double periodic coefficients, we also mention [5, 6, 15, 16, 34],
where the authors investigate how to give rise to spectral gaps in the essential spectrum.
In the last part of the paper, we handle the same stiff problem (1)-(4) but with a geometry
of the domain Ω, which differs from that drawn in Fig 1. A irregular point appears on the
boundary ∂Ω, consisting of the point O of tangency of the two “kissing” disks Ω0 and Ω1
in R2 (see Fig.2). The main feature is that the ansätze obtained when the boundary ∂Ω is
smooth are still valid. It is worth to mention that in a certain sense the problem (1)-(4) can
be reduced to a regular perturbation in an operator setting depending on the exponent m.
In this way the full asymptotic series for eigenpairs of the problem can be readily derived
in the “smooth” case after constructing the main asymptotic and first correction terms.
However, in the case of “kissing” domains the perturbation analysis becomes much more
involved because of possible singularities of solutions at the irregular point O. We succeed to
prove that these singularities do not interest our asymptotic procedure in the Neumann stiff
problem and explain why it does not work directly for the Dirichlet stiff problem, namely
when the condiction (3) is replaced by uε1(x) = 0, x ∈ Γ1. Further investigation of Dirichlet
stiff problem are left as open questions to be considered. We provide the asymptotic expan-
sion as x→ O of the eigenfunction of the Laplace operator along with Neumann boundary
condition on the exterior boundary Γ1 and a constant trace on the interior boundary Γ0.
The ansatz is made of particular functions depending on the geometry of the domain and
the boundary conditions. Moreover, we show that all eigenfunctions decay exponentially as
x→ O when we set a homogeneous Dirichlet condition on interior boundary Γ0.
We mention the paper [28] in which the authors investigate the asymptotic behaviour of the
eigenfunctions of Laplace operator along with Neumann boundary conditions in a bounded
domain with a cuspidal point (cf [24, 26, 27]). The paper [11] discusses the regularity in
the space of infinitely smooth functions in the case of cuspidal edges and the paper [22]
investigates the regularity of solution of bi-harmonic operator in domains with cusps. We
refer to the monographs [18, 25] for a detailed study of elliptic boundary problems in domains
with other type of singularities.
The paper is organized as follows. In Section 2 we introduce the weak formulation of the
problem (1)-(4). We deduce the formal asymptotic expansions for the eigenelements in the
most interesting case m ∈ (0, 1/2), whose leading terms are determined by the constant c0
(see (14)) in Ω0 and via Neumann spectral problem for Laplacian in Ω1. We also discuss
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Ω1
Ω0

Figure 1: Annulus domain Ω1 and core domain Ω0

briefly the infinite asymptotic series. Section 3 contains the main result which is formulated
in Theorem 3.1 and the justification of the asymptotics for m ∈ (0, 1/2). In Sections 4− 7
we present the asymptotic expansions of eigenelements for the remaining values of m. We
introduce the problems which determine the leading and the first-order correction terms and
we justify the expansions. In Section 8 we derive and justify the asymptotic expansion of
the eigenfunctions of the Laplace operator in Ω1 \O along with the homogenuous Neumann
condition on Γ1 and the non-homogeneous Dirichlet boundary condition on Γ0. Moreover
we discuss some open questions.

2 Formal asymptotics in the case 0 < m < 1/2
2.1 Setting of the problem
The variational formulation of problem (1)-(4) reads: find λε ∈ R and {uε0, uε1} ∈ H1(Ω)\{0}
satisfying

(∇xuε1,∇xϕ1)Ω1 + ε−1(∇xuε0,∇xϕ0)Ω0 = λε((uε1, ϕ1)Ω1 + ε−2m(uε0, ϕ0)Ω0 ) (5)

∀ϕ ∈ H1(Ω). Here, (·, ·)Ωi denotes the natural inner product of Lesbegue space L2(Ωi),
i = 0, 1 and m ∈ R. For each ε > 0 the bilinear form on the left-hand side of (5) is pos-
itive, symmetric and closed in H1(Ω). Due to comptacness of the embeddings H1(Ωi) ↪→
L2(Ωi), i = 0, 1, the problem (1)-(4) is associated with a self-adjoint operator whose spec-
trum consists of the monotone increasing unbounded sequence of eigenvalues (cf., for exam-
ple, [7, Theorems 10.1.5 and 10.2.2])

0 = λε1 < λε2 ≤ · · · ≤ λεn ≤ · · · → ∞ (6)

repeated according to their multiplicity. The corresponding eigenfunctions {uε0, uε1} are
subject to the orthonormalization conditions

(uε1,i, uε1,j)Ω1 + ε−2m(uε0,i, uε0,j)Ω0 = δi,j , i, j ∈ N, (7)

where δi,j is the Kronecker symbol. The orthonormalization condition (7) suggests to per-
form the replacements

vε1(x) = uε1(x), x ∈ Ω1, vε0(x) = ε−muε0(x), x ∈ Ω0. (8)

Hence, {vε0, vε1} satify the orthonormalization condition in L2(Ω) which does not depend
anymore on ε. Equations (1)-(2) remain unchanged, while the transmission conditions (4)
turn into

εmvε0(x) = vε1(x), εm−1∂ν0v
ε
0(x) = ∂ν1v

ε
1(x), x ∈ Γ0.
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We look for the asymptotic expansion of eigenfunctions {vε0, vε1} in the form

vε0(x) = εmv0
0(x) + ε1−mv′0(x) + · · · , x ∈ Ω0, (9)

vε1(x) = v0
1(x) + ε2mv′1(x) + · · · , x ∈ Ω1. (10)

We assume that the eigenvalue λε admits the asymptotic ansatz

λε = λ0 + ε2mλ′ + · · · . (11)

By inserting expansions (9), (10), (11) in the spectral problem (1)-(4), we collect coefficients
of the alike powers of ε and gather boundary value problems for v0

0 , v
′
0 and v0

1 , v
′
1.

2.2 Problem for v0
0 and v′

0
The leading term in (9) is a solution of the problem

−∆xv
0
0(x) = 0, x ∈ Ω0, ∂ν0v

0
0(x) = 0, x ∈ Γ0, (12)

and hence v0
0 = c0. At this stage, c0 is an arbitrary constant in R. The first-order correction

term in (9) satisfies the boundary value problem

−∆xv
′
0(x) = λ0v0

0(x), x ∈ Ω0, ∂ν0v
′
0(x) = ∂ν0v

0
1(x), x ∈ Γ0. (13)

From the compatibility condition for inhomogeneous Neumann problem, we determine the
constant c0:

c0 = 1
λ0|Ω0|

∫
Γ0

∂ν0v
0
1dsx, (14)

where | · | stands for Lebesgue measure of a set and λ0 6= 0 is an eigenvalue of the problem
(15)-(16).

2.3 Problem for v0
1 and v′

1
The leading terms in (10) and (11) verify the spectral mixed boundary value problem

−∆xv
0
1(x) = λ0v0

1(x), x ∈ Ω1, (15)
∂ν1v

0
1(x) = 0, x ∈ Γ1, v0

1(x) = 0, x ∈ Γ0. (16)

The variational setting implies the integral identity

(∇xv0
1 ,∇xϕ)Ω1 = λ0(v0

1 , ϕ)Ω1 , ϕ ∈ H1
0 (Ω1,Γ0),

where H1
0 (Ω1,Γ0) := {u ∈ H1(Ω1) : u|Γ0 = 0}. The spectrum of problem (15)-(16) is

discrete and turns into a monotone unbounded sequences of eigenvalues

0 < λ0
1 < λ0

2 ≤ · · · ≤ λ0
n ≤ · · · → +∞, (17)

and the corresponding eigenfunctions v0
1,1, v

0
1,2, . . . are subject to the orthonormalization

conditions
(v0

1,i, v
0
1,j)Ω1 = δi,j , i, j ∈ N. (18)

The correction term in (10) is determined by the boundary value problem

−∆xv
′
1(x)− λ0v′1(x) = λ′v0

1(x), x ∈ Ω1, (19)
∂ν1v

′
1(x) = 0, x ∈ Γ1, v′1(x) = v0

0(x), x ∈ Γ0. (20)

Since v0
0 = c0 is fixed and defined by (14), the boundary condition (20) becomes v′1(x) = c0,

x ∈ Γ0. The correction term λ′ is determined through the compatibility condition in the
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problem (19)-(20). First, we assume that the eigenvalue λ0
n 6= 0 of problem (15)-(16) is

simple. Then the problem (19)-(20) has a unique solution if and only if

λ′n

∫
Ω1

|v0
1,n(x)|2dx = c0

∫
Γ0

∂ν0v
′
0,n(x)dsx = −c0

∫
Ω0

∆xv
′
0,n(x)dx = c20λ

0
n|Ω0|.

Thus, the perturbation term in the ansatz (11) takes the form

λ′n = c20λ
0
n|Ω0| =

1
λ0
n|Ω0|

(∫
Γ0

∂ν0v
0
1dsx

)2

. (21)

2.3.1 Multiple eingenvalues
In the case λ0

n 6= 0 is a multiple eigenvalue with multiplicity τ > 1, i.e.

λ0
n−1 < λ0

n = λ0
n+1 = · · · = λ0

n+τ−1 < λ0
n+τ , (22)

the expansions (9)-(10) are still valid. However we predict that the leading terms of
vε1,n, v

ε
1,n+1, . . . , v

ε
1,n+τ−1 are linear combinations of the eigenfunctions v0

1,n, v
0
1,n+1, . . . , v

0
1,n+τ−1

of the problem (15)-(16) associated to eigenvalue λ0
n, i.e.

V 0
1,j(x) = ajnv

0
1,n(x) + · · ·+ ajn+τ−1v

0
1,n+τ−1(x), j = n, . . . , n+ τ − 1. (23)

Furthermore, we require that the columns

aj = (ajn, . . . , ajn+τ−1)> ∈ Rτ , j = n, . . . , n+ τ − 1,

satisfy the orthonormalization conditions

(aj , ai) :=
n+τ−1∑
k=n

ajka
i
k = δj,i, j, i = n, . . . , n+ τ − 1. (24)

As a consequence, the linear combinations (23) with j = n, . . . , n+τ−1 are a new orthonor-
mal basis in the eigenspace of the eigenvalue λ0

n.
Bearing in mind the linear combinations (23), the compatibility conditions in the problem
(13) yield the new constant leading terms v0

0,n, . . . , v
0
0,n+τ−1 of the ansatz (9)

v0
0,j = 1

λ0
n|Ω0|

n+τ−1∑
k=n

ajk

∫
Γ0

∂ν0v
0
1,kdsx, j = 1, . . . , n+ τ − 1. (25)

The correction term V ′1,j is determined from the problem

−∆xV
′
1,j(x)− λ0

nV
′
1,j(x) = λ′jV

0
1,j(x), x ∈ Ω1, (26)

∂ν1V
′
1,j(x) = 0, x ∈ Γ1, V ′1,j(x) = v0

0,j , x ∈ Γ0. (27)

The Fredholm alternative leading to the necessary and sufficient condition for V ′1,j , j = n, . . . ,
n+ τ − 1 to exist, is given by

λ′j(V 0
1,j , v

0
1,p)Ω1 =

∫
Γ0

V ′1,j∂ν0v
0
1,p(x)dsx, p = n, . . . , n+ τ − 1.

Owing to (25) and the orthonormalization condition (18), the above formulas become

λ′ja
j
p =

n+τ−1∑
k=n

ajk
1

λ0
n|Ω0|

∫
Γ0

∂ν0v
0
1,k(x)dsx

∫
Γ0

∂ν0v
0
1,p(x)dsx, p = n . . . , n+ τ − 1. (28)
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We represent the relations (28) as an algebraic spectral system

Maj = λ′ja
j , j = n, . . . , n+ τ − 1,

with the matrixM of size τ × τ defined by

Mpk = 1
λ0
n|Ω0|

∫
Γ0

∂ν0v
0
1,p(x)dsx

∫
Γ0

∂ν0v
0
1,k(x)dsx, p, k = n, . . . , n+ τ − 1.

It is clear that M is a symmetric matrix, i.e. Mpk = Mkp. Therefore, it has τ real
eigenvalues, λ′n, λ′n+1, . . . , λ

′
n+τ−1, with eigenvectors an, an+1, . . . , an+τ−1 satisfying the or-

thonormalization conditions (24). Since the determinant of the matrixM and all its minors
of order k, 1 ≤ k ≤ τ − 1, are equal to 0, the characteristic polynomial ofM is simply

(λ′)τ − tr(M)(λ′)τ−1 = 0, (29)

with tr(M) being the trace of the matrix M. It follows that the roots of (29) λ′j , j =
n, . . . , n+ τ − 1, are given by

λ′n = · · · = λ′n+τ−2 = 0, λ′n+τ−1 = tr(M) = 1
λ0
n|Ω0|

n+τ−1∑
k=n

(∫
Γ0

∂ν0v
0
1,k(x)dsx

)2

.

(30)

2.4 Final remarks
The asymptotic procedure described above can be continued to construct infinite asymptotic
series for eigenvalues and eigenfunctions of the problem (1)-(4). If the eigenvalues λ0

n is
simple, the analysis just repeats the explained steps and provides the formal series

∞∑
j,k=0

εjm+k(1−2m)λ(j,k)
n , (31)

and the difference between the true eigenvalue λε and the partial sum of the series (31) can
be estimated in a way, quite similar to Section 3.
The same can be readily done in the case τ = 2 when the correction term λ′n+1 in (30) does
not vanish so that both the eigenvalues λεn and λεn+1 become simple and therefore can be
examined independently. However, if λ0

n has multiplicity τ > 2 or τ = 2 with λ′n+1 = 0 (cf.
(30)), the coefficients of the linear combination (23) are not completely determined. In order
to compute them, the coefficients ajn, . . . , ajn+τ−1 are assumed to be a linear combination of
the eigencolumns associated to the eigenvalue 0 of the matrixM, obtaining the coefficients
and the next term of the expansion of λε. Nevertheless, there is no argument ensuring that
the new matrix has distint eigenvalues and hence the coefficients of linear combination of
ajn, . . . , a

j
n+τ−1 can not be uniquely defined, so that an iteration of the previous procedure

is needed again.

3 Main result
We present the main result of this paper, which is valid for any value m ∈ R.
Theorem 3.1. For m ∈ R and for any N ∈ N there exist εN,m > 0 and CN,m > 0 such
that the estimate

|λεn − εαλ0
n − εβλ′n| ≤ CN,mεγ , n = 1, . . . , N, (32)

holds for some α, β and γ, depending only on m, and ε ∈ (0, εN,m).
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Remark 3.2. In the estimate (32), λεn is the n-th eigenvalue of the problem (1)-(4), λ0
n and

λ′n are the corresponding leading and first-order correction terms, appearing in the different
ansätze for λεn, which we will define in the forthcoming sections.
In the next subsection we provide the proof of the Theorem 3.1 with m ∈ (0, 1/2), where
α = 0, β = 2m, γ = min{3m, 1}, and λ′n is given by formula (21) for a simple eigenvalues
and formulas (30) for multiple ones. The proof is split in two steps. The first one consists in
proving partially that the eigenpairs (λε, {uε0, uε1}) converge to (λ0, {0, u0

1}), where (λ0, u0
1)

is an eigenpair of the limit problem (15)-(16). In the second step, we will use the so-called
Lemma about near eigenvalues and eigenfunctions (cf.[33]) in order to conclude with the
proof of the Theorem 3.1.

3.1 Justification of asymptotics in the case
m ∈ (0, 1/2)
3.1.1 Step 1: Convergence theorem
In this subsection, we show that for fixed n ∈ N the eigenvalue λεn converges to λ0

n, as ε→ 0,
and the corresponding eigenfunctions converge strongly in L2(Ω1).
Proposition 3.3. The eigenvalues λεn of the problem (1)-(4) and the eigenvalues λ0

n of the
problem (15)-(16) are related by passing to the limit

λεn → λ0
n, as ε→ 0, n ∈ N.

We begin to show the following lemma.
Lemma 3.4. Assume that for any n ∈ N there exist εn > 0 and Cn > 0 such that

0 < λεn ≤ Cn for ε ∈ (0, εn). (33)

Then, we have that λεn → λ0
n̄, for some n̄ ∈ N, as ε→ 0.

Proof. By virtue of estimate (33), whose proof will be given in Remark 3.6, we extract an
infinitesimal positive sequence {εk}k∈N such that

λεkn → λ0
n̄, εk → 0. (34)

In order to simplify the notation we write λεn in place of λεkn . The normalization condition
(7), the estimate (33) and the weak formulation (5) of the spectral problem (1)-(4) yield

‖∇xuε1,n‖2Ω1 + ε−1‖∇xuε0,n‖2Ω0 = λεn ≤ Cn.
As a consequence,

‖∇xuε1,n‖2Ω1 ≤ Cn, ‖uε1,n‖2Ω1 ≤ 1.

The norms ‖uε1,n‖H1(Ω1) are uniformly bounded in ε ∈ (0, εn) for a fixed n. Then, up to
subsequence, uε1,n converges weakly in H1

0 (Ω1,Γ0) and strongly in L2(Ω1) to some function
g0

1 , which can be identified as an eigenfunction u0
1,n̄ associated to λ0

n̄. In fact if we take an
arbitrary function ϕ1 ∈ H1

0 (Ω1,Γ0), and ϕ0 = 0 in Ω0 as a test functions in the integral
identity (5), it admits the limit passage as ε→ 0, yielding the integral identity

(∇xg0
1 ,∇xϕ1)Ω1 = λ0

n̄(g0
1 , ϕ1)Ω1 . (35)

The equality (35) gives rise to the problem

−∆xg
0
1(x) = λ0

n̄g
0
1(x), x ∈ Ω1,

∂ν1g
0
1(x) = 0, x ∈ Γ1, g0

1(x) = 0, x ∈ Γ0,

7



which implies that g0
1 = u0

1,n̄. In other terms, λ0
n̄ is an eigenvalue of the limit problem

(15)-(16) with corresponding eigenfunction u0
1,n̄. Concerning the function uε0,n, we find that

ε−1‖∇xuε0,n‖2Ω0 ≤ C, ε−2m‖uε0,n‖2Ω0 ≤ 1,

so that uε0,n converges to 0 strongly in H1
0 (Ω0) and hence in L2(Ω0) (if necessary, we can

again pass to a subsequence).
The eigenfunction u0

1,n̄ is also normalized in L2-norm. Indeed, bearing in mind the replace-
ment (8), we deduce that

‖vε0,n‖2Ω0 ≤ 1, ‖∇xvε0,n‖2Ω0 ≤ ε
1−2mC,

from which it follows that vε0,n converges strongly in L2(Ω0) to some constant c̃. In order to
prove that c̃ = 0, we take ϕ1 = ϕ0 = εmc̃ as test functions in (5), obtaining

0 = λεn

(
εmc̃

∫
Ω1

uε1,ndx+ c̃

∫
Ω0

vε0,ndx

)
.

Passing to the limit as ε→ 0, we find that c̃ = 0. As a consequence, ε−2m‖uε0,n‖2Ω0 → 0, as
ε→ 0 and the normalization condition (7) leads to ‖u0

1,n̄‖L2(Ω1) = 1.

The goal of the next subsection is to check that n = n̄, concluding hence the proofs of
Proposition 3.3 and of Theorem 3.1.

3.1.2 Step 2: Lemma about near eigenvalues and eigenfunctions
Let Hε denote the Hilbert space H1(Ω) endowed with the inner product

〈U, V 〉ε = (∇xU1,∇xV1)Ω1 + ε−1(∇xU0,∇xV0)Ω0 + (U1, V1)Ω1 + ε−2m(U0, V0)Ω0 . (36)

We introduce the operator Kε in Hε by the formula

〈KεU, V 〉ε = (U1, V1)Ω1 + ε−2m(U0, V0)Ω0 ∀ U, V ∈ Hε, (37)

and the new spectral parameter
kεn = (1 + λεn)−1. (38)

It is easy to verify that Kε is a continuous, self-adjoint, positive and compact operator.
Thus, the spectrum of operator Kε consists of the essential spectrum σess(Kε) = {0} and an
infinitesimal positive sequence of real eigenvalues

kε1 ≥ kε2 ≥ · · · ≥ kεn ≥ · · · → 0.

Taking into account formulas (36)-(38), the integral identity (5) is equivalent to the abstract
equation

KεUε = kεnU
ε.

The following statement is known as “lemma about near eigenvalues and eigenvectors”(cf.
[33]) and follows from the spectral decomposition of the resolvent, cf. [7, Chapter 6].
Lemma 3.5. Assume Uε ∈ Hε and kε ∈ R+ such that

‖Uε‖Hε = 1, ‖KεUε − kεUε‖Hε =: δε ∈ (0, kε).

Then in the segment [kε − δε, kε + δε] there is at least one eigenvalue of the operator Kε.
Moreover, for any δ′ε ∈ (δε, kε) there exist coefficients aεJε , · · · , aεJε+Kε−1 such that∥∥∥∥Uε − Jε+Kε−1∑

j=Jε
aεju

ε
j

∥∥∥∥
Hε

≤ 2δ
ε

δ′ε
,

Jε+Kε−1∑
j=Jε

|aεj |2 = 1,
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where uεJε , · · · , uεJε+Kε−1 are eigenvectors associated to all eigenvalues kεJε , · · · , kεJε+Kε−1
of the operator Kε situated in [kε− δε, kε + δε]. The eigenvectors are subject to the orthonor-
malization conditions

〈uεi , uεj〉ε = δi,j . (39)
In the case of a simple eigenvalue λ0

n̄ of the problem (15)-(16), the approximate eigenvalue
kεn̄ is

(1 + λ0
n̄ + ε2mλ′n̄)−1, (40)

where λ′n̄ is the asymptotic correction (21) and the approximate eigenfunction Uεn̄ = (Uε0,n̄,Uε1,n̄)
is defined by

(ε2mc0,n̄ + εu′0,n̄ + ε2−2mU ε
0,n̄, u0

1,n̄ + ε2mu′1,n̄ + εU1,n̄ + ε2−2mU ′1,n̄), (41)

where c0,n̄ is given by (14), u′0,n̄ is the solution to the problem (13), u0
1,n̄ solves the limit

problem (15)-(16) and u′1,n̄ is characterized by the problem (19)-(20). The arbitrary (but
fixed) functions U1,n̄,U

′
1,n̄ in H1(Ω1) are such that

U1,n̄(x) = u′0,n̄(x), U ′1,n̄(x) = U ε
0,n̄(x), x ∈ Γ0,

and U ε
0,n̄ is the solution to the Neumann problem for the Helmholtz operator

−∆xU
ε

0,n̄(x)− ε1−2mλ0
n̄U ε

0,n̄(x) = λ0
n̄u
′
0,n̄(x), x ∈ Ω0, (42)

∂ν0U ε
0,n̄(x) = 0, x ∈ Γ0. (43)

Denoting by L2
⊥(Ω0) the subspace {u ∈ L2(Ω0) :

∫
Ω0
u(x)dx = 0} and setting H2

⊥(Ω0) =
H2(Ω0) ∩ L2

⊥(Ω0), the Neumann Laplacian ∆x : H2
⊥(Ω0) → L2

⊥(Ω0) is an isomorphism.
Consequently, for small ε > 0 the mapping −∆x − ε1−2mλ0

n̄Id is also an isomorphism,
i.e. U ε

0,n̄ is the unique solution to the problem (42)-(43) (cf., e.g., [17, Theorem 3.6.1]).
Furthermore, the estimate

‖U ε
0,n̄‖H2

⊥(Ω0) ≤ cλ
0
n‖u′0,n̄‖L2

⊥(Ω0)

holds, where the constant c is independent of the parameter ε.
If λ0

n̄ is a multiple eigenvalue (cf. (22)) and λ′n̄ in (40) is given by (30), then the functions
u0

1,j , c0,j , u
′
1,j in (41) are replaced with V 0

1,j , v
0
0,j defined by the formulas (23), (25) and the

solution V ′1,j to the problem (26)-(27) for any j = n̄, · · · , n̄+ τ − 1.
The almost eigenfunction Uεn̄ belongs to Hilbert space Hε but in generally it does not satisfy
the normalization condition. Then, we apply Lemma 3.5 with ‖Uεn̄‖−1

HεU
ε
n̄ ∈ Hε. Note that

for sufficiently small ε the estimate

‖Uεn̄‖Hε ≥
1
2 , (44)

follows from formula (45). Indeed, the inner product

〈Uεi ,Uεj〉ε = (∇xUε1,i, ∇xUε1,j)Ω1 + ε−1(∇xUε0,i, ∇xUε0,j)Ω0 + (Uε1,i, Uε1,j)Ω1

+ ε−2m(Uε0,i, Uε0,j)Ω0

= (∇xu0
1,i,∇xu0

1,j)Ω1 + (u0
1,i, u

0
1,j)Ω1 +O(ε2m)

= (1 + λ0
p)(u0

1,p, u
0
1,q)Ω1 +O(ε2m)

= (1 + λ0
i )δij +O(ε2m), i, j = 1, 2, . . . (45)
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where the last equality is due to orthonormalization conditions (18). Note that O(ε2m) con-
tains the terms listed below multiplied by some power of ε and they can be easily estimated:

ε2m : (∇xu0
1,i,∇xu0

1,j)Ω1 + (∇xu′1,i,∇xu0
1,j)Ω1 + (u0

1,i, u
′
1,j)Ω1 + (u′1,i, u0

1,j)Ω1 ;
ε4m : (∇xu′1,i,∇xu′1,j)Ω1 + (u′1,i, u′1,j)Ω1 ; ε4−6m : (U ε

0,i,U
ε

0,j)Ω0 ;
ε : (∇xu0

1,i,∇xU1,j)Ω1 + (∇xU ′1,i,∇xu0
1,j)Ω1 + (∇xu′0,i,∇xu′0,j)Ω0

+ (u0
1,i,U1,j)Ω1 + (U1,i, u

0
1,j)Ω1 ;

ε2m+1 : (∇xu′1,i,∇xU1,j)Ω1 + (∇xU1,i,∇xU1,j)Ω1 + (u′1,i,U1,j)Ω1 + (U ′1,i, u′1,j)Ω1 ;
ε2−2m : (∇xu0

1,i,∇xU ′1,j)Ω1 + (∇xU ′1,i,∇xu0
1,j)Ω1 + (∇xu′0,i,∇xU ε

0,j)Ω0

+ (∇xU ε
0,i,∇xu′0,j)Ω0 + (u0

1,i,U
′

1,j)Ω1 + (U ′1,i, u0
1,j)Ω1 + (u′0,i, u′0,j)Ω0 ;

ε2 : (∇xu′1,i,∇xU ′1,j)Ω1 + (∇xU1,i,∇xU1,j)Ω1 + (∇xU ′1,i,∇xu′1,j)Ω1

+ (u′1,i,U ′1,j)Ω1 + (U1,i,U1,j)Ω1 + (U ′1,i,U ′1,j)Ω1 ;
ε3−4m : (∇xU ε

0,i,∇xU ε
0,j)Ω0 + (u′0,i,U ε

0,j)Ω0 + (U ε
0,i, u

′
0,j)Ω0 ;

ε4−4m : (∇xU1,i,∇xU ′1,j)Ω1 + (∇xU ′1,i,∇xU1,j)Ω1 + (U1,i,U
′

1,j)Ω1 + (U ′1,i,U1,j)Ω1 ;
ε4−4m : (∇xU ′1,i,∇xU ′1,j)Ω1 + (U ′1,i,U ′1,j)Ω1 .

Consequently, we obtain

δεn̄ = ‖Uεn̄‖−1
Hε‖KεU

ε
n̄ − kεn̄U

ε
n̄‖Hε

= ‖Uεn̄‖−1
Hε sup

Wε∈Hε
‖Wε‖Hε=1

|〈KεUεn̄ − kεn̄U
ε
n̄,W

ε〉ε|

= ‖Uεn̄‖−1
Hε(k

ε
n̄)−1 sup

Wε∈Hε
‖Wε‖Hε=1

|(kεn̄)−1〈KεUεn̄,W ε〉ε − 〈Uεn̄,W ε〉ε|

≤ c sup
Wε∈Hε
‖Wε‖Hε=1

|(kεn̄)−1〈KεUεn̄,W ε〉ε − 〈Uεn̄,W ε〉ε|,

where in the last inequality we used (44) and (kεn̄)−1 ≥ 1. Now, we focus only on the absolute
value. Using formulas (36) and (37), we find

|(kεn̄)−1〈KεUεn̄,W ε〉ε − 〈Uεn̄,W ε〉ε| = |J0 + ε2mJ1 + ε1−2mJ2 + ε4mλ′n̄(u′1,n̄,W ε
1 )Ω1

+ ε2−4mλ0
n̄(U ε

0,n̄,W
ε
0 )Ω0 + εJ3 + ε1+2mλ′n̄(U1,n̄,W

ε
1 )Ω1

ε2−2mJ4 + ε2λ′n̄(U ′1,n̄,W ε
1 )Ω1 |. (46)

Here

J0 = λ0
n̄(u0

1,n̄,W
ε
1 )Ω1 + λ0

n̄(c0,n̄,W ε
0 )Ω0 − (∇xu0

1,n̄,∇xW ε
1 )Ω1 − (∇xu′0,n̄,∇xW ε

0 )Ω0 ;
J1 = λ′n̄(c0,n̄,W ε

0 )Ω0 + λ0
n̄(u′1,n̄,W ε

1 )Ω1 + λ′n̄(u0
1,n̄,W

ε
1 )Ω1 − (∇xu′1,n̄,∇xW ε

1 )Ω1 ;
J2 = λ0

n̄(u′0,n̄,W ε
0 )Ω0 − (∇xU ε

0,n̄,∇xW ε
0 )Ω0 ;

J3 = λ0
n̄(U1,n̄,W

ε
1 )Ω1 + λ′n̄(u′0,n̄,W ε

0 )Ω0 − (∇xU1,n̄,∇xW ε
1 )Ω1 ;

J4 = λ0
n̄(U ′1,n̄,W ε

1 )Ω1 + λ′n̄(U ε
0,n̄,W

ε
0 )Ω0 − (∇xU ′1,n̄,∇xW ε

1 )Ω1 .

Integrating by parts the problems (15)-(16), (13) and (19)-(20), the expression under the
modulus sign on the right-hand side of (46) becomes

|(kεn̄)−1〈KεUεn̄,W ε〉ε − 〈Uεn̄,W ε〉ε| = |ε2mJ ′1 + ε1−2mJ2 + ε4mλ′n̄(u′1,n̄,W ε
1 )Ω1

+ ε2−4mλ0
n̄(U ε

0,n̄,W
ε
0 )Ω0 + εJ3 + ε1+2mλ′n̄(U1,n̄,W

ε
1 )Ω1

+ ε2−2mJ4 + ε2λ′n̄(U ′1,n̄,W ε
1 )Ω1 |,
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with J ′1 = λ′n̄(c0,n̄,W ε
0 )Ω0−(∂ν0u

′
1,n̄,W

ε
1 )Γ0 . Note that ε1−2mJ2 +ε2−4mλ0

n̄(U ε
0,n̄,W

ε
0 )Ω0 = 0

due to the fact that U ε
0,n̄ can be written as Neumann series (cf. [17, Theorem 3.6.1]).

Moreover, the definition of the inner product (36) in the Hilbert spaceHε yields the following
estimates of the classical norm in L2(Ωi), i = 0, 1

‖W ε
1 ‖Ω1 ≤ ‖W‖Hε , ‖∇xW ε

1 ‖Ω1 ≤ ‖W
ε‖Hε , ‖W ε‖Ω0 ≤ ε

m‖W ε‖Hε .

Finally,

δεn̄ ≤ C1ε
3m + C2ε+ C3ε

4m + C4ε
1+m + C5ε

1+2m + C6ε
2−2m + C7ε

2−m + C8ε
2 ≤ Cεγ ,

where γ = min{3m, 1}. Then, the first part of Lemma 3.5 implies that there exists at least
one eigenvalue kεn of Kε such that

|kεn̄ − kεn| ≤ Cεγ . (47)

Bearing in mind Lemma 3.4, the inequality (47) can be written as

|λεn − λ0
n̄ − ε2mλ′n̄| ≤ C|1 + λεn||1 + λ0

n̄ + ε2mλ′n̄|εγ ≤ Cnεγ ∀ε ∈ (0, εN ). (48)

In order to show (32) and to conclude the proof of Theorem 3.1, we must check that the
indices n and n̄ in the inequality (48) coincide. To this end, we will apply the second part
of Lemma 3.5.
Assume that λ0

n̄ is an eigenvalue of multiplicity τ ≥ 2 of the problem (15)-(16). We can
associate τ copies of almost eigenfunctions Uεp, given by (41), and introduce

δ′n̄ε = T max{δεn̄, · · · , δεn̄+τ−1},

where T is large and fixed (independent of ε). The second part of Lemma 3.5 gives the
normalized columns apεJε , · · · , a

pε
Jε+Kε−1 verifying the inequality∥∥∥∥Uεp − Jε+Kε−1∑

j=Jε
apεj uεj

∥∥∥∥
Hε

≤ 2
T
, p = n̄, · · · , n̄+ τ − 1. (49)

We aim to show that in the closure of a δ′n̄ε-neighbourhood of the point kεn̄ there are at least
τ eigenvalues of the operator Kε, i.e. in the inequality (49) the number Kε is such that
Kε ≥ τ . The equality (45) implies the estimate

|〈Uεp,Uεq〉ε − (1 + λ0
p)δp,q| ≤ Cε2m, p, q = n̄, . . . , n̄+ τ − 1. (50)

Set

Sεp =
Nε+Kε−1∑
j=Nε

apεj uεj , p = n̄, . . . , n̄+ τ − 1.

In view of the estimate (50) and orthonormalization condition (39) of uε, we find∣∣∣∣Nε+Kε−1∑
j=Nε

apεj aqεj − (1 + λ0
n̄)δp,q

∣∣∣∣ =
∣∣∣∣〈Nε+Kε−1∑

j=Nε
apεj u

ε
j ,

Nε+Kε−1∑
j=Nε

aqεj u
ε
j〉ε − (1 + λ0

n̄)δp,q
∣∣∣∣

= |〈Sεp, Sεq 〉ε − 〈Sεp,Uεq〉ε + 〈Sεp,Uεq〉ε − 〈Uεp,Uεq〉ε
+ 〈Uεp,Uεq〉ε − (1 + λ0

n̄)δp,q|
≤ |〈Sεp, Sεq − Uεq〉ε + 〈Sεp − Uεp,U

ε
q〉ε|+ |〈Uεp,Uεq〉ε − (1 + λ0

n̄)δp,q|
≤ ‖Sεp‖ε‖Sεq − Uεq‖ε + ‖Sεp − Uεp‖ε‖Uεq‖ε +O(ε2m)

≤ C(ε2m + 4
T

).
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We conclude that for sufficiently large T , the columns apε turn out to be almost orthonor-
malized that is possible only if Kε ≥ τ . Consequently, for τ -multiple eigenvalue λ0

n̄ there
are at least τ distinct eigenvalues kεj , . . . , kεj+τ−1 of the operator Hε such that

|kεn̄ − kεj | ≤ Tcnεγ , j = n, . . . , n+ τ − 1. (51)

Remark 3.6. The formula (51) leads to check the inequality (33). Indeed, for each eigen-
value λ0

n of the sequence (17), one can associate the eigenvalue λεM(n) such that λεM(n) ≤
λ0
n + Cnε

γ . Moreover M(n1) < M(n2) if n1 < n2. Consequently n < M(n) and

λεn ≤ λεM(n) ≤ λ0
n + Cnε

2m ≤ λ0
n + Cn,

which implies (33).
In order to conclude the proof of Theorem 3.1, we will check that the eigenvalues λεn, . . . , λεn+τ−1
of the sequence (6) verify the estimate (32). In other words, the equality n̄ = n holds true
in (48).
Let n̄ be some index such that λ0

n̄ is τ -multiple eigenvalue of the problem (15)-(16). If we
assumeM(n̄+τ−1) > n̄+τ−1, then there exists an eigenvalue λεJε with Jε ≤M(n̄+τ−1),
such that

λεJε ≤ λ0
n̄+τ−1 + ε2mλ′n̄+τ−1 + Cεγ < λ0

n̄+τ .

From Lemma 3.4, the eigenpair (λεJε , UεJε) converges to eigenelement (λ∗J0 , U
∗) of the limit

problem (15)-(16), where U∗ is orthogonal to U0
1 , · · · , U0

n̄+τ−1 in L2(Ω1). This last claim is
invalid, because of the min-max principle (see, e.g. [7])

λ∗J0 = max
E⊂H1

0 (Ω1)
dimE=Jε−1

min
v∈E⊥
v 6=0

‖∇xv‖L2(Ω1)

‖v‖L2(Ω1)

and the inequality λ∗J0 < λ0
n̄+τ . Thus, n̄ = n and Theorem 3.1 is proved.

4 Asymptotic expansion for m < 0
We briefly describe the behaviour of the eigenpairs of the problem (1)-(4) for m < 0. The
proof of Theorem 3.1 uses the same argument as in Section 3. We consider an asymptotic
expansion for an eigenvalue λε and the corresponding eigenfunction {uε0, uε1} of the form

λε = λ0 + ελ′ + · · · , (52)
uε0(x) = u0

0(x) + εu′0(x) + · · · , x ∈ Ω0, (53)
uε1(x) = u0

1(x) + εu′1(x) + · · · , x ∈ Ω1. (54)

The formulas (52)-(53) mean that the eigenpair (λε, {uε0, uε1}) is expected to depend on the
parameter ε continuously. By replacing the expansions (52)-(53) in the problem (1)-(4) and
collecting the coefficients of the same powers of ε, the leading term in (53) is a solution to
the homogenuous Neumann problem (12), i.e. a constant c0. The correction term u′0 defined
up to an additive constant satisfies

−∆xu
′
0(x) = 0, x ∈ Ω0, ∂ν0u

′
0(x) = ∂ν0u

0
1(x), x ∈ Γ0.

The compatibility condition reads ∫
Γ0

∂ν0u
0
1(x)dsx = 0. (55)
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The leading terms λ0
n and u0

1 in the ansätze (52),(54) are obtained from the spectral problem

−∆xu
0
1(x) = λ0u0

1(x), x ∈ Ω1, (56)
∂ν1u

0
1(x) = 0, x ∈ Γ1, u0

1(x) = u0
0(x), x ∈ Γ0, (57)

along with the integral condition (55). To write down the variational formulation of the
problem (56)-(57), we set H1

•(Ω1,Γ0) as the subspace of functions in H1(Ω1) with a constant
trace on the boundary Γ0. For ϕ ∈ H1

•(Ω1,Γ0), the Green formula provides

−
∫

Ω1

∆xu
0
1(x)ϕ(x)dx =

∫
Ω1

∇xu0
1(x)∇xϕ(x)dx−

∫
Γ0

∂ν0u
0
1(x)ϕ(x)dsx

= λ0
∫

Ω1

u0
1(x)ϕ(x)dx.

Since ϕ is a constant on the boundary Γ0, it follows that∫
Γ0

∂ν0u
0
1(x)ϕ(x)dsx = const

∫
Γ0

∂ν0u
0
1(x)dsx = 0.

As a consequence, the variational formulation reads: find the eigenvalue λ0 ∈ R and the
corresponding eigenfunction u0

1 ∈ H1
•(Ω1,Γ0) \ {0} such that

(∇xu0
1,∇xϕ)Ω1 = λ0(u0

1, ϕ)Ω1 ∀ϕ ∈ H1
•(Ω1,Γ0). (58)

Note that the integral equality (58) implies the condition (55). The problem (58) admits
the eigenvalues sequence (17). The corresponding eigenfunctions u0

1 are orthonormalized in
L2(Ω1).
The correction term u′1 verifies the problem

−∆xu
′
1(x)− λ0u′1(x) = λ′u0

1(x), x ∈ Ω1, (59)
∂ν1u

′
1(x) = 0, x ∈ Γ1, u′1(x) = u′0(x), x ∈ Γ0. (60)

Before computing λ′, we investigate term of higher order in the asymptotic (53). We assume
that −2m > 1. The term u′′0 of order ε2 solves the problem

−∆xu
′′
0 (x) = 0, x ∈ Ω0, ∂ν0u

′′
0 (x) = ∂ν0u

′
1(x), x ∈ Γ0.

The compatibility condition reads as∫
Γ0

∂ν0u
′
1(x)dsx = 0. (61)

When −2m = 1 the compatibility condition becomes inhomegeneous, i.e.∫
Γ0

∂ν0u
′
1(x)dsx = λ0c0|Ω0|, (62)

since u′′0 solves the problem

−∆xu
′′
0 (x) = λ0u

0
0(x), x ∈ Ω0, ∂ν0u

′′
0 (x) = ∂ν0u

′
1(x), x ∈ Γ0. (63)

In the last case, i.e. −2m < 1, the term u′′0 has order ε−2m+1 and it solves the problem (63),
yielding the compatibility condition (62).
In case of simple eigenvalue λ0

n and −2m > 1, the Fredholm alternative leads to the following
expression for the correction term λ′n:

λ′n = −(∂ν0u
0
1, u
′
1)Γ0 = −(∂ν0u

′
0, u
′
0)Γ0 = −(∇xu′0,∇xu′0)Ω0 = −‖∇xu′0‖2L2(Ω0). (64)
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If −2m ≤ 1, the term λ′ becomes

λ′ = −(∂ν0u
′
1, u

0
1)Γ0 − (∂ν0u

0
1, u
′
1)Γ0 = −λ0c20|Ω0| − ‖∇xu′0‖2L2(Ω0),

due to the compatibility condition (62).
Suppose that λ0

n is a τ -multiple eigenvalue. As in Section 2, the leading terms of the
asymptotics of the eigenfunctions uε1,n, . . . , uε1,n+τ−1 are predicted in the form of linear
combinations

U0
1,j(x) = ajnu

0
1,n(x) + · · ·+ ajn+τ−1u

0
1,n+τ−1(x), j = n, . . . , n+ τ − 1,

of the eigenfunctions u0
1,n, . . . , u

0
1,n+τ−1 of the limit problem (56)-(57). The coefficients

ajn, . . . , a
j
n+τ−1 satisfy the orthonormalization condition (24). The first order corrector U ′1,j

in (54) verifies the problem

−∆xU
′
1,j(x)− λ0

nU
′
1,j(x) = λ′jU

0
1,j(x), x ∈ Ω1,

∂ν1U
′
1,j(x) = 0, x ∈ Γ1, U ′1,j(x) =

n+τ−1∑
k=n

ajku
′
0,k(x), x ∈ Γ0.

In the case −2m > 1, from the Fredholm alternative and the formula (61), we get the τ
compatibility conditions

λ′j(U0
1,j , u

0
1,q)Ω1 = (∂ν0u

0
1,q, U

′
1,j)Γ0 =

n+τ−1∑
k=n

ajk(∂ν0u
′
0,q, u

′
0,j)Γ0 =

n+τ−1∑
k=n

ajk(∇xu′0,j ,∇xu′0,q)Ω0 .

It follows that

λ′ja
j
q =

n+τ−1∑
k=n

ajk(∇xu′0,j ,∇xu′0,q)Ω0 ,

which can be written in the form of the linear system of τ algebraic equations

Gaj = λ′ja
j , j = n, . . . , n+ τ − 1. (65)

Here, G is the Gram matrix whose entries are

Gi,j = (∇xu′0,i,∇xu′0,j)Ω0 , i, j = n, . . . , n+ τ − 1.

Since G is a symmetric τ×τ matrix, its eigenvalues λ′n, . . . , λ′n+τ−1 are real and positive. In-
deed the derivatives ∂ν0u

0
1,n, . . . , ∂ν0u

0
1,n+τ−1 are linearly independent in L2(Γ0). Otherwise,

a linear combination

U(x) =
n+τ−1∑
k=n

aiu
0
1,i(x), x ∈ Ω1,

satisfies the equation −∆xU(x) = λ0U(x), x ∈ Ω1, and simultaneously two boundary condi-
tions U(x) = const and ∂ν0U(x) = 0, x ∈ Γ0. This is a contraddiction due to the theorem on
strong unique continuation (e.g. cf. [35]). Hence, ∇xu′0,n, . . . ,∇xu′0,n+τ−1 are linearly inde-
pendet in L2(Ω0)d and the matrix G is positive-definite matrix. We emphasize that ∇xu′0,i,
i = n, · · · , n+ τ − 1, are defined uniquely, although u′0,i are defined up to a constant.
If −2m ≤ 1, the Fredholm alternative and the expression (62) yield to

λ′j = −(∂ν0U
′
1,j , u

0
1,q)Γ0 − (∂ν0u

0
1,q, U

′
1,j)Γ0 = λ0

n(u0
0,q)2|Ω0| −

n+τ−1∑
k=n

ajk(∇xu′0,j ,∇xu′0,q)Ω0 .

(66)

As far as the justification procedure is concerned, the estimate (32) of the Theorem 3.1 for
m < 0 is valid with α = 0, β = 1, γ = min{1−m, 2}, λ0

n being an eigenvalue of the problem
(56)-(57) and λ′n the correction term in (52), given by formula (64) for a simple eigenvalue
and by formulas (65)-(66) for a multiple ones.
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5 Asymptotic expansion for m = 0
If m = 0, the ansätze (52)-(53) are still correct. As a consequence, the problem (12) is
satisfied by the leading term u0

0. The main difference comes from the problem satisfied by
the correction term u′0

−∆xu
′
0(x) = λ0u0

0(x), x ∈ Ω0, ∂ν0u
′
0(x) = ∂ν0u

0
1(x), x ∈ Γ0,

whose compatibility condition reads as

c0 = 1
λ0|Ω0|

∫
Γ0

∂ν0u
0
1dsx. (67)

The leading terms λ0 and u0
1 in (52) and(54) solve the problem (56)-(57) along with the

integral condition (67). Therefore, the variational formulation reads as

(∇xu0
1,∇xϕ)Ω1 = λ0(u0

1, ϕ)Ω0 + λ0|Ω0|u0
1ϕ, ∀ϕ ∈ H1

•(Ω1,Γ0). (68)

Here u denotes the constant trace of function u ∈ H1(Ω1) on the boundary Γ0. The problem
(68) admits discrete spectrum given by (17). The correction term u′1 satisfies the problem
(59)-(60). The claim of Theorem 3.1 is still true and the estimate (32) becomes

|λε − λ0
n − ελ′n| ≤ CNε3/2.

6 Asymptotic expansion for m = 1/2
This case is discussed in more abstract setting in the textbook [32, Chapter VII], but for
the convenience of the reader a simple and independent proof is presented for the problem
under consideration. The Helmholtz equation (2) gets rid of the small parameter ε

−∆xu
ε
0(x) = λεuε0(x), x ∈ Ω0.

We perfom the replacement (8), i.e. vε0(x) = ε−1/2uε0(x) and vε1(x) = uε1(x). The asymptotics
of eigenpairs (λε, {uε0, uε1}) take the form

λε = λ0 + ε1/2λ′ + · · · , vε1(x) = v0
1(x) + ε1/2v′1(x) + · · · , x ∈ Ω1,

vε0(x) = v0
0(x) + ε1/2v′0(x) + · · · , x ∈ Ω0.

The essential difference with respect to the other cases is the presence of two spectral limit
problems. In fact, the leading term v0

0 is determined from the problem

−∆xv
0
0(x) = λ0v0

0(x), x ∈ Ω0, ∂ν0v
0
0(x) = 0 x ∈ Γ0. (69)

The leading term v0
1 solves the problem

−∆xv
0
1(x) = λ0v0

1(x), x ∈ Ω1, (70)
∂ν1v

0
1(x) = 0, x ∈ Γ1, v0

1(x) = 0, x ∈ Γ0. (71)

The problem for the correction terms v′0 is

−∆xv
′
0(x)− λ0v′0(x) = λ′v0

0(x), x ∈ Ω0, ∂ν0v
′
0(x) = ∂ν0v

0
1(x), x ∈ Γ0.

The correction term v′1 is determined by the problem (19)-(20). Owing to the two limit
problems, the procedure made for the convergence theorem must be slightly modified. We
explain it briefly.
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According to the convergence (34) of eigenvalues λεn, the weak formulation (5) and the
normalization condition (7) with m = 1/2, we deduce

‖∇xvε1,n‖2L2(Ω1) + ε−1‖∇xvε0,n‖2L2(Ω0) ≤ Cn.

As in Section 3.1.1, vε0,n converges to zero strongly in H1(Ω0) and hence in L2(Ω0), while
vε1,n converges to some v0

1,n̄ weakly in H1(Ω1) and strongly in L2(Ω1). If v0
1,n̄ 6= 0, the

continuity of trace operator ensures that vε0,n converges to 0 in L2(Γ0). Then the boundary
condition (4) yields the strong convergence of vε1,n to 0 in L2(Γ0), i.e. v0

1,n̄ ∈ H1
0 (Ω1,Γ0).

Using the same arguments as in Section 3.1.1, we deduce that the leading terms λ0
n̄ and v0

1,n̄,
with v0

1,n̄ 6= 0, are characterized as the eigenelements of the spectral problem (70)-(71).
Assume, now, that v0

1,n̄ = 0. The previous arguments fail and we introduce the new nor-
malization condition

‖vε1,n‖2L2(Ω1) + ε−1‖vε0,n‖2L2(Ω0) = ε−1. (72)
The weak formulation (5) implies the bound

‖∇xvε1,n‖2L2(Ω1) + ε−1‖∇xvε0,n‖2L2(Ω0) ≤ Cnε
−1. (73)

Multiplying the inequalities (72) and (73) by ε, the quantities ‖vε0,n‖H1(Ω0) and ‖∇xvε0,n‖H1(Ω0)
are bounded and then vε0,n converges weakly in H1(Ω0) and strongly to L2(Ω0) to some func-
tion v0

0,n̄. Moreover, the trace of vε0,n converges to the trace of v0
0,n̄ in L2(Γ0). Finally, the

limit passage as ε → 0 in the weak formulation (5) leads to characterize v0
0,n̄ as the eigen-

function with associated eigenvalue λ0
n̄ of the problem (69) and the eigenfunctions v0

0,n̄ are
normalized in L2(Ω0). Indeed bearing in mind that λ0

n̄ does not belong to the spectrum of
the problem (19)-(20) and the convergence (34), for small ε > 0 λεn is not an eigenvalue of
the problem

−∆xv
ε
1,n(x) = λεnv

ε
1,n(x), x ∈ Ω1,

∂ν1v
ε
1,n(x) = 0, x ∈ Γ1, vε1,n(x) = 0, x ∈ Γ0.

As a consequence, we have

‖vε1,n‖H1(Ω1) ≤ c‖vε0,n‖H1/2(Γ0) ≤ c‖v
ε
0,n‖H1(Ω0) ≤ c. (74)

The inequalities (72) and (74) lead to check the normalization condition of the eigenfunction
v0

0,n̄. The Theorem 3.1 is still valid with the estimate

|λε − λ0
n − ε1/2λ′n| ≤ CNε.

7 Asymptotic expansion for m > 1/2
We postulate the asymptotic expansions for the eigenvalue λε

λε = ε2m−1λ0 + ε2mλ′ + · · · . (75)

For the corresponding eigenfunctions {uε0, uε1} we consider an asymptotic expansion of the
form

uε0 = u0
0 + εu′0 + · · · , x ∈ Ω0, (76)

uε1 = u0
1 + εmin{1,2m−1}u′1 + · · · , x ∈ Ω1. (77)

Using the same procedure as in the other cases, we find that the leading terms λ0, u0
0 in

(75), (76) are characterized as the solution to the spectral problem

−∆xu
0
0(x) = λ0u0

0(x), x ∈ Ω0, ∂ν0u
0
0(x) = 0, x ∈ Γ0. (78)
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The problem (78) in the Sobolev space H1(Ω0) has a discrete spectrum

0 = λ0
1 < λ0

2 ≤ · · · ≤ λ0
n ≤ · · · → ∞

and the corresponding eigenfunctions u0
0,n are subject to the orthonormalization condition

in L2(Ω0). The leading term u0
1 in (77) is defined as a unique solution of the problem

−∆xu
0
1(x) = 0, x ∈ Ω1,

∂ν1u
0
1(x) = 0, x ∈ Γ1, u0

1(x) = u0
0(x) x ∈ Γ0.

If min{1, 2m− 1} = 2m− 1, the problem for the correction term u′1 in (77) is

−∆xu
′
1(x) = λ0u0

1(x), x ∈ Ω1,

∂ν1u
′
1(x) = 0, x ∈ Γ1, u′1(x) = 0, x ∈ Γ0.

If min{1, 2m−1} = 1, the correction term u′1 is characterized as the solution to the problem

−∆xu
′
1(x) = 0, x ∈ Ω1,

∂ν1u
′
1(x) = 0, x ∈ Γ1, u′1(x) = u′0(x), x ∈ Γ0.

We point out that when m = 1, the problem satisfied by u′1 turns into

−∆xu
′
1(x) = λ0u0

1, x ∈ Ω1,

∂ν1u
′
1(x) = 0, x ∈ Γ1, u′1(x) = u′0, x ∈ Γ0.

The correction term u′0 in the asymptotic expansion (76) is determined from the problem

−∆xu
′
0(x)− λ0u′0(x) = λ′u0

0(x), x ∈ Ω0, ∂νu
′
0(x) = ∂νu

0
1(x), x ∈ Γ0. (79)

The compatibility condition in the problem (79) provides the correction term λ′. Indeed, if
the eigenvalue λ0

n is simple then we get

λ′ = −‖∇xu0
1‖2L2(Ω1). (80)

Assume now that the eigenvalue λ0
n has multiplicity τ > 1, i.e. λ0

n−1 < λ0
n = · · · =

λ0
n+τ−1 < λ0

n+τ . The leading term in the expansions (76) are predicted in the form of linear
combinations of the eigenfunctions u0

0,n, . . . , u
0
0,n+τ−1

U0
0,j(x) = ajnu

0
0,n(x) + · · ·+ ajn+τ−1u

0
0,n+τ−1(x), j = n, . . . , n+ τ − 1.

Therefore, U ′0,j is the solution to the problem

−∆xU
′
0,j(x)− λ0

nU
′
0,j(x) = λ′jU

0
0,j(x), x ∈ Ω0, ∂νU

′
0,j(x) =

n+τ−1∑
k=n

ajk∂ν0u
0
1,k(x), x ∈ Γ0.

According to the Fredhom alternative, the τ compatibility conditions are

λ′j(U0
0,j , u

0
0,p)Ω0 = (∂ν0U

′
0,j , u

0
0,p)Γ0 =

n+τ−1∑
k=n

ajn(∂ν0u
0
1,k, u

0
0,p)Γ0

=
n+τ−1∑
k=n

ajn(∇xu0
1,k,∇xu0

0,p)Ω1 , j = n, . . . , n+ τ − 1 (81)

The previous relation can be written as the formula (65) with a different Gram matrix. In
other words, the τ correction terms are the eigenvalues of the Gram matrix G whose entries
are given by

Gi.j = (∇xu0
1,i,∇xu0

1,j)Ω1 , i, j = n, . . . , n+ τ − 1,
with ajn being the corresponding eigenvectors. The estimate (32) of Theorem 3.1 holds with
α = 2m− 1, β = m, γ = min{4m− 1, 1 +m} for m ∈ (1/2, 1) and γ = 2m+ 1 for m ≥ 1, λ0

n

being the eigenvalue of the problem (78) and λ′n being the correction term, given by formula
(80) if λ0

n is a simple eigenvalue and (81) if λ0
n is a multiple one.
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Ω1

Ω0

Figure 2: Kissing domains

8 Kissing domains in R2

A distinguishing feature of the stiff Neumann problem is that all asymptotic forms derived
and justified in previuous sections, are preserved when dist(Γ0,Γ1)→ 0, i.e in the limit the
core Ω0 touches the exterior boundary Γ1, cf. Fig. 2, so that Ω0 and Ω form the interior
kiss of two domains. This peculiar conclusion is certainly based on the exterior Neumann
condition (3) and the prevaling stiffness of th annulus Ω1. Changing particular details in
problem’s statement may quit the above-mentioned limit passage: in Section 8.4 we will
discuss a serious issue in the case when the Neumann condition (3) is replaced with the
homogeneous Dirichlet one. In this way, in many cases the Dirichlet problem of the type
(1)-(4) remains a fully open question.
The performed asymptotic analysis demonstrates that in all situations under consideration
the limit problem in the cuspidal annulus reads

−∆xu(x) = λu(x), x ∈ Ω1 (82)
∂ν1u(x) = 0, x ∈ Γ1 \ O u(x) = g(x), x ∈ Γ0 \ O, (83)

where λ ≥ 0 and g = 0 or g = const on the boundary Γ0. Denoting by G ∈ H1(Rd \Ω0) an
extension of g onto the exterior of Ω0, the variational formulation of the problem (82)-(83)
reads, cf. [19]: find u ∈ H1(Ω1) such that u − G ∈ H1(Ω1; Γ0) and the following integral
identity is valid

(∇xu,∇xv)Ω1 = λ(u, v)Ω1 ∀v ∈ H, (84)
with H = H1

0 (Ω1; Γ0) if g = 0 on Γ0 or H = H1
•(Ω1,Γ0) if g = const on Γ0 Due to

the Dirichlet condition on Γ0, the space H1
0 (Ω1; Γ0) is compactly embedded into L2(Ω1) 1.

Hence, all necessary properties of the problem (82)-(83) are kept in the cuspidal domain
Ω1 and these allow us to repeat with easily predictable modifications our calculations and
argumentation in previous sections, to conclude the analog of the Theorem 3.1 in the case
of the tounching boundaries Γ0 and Γ1.
In the sequel we will describe the asymptotic behaviour as x→ O of solutions to the mixed
boundary value problem (82)-(83) and a similar Dirichlet problem in Ω1. However, to
reduce cumbersome and long computations, we deal with the 2D case only while a needed
modification for multi-dimensional cases can be found in the papers [24, 26, 27, 28] and
others.

8.1 Asymptotics of solutions at the cusp in Neumann case
We consider the spectral problem (82)-(83), where g = c0 on Γ0 \ O and c0 is an arbitrary
constant. Set R0, R1 the radii of the disks Ω0,Ω1 respectively such that R0 < R1. The

1This fact is true for H1(Ω1) as well, see, e.g. [23]
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boundaries Γ0 and Γ1 are described by

Hi(x1) = |x1|2

2Ri
+O(|x1|4), i = 0, 1. (85)

The thickness is defined as H(x1) = H0(x1)−H1(x1). We write down the representation

u(x) = c0 + · · · , x→ O, (86)

where the dots denote the lower-order terms. The distinguished asymptotic term on the
right-hand side of (86) satisfies the boundary conditions (83) but generates the residual

λc0 + · · ·

in the differential equation (82). Then, we introduce a new term U1(x1, η) in (86), involving
the stretched coordinate

η = x2 −H1(x1)
H(x1) ∈ (0, 1).

Then the asymptotic (86) turns into

u(x) = c0 + U1(x1, η) + · · · , x→ O. (87)

In order to rewrite (82) in the new variables (x1, η), we evalute

∂

∂x2
= ∂η

∂x2

∂

∂η
= 1
H(x1)

∂

∂η
,

∂2

∂x2
2

= 1
H(x1)2

∂2

∂η2 , (88)

∂

∂x1
= ∂

∂x1
−H(x1)−1(H ′1(x1) + ηH ′(x1)) ∂

∂η
,

∂2

∂x2
2

=
(

∂

∂x1
−H(x1)−1(H ′1(x1) + ηH ′(x1)) ∂

∂η

)2

+
(

2H ′(x1)H ′1(x1) + 2(H ′(x1))2η −H ′′1 (x1)H(x1)−H ′′(x1)H(x1)η
H(x1)2

)
∂

∂η
, (89)

where H ′(x1) = dH(x1)
dx1

. Owing to (85), (88), (89), the Laplace operator ∆(x1,x2) in the new
variables (x1, η) is written as

∆(x1,η) = 1
Hp(x1)2

∂2

∂η2 +
∞∑
j=1

Lj(x1, η,
∂

∂x1
,
∂

∂η
), (90)

where we replaced the thickness function H(x1) with its principal part

Hp(x1) = 1
2

( 1
R0
− 1
R1

)
|x1|2.

The normal derivative on the lower boundary Γ1 can be written as

∂ν1 = 1
(1 + |H ′1(x1)|2)1/2

(
∂

∂x2
−H ′1(x1) ∂

∂x1

)
= 1

(1 + |H ′1(x1)|2)1/2

(
1

H(x1)
∂

∂η
−H ′1(x1) ∂

∂x1
+H ′1(x1)H(x1)−1(H ′1(x1) + ηH ′(x1)) ∂

∂η

)
.

(91)

In view of (90) and (91), we insert the expansion ansatz (87) into the problem (82)-(83),
obtaining the problem

− 1
Hp(x1)2

∂2

∂η2U1(x1, η) = λc0, (92)

∂

∂η
U1(x1, η)∣∣η=0

= 0, U1(x1, η)∣∣η=1
= 0.
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By a direct computation, the solution U1 is given by

U1(x1, x2) = −λc02 [x2
2 − 2Hp

1 (x1)(x2 +Hp
0 (x1))−Hp

0 (x1)2], (93)

where Hp
i (x1) = |x1|2/(2Ri) denotes the principal part of Hi(x1), i = 0, 1. Note that the

first-order correction term U1(x1, x2) is of order |x1|4. Iterating this procedure, we are able
to construct the formal infinite series of the eigenfunction u of the problem (82)-(83)

u(x) = c0 +
∞∑
j=1

Uj(x), (94)

containing the already chosen main term (93). Keeping in mind the decomposition (90),
(91) and replacing the eigenfunction u with its formal series (94) into the equation (82), we
find that the term U2 is solution of the problem

− 1
Hp(x1)2

∂2

∂η2U2(x1, η) = L1(x1, η,
∂

∂x1
,
∂

∂η
, λ)U1(x1, η),

∂ηU2(x1, η)∣∣η=0
= N1( ∂

∂x1
,
∂

∂η
)U1(x1, η)∣∣η=0

, U2(x1, η)∣∣η=1
= 0,

where

L1(x1, η,
∂

∂x1
,
∂

∂η
, λ) =

(
∂

∂x1
−Hp(x1)−1((Hp

1 )′(x1) + η(Hp)′(x1)) ∂
∂η

)2

,

+
(

2(Hp(x1))′(Hp
1 (x1))′ + 2(H ′p(x1))2η

Hp(x1)2

− (Hp
1 )′′(x1)Hp(x1) + (Hp(x1))′′Hp(x1)η

Hp(x1)2

)
∂

∂η
+ |x1|6

8R4 λc0

N1( ∂

∂x1
,
∂

∂η
) = (Hp

1 )′(x1)
(

∂

∂x1
+ (Hp

1 )′(x1)
(Hp)′(x1)

∂

∂η

)
.

The other terms of the series (94) are determined by the problems

− 1
Hp(x1)∂ηUj(x1, η) = Lj−1(x1, η,

∂

∂x1
,
∂

∂η
, λ)Uj−1(x1, η) + λUj−2(x1, η), j = 3, 4, · · · ,

∂ηUj(x1, η)∣∣η=0
= Nj−1(0, ∂

∂x1
,
∂

∂η
)Uj−1(x1, η)∣∣η=0

, Uj(x1, η)∣∣η=1
= 0.

We point out that the terms Uj , j = 2, 3, · · · , of the series (94) are of order |x1|2j+2.

8.2 Justification of Asymptotics
Let χ be a smooth cut-off function such that 0 ≤ χ(x1) ≤ 1 and

χ(x1) = 0, if |x1| ≥ R0, χ(x1) = 1 if |x1| ≤
R0

2 .

We set
u(x) = c0 + χ(x1)U1(x) + ũ(x), (95)

with ũ(x) being the remainder.
Theorem 8.1. The solution u of the spectral problem (82)-(83) admits the asymptotic form
(95). More specifically, there exists an exponent N > 0 such that the norm

‖ρ(x)−N ũ‖H1
0 (Ω1,Γ0) <∞

and the functions ρ(x)−N (u(x)− c0) and ρ(x)−NU1(x1, η) do not belong to the Sobolev space
H1 in a neighbourhood of the cusp O.

20



Proof. The remainder ũ verifies the following equation

−∆xũ(x)− λũ(x) = λc0 + λU1(x)χ(x1) + ∆x(χ(x1)U1(x)), x ∈ Ω1 \ O, (96)

along with homogeneous boundary conditions

∂ν1 ũ(x) = 0, x ∈ Γ1 \ O, ũ(x) = 0, x ∈ Γ0 \ O.

Multiplying (96) by an arbitrary test function v ∈ H1
0 (Ω1,Γ0) and integrating in Ω1, we find

(−∆xũ, v)Ω1 − λ(ũ, v)Ω1 = (∆x(U1χ), v)Ω1 + λ(c0, v)Ω1 + λ(U1χ, v)Ω1

= (χ∆xU1, v)Ω1 + ([∆x, χ]U1, v)Ω1 + λ(c0, v)Ω1 + λ(U1χ, v)Ω1 .
(97)

The commutator [∆x, χ] is

[∆x, χ]U = 2∇xU · ∇xχ+ U∆xχ.

Let ρ denote a smooth positive function on Ω1 which coincides with the distance to the
origin of the Cartesian coordinate system in a neighbourhood of the cuspidal point O and
introduce the weight function

Tδ(x) =


δ−N , if ρ(x) ≤ δ,
ρ(x)−N , if δ < ρ(x) ≤ R0/2,
(R0/2)−N , if ρ(x) > R0/2,

where the parameter δ > 0 is small and will be sent to 0. Later on, we will impose some
constraints on the exponent N . We point out that the derivative of Tδ vanishes for ρ(x) ≤ δ,
ρ(x) > R0/2 and satisfies the inequality

|∇xTδ(x)| ≤ CTδ(x)ρ(x)−1, δ < ρ(x) ≤ R0. (98)

Since ũ ∈ H1
0 (Ω1,Γ0), we choose as a test function V = Tδ ṽ ∈ H1

0 (Ω1,Γ0), with ṽ = Tδũ.
After algebraic transformations, the left-hand side of (97) can be written as

−(∆xũ, V )Ω1 − λ(ũ, V )Ω1 = (∇xũ,∇xV )Ω1 − λ(ṽ, ṽ)Ω1

= (∇xũ, ṽ∇xTδ)Ω1 + (∇xũ, Tδ∇xṽ)Ω1 − λ(ṽ, ṽ)Ω1

= (Tδ∇xũ, ṽT−1
δ ∇xTδ)Ω1 + (Tδ∇xũ,∇xṽ)Ω1 − λ(ṽ, ṽ)Ω1

= (∇xṽ, ṽT−1
δ ∇xTδ)Ω1 − (ũ∇xTδ, ṽT−1

δ ∇xTδ)Ω1 + (∇xṽ,∇xṽ)Ω1

− (ũ∇xTδ,∇xṽ)Ω1 − λ(ṽ, ṽ)Ω1

= (∇xṽ,∇xṽ)Ω1 − (ũ∇xTδ, ṽT−1
δ ∇xTδ)Ω1 − λ(ṽ, ṽ)Ω1

= ‖∇xṽ‖2L2(Ω1) − ‖ṽT
−1
δ ∇xTδ‖

2
L2(Ω1) − λ‖ṽ‖

2
L2(Ω1). (99)

From formulas (97) and (99), we find that

‖∇xṽ‖2L2(Ω1) = (χ∆xU1, V )Ω1 + ([∆x, χ]U1, V )Ω1 + λ(c0, V )Ω1 + λ(U1χ, V )Ω1

+ ‖ṽT−1
δ ∇xTδ‖

2
L2(Ω1) + λ‖ṽ‖2L2(Ω1). (100)

We estimate each terms in the previous equality. Bearing in mind that the correction term
U1 is the solution of (92), we obtain

(χ∆xU1, V )Ω1 = (χ ∂2

∂x2
1
U1, V )Ω1 + (χ ∂2

∂x2
2
U1, V )Ω1 = (χ ∂2

∂x2
1
U1, V )Ω1 − (χλc0, V )Ω1 .
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Therefore,

|λ(c0, V )Ω1 − (χλc0, V )Ω1 | ≤ |λ(c0, V )Ω1∩{x:ρ(x)≥R0/2}| ≤ λc0(R0/2)−2N‖ũ‖2L2(Ω1) <∞.

Moreover, from Poincarè’s inequality

‖H(R0)−1ṽ(x)‖L2(Ω1) ≤ C‖∇xṽ(x)‖L2(Ω1) (101)

we find ∣∣∣∣(χ ∂2

∂x2U1, V )Ω1

∣∣∣∣ = |(χTδ
∂2

∂x2U1, ṽ)Ω1 | = |(χTδH(x1) ∂
2

∂x2
1
U1, H(x1)−1ṽ)Ω1 |

≤ ‖χTδH(x1) ∂
2

∂x2
1
U1‖L2(Ω1)‖H(x1)−1ṽ‖L2(Ω1)

≤ C‖χTδH(x1) ∂
2

∂x2
1
U1‖L2(Ω1)‖∇xṽ‖L2(Ω1).

Taking into account that H(x1) = O(|x1|2) and ∂2

∂x2
1
U1 = O(|x1|2), the norm

‖χTδH(x1) ∂
2

∂x2
1
U1‖L2(Ω1) ≤ ‖ρ−NH(x1) ∂

2

∂x2
1
U1‖L2(Ω1∩{x:ρ(x)≤R0/2})

+ (R0/2)−2N‖H(x1) ∂
2

∂x2
1
U1‖L2(Ω1∩{x:ρ(x)>R0/2})

is finite forN < 11
5 . The term ([∆x, χ]U1, V )Ω1 involves the derivatives of the cut-off function

χ. Then it does not vanish only if R0/2 < ρ(x) < R0 and

|([∆x, χ]U1, V )Ω1 | = |([∆x, χ]U1, V ){x∈Ω1 :R0/2<ρ(x)<R0}|
= |(Tδ[∆x, χ]U1, ṽ){x∈Ω1 :R0/2<ρ(x)<R0}|
≤ ‖Tδ[∆x, χ]H(x1)U1‖L2({x∈Ω1 :R0/2<ρ(x)<R0})

× ‖H−1(x1)ṽ‖L2({x∈Ω1 :R0/2<ρ(x)<R0})

≤ C‖Tδ[∆x, χ]H(x1)U1‖L2({x∈Ω1 :R0/2<ρ(x)<R0})

× ‖∇xṽ‖L2({x∈Ω1 :R0/2<ρ(x)<R0}),

which is finite for any value of N since Tδ(x) = (R0/2)−N if ρ(x) > R0/2. According to the
inequality (98), we have

‖ṽT−1
δ ∇xTδ‖

2
L2(Ω1) ≤ C‖ρ

−1ṽ‖2L2(Ω1).

Choosing R0 such that λ ≤ CH(R0)−2, from (101) we deduce

λ‖ṽ‖2L2(Ω1) ≤ CH(R0)−2‖ṽ‖2L2(Ω1) ≤ C‖∇xṽ‖
2
L2(Ω1)

Finally, we have

|(U1χ, V )Ω1 | = |(TδU1χ, ṽ)Ω1 | = |(H(x1)TδU1χ,H(x1)−1ṽ)Ω1 |

≤ ‖H(x1)TδU1χ‖L2(Ω1)‖H(x1)−1ṽ‖L2(Ω1) ≤ C‖H(x1)TδU1χ‖L2(Ω1)‖∇xṽ‖L2(Ω1).

The norm

‖χH(x1)TδU1‖L2(Ω1) ≤ ‖ρ−NH(x1)U1‖L2(Ω1∩{x:ρ(x)≤R0/2})

+ (R0/2)−2N‖H(x1)U1‖L2(Ω1∩{x:ρ(x)>R0/2})

is finite if and only if N < 15/2. Setting N < 11/2, the relation (100) implies that

‖ρ−1ṽ‖2L2(Ω1) + ‖∇xṽ‖2L2(Ω1) ≤ C <∞.

Since Tδ is monotone increasing as δ → 0, the limit of the last, bounded expression exists.
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Since terms in the formal series (94) are polynomials in x, we deduce the smoothness of
the solution u to the problem (82)-(83). In virtue of estimate of Theorem 8.1, the estimate
of the reimander in a weighted H2 follows from standard local estimates near smooth parts
of the boundary (cf. [28]).

8.3 The Dirichlet case
If we replace the boundary condition (83) on Γ0 with a homogeneous Dirichlet condition,
i.e. c0 = 0, then all eigenfunctions u of the problem

−∆xu(x) = λu(x), x ∈ Ω1, (102)
∂ν1u(x) = 0, x ∈ Γ1 \ O, u(x) = 0, x ∈ Γ0 \ O, (103)

decay exponentially as x→ O.
Proposition 8.2. The eigenfunction u ∈ H1

0 (Ω1,Γ0) of the problem (102)-(103) decays
exponentially as x→ O.

Proof. Let Tδ be the weight function defined by

Tδ(x) =


e
β
δ , |x1| ≤ δ,

e
β
|x1| , δ < |x1| ≤ R,
e
β
R , |x1| > R.

Here, the parameter δ is small, positive and it will be sent to 0 and β > 0. Note that Tδ is
a continuous function such that

|∇xTδ(x)| ≤ β|x1|−2Tδ(x), e
β
R ≤ Tδ(x) ≤ e

β
δ .

We insert into the integral identity (84) the test function v = TδU ∈ H1
0 (Ω1,Γ0), with

U = Tδu, obtaining

λ(u, v)Ω1 = (∇xu,∇xv)Ω1 = (∇xu, U∇xTδ)Ω1 + (∇xu, Tδ∇xU)Ω1

= (Tδ∇xu, T−1
δ U∇xTδ)Ω1 + (Tδ∇xu,∇xU)Ω1

= (∇xU, T−1
δ U∇xTδ)Ω1 − (u∇xTδ, T−1

δ U∇xTδ)Ω1

+ (∇xU,∇xU)Ω1 − (u∇xTδ,∇xU)Ω1

= (∇xU,∇xU)Ω1 − (T−1
δ U∇xTδ, T−1

δ U∇xTδ)Ω1 .

Hence,
‖∇xU‖2L2(Ω1) = λ‖U‖2L2(Ω1) + ‖T−1

δ U∇xTδ‖2L2(Ω1).

Taking into account the Poincarè’s inequality (101), we find

(c− β2)‖|x1|−2U‖2L2(Ω1) ≤ λ‖U‖
2
L2(Ω1) ≤ λe

2β
δ ‖u‖2L2(Ω1) <∞.

In particular, choosing β such that 0 ≤ β2 < c, we get

e−
2β
δ

∫
Ω1

|x1|−4|U(x)|2dx ≤ cλ <∞.

It implies that both of the integrals

e−
2β
δ

∫
Ω1∩{x:|x1|≤e

− β
2δ }
|x1|−4|U(x)|2dx, e−

2β
δ

∫
Ω1∩{x:|x1|>e

− β
2δ }
|x1|−4|U(x)|2dx,
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are bounded for all δ > 0. The first one gives∫
Ω1∩{x:|x1|≤e

− β
2δ }
|U(x)|2dx ≤ e−

2β
δ

∫
Ω1∩{x:|x1|≤e

− β
2δ }
|x1|−4|U(x)|2dx <∞

for all δ > 0. Since Tδ is monotone increase as δ → 0, we conclude that the eigenfunction u
has an exponential decay in L2-norm in a neighbourhood of the cusp O.

The eigenfunctions u are thus smooth at any distance of O and vanish at cusp point O
with all their derivatives due to the exponential decay. We conclude that also in this case
the asymptotic anzätze for (λε, uε) and the procedure given in the Sections 2− 3 are corect.

8.4 Open Questions
Due to the shape of the boundary Γ1, the solution of the problem (82) − (83) behaves in
substantially different way from the solution of the problem

−∆xu(x) = λu(x), x ∈ Ω1, (104)
u(x) = 0, x ∈ Γ1 \ O, u(x) = c0, x ∈ Γ0 \ O. (105)

Here we have simply replaced the Neumann boundary condition (3) of the problem (82)-
(83) with a homogeneous Dirichlet condition. Indeed an approximation of the solution u
of the problem (104)-(105) is to be found in such a way that the boundary conditions are
satisfied exactly while discrepancies in the equation (104) is reduced as much as possible.
As a consequence, a solution u with the asymptotic

u(x) = c0
x2 −H1(x1)

H(x1) + · · · , x→ O,

cannot belong to the Sobolev space H1(Ω1). Indeed the integral∫ 1/3

0

∫ H0(x1)

H1(x1)

∣∣∣∣ ∂∂x2

(
c0
x2 −H1(x1)

H(x1)

)∣∣∣∣2 dx2dx1 = 2c20
∫ 1/3

0

1
H(x1)2 dx1

is divergent because the integrand has nonadmissible singularity O(|x1|−4). The derivation
of the ansatz for the eigenfunction u of the problem (104)-(105) is still an open problem.
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