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1. Introduction
Climate change is expected to modify streamflow through changes in the precipitation regime and evaporation 
(IPCC, 2013). These impacts are usually assessed on the basis of a modeling cascade consisting of global cli-
mate models, regional climate models, and rainfall-runoff models (Teutschbein & Seibert, 2010). The latter are 
subject to considerable uncertainty, in particular for representing changing conditions, due to two main reasons. 
First, when using empirical rainfall-runoff models, model parameters are not directly measurable because of the 
underlying spatial variability that is not commensurate with current field measurement methods (Peters-Lidard 
et al., 2017). Second, catchments tend to co-evolve with climate in a coupled system thus resulting in an aggre-
gate behavior that differs from that at the local scale or laboratory scale (Blöschl et al., 2013). Because of these 
uncertainties, alternative, data-based approaches have been developed to quantify future changes of streamflow 
in response to changes in the climate regime. One such approach is the concept of elasticity, that is,, a measure 
of a variable's sensitivity to a change in one or more other variables (Liu et al., 2017; Nemec & Schaake, 1982). 
One of the possible definitions of streamflow elasticity is the percent change of streamflow resulting from a 1% 
change in precipitation or other climate variables. Since this definition is straightforward, it is widely used for 
climate change and water resource management studies (Bao et al., 2012; Huang et al., 2016; Liang et al., 2015; 
Lv et al., 2018; NĚMec & Schaake, 1982).

The elasticity is a lumped representation of the hydrological effects of a multitude of processes affecting the re-
sponse of streamflow to variations in climate variables. One would therefore expect it to depend on both climate 
variables and catchment attributes. Specifically, for the case of streamflow elasticity to precipitation, numerous 
studies have indeed identified these controls in various setting. Sankarasubramanian et al. (2001), for example, 
estimated streamflow elasticity to precipitation for the United States and found it to generally range from 1.0 to 
2.5. They found the highest elasticities in the arid and semi-arid regions of the Midwest and Southwest while 

Abstract Streamflow elasticity to precipitation, defined as the percent change of streamflow resulting from 
a 1% change in precipitation, is sometimes used as an alternative to rainfall-runoff models in climate impact 
analyses. Elasticity is usually estimated from long streamflow and precipitation series aggregated at annual time 
steps while the climate impact analyses are usually geared toward changes at decadal scales. The purpose of 
this paper is therefore to understand how the elasticity depends on the aggregation time scale and the process 
controls of such a dependence. We analyze streamflow records of 7,053 catchments around the world over the 
period 1950–2016, and select 5,327 with reliable elasticity estimates for aggregation time ranging from 13 to 
60 months. We find a significant scaling of streamflow elasticity to precipitation with aggregation time in 66% 
of the catchments which is much larger than expected by chance. Positive scaling occurs much more frequently 
than negative scaling. More arid/less rainy catchments, less forested catchments and catchments with a large 
base flow contribution to streamflow are more frequently characterized by a positive scaling. A random forest 
classification model identifies aridity index, latitude, mean annual precipitation, the potential evapotranspiration 
seasonality, the base flow index and the precipitation seasonality as relevant explanatory variables of the 
scaling. We interpret the sign of the scaling by non-linear runoff generation in arid regions, by the effect of 
climate modes and snow processes, and by the regulation capacity of vegetation to transpire more water if the 
past years were wet. It is suggested to use decadal elasticities instead of annual elasticities in climate impact 
analyses in order to account for their scaling behavior.
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catchments with generally high moisture showed rather low elasticities as did 
catchments where snow processes played a role. Chiew (2006) and Chiew 
et al.  (2006) found streamflow elasticity to precipitation in Australia to be 
closely related to the runoff coefficient (ratio of average annual streamflow 
and precipitation). For example, typical elasticities were around 1.5 and 5.0 
in catchments with runoff coefficients of 0.6 and 0.01, respectively. He in-
terpreted the higher sensitivity of streamflow to precipitation in catchments 
with low runoff coefficients by the non-linearity in the precipitation run-
off process, as the same absolute change in streamflow for a given absolute 
change in rainfall would be reflected as a higher elasticity in catchments with 
a low runoff coefficient. The elasticity - runoff coefficient relationship also 
translated in correlations of elasticity with precipitation and aridity. On the 
other hand, weaker (and also negative) correlations were found with per-
centage of woody vegetation in the catchment and the soil plant water hold-
ing capacity. These relationships were confirmed in a similar global study 
(Chiew, 2006) that identified the highest elasticities in Southeast Australia 
and South and West Africa, and the lowest elasticities in southwestern South 
America and in middle and high latitudes in the Northern Hemisphere for 
similar process reasons.

Elasticities can be either estimated on the basis of rainfall-runoff models of 
various complexity or by parametric or non-parametric estimators directly 
from the streamflow and precipitation data (Andreassian et  al.,  2016; Liu 
et  al.,  2017). The various methods have their relative strengths and weak-
nesses, mainly related to the model assumptions and the various levels of 
robustness. Irrespective of the specific estimation method, the elasticity is 
almost always estimated from streamflow and climate data at the annual time 
scale, and the year-to-year variability of these data is interpreted as being 
representative of the catchment response to climate variability Sankarasu-
bramanian et  al.,  (2001). If the elasticity so estimated is applied to assess 

potential climate change response at the decadal scale there is an implicit assumption that the elasticity does not 
depend on the time scale, that is, streamflow response to annual climate fluctuations is identical to streamflow 
response to, say, decadal climate fluctuations. Annual streamflow elasticity has been used to quantify the impacts 
of climate on streamflow for several decades (G. Y. Zhou et al., 2015; Milly et al., 2005; Sankarasubramanian 
et al., 2001; Ukkola et al., 2016; Zheng et al., 2009). The elasticity, however, may in fact depend on the time scale. 
For example, an anomalously wet annual period may transform in a larger or smaller streamflow increase than an 
anomalously wet decade. In a changing climate where variables change dynamically at various time scales, it may 
therefore be more relevant to consider elasticity conditional on the time scale of interest.

The elasticity is controlled by different hydrological processes at different temporal scales. At monthly or season-
al scale, portions of the precipitation during precipitation events are stored in the pores and fractures of the sub-
surface media as groundwater storage, which gradually contributes baseflow to the total streamflow. Groundwa-
ter storage buffers streamflow response to high frequency climate variability, enhancing streamflow resilience to 
climate change (Andermann et al., 2012; Berghuijs et al., 2016; Condon & Maxwell, 2019; de Graaf et al., 2019; 
Maxwell & Condon, 2016; Scanlon et al., 2005, 2018). At annual to multiannual scales, precipitation is widely 
considered the dominant factor because of its large contribution to streamflow (Fu et al., 2007; Sankarasubrama-
nian et al., 2001; Zheng et al., 2009) but there are a number of possible reasons to expect that the elasticity can 
be time scale dependent even when considering annual, multiannual and decadal scales: for example, ground-
water contribution, snowmelt, vegetation metabolism and climate oscillation. Where groundwater contributes 
significantly to streamflow, one may expect the sensitivity of streamflow to precipitation is higher at timescales 
commensurate with the groundwater response time (Figure 1a). In high latitudes or high altitudes, streamflow is 
largely influenced by snowmelt, which tends to change oppositely to precipitation under climate variability since 
higher precipitations tend to be associated with lower temperature and thus less snow melt (Z. Li et al., 2020) thus 
resulting into low or even negative elasticities at timescales commensurate with climatic fluctuations. Vegetation 
metabolism can potentially contribute to temporal scaling of the elasticity since vegetation tend to transpire more 

Figure 1. Schematic representation of how streamflow elasticity to 
precipitation may depend on the aggregation timescale. The two panels 
show hypothetical dependences of elasticity to the groundwater response 
time (Figure 1a) in a catchment where the contribution of groundwater to 
streamflow is significant, and of vegetation regulation capacity (Figure 1b) in 
a catchment where vegetation metabolism is significant.
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water if the past seasons (or years) are wet and vice versa, showing annual to interannual regulation capacity (Bott 
et al., 2006). One would therefore expect that the sensitivity of streamflow to precipitation decreases at increas-
ing timescales for which optimisation of transpiration occurs (with effects on the elasticity shown in Figure (b). 
Also, climate tends to oscillate, in a quasi-period way, at many different time scales. This includes the El Niño 
Southern Oscillation (ENSO) phenomenon fluctuating at the scale of two to 7 years (Timmermann et al., 2018), 
the North Atlantic Oscillation (NAO; Folland et al., 2009; Hofstatter & Bloschl, 2019) and the Pacific Decadal 
Oscillation (PDO; S. J. Li et al., 2020) that fluctuate at a decadal scale and affect Europe and North America. 
How the above-mentioned forcing variables may affect the scaling of streamflow elasticity to precipitation with 
aggregation time will depend on how catchments respond to such forcings.

Indeed, also streamflow has been found to oscillate at many different time scales, although the seasonal (within 
year) streamflow variability often is much more pronounced than other time scales. Because of this, streamflow 
usually exhibits a multiscale, fractal characteristic (Markonis et al., 2018). This behavior may be partly inherited 
from the multiscale climate and another part may be due to the catchment processes. For example, Szolgayova 
et al. (2014) and Markonis et al. (2018) found catchment area and aridity to explain well the Hurst coefficient, 
which is an index representing the power law dependence of the streamflow variability with time scale. This 
explanatory power was interpreted as the effect of catchment storage, in particular in the groundwater and in 
lakes on the memory of streamflow which may be more pronounced for larger catchments, where the subsurface 
contribution to streamflow is usually larger than in small catchments.

This time scale dependence of hydrological response can be clearly seen in the propagation of droughts in the 
hydrological cycle (Apurv et al., 2017; Tallaksen et al., 2009; Van Loon & Laaha, 2015). The main mechanisms 
tend to be the storage of water in the subsurface as well as travel times of water from the land surface to the sub-
surface, both mechanisms delaying the climate time scales and thus introducing longer time scales into hydrolog-
ical response. On the other hand, there may also be non-linear interactions within catchments that introduce time 
scales that are not present in the climate signal through processes of co-evolution (Sivapalan & Bloschl, 2015). 
These interactions may occur at the scale of events where event-scale rainfall and seasonal soil moisture are 
coupled and longer scales of soil and vegetation evolution over decades, as well as groundwater flow interacting 
with climate controls (Troch et al., 2015). The non-linearity can be due to the coupling of linear or non-linear 
processes or threshold processes that may result in bistable system states, where the state (e.g., wet or dry) can 
switch from one state to another, leading to an abrupt change in the regime (Scheffer et al., 2009). An example 
of a bistable system is the interaction between transpiration and saline groundwater, as proposed by (Peterson 
et al., 2009). Vegetation can play a key role in both adapting to and modulating the soil moisture regime (Asb-
jornsen et al., 2011; D'Odorico et al., 2007) resulting in complex interactions and feedbacks between vegetation 
and hydrologic flows at multiple scales. These interactions include the ability of plants, at least in some instances, 
to engineer their soil characteristics and to learn from the past climate in order to maximize biomass growth and 
survival chances (Gao et al., 2014).

All of these potential processes may interact and their relative importance may depend on the particular climate, 
vegetation, soil, landform and geological conditions. At this stage it is not clear how exactly the elasticity depends 
on time scale and what the processes controls of such a dependence are. This study mainly focuses on annual to 
multiannual (five years) scale. The aim of this paper is therefore (a) to identify the dependence of elasticity on 
timescale based on a global streamflow data set, and (b) to attribute this dependence to any process causes.

2. Data and Methods
2.1. Data

Streamflow and precipitation data used in this study were obtained from the following sources. We used monthly 
streamflow data from seven sources, including the Global Runoff Data Centre (GRDC, located in Germany, 
http://www.bafg.de/GRDC/EN/Home/homepage_node.html), (b) the U.S. Geological Survey (USGS) National 
Water Information System and Geospatial Attributes of Gages for Evaluating Streamflow (GAGES)-II database, 
(c) the Australian Bureau of Meteorology (http://www.bom.gov.au/water/hrs/), (d) the HidroWeb portal of the 
Brazilian Agência Nacional de Águas (http://www.snirh.gov.br/hidroweb), (e) the European Water Archive of the 
European Flow Regimes from International Experimental and Network Data (EURO-FRIEND-Water; http://ne-
friend.bafg.de) and the Catchment Characterization and Modeling–Joint Research Centre database, (f) the Water 
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Survey of Canada Hydrometric Data (HYDAT; https://www.canada.ca/en/environment-climate-change), and (g) 
the Chilean Center for Climate and Resilience Research (CR2; http://www.cr2.cl/datos-de-caudales/) and Catch-
ment Attributes and Meteorology for Large-Sample Studies (CAMELS-CL). To have high quality streamflow 
data set, we setup the following selection criteria, including (a) largely unregulated (reservoir capacity less than 
10% of total annual streamflow, according to Zhou et al. (2021)), (b) largely un-irrigated (irrigation area is less 
than 10% of total catchment area), (c) with small or negligible water body (less than 10% of catchment area), (d) 
small to median size (less than 10,000 km2), and (e) having more than 30 years of streamflow observations for the 
period from 1950 to 2016. Based on the above-mentioned criteria, we selected 7,053 out of 21,953 catchments. 
The original streamflow data is with daily resolution. We used daily streamflow to convert to monthly values by 
arithmetical average, and a maximum of two missing days was allowed. As a result, 50% of the 7,053 catchments 
have 48–67 years of streamflow observations, 25% of the catchments have 37–48 years of observations, and 25% 
of the catchments have 30–37 years of observations in 1950–2016. Daily precipitation data from 1948 to 2016 
were obtained from the 0.25° resolution Princeton Global Forcing (PGF) data (Sheffield et al., 2006, 2012). The 
gridded precipitation data were aggregated to each catchment using area weighting average, based on grid cells 
and their area percentage within the target catchment.

Additionally, to estimate/predict the elasticity, the scaling magnitude and scaling signs, we used 17 catchment 
attribute data for the 7,053 gauged catchments from the following sources: (a) the ALOS World 3D DSM data 
set with 30m resolution was used for calculating catchment size, elevation and slope (Takaku et al., 2014), (b) 
soil permeability (the ease of fluid flow through soil porous media) was obtained from Global Hydrogeolo-
gy Maps (Gleeson et  al.,  2014), (c) climatological data such as mean annual precipitation, precipitation sea-
sonality and potential evaporation seasonality, and aridity index were calculated from PGF data set (Sheffield 
et al., 2006, 2012), (d) land cover type data were obtained from 2001 MODIS yearly land cover type (https://doi.
org/10.5067/MODIS/MCD12Q1.006), and (e) leaf area index data were derived from the Advanced Very High 
Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g version 2 
(https://daac.ornl.gov/VEGETATION/guides/Mean_Seasonal_LAI.html). Table 1 summarizes statistical details 
of each catchment attribute from the 7,053 selected gauged catchments. Note that precipitation information is 
used for calculating the elasticity and predicting the scaling of elasticity. The elasticities are calculated using the 

Attribute Unit Min 2.5th 25th Median 75th 97.5th Max

Latitude Degree −45.6 −36.7 35.2 40.9 47.0 59.7 72.2

Catchment size km2 1.9 22.1 179.7 547.0 1,660.0 7,535.7 9,981.2

Mean elevation m a.s.l 11.3 39.1 251.8 468.4 1,019.1 2,935.0 4,285.9

Mean slope Degree 0.03 0.23 0.48 1.16 2.41 5.19 9.08

Permeability logk (m2) 4.80 4.95 4.95 5.95 7.22 8.21 8.44

Runoff coefficient Unitless 0.00 0.01 0.25 0.38 0.53 1.05 1.25

Mean annual precipitation mm/year 40 273 561 904 1,165 1,886 3,231

Ratio of summer precipitation to winter precipitation Unitless 0.00 0.04 0.86 1.41 2.39 17.87 2,002.30

Ratio of summer potential evaporation to winter potential evaporation Unitless 0.72 1.27 3.02 5.16 9.05 34.34 132.71

Aridity index Unitless 0.1 0.4 1.0 1.2 1.9 5.3 79.7

Mean annual air temperature ºC −13.15 −0.85 5.69 9.07 13.35 21.92 27.26

Snow fraction Unitless 0.00 0.00 0.01 0.11 0.28 0.58 0.97

Permafrost fraction Unitless 0.00 0.00 0.00 0.00 0.00 0.15 0.95

Forest fraction Unitless 0.00 0.00 0.01 0.14 0.53 0.98 1.00

Shrubland fraction Unitless 0.00 0.00 0.00 0.00 0.00 0.22 1.00

Savannas fraction Unitless 0.00 0.00 0.07 0.25 0.50 0.86 0.99

Grassland fraction Unitless 0.00 0.00 0.01 0.04 0.24 0.93 1.00

Leaf area index Unitless 0.00 0.12 0.80 1.31 1.90 3.50 5.23

Table 1 
Percentiles of the 17 Catchment Attributes of the 7,053 Gauged Catchments Used in This Study
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fluctuations or deviations from precipitation averages, while the prediction of the scaling of elasticity is done 
using long term precipitation attributes, such as mean annual precipitation and ratio of summer precipitation to 
winter precipitation.

2.2. Methods

We assume that variability of streamflow at a temporal aggregation interval i (e.g., annual) is mainly influenced 
by the variability in precipitation at that aggregation interval. Therefore, we can estimate streamflow variability 
at aggregation interval i (dQi, streamflow anomaly defined as Qi – Q) using the following equation:

𝑑𝑑𝑑𝑑𝑖𝑖 =
𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕𝑖𝑖 (1)

which can be rewritten as

���

�
= ��

��
�
�

���

�
=

��∕�
��∕�

���

�
= ���

���

� (2)

where Q is the mean streamflow at aggregation interval i, P is the mean precipitation at aggregation interval i, 
and εPi is the streamflow elasticity to precipitation. Therefore, εPi is calculated as the slope of a linear regression 
line fitted to monthly data (and aggregations of them) of deviations of precipitation from the mean (dPi) divided 
by mean precipitation (P) as independent variable and of deviations of streamflow from the mean (dQi) divided 
by mean streamflow (Q). It is noted this study used calendar year for the temporal aggregation. Since this is a 
global data analysis, we attempt to simplify our analysis using consistent time period. However, we acknowledge 
that using the hydrological year may be a better choice for a local analysis.

To avoid unreliable εPi estimates, we use the F-test to test validity of the linear regression in Equation 2, only 
select the εPi estimates with p < 0.1, and treat the rest as unvalidated and not used for calculating scaling. Since 
there are 48 aggregation intervals from 13 to 60 months for each catchment, and we only select the catchments 
with more than 36 validated εPi estimates (i.e., more than 75% data) for calculating the scaling of εPi. As a result, 
there are 5,327 catchments finally selected for the following analysis.

The scaling of εPi is also estimated as a linear trend of εPi as a function of the aggregation time intervals from 13 
to 60 months. Even though the scaling of εPi is not expected to be linear (see e.g., Figure 1), we use here a linear 
model to detect a tendency in a parsimonious way. The estimates of the scaling of εPi are given by the slope of 
the regression line between elasticity and aggregation times equal or larger than one year (Figure 2), obtained 
using the ordinary least squares (OLS) method because of its simplicity. The OLS method returns almost identical 
results of the scaling, compared to a more complex method, such as the Mann-Kendall test with the Sen slope 
(R2 = 0.996), demonstrating the robustness of the OLS method. Figure 2 illustrates the scaling of εPi for two ran-
domly selected catchments with positive and negative scaling. The example of Figure 2a is located in Victoria, 

Figure 2. Elasticities of two example catchments for different aggregation times (from 1 month to 60 months). All the elasticities shown in the examples pass the F test 
(p < 0.1). Regression line indicates the scaling for aggregations from 13 to 60 months (a) Is the Lerderderg river catchment at Goodman creek (235 km2) in Victoria, 
Australia which has a positive scaling, (b) is the Pawcatuck river catchment at Westerly (766 km2) in Connecticut, US which has a negative scaling.

 19447973, 2022, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
030601 by Politecnico D

i T
orino Sist. B

ibl D
el Polit D

i T
orino, W

iley O
nline L

ibrary on [14/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

ZHANG ET AL.

10.1029/2021WR030601

6 of 16

Australia, with 235 km2 catchment area. In this catchment the elasticity increases with time scale, from 2.5 at one 
year to around 5 for five years, and the scaling value is 0.05 per year. On the other hand, a forest catchment (77.6% 
forest cover) in Connecticut, US, shows the opposite behavior (Figure 2b). While at a time scale of a year the 
elasticity is around 1.2, it drops to 0.9 at time scale of five years, which could relate to vegetation metabolism (see 
Figure 1b and the Discussion section). It is noted that care should be made when extrapolating the linear scaling 
since it can be meaningless at small or large timescales. In other words, the scaling obtained here is approximately 
valid in the range 1–6 years and should not to be extrapolated to less than 1 year and more than a decade. The use 
of a univariate linear regression to detect the scaling is parsimonious since the elasticity tendency is quantified by 
one parameter. Of course, the tendency could be estimated by more complex models.

For the attribution of the scaling to potential causes, in a first step we conducted a univariate attribution analysis, 
where we plotted the correlations between the scaling magnitude and catchment attributes. These can be used to 
detect the direct relationship between the two. In addition, we analyzed the cumulative distribution function (cdf) 
of the scaling in terms of the catchment attributes, which is used to detect whether there exists a noticeable scaling 
difference between different bins of samples classified using the various catchment attributes.

In a second step, we used a machine learning approach, the Regression Tree Ensemble (RTE; M. Li et al., 2020; 
Zhang et al., 2018) to predict the scaling magnitude and signs of scaling. This approach allows evaluating the 
relative importance of prediction factors. We used ten-fold spatial validations to test its predictability. Two steps 
are included: (a) all data were randomly divided into 10 groups; (b) one group was selected as the validation sam-
ple and the rest was used for building the RTE model, which was looped 10 times until all data were evaluated 
for validation. Based on the RTE model so estimated we conducted an importance analysis for each of the 18 
predictive variables (i.e., catchment attributes; Zhang et al., 2018).

We used two metrics to evaluate model calibration and cross-validation performances: R2 and hit rate. They are 
defined as follows:
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where R2 is the coefficient of determination between the simulated streamflow elasticity (or, alternatively, the 
scaling of εPi) from the RTE model (S) and that obtained from observed data (O), j is the catchment index, and N 
is the total number of catchments (N = 5,327). R2 is also used as the metric of the importance analysis.

For analyzing the signs of the scaling of εPi, we grouped the catchments into three categories: significantly posi-
tive (p ≤ 0.05), significantly negative (p ≤ 0.05), and non-significant (p > 0.05), based on the Student's t test on 
the regression slope. We evaluated the RTE hit rate using the following equation:

Acc𝑘𝑘 =
𝐶𝐶RTE,𝑘𝑘

𝐶𝐶𝑂𝑂,𝑘𝑘

× 100% (4)

where Acck is the hit rate of the RTE approach for the category k (e.g., “positive” scaling), CO,k is the total count 
of observed scaling of εPi falling into the category k, CRTE,k is the count of RTE estimated scaling values which 
fall into the correct category k (i.e., number of the correctly classified sites).

It is noted that at dry catchments, monthly or subannual data can be skewed toward zero since sub-annual stream-
flows can remain close to zero, which can influence the elasticity estimates. However, there is no zero precipitation 
or streamflow issue at long timescales (annual or more) for the 5,327 selected catchments. This paper is interested in 
timescales from annual to decadal, and the sub-annual elasticities given in Figures 2 and 3a are there for completeness.

3. Results
3.1. Detection of Scaling

Figure 3 shows the estimated elasticities of streamflow to precipitation and its scaling for the 5,327 catchments 
included in the global analysis. Figure 3a shows how the elasticity varies with aggregation time in terms of its 
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average (thick blue line) and its spatial spread (light blue area). As expected, the streamflow elasticity to pre-
cipitation is lower at the seasonal timescale (for aggregation times of 1–12 months), which may be explained by 
catchment storage of water in soils, aquifers, snowpack and the landscape. This is because εPi compares rainfall 
and streamflow of the same time step. For example, if a large portion of rain in a given month is stored in the 
catchment, only a small fraction of its effect on streamflow will appear in the same month and hence εPi is small, 
while the remainder of the rainfall not evaporated will affect a later month not counted in the evaluation of εPi. At 
the annual and multiannual timescales (for aggregation times of 12–60 months) the elasticity is larger and varies 
less, with average values approaching 1.5, even though a slight increase with aggregation time can be observed, 
on average, considering all catchments. The brown line and shaded area in Figure 3a show the mean and spatial 
spread of the coefficient of determination R2 between precipitation and streamflow as a function of aggregation 
time. The shape of the functional dependence of R2 on aggregation time is similar to that of the elasticity which 
would be expected as both are measures of the dependence of the two variables. The average value of R2 is around 
0.6 for annual and multiannual timescale, when the R2 mainly varies between 0.4 and 0.7 across the 5,327 se-
lected catchments. This indicates that about 60% of the temporal variance of streamflow can be explained by the 
temporal variability of precipitation.

Figures 3b and 3c show the scaling of the streamflow elasticity with timescale, that is, the tendency for the esti-
mated elasticity to change with aggregation times from 13 to 60 months for the 5,327 catchments considered in 
the analysis. Figure 3b is the histogram of the scaling values, which suggests that, even though in most catchments 

Figure 3. Scaling of elasticity. (a) Elasticity of streamflow to precipitation, as a function of aggregation time scale with the blue line indicating mean and the blue 
area ±1 s. dev. Of the spatial variability; Correlation R2 between precipitation and streamflow as a function of aggregation time with the brown line indicating mean and 
the brown area ±1 s. dev. Of the spatial variability. (b) Histogram of the scaling of elasticity values; (c) global map of the scaling (blue: positive, red: negative, gray: 
non-significant).
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the scaling is close to 0, there are more catchments with a positive scaling than with a negative one. A positive 
scaling means that the sensitivity of streamflow to precipitation increases with the aggregation time interval 
(within the range 13–60 months), while a negative scaling means that it decreases. As shown in Figure 3b, the 
scaling of elasticity is basically distributed between −0.08 and 0.08 months−1. If the scaling is out of this range, it 
is probably unrealistic and could lead to mass balance problems. The location of the catchments with significant 
positive (blue), significant negative (red), and non-significant (gray) scaling is shown in Figure 3c. Notwithstand-
ing the considerable amount of scatter, some patterns can be observed in Figure 3c, such as the positive scaling 
in the Midwest of the United States, in Eastern Europe and in Southern Australia, and the negative scaling in the 
Eastern United States, and in Nord and Nord-Western Europe.

Overall, out of the 5,327 catchments considered, 3,182 (60%) have a significant positive scaling, 323 (6%) have a 
significant negative scaling, and 1,822 (34%) have non-significant scaling at a 5% significance level. The number 
of catchments showing a significant scaling of streamflow elasticity to precipitation with aggregation time is 
therefore much larger than expected by chance alone (i.e., 66% in total as opposed to 10% by change comprising 
5% positive and 5 negative). This result, and the spatial patterns shown in Figure 3c, seem to suggest that a scaling 
of elasticity is not just an artifact of the limited record lengths, and it is therefore of interest to understand why 
these patterns emerge. In the following sections we perform a data analysis in the attempt to attribute the sign and 
magnitude of the scaling of streamflow elasticity to the driving causes.

3.2. Univariate Attribution of Scaling

For each catchment, a number of climatic, hydrologic and physiographic characteristics are available (see Ta-
ble 1). Figure 4 shows, as scatterplots, the relationship between these catchment attributes and the scaling of 
streamflow elasticity to precipitation. The Pearson correlation coefficients are also indicated. For comparison, 
the bottom-right panel shows the correlation between the scaling and the mean elasticity (averaged over all aggre-
gation times from 13 to 60 months). There is a clear dependence of the scaling on the magnitude of the elasticity 
itself, that is, larger elasticities correspond to larger scaling values, with a correlation coefficient larger than 60%. 
On the other hand, the dependence of the scaling on the individual catchment attributes is rather weak. Only pre-
cipitation, forest ratio and leaf area index exhibit correlation coefficients larger than 20% (in absolute value). All 
correlations are negative, suggesting that drier catchments located in the south with smaller areas of vegetation 
are characterized by a larger (more positive) scaling of streamflow elasticity to precipitation with aggregation 
time. It is noted that some attributes, such as precipitation, forest ratio and leaf area index can be highly correlated 
and their relative contributions to the elasticity value and its scaling are further analyzed in Section 3.3.

Even though the correlation between the magnitude of the scaling and the catchment attributes is rather low, some 
interesting relationships can be observed by comparing the distributions of these attributes for the ensembles of 
catchments with significant positive, significant negative and non-significant scaling values (i.e., signs indicated 
in Figure 3c for each catchment). Figure 5 shows the four attributes where these distributions differ the most: 
mean annual precipitation, aridity index, forest ratio, and mean slope. The difference test with Two-sample Kol-
mogorov-Smirnov method indicates the distributions of the four attributes are significantly (p < 0.01) different 
between significant positive scaling and significant negative scaling (or non-significant scaling). Significant 
negative scaling and non-significant scaling do have significant difference for the distributions of mean annual 
precipitation, aridity index, mean slope, but not for the distribution of forest ratio. The distribution of mean an-
nual precipitation is shifted toward lower values for catchments characterized by a positive scaling, compared 
to all other catchments and, consistently, the distribution of the aridity index is shifted toward higher values for 
the same catchments. This means that more arid/less rainy catchments are more frequently characterized by a 
positive scaling of the streamflow elasticity to precipitation with aggregation time. Similarly, vegetation seems to 
have some explanatory power in determining the sign of the scaling. The distribution of the forest ratio is shift-
ed toward lower values for catchments characterized by a positive scaling. The distributions differ the most for 
catchments with small forest ratios. The less forested catchments are more frequently characterized by a positive 
scaling. In the more forested catchments, the difference in frequency between positive and negative scaling is 
small. In terms of mean slope, the catchments with lower slope or more gentle terrain are more frequently char-
acterized by a positive scaling.

Through this univariate analysis, some catchment attributes seem related to the sign and (less so) to the magni-
tude of the scaling of the streamflow elasticity to precipitation with aggregation time. However, it is difficult to 
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identify which attributes are jointly influencing the scaling because they may be correlated among themselves. 
For example, forest ratio is correlated with precipitation, and precipitation with aridity, which may partly explain 
the finding that less forested catchments more frequently exhibit positive scaling. To evaluate the joint relation 
between more catchment attributes and the scaling of streamflow elasticity to precipitation, in the next section we 
perform a multivariate correlation analysis.

3.3. Multivariate Attribution of Scaling

Figure 6 shows the outcomes of the importance analysis described in Section 2.2. Figure 6a reports, as a refer-
ence, the amount of variance of the mean streamflow elasticity (averaged over all aggregation times from 13 to 
60 months) that can be explained by random-forest regression models with one to 18 explanatory variables (i.e., 
catchment attributes). The red line shows the explanatory power of the models in calibration mode, while the 
blue line refers to the cross-validation mode, which is a measure of the prediction power of the model when used 
for “ungauged” catchments. While the best univariate model, with mean annual precipitation as the explanatory 

Figure 4. Correlation scatterplot between scaling of streamflow elasticity to precipitation (horizontal axes) and catchment attributes (vertical axes). Each point 
represents one catchment. Bottom right panel shows the mean elasticity versus its scaling. For definition and units of catchment attributes see Table 1. Numbers in red 
are the Pearson correlation coefficients.
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variable, explains only about 20% of the spatial variance of elasticity, the model with three explanatory variables 
(i.e., mean annual precipitation, latitude and aridity index) explains more than 80% of it in calibration mode and 
almost 60% in validation mode. More complex models also including the seasonality of precipitation, catchment 
mean slope and mean elevation explain 90% of the spatial variance of elasticity in calibration mode and 70% in 
validation mode. The spatial variation of streamflow elasticity to precipitation at the global scale is thus mainly 
explained by climate but also catchment attributes play some role.

The importance analysis for the scaling of streamflow elasticity to precipitation with aggregation time is shown 
in Figure 6b. Even though the model with three explanatory variables explains about 70% of its variance in cali-
bration, the cross-validation performance indicates that the prediction power of such a model is low, reaching an 
R2 of about 40% which does not improve significantly with more explanatory variables. This suggests that the at-
tribution of the magnitude of the scaling is not robust. As for the univariate analysis in Section 3.2, the magnitude 
of the scaling is not predicted well by the catchment attributes available in the database. However, its sign may 
be. Therefore, we also perform an importance analysis to identify whether a model can be found that explains the 
sign of the scaling of streamflow elasticity to precipitation with aggregation time.

Figure 6c presents the accuracy of random-forest classification models to identify the observed sign of the scaling. 
Dashed lines indicate the accuracy (i.e., percentage of catchments assigned to the right class) in calibration mode. 
With a univariate model having aridity index as explanatory variable, about 80% of the catchments with positive 
scaling and more than 35% of the catchments with non-significant scaling are classified as such. However almost 
no catchments with negative scaling are correctly classified by the model using aridity index alone. Multivariate 
models have a much higher accuracy, such as the five-variable model (i.e., aridity index, latitude, seasonality of 

Figure 5. Cumulative distribution function (cdf) of catchment attributes stratified by the sign of the scaling of streamflow elasticity to precipitation. Dash lines are the 
90% confidence intervals obtained using Greenwood's formula, which is an approximation for the variance of the Kaplan-Meier estimator.
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the potential evapotranspiration, annual precipitation and seasonality of precipitation) that, in calibration mode, 
assigns to almost all of the catchments the right sign of the scaling. However, this accuracy decreases in cross-val-
idation mode. While 80% of the catchments with positive scaling and 52% of the catchments with non-significant 
scaling are classified as such, less than 38% of the catchments with negative scaling are correctly classified by 
the model. The positive and non-significant scaling catchments can be predicted reasonably well, but not so the 
catchments with negative scaling. The analysis therefore suggests confidence in the data-based attribution of 
the non-negative scaling. As for the sign of elasticity, climate is the primary attribute responsible of its spatial 
variability at the global scale.

Given that no model could reasonably explain the spatial variability of the scaling magnitudes but some skill 
exists for models explaining their sign, it is of interest to investigate whether it is possible to attribute the causes 
for the spatial variability of the scaling when stratifying the catchments by its sign. This is especially interesting 

Figure 6. (a). Importance analysis (including cross-validation) for estimating the value of the mean elasticity of streamflow to precipitation. Attributes are sorted 
according to relative importance where the first attribute refers to a univariate model and the following attributes to multivariate models with increasing number of 
explanatory variables; (b). Importance analysis for estimating the value of the scaling of the elasticity; (c) Importance analysis for estimating the sign of the scaling of 
the elasticity. R2 represents the coefficient of determination between the simulated streamflow elasticity of streamflow (or, alternatively, scaling of) from the RTE model 
and that obtained from observed data (Equation 3), and the accuracy represents the percentage of catchments assigned to the correct class (Equation 4).
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for the catchments with positive scaling, which can be classified well by the 
random-forest classification model based mainly on climate variables. The 
results of this additional analysis are presented in Figure 7a which shows the 
importance analysis for the prediction of the value of the scaling for those 
catchments where the elasticity is significantly positive. The random-forest 
regression model with four explanatory variables (i.e., mean catchment slope, 
seasonality of precipitation, seasonality of potential evapotranspiration, and 
aridity index) explains more than 70% of the scaling variability in calibration 
mode and almost 40% of it in cross-validation mode. Even if this is not a 
very robust model, its performance is better than the performance of models 
explaining the full variability of the scaling (i.e., independently of its sign, in 
Figure 6b. On top of climatic variables, also a physiographic variable (mean 
catchment slope) appears in the best model. As expected, the performance is 
very low for catchments with significant negative scaling meaning that, on 
top of non being able to predict whether a catchment has a negative scaling, 
we are even less able to predict how negative it is, which is consistent with 
the previous analyses.

4. Discussion
In this paper, we use a data-based approach to investigate whether a scaling of 
streamflow elasticity to precipitation with aggregation time exists and, if so, 
to attribute the causes. We use precipitation only to evaluate the elasticity of 
runoff to precipitation with aggregation time from one year to multiple years 
(or a decade). It has been demonstrated in Figure 3a that, using precipitation 
only can explain 40%–70% variability of streamflow across the 5,327 catch-
ments once the temporal scale reaches one year or more. This indicates that 
overall the 0.25°resolution of PGF data precipitation data is sufficient for the 
modeling and data analysis. Adding other contributors such as potential evap-
otranspiration and groundwater storage can have a secondary contribution to 
the streamflow variability (de Lavenne et al., 2021; Fu et al., 2007; Konapala 
& Mishra, 2016; Tang et al., 2020).

Based on statistical tests, we detect the presence of the scaling of streamflow 
elasticity to precipitation in a significant number of catchments around the 
world. Overall, out of the 5,327 considered catchments, 3,182 (60%) have a 
significant positive scaling and 323 (6%) have a significant negative scaling 
at a 5% significance level. The number of catchments showing a significant 
positive scaling of streamflow elasticity to precipitation with aggregation 
time is therefore much larger than expected by chance alone (i.e., 10% or 533 
catchments). Even though the assumption of independence of the samples is 

not met at all sites, since some of them have serially correlated time series, the much large number of catchments 
with significant scaling than chance suggests that the scaling is real rather than an estimation artifact. Similarly, 
the larger number of catchments with positive scaling than those with negative scaling seems to be real. The 
implicit assumption usually made in climate impact analyses that elasticity does not depend on time scale may 
thus not be valid. In other words, streamflow response to, say, decadal climate fluctuations may be different from 
streamflow response to annual climate fluctuations. An anomalously wet decadal period may transform in a larg-
er (or in some cases smaller) streamflow increase than an anomalously wet year. This finding should be taken into 
account when using elasticity in climate impact research (Fu et al., 2007; Yang & Yang, 2011).

Having detected the existence of both positive and negative scaling of streamflow elasticity to precipitation with 
aggregation time, we examine whether it can be attributed to physical causes using a comparative hydrology 
approach (Bloschl et al., 2013; Falkenmark & Chapman, 1989). We search for climate and catchment attributes 
that can explain the differences in scaling of streamflow elasticity to precipitation observed in the 5,327 catch-
ments by correlation and importance analyses. No single characteristic is correlated well to the scaling values of 

Figure 7. Similar to Figure 6b but separately for catchments with positive (a) 
and negative (b) scaling values.
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individual catchments, which are only positively correlated with the (mean) 
elasticity itself. However, if one considers an ensemble of catchments, that 
is, stratifying the catchments by the sign of the scaling, four attributes show 
interesting differences in their distributions. More arid/less rainy catchments 
are more frequently characterized by a positive scaling of the streamflow 
elasticity to precipitation with aggregation time. This may be due to the fact 
that arid catchments are characterized by larger elasticity (Sankarasubrama-
nian et al., 2001) that, as mentioned above, is correlated to its scaling with 
aggregation time. Also, the less forested catchments are more frequently 
characterized by a positive scaling, which may be correlated with lower pre-
cipitation and larger aridity. The finding that the more forested catchments 
tend to be associated with negative scaling could be related to the way forest 
vegetation manages soil structure and its water holding capacity as well as 
transpiration (Bouaziz et al., 2020; Runyan et al., 2012; Troch et al., 2015). 
It is possible that the negative scaling reflects the effect of a type of metabo-
lism, that is, the regulation capacity of the vegetation to transpire more water 
if the past years have been wet. However, more research is needed to test this 

hypothesis at the catchment scale. Finally, the catchments with higher contributions of baseflow to streamflow 
are more frequently characterized by a positive scaling. This can be related to the effect of catchment storage 
acting also at the multiannual timescale and determining the increase of elasticity, in a similar way as it does more 
visibly at the sub-annual timescale. This interpretation is consistent with multiscale analyses of long streamflow 
records which usually consider catchment storage as one of the reasons for the presence of long-range depend-
ence (Montanari, 2003; Szolgayova et al., 2014).

Multivariate non-linear models are used to identify which attributes are jointly influencing the scaling. We find 
that some models seem to identify quite well the sign of the scaling, in particular whether a catchment has a 
non-negative scaling (positive or no-scaling). The best multivariate random forest classification model includes, 
as explanatory variables, aridity index, latitude, the potential evapotranspiration seasonality, air temperature, 
mean annual precipitation, and the precipitation seasonality. The model is mainly based on climate related attrib-
utes. This is consistent with the observation of the scaling being correlated with elasticity itself, whose global 
variability is mainly explained by climate (Chiew, 2006). However, the multivariate non-linear models based 
on machine learning used in this study do not allow distinguishing the individual contributions of the variables. 
To assist in the interpretation, Figure 8 shows how the model based on aridity index, latitude, seasonality of the 
potential evapotranspiration and mean annual precipitation, whose performance in validation is close to the best 
model, predicts the sign of the scaling globally. The figure should not be used for predictive purposes but merely 
as a means for exploring the characteristics of a model that captures quite well whether a catchment has a positive 
scaling or no-scaling (blue and gray regions in the figure).

Figure 8 indicates that drier and warmer regions tend to exhibit more positive scaling (e.g., the Mediterranean 
area, Australia, the Mid West of the United States). Australia is not only dry, but also characterized by large in-
tra-annual variability due to climate modes. Therefore, it is expected that the long-term water balance and very 
slow runoff (i.e., base flow contributed by groundwater storage) are more affected by climatic change than faster 
runoff processes in the regions with positive scaling.

It is possible that the prevailing positive scaling is related to the role of climate modes, in particular if the run-
off response to climate is non-linear with disproportionate or threshold effects as suggested by data analyses 
in Australia (Peterson et al., 2009, 2012). While Australia is also an area where the elasticity of streamflow to 
precipitation is itself high (see Figure 3 in (Chiew, 2006)), this is less so the case in the Mediterranean area and 
Mid West of the US pointing to the role of climate modes in Australia. High latitudes in the North, that is, dry and 
cold regions, more likely have non-positive or negative scaling. For instance, the non-positive scaling observed in 
Canada or Northern Europe may be related to snow processes and the decadal periodicity of energy availability. 
At the scale of decades, it may no longer be the storage of water that is relevant to scaling in these catchments 
but negative correlations between precipitation and air temperature, that is, the tendency for periods of higher 
precipitation to be associated with periods of lower temperature and thus less snow melt. The presence of such 
negative correlations between precipitation and temperature depends on the region and the season and may be 

Figure 8. Global map of the predicted sign of the scaling of elasticity with 
aggregation time with the random forest model with 4 climate variables (AI, 
lat, PET seasonality and P). Blue denotes significant positive scaling; red 
denotes significant negative scaling; gray denotes insignificant scaling at the 
5% level. Lighter colors for the same sign of scaling mean that the prediction 
points are more than 1000 km from any stream gauge (Figure 3c).
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caused by the fact that a large frequency of cyclones implies more precipitation, more cloud cover and less solar 
radiation and thus lower temperatures (Blöschl et al., 2020; Gagen et al., 2016). Note that the model is not very 
accurate in predicting negative scaling (Figure 7c), indicating that complex physical processes may control it and 
more in-depth research is required. Interestingly, one can also notice that the equatorial zone characterized by 
forests, warm climate, and high and strongly seasonal precipitation exhibits, in general, less positive scaling. The 
role of forests is not completely clear and more researches on this should be carried out in the future. In fact, a 
potential metabolism effect of vegetation, which individually would cause negative scaling, may contribute to the 
less positive scaling in these regions.

While the sign of the scaling of streamflow elasticity to precipitation with aggregation time is mainly controlled 
by climate, the spatial variability of the scaling magnitudes when the scaling is positive is also related to a phys-
iographic variable, that is, mean catchment slope, which appears as first controlling variable in the multivariate 
random forest regression model. It is possible that catchment slope is a proxy of other processes or characteristics 
such as the subsurface storage capacity or topographic effects on climate.

The scaling concept developed here is perhaps too simple for being used in practice as predictive model to support 
water management policies. This paper simply analyzes how the observed elasticity of streamflow to precipita-
tion may depend on the timescale and what could be the causes of this dependency. However, the usefulness of 
this analysis can be manyfold. We give several examples. First, it can be used to detect catchment evolution with 
climate variability and climate change across the regional and global scales, as shown in Figure 8. Second, it 
is useful for investigating effects of changing sign of the scaling of elasticity under the anthropogenic impacts. 
Third, it can also be used to check and improve global coupled climate-hydrologic models in the case that they 
are far from reproducing this scaling of the elasticity. Also, increasing elasticity with timescale may indicate hy-
drologic memory which can exacerbate the effects of climate change in certain parts of the world.

5. Conclusions
Based on the analyses of streamflow records in 5,327 selected catchments around the world over the period 
1950–2016 we draw the following conclusions.

1.  A significant scaling of streamflow elasticity to precipitation with aggregation time (from 13 to 60 months) is 
detected in 66% of the catchments (5% significance level) which is much larger than expected by chance (10%)

2.  The catchments with significant positive scaling of elasticity (59%) are more frequent than those with signif-
icant negative scaling of elasticity (6%)

3.  For individual catchments, catchment attributes do not show significant univariate correlations with the scal-
ing of elasticity, but for an ensemble of catchments, that is, when stratifying the catchments by the sign of 
the scaling, more arid/less rainy catchments, less forested catchments and catchments with a large baseflow 
contribution to streamflow are more frequently characterized by a positive scaling

4.  A multivariate analysis, using a random forest classification model, identifies aridity index, latitude, the po-
tential evapotranspiration seasonality, air temperature, mean annual precipitation, and the precipitation sea-
sonality as relevant explanatory variables of the scaling of elasticity

5.  A global mapping of the scaling of elasticity allows interpreting the sign of the scaling by non-linear runoff 
generation in arid regions, by the effect of climate modes and snow processes, and by the regulation capacity 
of vegetation to transpire more water if the past years were wet

6.  It is suggested that the scaling of streamflow elasticity to precipitation with aggregation time should be con-
sidered when using elasticity in climate impact analyses, that is, instead of annual elasticities, decadal elas-
ticities should be used

Data Availability Statement
Streamflow data used for this study were obtained from various agencies and their relative links have been pro-
vided in method section. Precipitation data were obtained from Princeton Global Forcing data set that is publicly 
available at https://hydrology.princeton.edu/data.pgf.php. We thank anonymous reviewers and editors for their 
critical and constructive comments on this paper.
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