POLITECNICO DI TORINO
Repository ISTITUZIONALE

Designing Probabilistic Flow Counting over Sliding Windows

Original

Designing Probabilistic Flow Counting over Sliding Windows / Cornacchia, Alessandro; Bianchi, Giuseppe; Bianco,
Andrea; Giaccone, Paolo. - ELETTRONICO. - (2022). ((Intervento presentato al convegno IFIP/IEEE International
Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN) tenutosi a Rome (lItaly)
nel 8-10 Nov. 2022 [10.23919/PEMWN56085.2022.9963868].

Availability:
This version is available at: 11583/2972829 since: 2022-12-04T05:36:48Z

Publisher:
IEEE

Published
DOI:10.23919/PEMWN56085.2022.9963868

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

21 December 2022

Designing Probabilistic Flow Counting
over Sliding Windows

Alessandro Cornacchia*, Giuseppe Bianchif, Andrea Bianco*, Paolo Giaccone*
* Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
TCNIT / Universita degli Studi di Roma - Tor Vergata, Via del Politecnico 1, Roma, 00133, Italy

Abstract—Probabilistic approaches allow designing very ef-
ficient data structures and algorithms aimed at computing
the number of flows within a given observation window. The
practical applications are many, ranging from security to network
monitoring and control.

We focus our investigation on approaches tailored for sliding
windows, that enable continous-time measurements indepen-
dently from the observation window. In particular, we show how
to extend standard approaches, such as Probabilistic Counting
with Stochastic Averaging (PCSA), to count over an observation
window. The main idea is to modify the data structure to
store a compact representation of the timestamp in the registers
and to modify coherently the related algorithms. We propose a
timestamp-augmented version of PCSA, denoted as TS-PCSA,
and compare it with state-of-the-art solutions based on Hyper-
Loglog (HLL) counters that evaluate the cardinality over a
sliding window, but without storing the timestamps. We will show
that TS-PCSA with a limited memory footprint is achieving a
different tradeoff between memory and accuracy with respect to
HLL-based solutions.

I. INTRODUCTION

Monitoring the number of distinct flows that are active
within a network traffic aggregate is a crucial task for
network managers. Several applications, including intrusion
detection [, [2], [3]], traffic engineering [4]], packet scheduling
and router design [5], can benefit from a fast and accurate
estimation of such flow cardinality. Different applications
adopt different flow definitions and look at different traffic
aggregates. For example, in a DDoS attack, several sources
flood a victim host with a huge amount of traffic in order
to make it unavailable. Therefore, a DDoS detection system
should count the number of distinct source IP addresses (i.e.,
flows) that are currently active within the portion of traffic
destined to a single host. Similarly, detecting a port scanning
attack can be performed by counting the distinct destination
ports in a set of packets with the same source IP address.

The capability to track in continuous-time the traffic statis-
tics of interest is an essential property for new generation
measurement algorithms. Existing literature about streaming
algorithms for cardinality estimation [6], [7]], [8], [9] has vastly
addressed how to get accurate count estimates by processing
the input traffic stream using a constant-time per-packet oper-
ations and logarithmic (or sub-logarithmic) memory footprint
compared to the input stream size. Unfortunately, most of
these widely adopted count-unique sketch data structures (e.g.,
PCSA, HyperLoglLog (HLL) [8]]) do not provide natively the
possibility to devise a sliding window approach in a way

to forget outdated information and consider only “recent”
traffic. Rather, the typical deployment assumption is to operate
the sketch structure on slotted time intervals (i.e., epochs)
and reset the entire structure at the end of every interval
before starting the next one. By working with static and
non-overlapping measurement intervals, this simple solution
cannot answer queries about past windows continuously over
time, but only synchronously to interval boundaries (i.e., reset
times). Thus, it may fail to detect the spreading behavior
of a traffic aggregate if it happens in the middle of two
consecutive epochs, as the corresponding flow cardinality will
be split across two independent estimates. Furthermore, it is
challenging to set the proper interval size, as it introduces
a subtle trade-off between latency and detection capability.
A large interval would introduce high reaction delays (being
results available only at the end of the interval), whereas short
intervals might not be able to spot a slow spreader. In our
work, we will instead consider native approaches to support
continuous-time measurements.

Two types of solutions can be devised to estimate the
cardinality in continuous time, which we refer to as timestamp-
augmented and timestamp-free. Timestamp-augmented algo-
rithms [5], [10]], [11] enhance existing count-unique sketches
by augmenting the information maintained in the sketch
structure with timestamp data. In a different line of work,
timestamp-free solutions do not require any timestamp to be
stored. For example, ST-HLL [12] approximates a triangular-
shaped low-pass filter by running a periodic staggered reset of
HyperLoglog registers. Therefore, in contrast to timestamp-
augmented solutions, ST-HLL comes at zero memory extra
cost, but its output might differ from the exact value of
cardinality on a sliding window, that instead corresponds to
filtering with a rectangular impulse response.

In this paper, we focus on timestamp-augmented approaches
and we consider in particular Probabilistic Counting with
Stochastic Averaging (PCSA) [6]. We show how the extend
it to support timestamp-augmented measurements and discuss
how to properly dimension the number of bits for the times-
tamp representation.

In summary, our main contributions are the following:

e we propose TS-PCSA, a basic timestamp-augmented
algorithm to enable PCSA counting distinct flows over
sliding windows.

o we design an optimized version of the algorithm, that
can reduce the overhead of storing high-resolution times-

tamps. We combine low-resolution timestamps with
stochastic averaging among time-shifted registers to
smooth the error introduced by rounding.

o we highlight the possibility of further reducing the mem-
ory footprint of TS-PCSA, by studying the refresh time
of the data structure storing the timestamps.

e« we compare the accuracy of TS-PCSA+ with HLL-
based solutions, and show their different tradeoff between
accuracy and memory footprint.

The rest of the paper is organized as follows. In Sec. [[I]
we provide the necessary background to probabilistic data
structures for cardinality estimation. We discuss both cumula-
tive counting algorithms and their extensions to deal with the
need of tracking, in continuous-time, cardinalities over sliding
windows. In Sec. [[T]] we present our algorithm TS-PCSA and
discuss its time and space complexity, where the latter is
strongly dependent on how the timestamps are represented.
In Sec. we propose TS-PCSA+, an optimization of the
basic algorithm, highlighting possible ways to further optimize
its memory footprint. We assess the performance of TS-
PCSA+ in Sec. [V] where we compare the achieved tradeoff
between memory and accuracy with respect to timestamp-
augmented and timestamp-free algorithms. Finally, we draw
our conclusions and suggest future directions in Sec.

II. BACKGROUND ON PROBABILISTIC COUNTING
A. Cumulative counting

We now recall the technique of two classical probabilistic
data structures, i.e., HyperLoglLog (HLL) [8]] and Probabilistic
Counting with Stochastic Averaging (PCSA) [6], devised for
cardinality estimation. We refer to these baseline sketches as
cumulative counting techniques, as they do not provide any
means to forget outdated flows, but rather increase over time
their current estimation with the contribution of new arrivals.
The goal is to evaluate the cardinality n of a set of flows X
contained in a given stream of packets, i.e., with | X| = n.
Now, for each packet in the traffic stream, we can evaluate an
hash function h(z) on its flow identifier z € X and compute
the position| p(h(z)) of the left-most bit equal to 1 in the
binary representation of h(x). Let R(z) = p(h(z)) be the
rank of a flow x and observe that Prob(R =r) =27", i.e, R
follows a standard geometric distribution, given the uniformity
property of the hash function. Note that, by construction,
packets belonging to the same flow have the same value of
the hash function and thus multiple packets of the same flow
are counted just once.

For the moment, assume to store, as follows, all the ranks in
the same bitmask with entries C'[b], where b is the bth Least
Significant (LS) bit. For each flow z, set C[R(z)] = 1 to
store the corresponding rank. After inserting 2% flows, ideally
we would expect to observe C' composed of a block of zeros
in the Most Significant (MS) bits and a block of £ ones in
the LS bits. Thus, we would estimate the cardinality as 2*:
where k; is the number of ones in C'. Unfortunately, due to

Counted starting from one.

the randomness of the traffic and due to the hash function, C
is typically composed of a block of zeros (MS bits), followed
by non-continuous sequences of zeros and ones, and finally a
block of only ones (LS bits). Thus, we need to approximate the
cardinality with an estimator, computed according to different
approaches:

o in PCSA, consider the entire bitmask of ranks and ap-
proximate the number of distinct flows as n = 2%t where
k1 is the size of the rightmost one block, or equivalently
k1 + 1 corresponds to the position of the first zero in C'
starting from the least significant bit;

o in HLL, consider only the maximum rank in the bitmask,
ie., Rmax = maxgex p(h(x)), and approximate the
distinct number of flows as n = 2fmax,

It is worth noticing that PCSA requires the entire bitmask C' to
be stored in a memory register, whereas HLL only the value of
the maximum rank. Thus, HLL can be deployed using smaller
memory registers than PCSA, by a logarithmic factor in the
number of bits.

The above techniques are characterized by a large vari-
ance, due to the possibility of outlier flows (i.e., flows with
R > log,n) that would blow up their estimation. HLL and
PCSA reduce such variance through stochastic averaging,
introduced in [6]. Stochastic averaging splits uniformly at
random the traffic stream into m traffic substreams, each
substream updating a different memory register, according to
the logic described above. Therefore different registers lead to
m independent estimators, which are then averaged to reduce
noisy fluctuations.

B. Counting over sliding windows

Timestamp-augmented sketches. Timestamp-augmented
solutions [5], [[L1], [L3] are characterized by augmenting
the synoptic information contained in a probabilistic count-
ing sketch with a time tag. Since the sketched information
is temporally tagged, these techniques can distinguish and
disregard outdated information with arbitrary precision by
choosing a sufficiently high timestamp resolution. In fact, by
properly choosing the resolution, they guarantee to use only
the knowledge coming from traffic within the window. As
a downside, managing timestamps poses a few challenges
for implementation on resource-constrained programmable
switches [14], due to their storage cost and the complexity
of ignoring outdated entries at query time.

The sliding HyperLoglog algorithm [11] (W-HLL) is a
state-of-the-art sketch for cardinality estimation based on
timestamp values. The core idea is that if the exhaustive
storage of all ranks observed in a past window would be
memory sustainable, then a sliding window solution could
be achieved by trivially re-running a vanilla HLL only on
this rank subset upon each query. As a main contribution, W-
HLL maintains only those ranks eligible to become maxima
in the future as follows. It uses m Lists of Possible Future
Maxima (LPFM) — in place of single-value registers —
containing pairs (timestamp, rank). When a new rank R is
inserted in a list, W-HLL evicts (1) all ranks R’ < R and

procedure QUERY (¢t,W)
a=0
for i < 0 — (m — 1) do
T T

> Init the accumulator for the average
> For each counter

1:
2:
3:
4: 0j = ——1i — > Compute the temporal offset
m — 1 2
5: for k < 0 — (K — 1) do > For each bit starting from LS bit
6: if T;[k]+06; <t — W then > Check timestamp
7 break > Leave the search loop if outside the window
8: a=a+k > Accumulate k for the average
9: n=m x 2%/™ > Compute the average and the final count

0: return n/0.775/W > Output the final rate with bias compensation

—_

Fig. 1: Querying at time ¢ a TS-PCSA sketch (e code) or a
TS-PCSA+ sketch (e e code), tracking a sliding window W.

(2) all outdated ranks whose timestamp is oldest than a time
window. Therefore, the arrival of a large rank evicts several
smallest LPFM entries. W-HLL is functionally equivalent to
to the exhaustive storage solution, but with significantly lower
memory consumption.

Timestamp-free sketches. A different family of algorithms
aims at approximating a sliding window filter without deal-
ing with timestamps. As an example, the Staggered Hyper-
LogLog [12] algorithm builds upon the idea of resetting one
HLL register every 7 unit of time, in a circular fashion.
This implies that the data structure stays in a “warm‘ state,
as only one register at a time loses its statistic. When a
query is issued to ST-HLL, its registers span time windows
with different lengths and misaligned with each other. By
proper compensation, this sketch can approximate continuous-

Ty
flow 21 at time ¢ — h(z1) = [1101010 1] T 4
1
. - To to
flow x5 at time t5 —— h(zg) = [0001111 0] T 7
1 1
Ty ta
flow x5 at time t3 » h(z3) = [1000110 1] o n
1 3
- To ta] |t2
flow x4 at time ¢4 — h(x4) = [1110100 0] e I

Fig. 2: TS-PCSA example when inserting the first 4 flows.

I:l valid I:l invalid
To | tstaotagltasfter|ts7tes] — k = 3

T |taa|tg |tasltssltealteofte] — k = 5

Fig. 3: The TS-PCSA sketch after inserting all 64 flows.

later in Sec. Let T; be the ith register and T;[k] be the
timestamp stored in the (k+ 1)th LS bit in PCSA, and denote
as valid all the timestamps that fall within the observation
window. The main idea is to find across all the registers
the average position at which the timestamp becomes invalid,
starting from the rightmost position. The main loop (In. [3}

time operations at the same computational complexity of finds for each register such position (equal to & in In.

vanilla HLL, making it attractive for data-plane deployment
on resource-constrained programmable switches.

III. TS-PCSA ALGORITHM

In the TimeStamp-augmented version of PCSA, denoted as
TS-PCSA, we assume to have m arrays (denoted as “registers”
with abuse of language), each of them storing K timestamps.
We select m being a power of 2. This structure mimics the
standard PCSA with m registers and K bits for each register,
but each bit of the PCSA register is instead storing a b-bit
timestamp. Our algorithm does not restrict the capabilities
of a standard PCSA and it supports the same operations. In
Sec. [[lI-A] we overview the ADD() and QUERY() operations
in TS-PCSA, discussing their complexity and the timestamp
representation in Sec. [[II-B}

A. Algorithm overview

Adding a flow is substantially equivalent to a standard
PCSA. The ADD() operation exploits the logym LS bits
to choose a register (i.e., select the substream), while the
remaining bits are used to compute the rank of the flow.
Differently from PCSA, TS-PCSA updates the register in the
position identified by the rank with the flow arrival time,
instead of with a single bit.

Querying the flow cardinality in the last W observation
window at time ¢ is supported through the QUERY/() operation,
whose pseudocode is reported in Fig. [I] We temporarily ignore
the code sections referring to TS-PCSA+, that will be clarified

and computes the average a/m, from which the cardinality
is derived oc 2%/™ (In. |9). Finally, an estimate of the flow
arrival rate is computed by applying the same bias correction
of PCSA and dividing by the length of the observation window.
Example. Fig. |2 shows a toy example of a TS-PCSA with 2
registers, each storing 7 timestamps. The traffic is constituted
by a sequence of 64 flow arrivals, with flow z; arriving at
time ¢;. For ease of explanation, we assume flows consisting
of a single packet. By applying the hash function h(zx;), the
last bit is used to select the register, whereas the first 1 in
the remaining binary string, starting from the LS bit, i.e. rank,
identifies the position in the register where the timestamp is
updated. The figure shows the step-by-step state when the first
4 flows are added with ranks (2,1,2,3). The final state at
time tg4, after having inserted all flows, is shown in Fig. E],
where we highlight that most of the initial timestamps have
been overwritten by the most recent ones, especially in low-
rank positions which are more likely to be updated. Assume
at this time to query the sketch using an observation window
of length W = tg4 — t3o. For register T, the first invalid
timestamp is found at the 4th register entry (k = 3), since
tos < teqa — W, while for register T} in the 6th entry (k = 5),
since tg < tg4 — W. Thus, the average number of continuous
blocks of valid timestamps is n = (3 + 5)/2 = 4, that is
used to estimate the total number of flows as 2 x 24 = 32 (by
chance, corresponding to the exact value of flows observed in
W). For simplicity, in this example, we have not considered
the bias correction factor.

B. Algorithm overhead and complexity

Memory consumption. The memory footprint of a TS-
PCSA sketch using m arrays of b-bits timestamp and capable
of counting up to 2% unique flows is m x K x b bits.
Dimensioning b for a binary representation of the timestamp
is not trivial. Notably, representing time with infinite precision
would require an infinite number of bits. Thus, it is necessary
to set a time resolution, defined as 7. Now the observation
window W can be seen as divided into W/7 timeslots, for
which at least [log, (W/7)] bit{’|are required. The timestamps
will be wrapped to the maximum integer representation chosen
for the timestamp, and we need to be sure to properly compute
differences between timeslots. Assuming to prune all the
invalid timestamps periodically once every aW time (i.e., all
timestamps before ¢ — W are reset), with a > 0, we need
to cover an interval of time (1 +)W with distinct timeslots
to properly compute the difference of time. We need also an
additional bit to tag a timestamp as invalid. Thus, the total
number of bits is b = 1+ [log,((1 + a)W/7)].

Time complexity. As regards the ADD() operation, TS-
PCSA preserves the same O(1) average time complexity
of PCSA. The QUERY() operation is a bit more involved.
TS-PCSA requires finding the first invalid timestamp in all
registers to average their positions. Thus, querying the sketch
has complexity O(mK) due to a linear search in each register.
We observe that in PCSA the linear search can be avoided with
simple workarounds, like keeping a pointer to the first invalid
position within each register. This is practicable because
blocks of contiguous 1s cannot fragment once they have built
up. In our algorithm the timestamps may become invalid after
W time units have elapsed since when they were stored. Thus,
a block of contiguous valid timestamps will likely fragment,
hindering the use of such a simple technique. This substantial
difference represents a limitation of our approach.

IV. ALGORITHM OPTIMIZATIONS IN TS-PCSA+

A. Timestamp rounding errors

When flow z; arrives, it is associated with an integer
timestamp t;, which is a multiple of 7. Different ways can
be used to round the actual arrival time to the slotted time.
We will see later that rounding it to the closest timeslot is
the strategy that minimizes the counting error, as could be
expected intuitively. Nevertheless, the cardinality estimation
TS-PCSA still suffers from some temporal rounding errors,
highlighted in Fig. [Indeed, when a flow arrives after the
middle of the timeslot, as in the case of z;, the cardinality
in W is over-estimated for < 7/2 units of time. On the
contrary, when it arrives before the middle of the timeslot,
as in the case of zo, the cardinality in W is under-estimated
for < 7/2 units of time. The overall effect, as shown later
in our experimental analysis, is that the cardinality estimation
appears as a sawtooth function around the average.

2We denoted by [] the operation of ceil integer rounding

i tit1 tito w

Fig. 4: Effect of rounding the arrival time on the cardinality
estimation: (a) overestimation case, (b) underestimation case.

— k=1 k=4 —- k=8
1.0 7
7
0.8 4 !
/
0.6 /
& !
o]
0.4 /
7
0.2 /
7/
"./
0.0 T = T T
105 10* 107 102 107! 10°

Time-to-refresh [s]

Fig. 5: Distribution of the timestamp refresh time for three
different positions within a register.

B. Low-bit time quantization with register offsetting

To compensate for the systematic estimation errors due to
the timestamp rounding, we propose an enhanced version of
the algorithm, denoted as TS-PCSA+. It can be implemented
by adding a single line of code to basic TS-PCSA (Fig.[I). As
reported in the pseudocode, TS-PCSA+ introduces an offset
9; for each register T;, computed such that 69 = —7/2 and
dm—1 = 7/2. Remember that in the PCSA family, individual
registers can be seen as independent estimators, each giving
contribution 2¥/™ to the final count (see In. @) From the
discussion in Sec. [[V-A] it’s easy to see that all estimators
2k/™ follow a sawtooth pattern over time. Now, the rationale
is that by anticipating half of the sawtooth-like estimators and
delaying a half — with the average phase offset being null —
the phases combine destructively, averaging out the rounding
error. We prove the effectiveness of this approach in Sec. [V-B]
which allows to significantly reduce the timestamp size, while
preserving accuracy.

C. Further timestamp optimizations

The amount of bits for each timestamp has been assumed
to be constant across all the positions within each register. We
wish now to highlight that this is a suboptimal design choice
since it is possible to reduce the number of bits, depending on
the position within the register.

Indeed, consider a toy scenario, with periodic flow arrivals
at rate R = 10° flows/s, and TS-PCSA+ to update m = 64
registers. Fig. [5] shows the CDF of the refresh time for
each position of a register. It can be easily shown that, on
average, the timestamp in position k will be refreshed every
(1/R) x 2% x m, which is coherent with the median value
observed in the figure. As an extreme case, looking at the

15000 4

12500 A

10000 A/‘. i/ A V B V /
7500-/VV VVV [/V VV[/

5000 A

Flow cardinality

2500 A

—— round-closest round-down ----

0 T T T T T T T T
01 02 03 04 05 06 07 08 09 1.0

time [s]

Fig. 6: Rounding effect in TS-PCSA with b = 5 bits.

round-up --- true

15000 4

12500 4
and\ Vo I N VA

10000 WAWV‘ VY oV A N

7500

5000

Flow cardinality

2500 A

—— TS-PCSA+ ---- true

0 T T T T T T T T
01 02 03 04 05 06 07 08 09 10

time [s]

Fig. 7: TS-PCSA+ algorithm smoothes the sawtooth behavior.

graph the first position (i.e., kK = 1) is almost surely updated
within 0.01 s, suggesting that, by considering any window W
larger than this value, storing the timestamp is useless. This
suggests that it is possible to reduce the memory footage by
never storing the timestamps in such a position. In general, by
observing the CDF it is clear that some lower positions within
the register can be omitted. At the same time, consider that
TS-PCSA+, by construction, does not consider the timestamps
within a register above an invalid timestamp (e.g., consider tg
and t9 in Fig. [3)), thus suggesting that also keeping the full
bit representation for such position is useless. In summary,
only the timestamp within a “reasonable” central range of
positions should be stored to minimize the memory footprint
of TS-PCSA+. Furthermore, different time resolutions could
be considered depending on the position within the register.
We leave these research directions for future work.

V. PERFORMANCE EVALUATION

We conducted a set of experiments on synthetic and real-
world traffic workloads to evaluate TS-PCSA. In this sec-
tion, we show (1) the effectiveness of our technique in
compensating the overestimation and underestimation errors
introduced by low-resolution timestamps and (2) we compare
TS-PCSA to related continuous-time probabilistic counting
solutions, including Sliding HyperLogLog [11]] and Staggered
HyperLoglLog [12]. Results show that our algorithm improves
accuracy upon existing timestamp-based methods, especially
when few registers are available.

A. Experimental setup

Implementation. We developed all algorithms as Python
routines. The source code is released under an open-source

license and published onlineﬂ In our implementation, all
algorithms use the SHA1 hash function. We extract from the
SHAI digest the first 32 bits, which are enough to rule out
the problem of hash collisions for all the configurations of
workload and window size we tested.

Workloads. We use two kinds of network traffic workloads.

1) Synthetic. We create new packet arrivals according to
a periodic generation process with a deterministic rate
A. In this dataset the traffic stream is composed only
of packets belonging to distinct flows, therefore each
flow consists of a single packet. This baseline scenario
is helpful in Sec. [V-B] to show the effect on cardinality
estimation of rounding packet arrival times to coarse-
grained time bins.

2) CAIDA equinix-nyc. A network traffic trace collected
from a 10 Gbps link in an Internet backbone router from
CAIDA [15]. We use the 2-tuple of source IP address
and destination IP address as flow key. The trace refers
to about 1 minute of traffic and contains about 2 million
flows and 36 million packets.

Unless otherwise stated, the observation window W was set
to 100 ms for all experiments.

Hardware setup. We run all experiments on Linux machines
in an HPCﬂ cluster. Each machine is equipped with two 2.10
GHz Intel Xeon Scalable Processor Gold 6130 CPUs with 16
cores and 384GB DDR4ECC RAM.

B. Effectiveness of our TS-PCSA+ optimizations

First, we provide evidence about how our technique based
on register offsets averages out overestimation and underes-
timation errors introduced by time quantization. We measure
flow cardinality on the synthetic workload using the baseline
version of our algorithm (without register offsets). In Fig. [6] we
compare round-up, round-down, and round-closest rounding
strategies, where packet arrival times are set to the past,
next, and closest represented timestamp, respectively. In this
experiment, we used a TS-PCSA sketch with 256 registers,
the time resolution 7 was set to 0.0625 s. In all scenarios, we
observe a sawtooth pattern in the flow cardinality estimate,
with 16 peaks in a 1 s interval (the initial transient has been
removed), coherently with what was discussed in Sec.
Adopting the round-up strategy, we only suffer overestimation
errors. In fact, the minima correspond almost exactly to the
true value. The contrary holds for round-up. Fig. [/| shows
what happens when the same workload undergoes TS-PCSA+,
our enhanced version. A relative time offset between registers
of about 7/m ~ 0.24 ms almost cancels the peaks in the
estimation.

C. Performance over real traffic traces

As a subsequent step, we analyze how our algorithm
behaves under the realistic traffic workload described in
Sec. [V=A] As a performance metric, we measure the average

3GitHub repository: https:/github.com/alessandrocornacchia/Stag-HLL.git
4Academic Computing Center at Politecnico di Torino - http://hpc.polito.it

https://github.com/alessandrocornacchia/Stag-HLL.git
http://hpc.polito.it

+ —— TS-PCSA (m=32)
0.5 —=— TS-PCSA (m=512)
N \ -+~ TS-PCSA+ (m=32)
© 0.4 \ TS-PCSA+ (M=512)
]
£ 0.3 (
T R
2 0.2 \\ N
N
0.14 =t
—_ . |
0.0+ T T T T -
3 4 5 6 7 8

Timestamp size [bit]

Fig. 8: Trade-off between accuracy and number of bits used
for time quantization for TS-PCSA and TS-PCSA+.

estimation error, relative to the true value of the cardinality.
How many bits can TS-PCSA+ save? We first try to under-
stand how much we can gain in practical scenarios comparing
TS-PCSA with its optimized version TS-PCSA+. We want to
quantify the gain in terms of how many bits per timestamp we
can save, without sacrificing accuracy. Fig. [§] shows that for all
configurations in the number of registers, TS-PCSA+ requires
as much as 38% less memory with respect to TS-PCSA to
achieve a relative error below 10%. Performance stabilize at
5 bits/timestamp. We verified that even if timestamps were
represented using python’s float32, the relative error converges
close to the same value. This means that our simple yet
powerful offset technique closely approaches a system with
“ideal” timestamp resolution.

How does TS-PCSA+ compare with state-of-the-art? We
test TS-PCSA+ against W-HLL and ST-HLL that were in-
troduced in Sec. [[I-B). Since all these sketches share the
same structure based on registers, we configure them with
an equal number of registers for comparison. TS-PCSA+
outperforms both timestamp-augmented and timestamp-free
solutions (Fig. [0), especially in configurations with few reg-
isters. The reason is that W-HLL and ST-HLL base their
estimations only on the most recent maximum ranks, whereas
TS-PCSA+ considers a contiguous block of ranks not older
than W, which is a piece of richer information. Notably, TS-
PCSA+ can be deployed at a memory cost comparable to
W-HLL. The space needed by W-HLL is a function of the
LFPMs size, but bounded by 40m In(n/m) bits, being n the
flow cardinality within the window. In its 5 bits/timestamp
configuration, the TS-PCSA+ sketch is more lightweight than
W-HLL whenever meX/8 < n is satisfied. Considering that
n is ranges between 10-20k for W = 0.1s, this is easy to be
enforced with K < 27. ST-HLL gives the worst performance
but is at least 8x more lightweight in terms of memory
footprint [12]].

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the challenging task of counting
unique flows over a sliding window in continuous-time. We
proposed a novel timestamp-augmented sketch based on the
PCSA probabilistic data structure and tested it over real-world
Internet traffic. Thanks to the simple yet effective strategy to

ST-HLL =71 W-HLL ZZ2 TS-PCSA+

0.15
S
=010 H
(9]
2
=
£ £
& 0.05 1 [_E
0.00 T T T .HH
64 128 256 512
registers

Fig. 9: Comparison between timestamp-augmented and
timestamp-free algorithms over Internet traffic traces.

associate a constant temporal offset to the sketch registers, our
algorithm remains as lightweight as previous techniques based
on timestamp, however, it is up to 35% more accurate. We
highlighted the opportunity for further compression of the TS-
PCSA structure, which deserves a deeper investigation that we
leave as future work. Finally, we think that a valuable research
direction is to investigate how to efficiently exclude outdated
timestamps at query time, which remains a shortcoming in our
algorithm.

REFERENCES

[1] V. Bruschi, S. Pontarelli, J. Tollet, D. Barach, and G. Bianchi, “Flow-
fight: High performance—low memory top-k spreader detection,” Com-
puter Networks, vol. 196, p. 108239, 2021.

Y. Chabchoub, R. Chiky, and B. Dogan, “How can sliding HyperLogLog

and EWMA detect port scan attacks in IP traffic?”” EURASIP Journal

on Information Security, vol. 2014, no. 1.

[3] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macid-Ferndndez, and
E. Vézquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Computers and Security, vol. 28, no. 1, pp.
18-28, 20009.

[4] Y. Liu, W. Chen, and Y. Guan, “Identifying high-cardinality hosts from
network-wide traffic measurements,” IEEE Transactions on Dependable
and Secure Computing, vol. 13, no. 5, pp. 547-558, 2015.

[5] H.-A. Kim and D. O’Hallaron, “Counting network flows in real time,”

in IEEE GLOBECOM, 2003.

P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data

base applications,” Journal of computer and system sciences, vol. 31,

no. 2, pp. 182-209, 1985.

[71 M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in

European Symposium on Algorithms. Springer, 2003, pp. 605-617.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog: the

analysis of a near-optimal cardinality estimation algorithm,” in AofA,

2007.

F. Giroire, “Order statistics and estimating cardinalities of massive data

sets,” Discrete Applied Mathematics, vol. 157, no. 2, p. 406-427, 2009.

E. Fusy and F. Giroire, “Estimating the number of active flows in a data

stream over a sliding window,” in ANALCO, 2007.

Y. Chabchoub and G. Heébrail, “Sliding HyperLogLog: Estimating

cardinality in a data stream over a sliding window,” in International

Conference on Data Mining Workshops. 1EEE, 2010.

A. Cornacchia, G. Bianchi, A. Bianco, and P. Giaccone, “Staggered

hll: Near-continuous-time cardinality estimation with no overhead,”

Computer Communications, vol. 193, pp. 168-175, 2022.

R. B. Basat, G. Einziger, I. Keslassy, A. Orda, S. Vargaftik, and

E. Waisbard, “Memento: Making sliding windows efficient for heavy

hitters,” in CoNEXT. ACM, 2018.

R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Efficient

measurement on programmable switches using probabilistic recircula-

tion,” in ICNP. IEEE, 2018.

“CAIDA 2019,” |https://www.caida.org/catalog/datasets/trace_stats/

nyc-a/2019/equinix-nyc.dira.20190117- 130000.utc.df.txt, accessed:

05-2022.

[2

—

[6

=

[8

[t

[9

—

[10]

(11]

(12]

[13]

[14]

[15]

https://www.caida.org/catalog/datasets/trace_stats/nyc-a/2019/equinix-nyc.dira.20190117-130000.utc.df.txt
https://www.caida.org/catalog/datasets/trace_stats/nyc-a/2019/equinix-nyc.dira.20190117-130000.utc.df.txt

