
21 December 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Comparative analysis of permissioned blockchain frameworks for industrial applications / Capocasale, Vittorio; Danilo,
Gotta; Perboli, Guido. - In: BLOCKCHAIN: RESEARCH AND APPLICATIONS. - ISSN 2096-7209. - STAMPA. - (2022),
p. 100113. [10.1016/j.bcra.2022.100113]

Original

Comparative analysis of permissioned blockchain frameworks for industrial applications

Publisher:

Published
DOI:10.1016/j.bcra.2022.100113

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973439 since: 2022-11-28T14:11:52Z

Elsevier

Journal Pre-proof

Comparative analysis of permissioned blockchain frameworks for industrial
applications

Vittorio Capocasale, Gotta Danilo, Guido Perboli

PII: S2096-7209(22)00054-9

DOI: https://doi.org/10.1016/j.bcra.2022.100113

Reference: BCRA 100113

To appear in: Blockchain: Research and Applications

Received Date: 23 February 2022

Revised Date: 22 October 2022

Accepted Date: 26 October 2022

Please cite this article as: V. Capocasale, G. Danilo, G. Perboli, Comparative analysis of permissioned
blockchain frameworks for industrial applications, Blockchain: Research and Applications (2022), doi:
https://doi.org/10.1016/j.bcra.2022.100113.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of Zhejiang University Press.

https://doi.org/10.1016/j.bcra.2022.100113
https://doi.org/10.1016/j.bcra.2022.100113

Highlights

• Comparative analysis of permissioned blockchain frameworks.

• Methodology for fair comparison of performance.

• Extensive performance evaluation on recent releases of the main blockchain frameworks.

1

Jo
urn

al
Pre-

pro
of

Comparative Analysis of Permissioned Blockchain Frameworks for Industrial
Applications

Vittorio Capocasalea,1,∗, Danilo Gottab,1, Guido Perbolic,1

aDepartment of Control and Computer Engineering, Politecnico di Torino,Turin, Italy
bService Innovation, TIM,Turin, Italy

cDepartment of Management and Production Engineering, Politecnico di Torino,Turin, Italy

Abstract

Blockchain is a technology that creates trust among non-trusting parties, without relying on any intermediary. Con-
sequently, it has attracted the interest of companies operating in a multitude of sectors. However, due to the number
of different blockchain solutions that have emerged in the last few years and their rapid changes, it is challeng-
ing for such companies to orient their technological decisions. This paper presents a comparative analysis of the
key dimensions—namely, governance, maturity, support, latency, privacy, interoperability, flexibility, efficiency, re-
siliency, and scalability—of some of the most-used permissioned blockchain platforms. Moreover, we present the
results of a performance evaluation considering the following frameworks: Hyperledger Fabric 2.2, Hyperledger
Sawtooth 1.2, and ConsenSys Quorum 21.1 (with both the GoQuorum client and the Hyperledger Besu client). The
platforms were tested under similar conditions, and official releases were used, such that our findings provide a refer-
ence for companies establishing their technological orientation.

Keywords:
Blockchain performance evaluation, Hyperledger Besu, Hyperledger Fabric, Hyperledger Sawtooth, Quorum

1. Introduction

At present, companies are undergoing radical transformations based on information sharing and digitalization.
This is known as the Industry 4.0 revolution. The affordability of IoT and storage devices has allowed companies to
gather enormous quantities of data. Such data can then be used to improve and optimize existing business processes,
with huge cost savings. Consequently, data trustworthiness is fundamental and can be guaranteed by blockchain.

Blockchain is an evolving technology that allows for the creation of trust among non-trusting parties, without
relying on any intermediary [1]. A blockchain can be described as a shared and distributed database: each non-
trusting party can store and retrieve data from the database without worrying about tampering attempts [2].

Blockchain systems can be either permissionless or permissioned. In the former case, anyone can join the system
and fully interact with the database while, in the latter case, it is possible to set up roles and policies in order to limit
interactions with the database [3]. Permissioned blockchain frameworks are particularly relevant for the industry:
often, companies need to share data among themselves while limiting or preventing external access to such data (e.g.,
for regulatory reasons).

At present, the blockchain landscape is quickly evolving: many blockchain-based solutions are available on the
market, with new stable releases published every few months. Consequently, it is difficult for companies to orient their
technological decisions, as keeping track of frequent updates and evaluating their practical impact is challenging.
However, companies need a constantly updated overview of the various blockchain solutions in order to establish

∗Corresponding author.
Email addresses: vittorio.capocasale@polito.it (Vittorio Capocasale), danilo.gotta@telecomitalia.it (Danilo Gotta),

guido.perboli@polito.it (Guido Perboli)
1Equally contributing authors.

Preprint submitted to Blockchain: Research and Applications November 2, 2022

Jo
urn

al
Pre-

pro
of

which ones fit a given use-case. In particular, efficiency is a key factor that considerably limits which applications
can exploit blockchain technology. Consequently, a procedure that allows for a fair evaluation of the performances
of the various blockchain solutions is fundamental. These requirements have emerged from a collaboration between
Politecnico di Torino and TIM S.p.A., one of the biggest telecommunication companies in Europe.

In particular, in industrial IoT applications, a specific blockchain solution must be carefully chosen. For example,
in logistics, many transactions must be processed in a given time unit [2, 4, 5]. Contrary to what occurs in financial
applications [6], blockchain must be integrated with other technologies: IoT devices are necessary to collect data
from physical assets [7, 8], while artificial intelligence, analytics, and granular computing techniques can extract
useful information from the collected data [9, 10].

Nonetheless, comparative analyses of multiple blockchain frameworks are generally lacking. Due to the rapid na-
ture of technical improvements, many comparative analyses and performance evaluations in the literature are already
outdated. Moreover, many articles describe performance evaluations carried out on a single framework. This prevents
a fair comparison among different frameworks, as the different authors have generally used different configurations
and testing methodologies.

In this study, we fill the aforementioned gaps by providing an updated comparative analysis and a fair performance
evaluation of various permissioned blockchain frameworks. The main contributions of this paper are as follows:

• a comparative analysis is presented, considering some of the most-used blockchain frameworks; namely, Hyper-
ledger Fabric [11], Hyperledger Sawtooth [12], and ConsenSys Quorum (with both the GoQuorum client and
the Hyperledger Besu client) [13]. The analysis assessed the following aspects: governance, maturity, support,
latency, privacy, interoperability, flexibility, efficiency, resiliency, and scalability.

• a methodology is presented for performing a comparative performance evaluation of different blockchain frame-
works. To the best of our knowledge, this methodology is the first to focus on the cross-framework fairness and
comparability of the tests. In particular, this methodology is innovative, as it allows for minimizing of the
differences among the different frameworks.

• we present one of the most comprehensive cross-framework performance evaluation in the literature. To fill
the gaps in the literature, we tested recent releases of the frameworks. Moreover, to minimize the differences
among the various frameworks, similar transactions were submitted and the same underlying hardware was
used. Different blockchain nodes were deployed over the same industrial cloud infrastructure (Amazon AWS).

Thus, our findings offer a comprehensive overview of the analyzed frameworks, and this paper can be used by com-
panies as a guide for their technological choices.

The remainder of this paper is structured as follows: Section 2 introduces the key concepts related to the blockchain
technology. Section 3 discusses the relevant literature and the related gaps. Section 4 presents the comparative
analysis, and Section 5 describes the performance evaluation of the various frameworks. Finally, Section 6 presents
our conclusions and future developments.

2. Background

In this section, we briefly review the main concepts related to blockchain, consensus algorithms, smart contracts,
and performance metrics. For reader convenience, this section also includes an introduction to the frameworks ana-
lyzed in the context of this work.

3

Jo
urn

al
Pre-

pro
of

2.1. Blockchain

Figure 1: The relationships among the distributed database, distributed ledger (DLT), and blockchain technologies. In particular, a DLT is a
distributed database, structured as a ledger. A DLT can be decentralized or not, depending on its governance model. A blockchain is a DLT that
uses a list of blocks to represent the ledger. Each block contains the hash of the header of its predecessor. Blockchain technology is associated with
many interesting properties, such as immutability; however, such properties only characterize decentralized blockchains [14].

Blockchain belongs to the distributed ledger technology (DLT) class [15]. A DLT is a distributed database that is
structured as a ledger. This means that it records the whole history of modifications (also called transactions) to the
data it stores, and multiple copies of the ledger are available. Each copy is managed by an entity called a peer.

Blockchain groups transactions into blocks, which are then added to the ledger, one after the other [16]. As each
block contains the hash of its predecessor, each block cannot be altered without also altering all the subsequent ones.
It is easy to alter a block and all its successors when all the copies of the ledger are managed by a single entity or by
trusting parties. However, altering a block and all its successors can be nearly impossible when the ledger is managed
by multiple non-trusting parties. For this reason, the properties characterizing a blockchain system change drastically
depending on the governance model in use. This is better explained in Section 2.2.

A blockchain is usually composed of two databases: the history database, which is the actual ledger; and the state
database, which holds the current values of the data stored in the history database. It is possible to create blockchain
systems without a state database, but this approach has significant performance drawbacks. The state database acts as
a cache that allows for fetching the latest values of the data without needing to read the whole ledger. A blockchain
address identifies a specific portion of the data contained in the state database.

Blockchain frameworks rely on the following key components [16]:

• digital signatures, which allow for authentication of the transactions;

• cryptographic hash functions, which allow for the creation of the append-only ledger structure;

• consensus algorithms, which are used to decide the order of transactions to process.

2.2. Blockchain Governance
Governance describes the power to control, coordinate and direct a blockchain system [17]. According to its

governance model, a blockchain system can be [18, 19]:

• public—Any peer can join the blockchain system and participate in the consensus protocol. A public blockchain
can be used to solve trust issues among its participants, as any interested party can join the network, obtain a
full copy of the ledger and autonomously validate the transactions it contains;

• consortium—The blockchain system is managed by some well-identified peers who can set the rules for in-
teracting with the ledger and for participating in the consensus. A consortium blockchain can be used to solve
trust issues among the consortium members, but parties that are external to the consortium still need to trust the
consortium;

4

Jo
urn

al
Pre-

pro
of

• private—The blockchain system is managed by a single party. Consequently, the system is centralized from a
governance standpoint and requires all the participants to trust the managing party.

As public blockchains do not restrict the access to their ledgers, they are permissionless blockchains. Similarly,
private and consortium blockchains are permissioned blockchains, as they allow access control mechanisms to be set
up. However, private and consortium blockchains are rarely interchangeable technological solutions and should be
used in different cases.

2.3. Blockchain Properties
The following properties make blockchain particularly interesting in industrial fields [16, 19, 20]:

• redundancy and persistency—Each peer keeps a copy of the ledger, which reduces the risk of data losses;

• decentralization—Each peer has control over a single copy of the ledger, not the ledger itself. Notably, this
property is a consequence of the decentralized governance model of a blockchain system and not of its dis-
tributed nature. Consequently, private blockchains are not decentralized;

• authenticity—Transactions are digitally signed;

• autonomy—Peers can submit transactions without relying on trusted third parties;

• immutability—Data can only be added to the ledger, but not modified, as the hash of an altered block would
not match the one stored in its successor. However, rewriting the whole chain of hashes is possible: in a private
blockchain, the managing party may do so individually; in a consortium blockchain, the consortium should
collude in order to do so; and, in a public blockchain, the majority should collude in order to do so (51%
attack);

• transparency and auditability—Each peer has direct access to its own copy of the ledger. Moreover, it is
possible to know the status of the ledger at any given point in the past, as the whole history of modifications is
recorded;

• resiliency—To counterfeit the ledger, it would be necessary to coherently modify the majority of its copies. As
observed for the immutability property, the resiliency of a blockchain system is proportional to its decentraliza-
tion;

• standardization—As many peers must keep identical copies, they must all agree on the encoding of data.

2.4. Consensus Algorithms
As a blockchain system is managed by many peers, such peers need to find an agreement on the order of transac-

tions to process. The decision is made through the use of a consensus algorithm. The decision can have [21, 22]:

• deterministic finality—Once made, the decision is irreversible;

• probabilistic finality—Once made, the probability of reverting the decision decreases over time.

Moreover, the peers should be able to make a common decision, even if some of them do not participate in the
consensus protocol or try to disrupt it. Consequently, consensus algorithms can be [21, 22]:

• crash fault tolerant (CFT)—The consensus can tolerate the crash of some peers. Raft [23] and proof of elapsed
time CFT (PoET CFT) [24] are examples of CFT algorithms.

• Byzantine fault tolerant (BFT)—The consensus can tolerate the crash of some peers or their malicious be-
havior. Ethash [25], Clique [26], Practical Byzantine Fault Tolerance (PBFT) [27], Istanbul Byzantine Fault
Tolerance (IBFT) [28], and Proof of Elapsed Time SGX (PoET SGX) [24] are examples of BFT algorithms.

Many blockchain frameworks offer the possibility of choosing among CFT and BFT consensus algorithms; how-
ever, it is not possible to assume the absence of malicious behaviors among non-trusting parties. Thus, only BFT
algorithms should be used in a decentralized blockchain system.

5

Jo
urn

al
Pre-

pro
of

2.5. Smart Contracts

It is possible to describe smart contracts as tamper-proof computer programs [29]. The smart contract concept
was introduced before the blockchain concept [30]; however, as guaranteeing the tamper-proof property is difficult,
smart contracts did not attract much interest at first. By coupling smart contracts and blockchains, it is possible to
process data while guaranteeing their integrity and availability. Confidentiality can also be preserved but requires
implementing additional cryptographic techniques that are rarely available by default. Among other applications,
smart contracts could allow for the automation of legal contracts [31].

2.6. Performance Metrics

Once submitted to a blockchain system, a transaction can be in one of the following states:

• pending—The transaction has not yet been added to a block;

• discarded—The transaction is invalid and has not altered the ledger;

• committed—The transaction is valid and has been added to a block;

• consolidated—The transaction is valid and is permanently stored in the blockchain. In the case of deterministic
finality, a transaction is consolidated as soon as it is committed. In the case of probabilistic finality, a transaction
is consolidated only after it is committed.

According to [32], the key metrics for blockchain systems are read latency, read throughput, transaction latency,
and transaction throughput (TPS). In a blockchain system, transaction throughput is defined as the total amount of
transactions consolidated in the time unit, and transaction latency is defined as the time needed by a transaction to
become consolidated.

2.7. Blockchain Frameworks

2.7.1. Hyperledger Fabric
Fabric [11] is an open-source framework designed to address common industrial needs, such as identity man-

agement, definition of roles and policies, performance, and data confidentiality. Fabric belongs to the Hyperledger
ecosystem, which is “an open-source community focused on developing a suite of stable frameworks, tools and li-
braries for enterprise-grade blockchain deployments” [33]. Hyperledger Fabric offers a modular and scalable architec-
ture. It supports smart contracts that can be written in a variety of widely adopted programming languages. To share
data with only a subset of the nodes of the blockchain system, Fabric allows for the sending of private transactions
(private data collections) or the creation of parallel and independent lightweight chains (channels). Fabric supports the
following CFT consensus algorithms: Raft, Kafka (deprecated), and Solo (deprecated). A BFT consensus is planned
for the future [34]. At the time of writing, version 2.3.2 was the latest available.

Fabric distinguishes between two types of nodes: orderers and peers. Peers are in charge of executing transactions
and keeping a copy of the ledger, whereas orderers are in charge of creating blocks. Fabric processes transactions in
three steps:

• execute—Each type of transaction is associated with an endorsement policy. The endorsement policy defines
which peers must execute a given transaction. To submit a transaction, a client has to send it only to the
endorsing peers. This allows for the sacrifice of decentralization for scalability. The endorsing peers process
the transaction without updating their copy of the ledger. Then, they send a signed message back to the client,
which must be delivered to the orderers,

• order—The orderers create blocks by ordering the endorsed transactions received. Once created, a block is
broadcast to all the peers of the channel,

• validate—Each peer checks the correctness of each transaction within the received block and updates its copy
of the ledger. Among other checks, transactions that have a read or write conflict with a previous transaction of
the same block are considered invalid.

6

Jo
urn

al
Pre-

pro
of

2.7.2. Hyperledger Sawtooth
Sawtooth [12] is an open-source framework designed for flexibility and separation of concerns: it abstracts the

application layer from the security layer. This allows for the easy creation of blockchain systems that rely on dynami-
cally replaceable components. As with Fabric, Sawtooth is a Hyperledger framework. Sawtooth offers the possibility
to write smart contracts in a variety of programming languages. It also offers a parallel scheduler that can improve the
performance of the framework. Sawtooth supports both BFT (PBFT and PoET SGX) and CFT (PoET CFT and Raft)
consensus algorithms. The transaction processing strategy applied by Sawtooth is the standard order—execute—
validate. Moreover, Sawtooth processes transactions in batches (i.e., groups of transactions that must all be completed
together, or not at all). At the time of writing, version 1.2.6 was the latest available.

The Sawtooth framework offers the following modules:

• validator component, which schedules transactions and manages the ledger;

• consensus engine, which implements the consensus algorithm;

• REST API component, which simplifies the interaction of the clients with the validator component;

• transaction processor (TP), which implements the smart contract logic.

2.7.3. ConsenSys Quorum
Quorum [13] is an open-source blockchain protocol based on the Ethereum protocol. It allows for the design of

high-performance permissioned blockchain systems that provide support for data confidentiality. Quorum can also be
used for interactions with the Ethereum network. Moreover, Ethereum smart contracts can be effortlessly migrated
to Quorum. Quorum comprises two distinct blockchain projects: the first is based on GoQuorum [35], an Ethereum
client originally developed by J.P. Morgan and currently maintained by ConsenSys (that renamed it from Quorum to
GoQuorum), which is implemented in Go. The Tessera module can be used to send private transactions and keep data
confidential. GoQuorum supports the following consensus algorithms: Raft (CFT), Clique (BFT), and IBFT version
1.0 (BFT). At the time of writing, version 21.4.2 was the latest available. The second project is based on Hyperledger
Besu [36], an Ethereum client implemented in Java. As with Fabric and Sawtooth, Besu is a Hyperledger project. The
Orion module can be used to send private transactions and to keep data confidential. Besu supports the following BFT
consensus algorithms: Ethash, Clique, and IBFT (versions 1.0 and 2.0). At the time of writing, version 21.1.7 was the
latest available.

In this paper, when both projects share a common feature, the generic word Quorum is used, while the words
GoQuorum and Besu are used to refer to one of the two specific implementations. Quorum’s transaction processing
strategy is the standard order-execute-validate.

3. Related Work

Permissioned blockchain frameworks have been increasingly receiving interest from various companies. However,
such frameworks must process production workloads to replace existing solutions. Thus, many studies addressed the
topic of assessing the performance of existing blockchain frameworks.

For the sake of brevity, Table 1 summarizes the main performance evaluations available in the literature. For each
paper, the table presents the analyzed framework(s). Moreover, the table shows which studies analyzed more than one
framework, which performed an experimental performance evaluation, which used recent releases of the frameworks,
and which ones described a methodology to minimize the differences among the different frameworks.

Performance evaluations of permissioned blockchain frameworks appeared in the literature early on. Pongnumkul
et al. provided a performance evaluation of Fabric v0.6.0 and enterprise Ethereum (Geth v1.4.18) on a single blockchain
node, which is not relevant for industrial use cases [43]. Dinh et al. introduced Blockbench, a tool for analyzing per-
missioned blockchain frameworks. The authors used their tool to evaluate the performance of the following blockchain
frameworks: Fabric v0.6.0-preview, Geth v1.4.18, and Parity v1.6.0 [42]. Unfortunately, such performance evalua-
tions are outdated, as suggested by the versions of the employed frameworks.

In many cases, authors tried to improve the official framework releases. Sousa et al. introduced a BFT algorithm
for Fabric v1.0. The related performance evaluation, however, was focused on Fabric’s ordering service [40]. Thakkar

7

Jo
urn

al
Pre-

pro
of

Table 1: Summary of the studies dealing with tests on blockchain frameworks. Details about which studies analyzed more than one framework,
which presented an experimental performance evaluation, which used recent releases of the frameworks, and which described a methodology to
level the differences among the different frameworks are also provided.

Ref. Framework Multiple
frameworks

Experimental
performance
evaluation

Recent releases Cross-
framework
methodology

[15] Sawtooth v1.0.5 with PoET CFT No Yes No No
[37] GoQuorum v2.2.1 No Yes No No
[38] Fabric v1.0 No Yes No No
[39] Fabric v1.2 No Yes No No
[40] Fabric v1.0 No Yes No No
[41] GoQuorum v2.0 No Yes No No
[42] Fabric v0.6.0-preview, enterprise Ethereum (Geth) v1.4.18, Parity

v1.6.0
Yes Yes No No

[43] Fabric v0.6.0 and enterprise Ethereum (Geth) v1.4.18 Yes Yes No No
[44] Fabric v0.6 and Fabric v1.0 No Yes No No
[45] Fabric v1.2 No Yes No No
[46] Fabric v1.4 No Yes No No
[47] Fabric v1.0 No Yes No No
[48] Sawtooth v1.0 No Yes No No
[49] GoQuorum v2.0.2 No Yes No No
[50] Sawtooth v1.0.5 No Yes No No
[51] Fabric, Sawtooth, Burrow, BigchainDB, MongoDB (September 2019) Yes Yes No No
[52] Sawtooth v1.1.2, enterprise Ethereum (Geth) v1.8.21, enterprise EOS

v1.5.3
Yes Yes No No

[53] Fabric v1.4.4 No Yes No No
[54] Fabric v1.4.3 No Yes No No
[55] Sawtooth v1.1 with PoET CFT No Yes No No
[56] Fabric v2.0 No Yes Yes No
[57] Fabric v1.3 No Yes No No
[58] Fabric v1.4.4, Sawtooth v1.2, Indy v1.12.0, Parity v2.5.10, GoQuorum

v2.3.0, enterprise Ethereum (Geth) v1.9.8
Yes Yes No No

[59] Fabric v2.2.2 and Sawtooth v1.2.3 Yes Yes Yes No
This
work

Fabric v2.2.2, Sawtooth v1.2.3, Besu v21.1, GoQuorum v21.1 Yes Yes Yes Yes

et al. presented an in-depth study on Hyperledger Fabric v1.0 and showed how the various configuration parameters
affected the overall performance. The authors also suggested some improvements that were subsequently adopted in
Fabric v1.1 [38]. Gorenflo et al. introduced FastFabric, an optimized version of Hyperledger Fabric 1.2, which allowed
the authors to process almost 20000 transactions per second. However, some of the proposed optimizations may raise
concerns (e.g., keeping the state database in volatile memory) [39]. Kwon and Yu proposed some optimizations for
the order and validate phases of Hyperledger Fabric v1.3. A performance evaluation on a network of four nodes and
one Kafka orderer was used to show the benefits of the proposed optimizations [57]. However, stable and long-term
supported releases are often preferred for industrial applications. Thus, performance evaluations performed on official
releases are more appreciated.

Some authors focused on the analysis of the performance of a single framework instead of comparing multiple
ones. Baliga et al. conducted an in-depth performance evaluation of Quorum (GoQuorum client v2.0) with both IBFT
in a four nodes network and Raft in a three nodes network. The authors tested both private and public transactions
and used four different workloads [41]. Similarly, Mazzoni et al. studied Quorum with all Raft, IBFT, and Clique
consensus [6]. Mera conducted a performance evaluation of Quorum (GoQuorum client v2.2.1) with Raft consensus
on a network of three nodes in three different settings (local nodes, cloud nodes, virtual nodes) [37]. Wang and Chu
evaluated Fabric v1.4.3. The authors tested all the consensus algorithms available in Fabric (Solo, Kafka, and Raft)
and the impact of different endorsement policies [54]. Nakaike et al. introduced HLF-GLDB, a benchmark tool that
allows simulating the database access patterns of Hyperledger Fabric. The authors used HLF-GLDB to discover some
bottlenecks of the Fabric v1.4.4 platform [53]. Guggenberger et al. conducted an in-depth performance evaluation
of Fabric 2.0. In their work, the authors examined the effect of various network sizes and underlying hardware,
crashing nodes, network delays, private transactions, and varying workloads [56]. Shi et al. evaluated Sawtooth v1.1
with PoET CFT. The authors tested the transaction throughput under different conditions (network size, underlying
hardware, network bandwidth, cloud service, and datacenter location) [55]. Such works provide meaningful insights

8

Jo
urn

al
Pre-

pro
of

into the configuration of a given framework but are less useful for comparing different frameworks.
Some authors evaluated the performances of multiple frameworks. Polge et al. presented a comparative analysis

of Fabric, enterprise Ethereum, Quorum, MultiChain, and Corda in the following dimensions: community activity,
adoption, performance, and privacy support. The authors, however, did not perform an experimental performance
evaluation but conducted their analysis according to the results presented in other studies [60]. Monrat et al. performed
a performance evaluation on the following frameworks: enterprise Ethereum, Corda, Fabric, and Quorum (GoQuorum
client). The authors used the Microsoft Azure Platform for deploying networks of various sizes. However, except
for Corda, they did not provide the versions of the frameworks [61]. Benahmed et al. compared Sawtooth v1.1.2,
enterprise Ethereum (Geth v1.8.21), and enterprise EOS (client v1.5.3). The authors described the usability, support,
and documentation of the platforms they studied and tested their throughput, scalability, CPU, and memory usage
[52]. Rasolroveicy and Fokaefs studied blockchain frameworks and MongoDB for IoT-based applications. The study
focused on Fabric, Sawtooth, Burrow, and BigchainDB (September 2019) [51]. The results provided by such studies
are not comparable, as different testing methodologies are employed.

In addition to Blockbanch [42], other blockchain benchmark tools are available in the literature. A few of the pre-
viously discussed studies [61, 41, 6] used Hypeledger Caliper [62], which provides a set of predefined workloads and
is compatible with multiple frameworks. Bctmark [63] focuses on abstracting the underlying blockchain frameworks
and improving benchmark portability and was used by its creators to perform a performance evaluation of enterprise
Ethereum and Hyperledger Fabric. Nonetheless, the tool is in the experimental stage, does not clearly define per-
formance metrics, and does not offer standard workloads [64]. The Distributed Ledger Performance Scan (DLPS)
[58] allows setting up blockchain networks relying on different frameworks and submitting standard workloads to
them. The DLPS defines clear metrics for the evaluation of blockchain systems and uses an adaptive testing strategy
that matches the output throughput to the input one. The authors claim that such an approach allows for maximizing
the performance of the tested frameworks: Hyperledger Fabric, Hyperledger Sawtooth, Hyperledger Indy, Quorum
(GoQuorum client), and Ethereum (Geth and Parity clients). Ref. [64] summarizes the main benchmark tools for
permissioned blockchain frameworks.

While all such benchmark tools allow the generation of similar workloads on different frameworks, they do not
provide insights on how to set up blockchain networks to obtain similar degrees of security, distribution, and decen-
tralization across different frameworks. Thus, the results obtained on different frameworks with such tools may not be
comparable, as frameworks allow for trading security and decentralization for efficiency. This paper tries to overcome
such a limitation by proposing a cross-framework methodology to level the differences among different frameworks,
which enables meaningful comparisons among their performances.

We partnered with TIM, one of the biggest telecommunication companies in Europe. TIM has multiple business
units working on blockchain-related topics. According to our partner, choosing the right blockchain framework can
be challenging due to the lack of comparative analyses. Another international partner and other studies [65] sustained
such a hypothesis. Moreover, our review of the literature highlights the following gap:

• comparative analyses are scarce;

• some analyses focus on very specific applications;

• often, tweaked versions of the frameworks are tested. Therefore, the results of such tests are not particularly
useful when only official and supported releases of the frameworks are used;

• the frameworks are tested using different methods and under different conditions, preventing any comparison
(even qualitative);

• some analyses are outdated and are no longer meaningful.

Nonetheless, the problem of assessing the performance of the various blockchain frameworks is important, as
demonstrated by the large number of articles addressing this issue. We respond to these needs by presenting a general
methodology for evaluating blockchain frameworks in industrial use cases. We used this methodology to conduct a
performance evaluation of some of the most commonly industrially adopted blockchain frameworks.

9

Jo
urn

al
Pre-

pro
of

4. Comparative Analysis

This section presents a comparison of the blockchain frameworks considered in this study from a functional and
high-level point of view. We underline that such an analysis is meant to highlight similarities and differences across
the frameworks, not to elect winners.

4.1. Governance

As discussed in Sec. 2.2, governance describes the power to control, coordinate and direct a blockchain sys-
tem [17]. In blockchain systems, decisions are taken by majority voting, and consensus algorithms are the voting
mechanisms [66]. Thus, analyzing consensus algorithms is fundamental for understanding the governance model of a
blockchain system. We listed the consensus algorithms offered by each framework in Sec. 2.7.

As it currently lacks an official implementation of a BFT consensus algorithm, Fabric must be considered a private
blockchain, even if the execute and validate steps can be fully decentralized. “Hyperledger Fabric is not reliable in an
environment where an ordering service may be hacked” [67].

Sawtooth and Quorum, if deployed with a BFT consensus, can be used to build both public and consortium
blockchain systems. Consequently, they can be used by non-trusting parties to resolve their trust issues.

4.2. Maturity

Maturity identifies the production readiness of blockchain frameworks. Fabric, Sawtooth, and Quorum are all
production ready, according to their documentation and version numbers [34, 35, 68]. Fabric is probably the most
widespread and used technology among the three, as proved by its number of implemented use-cases [69, 70]. Quorum
is also used commonly in the industry [13, 69]. Sawtooth is somewhat less-adopted in the industry [69, 70], but has
been widely adopted in the academic world [15, 71, 72, 73].

4.3. Support

Figure 2: Blockchain developer activity (e.g., commits, pull requests, forks, and so on) on GitHub in the years 2017–2020. The image shows which
communities were the most active in the blockchain landscape. Sources: [74, 75].

In this study, support describes to which extent blockchain frameworks streamline adoption in terms of both
technological improvements and user experience.

10

Jo
urn

al
Pre-

pro
of

Fabric, Quorum, and Sawtooth are all active projects, and they are supported by both official and unofficial chan-
nels.

In our opinion, the Fabric framework is well-documented. However, setting up a system from scratch may be a
non-trivial task. The official documentation on this matter can possibly be improved.

In our opinion, the Sawtooth framework is well-documented and easy to set up. The documentation provides
tutorials to set up a test system and describes the majority of the options needed to configure a custom production
system in detail. Sawtooth nicely abstracts and separates the various blockchain layers (e.g., networking, security, and
smart contracts). Consequently, it is an excellent framework for understanding blockchain technology.

In our opinion, the Quorum framework is partially documented: it relies on the Ethereum documentation for many
core concepts, whereas it focuses its documentation on its peculiarities (e.g., privacy features). Different from Fabric,
it provides many tutorials for setting up a test system, clearly explaining each step of the process. Overall, the Quorum
documentation is not as detailed as that of Fabric or Sawtooth, and focuses on a more practical approach.

Concerning the community activity, a depiction is given by the Github developers’ analysis reported in [74] and
[75]. As witnessed by Figure 2, Fabric and Besu are gaining support, GoQuorum is stable, and Sawtooth is experi-
encing a downtrend. As Sawtooth’s data in the year 2020 is not present in the reports, we extracted them directly from
Github and represented the approximate trend with a dashed line.

4.4. Latency

We defined latency in Sec. 2.6. We remind that transaction finality can be probabilistic or deterministic, depending
on the consensus algorithm used. Probabilistic finality improves scalability and offers a higher transaction throughput,
but also has a higher transaction latency [76]. PBFT [27], IBFT [28], and Raft [23] have deterministic finality, whereas
Clique [26], Ethash [25], and PoET (both CFT and SGX) [24] have probabilistic finality.

4.5. Privacy

In this paper, privacy refers to the possibility of sharing data with only a subset of the participants of a blockchain
system. The main strategies applied to accomplish this goal are as follows [12]:

• share the hash of the data with all of the peers, and the actual data only with those of interest—This is the
underlying strategy of Fabric’s private data collections [77] and Quorum’s Orion and Tessera modules [78];

• create a separate system—This is usually costly and may pose security concerns, due to the reduced size of the
system. To mitigate the cost drawback, Fabric offers the possibility of creating channels. Channels are separate
blockchains, each with its own ledger; however, channels can reuse some common components. Consequently,
multiple channels are less demanding, in terms of hardware requirements, compared to separate blockchain
systems [11];

• store ciphered data—This is always possible, but the encryption process must be handled by the client and
cannot be managed by the framework. In Sawtooth, this is the only possible strategy [12].

4.6. Interoperability

Interoperability refers to the possibility of atomically transferring data across multiple blockchains [79]. Cross-
chain communication is similar to interoperability but does not require atomicity [80]. The interested reader may find
formal definitions of the two concepts in more technical studies [79, 80]. The analyzed frameworks do not offer any
feature that simplifies blockchain interoperability or cross-chain communication.

Interoperability can be partially achieved by leveraging cross-chain communication protocols or additional as-
sumptions based on game theory and the trustworthiness of third parties. Protocols such as notary schemes or hash-
locking [81] belong to such a category and have some major drawbacks. In particular, they are limited to some
specific use cases, are very inefficient, introduce trusted third parties, or violate the atomicity of cross-chain transac-
tions. Moreover, they do not allow the transfer of the history of an asset across different blockchain systems, which
hinders their transparency and verifiability properties.

Full blockchain interoperability is impossible to achieve or requires merging the existing ledgers [79]. Similarly,
cross-chain communication is impossible without relying on trusted third parties [80].

11

Jo
urn

al
Pre-

pro
of

4.7. Flexibility

Flexibility refers to the possibility of replacing existing components or adding features to a blockchain framework.
Sawtooth is the most flexible, as it is composed of several components that can be dynamically replaced. Moreover,

it allows for the specification of the settings both on- and off-chain. On-chain settings can be dynamically configured.
Sawtooth allows for the specification of dependencies among transactions and submitting batches, which are groups
of transactions that must be performed as a whole [12].

Quorum is flexible, as it allows for the configuration of many parameters, including the consensus algorithm.
Moreover, both Quorum’s clients support the installation of plugins, which extend their set of functionalities [35, 36].

Fabric is flexible, as it allows for the configuration of many parameters, including the consensus algorithm and the
state database (LevelDB or CouchDB). Moreover, smart contracts are run as a separate component [11].

4.8. Efficiency

Efficiency indicates the quantity of information that a blockchain framework can process in the time unit and is
analyzed in more detail in Section 5. For convenience, we report some observations here:

• the choice of the smart contract programming language has a relevant impact on the overall performance;

• Fabric and GoQuorum perform well in all tests;

• Besu performs well with light transactions, but suffers a significant performance decay for heavier tasks;

• Sawtooth performs poorly, but much better results can be obtained by submitting larger batches [59]. Further-
more, due to the limited number of vCPUs used, Sawtooth’s parallel scheduler has not been properly exploited.

4.9. Resiliency

Resiliency is the property of withstanding unexpected errors and malicious attacks. As discussed in Section 2.4,
consensus algorithms can be CFT or BFT. At present, Fabric only offers official implementations of CFT algorithms,
whereas Sawtooth and Quorum offer both possibilities.

It should be noted that elliptic-curve cryptography, which is the commonly accepted standard in blockchain sys-
tems and is used by all the frameworks, is not quantum-safe [82].

4.10. Scalability

Scalability identifies the possibility of increasing the size of a blockchain network while minimizing the negative
impacts on the other properties of the system (e.g., efficiency). According to the scalability trilemma, the scalability
of a blockchain system can only be improved by sacrificing decentralization or security [2]. Using a CFT instead of a
BFT algorithm is an example of a tradeoff of decentralization for scalability, which Fabric, Quorum, and Sawtooth all
allow.

Fabric’s endorsement policies can be considered as another method for the improvement of scalability: different
nodes can be used to execute distinct sets of transactions in parallel. Additionally, channels can be used to improve
scalability. This approach is equivalent to creating separate blockchain systems [11].

Quorum’s IBFT consensus algorithm allows the set of nodes participating in the consensus protocol to be dynam-
ically changed. This can be used to keep a small (and, thus, efficient) set of consensus nodes, while giving all peers
the possibility of being part of such a set for a limited amount of time [28].

As the set of consensus nodes in Sawtooth’s PBFT is an on-chain setting, it can be dynamically updated, producing
a behavior similar to that of Quorum’s IBFT.

12

Jo
urn

al
Pre-

pro
of

Figure 3: The testing environment architecture used in this study. A network of four virtual machines was created on AWS, where each virtual
machine had multiple components. Components that belonged to the same framework are represented by the same color. The Sawtooth node was
composed of a validator, a consensus engine, a REST API, and two transaction processors: one to manage on-chain settings and one to process
the transactions of the tests. The Fabric node was composed of a peer, an orderer, and a certificate authority. Both the GoQuorum and Besu nodes
consisted of a single component.

5. Performance Analysis

As stated in Sections 1 and 3, a standard methodology to compare the performance of multiple blockchain frame-
works was still missing, such that deciding which blockchain to use is difficult. Moreover, the limited interoperability
among the different blockchain solutions makes this choice even more important.

This section describes the testing environment and the tests performed on the various frameworks. Notably, the
tests relied on the same type of virtual machine, while the smart contract had to be implemented in every frame-
work. Moreover, the configurations of the various frameworks were not tuned, as different frameworks offer different
configuration settings, which modify the behavior of the system in different ways.

Concerning the frameworks used in the tests, we considered some of the most-used blockchain frameworks:
Hyperledger Fabric, Hyperledger Sawtooth, and ConsenSys Quorum (with both the GoQuorum client and the Hyper-
ledger Besu client).

5.1. Testing Environment

To perform the tests, we constructed a network consisting of four AWS instances. The instances belonged to the
same availability zone and to the same virtual private cloud (VPC). Each instance was a r5a.large virtual machine,
with 2 vCPUs, 16 GB of RAM, and 50 GB SSD. The testing environment infrastructure is shown in Figure 3.

The following settings describe the test environment used for the performance evaluation.

• Number of instances: 4.

• Network topology: complete graph, with instances hosted in the same availability zone.

• Instance type: AWS r5a.large.

• CPU (single instance): AMD EPYC 7000, 2.5 GHz, and 2 vCPUs.

• RAM (single instance): 16 GB.

• DISK (single instance): 50 GB gp2 SSD (EBS volume).

13

Jo
urn

al
Pre-

pro
of

Table 2: Test environment for each blockchain framework, highlighting the main differences among the various frameworks.

Fabric Sawtooth Besu GoQuorum

Version 2.2.2 (Jan, 2021) 1.2.3 (Oct, 2019) 21.1 (Feb, 2021) 21.1 (Feb, 2021)

Components per in-
stance

1 peer, 1 orderer,
1 Fabric Certificate
Authority

1 validator, 1 consen-
sus engine, 1 REST
API, 1 settings trans-
action processor, 1
test contract transac-
tion processor

1 Besu node 1 GoQuorum node

Consensus Raft Raft, PBFT IBFT 2.0 Raft, IBFT 1.0

Smart Contract Go, Java Go Solidity Solidity

State Database LevelDB LMDB RocksDB LevelDB

Batch Size - 1 transaction - -

Endorsement Policy All peers must en-
dorse each transac-
tion

- - -

Number of channels 1 - - -

• OS: Ubuntu 20.04.2 LTS.

• Docker: 20.10.3, build 48d30b5.

• Docker-compose: version 1.28.4, build cabd5cfb.

• Node: v10.24.

• Go: go1.13.

• Java: openjdk v1.8.0_292.

• Solidity: 0.8.0+commit.c7dfd78e.Emscripten.clang.

5.2. Methodology

Table 3: Configuration of the parameters of the transactions for each type of test. In the concurrency test, the number of different addresses accessed
ranged from one to the number of transactions submitted. In the size test, the payload size of the transactions ranged from 0.1 to 50 kB. In the
iteration test, the number of read and write operations ranged from 1 to 1000.

Test No. ad-
dresses

Payload size (kB) No. iterations

Concurrency 1; 100;
max

0.1 1

Size max 0.1; 1; 10; 20; 50 1

Iteration max 0.1 1, 10, 100, 1000

As discussed in Sec. 4.10, blockchain frameworks allow sacrificing decentralization and security for efficiency
and scalability. It is easy to prove that a given framework is more efficient than another when the former is configured
to scale while the latter is configured to be secure and decentralized. Thus, comparing the performances of differ-
ent frameworks is meaningless unless similar conditions are guaranteed across all the frameworks. Guidelines are
available for the performance evaluations of a single framework [32], and some multi-framework benchmark tools

14

Jo
urn

al
Pre-

pro
of

have been implemented [42, 58]. However, such guidelines and tools do not provide a methodology for setting up
equivalent testing environments for the performance comparison of different blockchain frameworks. To fill this gap,
we introduce a new methodology. We address the following concerns.

• Node functional requirements—Frameworks are composed of multiple modules, which must be assigned to
hardware resources. However, some frameworks are more modular than others. Thus, it is necessary to define
a blockchain node in terms of its functional requirements, which allows the creation of classes of equivalent
modules across different frameworks. This allows for the assignment of modules to hardware resources follow-
ing a consistent method across multiple frameworks. To the best of our knowledge, no other study tackled this
issue.

• Distribution requirements—It is necessary to use the same network topology and geographic distribution of
nodes across multiple frameworks. We underline that enforcing the same geographic distribution is only possi-
ble after providing a cross-framework definition of blockchain node.

• Resiliency requirements—The same degree of security, decentralization, and replication must be required across
multiple frameworks. This is particularly true for the execution of smart contracts and participation in the
consensus protocol.

• The number of ledgers—It is necessary to fix the number of separate ledgers managed by each blockchain
system and the workload to which each ledger is subject. Deploying multiple ledgers is an easy method to
increase the throughput of a blockchain system.

• Standardized workloads—A suite of standardized tests must be designed. This allows for the assessment of
an upper bound of the performance of a generic production system. Standardized workloads are also used by
Hyperledger Caliper and the DLPS.

Concerning the functional requirements of nodes, Fabric differentiates among endorsing nodes, ordering nodes,
and validating nodes. Similarly, Sawtooth separates the layers for ledger management, consensus protocol, and smart
contract processing. However, a single Quorum node performs all three operations. Consequently, we provide an
abstract definition of a blockchain node in terms of its functional requirements, which allows assigning framework
modules to hardware resources consistently across the frameworks. An abstract blockchain node represents a non-
trusting entity in a blockchain network and should perform all the relevant operations autonomously. We define an
abstract blockchain node as a set of components performing all of the following tasks:

• peering and networking management (i.e., networking with other peers);

• consensus management (e.g., mining, fork resolution);

• transaction management and smart contract execution, which includes ordering, scheduling, and processing
transactions;

• database management, which includes updating the ledger and the state database;

• security management, which includes cryptographic operations and privacy management.

We created networks of four nodes with each framework. We assigned four virtual machines to each network.
Thus, we assigned a different virtual machine to each node. For each framework, we assigned modules to virtual
machines to comply with the functional requirements of our definition of an abstract blockchain node, as shown in
Figure 3 and Table 2. Our tests do not involve private transactions. Thus, a single Besu or GoQuorum node satisfies
the definition of an abstract blockchain node. Sawtooth offers many modules, as discussed in Sec. 2.7.2. In particular,
a Sawtooth validator must always be connected to the transaction processor managing the on-chain settings. We
also deployed the consensus engine and the transaction processor managing the transactions of our tests on the same
virtual machine. We created four Fabric organizations, as organizations in Fabric represent non-trusting parties. We
deployed one peer and one orderer on a single virtual machine for each organization, as an abstract node must handle
both transaction processing and consensus management.

15

Jo
urn

al
Pre-

pro
of

Concerning the geographic distribution, for each framework, all the nodes were fully connected and deployed in
the same VPC.

Concerning the resiliency requirements, all the nodes must participate in the consensus and execute each transac-
tion. Consequently, in Fabric, transactions must be endorsed by all four nodes, as we want to execute each transaction
exactly four times, once per node. When possible, we used equivalent consensus algorithms across the frameworks:
Raft is implemented in all of the frameworks, whereas PBFT and IBFT behave similarly when consensus nodes are
not dynamically replaced.

Concerning the number of ledgers, a single ledger was assigned to each blockchain system. Consequently, a single
channel was used for Fabric.

For the workload simulation, the following scenarios were considered:

• the presence of parallelizable and sequential transactions—Sequential transactions are common when a process
must be executed in steps, whereas parallel transactions are common when multiple independent processes
occur at the same time, as in the case of sensors monitoring multiple assets;

• the presence of transactions writing a varying amount of data to the ledger—For example, this is common when
using different IoT devices;

• the presence of transactions updating a varying number of objects—For example, a single sensor monitoring a
cargo may need to update the data related to a single good or all the shipped goods simultaneously.

A single transaction type was defined for the performance evaluation. The transaction performed the following
operations:

• loading a data structure from the ledger. The data structure contains a counter and a string;

• increasing the counter and replacing the string with its own payload;

• storing the data structure back to the ledger at its original address;

• repeating all previous steps for a certain amount of iterations.

Consequently, each transaction was characterized by the following parameters:

• blockchain address, which is the location where the data structure is stored. When transactions target the
same address, a sequential workload is generated. When transactions target different addresses, a parallelizable
workload is generated;

• payload size, which specifies how much data are to be copied in the data structure modified by the transaction;

• number of iterations, which specifies how many times the transaction continues loading and storing data.

Three types of tests were performed on the frameworks, each of which focused on one of the aforementioned
parameters:

• in the concurrency test, transactions read from and wrote to a varying number of different addresses. As such, it
was possible to observe the behavior of the frameworks when transactions were sequential (i.e., they read from
and wrote to the same address) or were parallelizable (i.e., they read from and wrote to completely different
addresses);

• in the size test, transactions read from and wrote to the ledger a varying amount of data. As a single hash is
usually no shorter than 0.1 kB, this value was used as the minimum payload size during the tests;

• in the iteration test, each transaction performed a varying number of load and store operations. This was used
to simulate transactions updating the state of one or more assets.

16

Jo
urn

al
Pre-

pro
of

Table 3 summarizes the configuration used in each test. Each test was repeated ten times with each set of parameters.
Transactions were submitted to one of the four nodes at a rate of 500 tps. We chose such an input rate as it is higher
than the maximum throughput reached by the frameworks, thus allowing us to highlight the different behaviors of the
frameworks under the same workload. The performance was measured by a client external to the blockchain system
under test. Consequently, time was measured by the client from transaction submission to transaction consolidation.
Transactions were consolidated after a single block confirmation, as we used deterministic consensus algorithms. We
underline that our objective is to measure the performance of the various frameworks under similar conditions. The
results we obtained do not represent the maximum throughput of the frameworks. Measuring the maximum throughput
would require solving a multi-dimensional maximization problem. Such problems are often non-polynomial and
rarely solved exactly [83, 84, 85].

5.3. Environmental Similarities and Limitations
The frameworks were tested on the same hardware. Moreover, the configurations of the frameworks were not

tuned. Depending on the programming languages supported by each framework, similar smart contracts were written
in Go, Java, and Solidity. However, some differences existed, due to the unique APIs offered by each framework.
The main differences between the frameworks are reported in Table 2. For each framework, the table describes the
version, the components instantiated on each virtual machine, the consensus protocol, the programming language
used to implement the smart contracts, the default state database, the batch size (for Sawtooth), and the endorsement
policy and the number of channels (for Fabric).

5.4. Results
This section presents the results obtained from the performance evaluation.

Figure 4: Concurrency test: TPS for different levels of transaction parallelizability. Three scenarios were tested: sequential transactions (paralleliz-
ability = 1), partially parallelizable transactions (up to 100 parallel transactions), and independent transactions (max parallelizability).

The results of the concurrency test are shown in Figure 4. Fabric did not perform well for sequential transactions:
many of the transactions failed the validation step, as explained in Section 2. However, in the vast majority of use-
cases, transactions are parallelizable, and both Fabric and Quorum performed well. Sawtooth’s performance was
affected by the choice of small batches. In a similar test with larger batches [59], Sawtooth attained a TPS value half
that achieved by Fabric. Moreover, in contrast to a previous study [59], Sawtooth’s parallel scheduler did not provide
any benefit. This was likely due to the choice of AWS instances with only two vCPUs. For Fabric, the choice of smart

17

Jo
urn

al
Pre-

pro
of

contract programming language was important, as those written in Java did not perform the same as the ones written
in Go. CFT consensus algorithms boosted performance in all the frameworks, but on small networks, such as the one
used for the tests, the performance gain did not justify the sacrifice of decentralization. However, by increasing the
number of nodes, the performance advantages of using CFT algorithms on fully connected networks should become
considerable, as they have lower message complexity. As the number of exchanged messages is relevant and not the
total number of nodes, performances are unlikely to decay on big networks if each node is connected to a limited
number of peers. This strategy is adopted by probabilistic consensus algorithms and impacts latency and finality
instead of efficiency.

Figure 5: Size test: TPS for different payload sizes. Various sizes were tested, ranging from 0.1 kB (approximately a 128-bit hash) to 50 kB.

Figure 5 presents the results of the size test, which confirmed the behaviors observed during the concurrency test.
In addition, the performance of Besu rapidly decayed for heavier transactions. Overall, when increasing the size of
the payload of the transactions, the TPS value decreased as the quantity of data stored per second increased.

Figure 6 presents the results of the iteration test, which confirmed the performance decay of Besu under longer-
lasting transactions. Overall, by increasing the number of load and store operations per transaction, the quantity of
read and write operations per second increased, even if the TPS value decreased. Moreover, none of the frameworks
seemed to be optimized for multiple read and write operations on the same address within the same transaction. In
such cases, only the first read and the last write operations should be performed. This should be considered when
writing smart contracts.

The results of our performance evaluation differ from the ones obtained by other studies. Such a condition is
common to almost all the studies that use different tools, configurations, and testing methodologies. Thus, comparing
our results to those in the literature is challenging. To limit such variability, we compare our results to the ones that
use official versions of the frameworks. Moreover, we discard the studies that used too old versions, as technological
evolution may cause important differences in the measures.

Sedlmeir et al. [58] obtained much better results in terms of transaction throughput across all the frameworks.
However, the author used more performing hardware. Moreover, even slight differences in the configuration of the
frameworks may have a huge impact on the performance of the system. For example, we noticed that the performance
of GoQuorum doubles when logging is disabled.

Guggenberger et al. [56] focused on Fabric only and used a different testing methodology based on an adaptive
strategy that tries to match the input transaction rate to the output transaction rate. We believe such a strategy cannot
be employed in a cross-chain comparison, as different frameworks would be subject to different input workloads. We

18

Jo
urn

al
Pre-

pro
of

Figure 6: Iteration test: TPS for different read/write amounts. A pair of read/write operations (iteration = 1) represents an update on a single asset.
A set of multiple read/write operations represents a transaction updating multiple assets.

preferred to use the same workload for different frameworks. Moreover, the authors used eight peers instead of the four
we used. Thus, when four endorsers are busy validating a transaction, the other four can execute a different one, which
doubles the overall throughput even when both studies use the same endorsement policy. Thus, the numerical values
of the two studies are different. Nonetheless, there are some similarities in the overall behavior of the frameworks. In
particular, the performance decay follows a similar pattern when the payload size increases.

Mazzoni et al. [6] did not provide information on the version of Quorum used in their experiments. Nonetheless,
their paper was published recently. As the authors used Caliper to conduct their experiments on Quorum, transactions
have a different complexity compared to ours. Moreover, The authors used a single virtual machine. Nonetheless,
such a machine is more performing than the combined four used by us. Thus, even if some results may seem con-
sistent between the two papers (e.g., 4-nodes Raft and 4-nodes IBFT), there are profound differences in the testing
methodologies that prevent generalizations.

The obtained results are also provided in Table 4. Each row of the table represents one of the tests performed. For
each test, the table reports the configuration used and results obtained.

6. Conclusions and Future Developments

Blockchain is a rapidly evolving technology that has attracted the interest of many companies. However, many
blockchain frameworks have emerged in the last few years. As such, choosing the most suitable framework is of-
ten a challenging task, due to the general lack of updated comparative analyses. In this study, after explaining why
blockchain is important to the industry and why not all blockchains are equal, we focused on the following blockchain
frameworks: Hyperledger Fabric v2.2.2, Hyperledger Sawtooth v1.2.3, and ConsenSys Quorum (with both the Go-
Quorum v21.1 client and the Hyperledger Besu v21.1 client). In particular, we performed a comparative analysis
and evaluated the performance of the frameworks. Our findings can be used as a general reference for the industry.
Overall, Fabric is efficient, but lacks a BFT consensus algorithm; Sawtooth is flexible, but not as efficient; finally,
Quorum performs well, offers a BFT consensus algorithm, and supports private transactions.

Future work will be aimed at improving the test methodology to overcome some of the limitations of the one
proposed in this paper. For example, latency and read throughput could be included among the metrics to monitor.

19

Jo
urn

al
Pre-

pro
of

Table 4: Results of the performance evaluation. Each row represents one of the tests performed. For each test, the configuration used and the results
obtained are reported.

No. ad-
dresses

Payload
size (kB)

No. itera-
tions

Fabric (Raft,
Go)

Fabric (Raft,
Java)

Sawtooth
(Raft, Go)

Sawtooth
(PBFT, Go)

Besu (IBFT
2.0, Solidity)

GoQuorum
(Raft, Solid-
ity)

GoQuorum
(IBFT,
Solidity)

1 0.1 1 (3.0 ± 0.2) ·
10−1

(1.7 ± 0.3) ·
10−1

(3.1 ± 0.1) · 10 (2.9 ± 0.1) · 10 (1.8 ± 0.3) ·
102

(1.2 ± 0.03) ·
102

(1.33±0.07) ·
102

100 0.1 1 (2.4±0.2)·10 (1.7±0.3)·10 (3.2 ± 0.1) · 10 (3.2 ± 0.5) · 10 (1.7 ± 0.4) ·
102

(1.46±0.05) ·
102

(1.32±0.05) ·
102

max 0.1 1 (1.95±0.02) ·
102

(1.68±0.02) ·
102

(2.9 ± 0.2) · 10 (2.8 ± 0.4) · 10 (1.6 ± 0.5) ·
102

(1.44±0.04) ·
102

(1.26±0.08) ·
102

max 0.1 10 (1.48±0.05) ·
102

(9.6±0.2)·10 (1.0 ± 0.1) · 10 (7 ± 1) (1.3 ± 0.2) ·
102

(1.30±0.03) ·
102

(1.13±0.05) ·
102

max 0.1 100 (6.8±0.6)·10 (2.25±0.93) ·
10

(4.07 ± 0.02) ·
10−1

(3.7±0.1)·10−1 (2.2±0.3)·10 (7.2±0.3)·10 (3.18±0.02) ·
10

max 0.1 1000 (7.2 ± 0.1) (2.63 ± 0.05) (1.26 ± 0.02) ·
10−1

(1.12 ± 0.03) ·
10−1

(2.3 ± 0.1) (9 ± 1) (4.9 ± 0.5)

max 1 1 (1.85±0.02) ·
102

(1.56±0.02) ·
102

(2.5 ± 0.1) · 10 (2.6 ± 0.2) · 10 (3.0±0.6)·10 (1.18±0.06) ·
102

(1.01±0.07) ·
102

max 10 1 (1.24±0.03) ·
102

(1.02±0.03) ·
102

(1.1 ± 0.8) · 10 (1.1 ± 0.4) · 10 (4 ± 1) (5 ± 2) · 10 (4 ± 1) · 10

max 20 1 (8.9±0.3)·10 (7.5±0.2)·10 (7 ± 5) (7 ± 2) (2.2 ± 0.5) (2.6±0.8)·10 (2 ± 1) · 10

max 50 1 (5.1±0.5)·10 (4.3±0.1)·10 (4.6 ± 0.5) (4 ± 1) (1.1 ± 0.5) (1.2±0.4)·10 (1.1±0.5)·10

Moreover, as new frameworks emerge, similar analyses will need to be performed to provide a clear view of the
blockchain landscape for both the industrial and academic worlds.

Acknowledgments

This study was partially supported by TIM in its Research agreement 2019-2021 with Politecnico di Torino.
While working on this paper, Prof. Guido Perboli was the head of the Urban Mobility and Logistics Systems

initiative of the CARS@POLITO Interdepartmental Center.
[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https://www.debr.io/article/21260-bitcoin-a-peer-

to-peer-electronic-cash-system.
[2] G. Perboli, S. Musso, M. Rosano, Blockchain in logistics and supply chain: A lean approach for designing real-world use cases, IEEE Access

6 (2018) 62018–62028. doi:10.1109/ACCESS.2018.2875782.
[3] K. Wust, A. Gervais, Do you need a blockchain?, in: Proceedings - 2018 Crypto Valley Conference on Blockchain Technology, CVCBT

2018, 2018, pp. 45–54. doi:10.1109/CVCBT.2018.00011.
[4] T. G. Crainic, G. Perboli, M. Rosano, Simulation of intermodal freight transportation systems: a taxonomy, European Journal of Operational

Research 270 (2018) 401–418. doi:10.1016/j.ejor.2017.11.061.
[5] G. Perboli, M. Rosano, A Taxonomic Analysis of Smart City Projects in North America and Europe, Sustainability 12 (2020) 7813.

doi:10.3390/su12187813.
[6] M. Mazzoni, A. Corradi, V. Di Nicola, Performance evaluation of permissioned blockchains for financial applications: The consensys quorum

case study, Blockchain: Research and Applications 3 (2022) 100026. doi:https://doi.org/10.1016/j.bcra.2021.100026.
[7] E. Fadda, G. Perboli, R. Tadei, Customized multi-period stochastic assignment problem for social engagement and opportunistic IoT,

Computers and Operations Research 93 (2018) 41–50. doi:10.1016/j.cor.2018.01.010.
[8] S. Musso, G. Perboli, M. Rosano, A. Manfredi, A Decentralized Marketplace for M2M Economy for Smart Cities, in: 2019 IEEE 28th

International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), IEEE, 2019, pp. 27–30. doi:10.
1109/WETICE.2019.00014.

[9] S. Pan, W. Zhou, S. Piramuthu, V. Giannikas, C. Chen, Smart city for sustainable urban freight logistics, International Journal of Production
Research 59 (2021) 2079–2089. doi:10.1080/00207543.2021.1893970.

[10] G. Chiaselotti, T. Gentile, F. Infusino, Lattice representation with algebraic granular computing methods, Electronic Journal of Combinatorics
27 (2020) 1–34.

[11] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Mu-
ralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, J. Yellick,
Hyperledger fabric: A distributed operating system for permissioned blockchains, in: Proceedings of the Thirteenth EuroSys Conference,
2018, pp. 1–15. doi:10.1145/3190508.3190538.

[12] K. Olson, M. Bowman, J. Mitchell, S. Amundson, D. Middleton, C. Montgomery, Sawtooth: An introduction, 2018. URL: https://www.
hyperledger.org/wp-content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf.

20

Jo
urn

al
Pre-

pro
of

[13] ConsenSys, Build on quorum, the complete open source blockchain platform for business, 2021. URL: https://consensys.net/
quorum/.

[14] Come-from-Beyond, Decentralized vs distributed, or why dlt is (probably) an incorrect term, 2020. URL: https://medium.com/
@comefrombeyond/decentralized-vs-distributed-or-why-dlt-is-probably-an-incorrect-term-fccbf62bdfe7.

[15] G. Perboli, V. Capocasale, D. Gotta, Blockchain-based transaction management in smart logistics: A sawtooth framework, in: 2020 IEEE 44th
Annual Computers, Software, and Applications Conference (COMPSAC), 2020, pp. 1713–1718. doi:10.1109/COMPSAC48688.2020.000-
8.

[16] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, H. Wang, Blockchain challenges and opportunities: A survey, International Journal of Web and Grid
Services 14 (2018) 352–375. doi:10.1504/IJWGS.2018.095647.

[17] R. v. Pelt, S. Jansen, D. Baars, S. Overbeek, Defining blockchain governance: a framework for analysis and comparison, Information Systems
Management 38 (2021) 21–41.

[18] V. Buterin, On public and private blockchains, 2015. URL: https://sawtooth.hyperledger.org/docs/core/releases/1.2.6/
introduction.html.

[19] I.-C. Lin, T.-C. Liao, A survey of blockchain security issues and challenges, International Journal of Network Security 19 (2017) 653–659.
doi:10.6633/IJNS.201709.19(5).01.

[20] E. Olszewski, Why blockchain matters to enterprise (hint: It’s not because of decentralization), 2019. URL: https://medium.com/
@eolszewski/why-blockchain-matters-to-enterprise-hint-its-not-because-of-decentralization-8c38674f43c6.

[21] A. Baliga, Understanding blockchain consensus models, 2017. URL: https://www.persistent.com/wp-content/uploads/2017/04/
WP-Understanding-Blockchain-Consensus-Models.pdf.

[22] Y. Xiao, N. Zhang, W. Lou, Y. T. Hou, A survey of distributed consensus protocols for blockchain networks, IEEE Communications Surveys
& Tutorials 22 (2020) 1432–1465.

[23] D. Ongaro, J. Ousterhout, In search of an understandable consensus algorithm, in: Proceedings of the 2014 USENIX Annual Technical
Conference, USENIX ATC 2014, 2014, pp. 305–319.

[24] Hyperledger, Hyperledger sawtooth blockchain security (part one), 2018. URL: https://www.hyperledger.org/blog/2018/11/09/
hyperledger-sawtooth-blockchain-security-part-one.

[25] G. Wood, Ethereum: a secure decentralised generalised transaction ledger, 2021. URL: https://ethereum.github.io/yellowpaper/
paper.pdf.

[26] P. Szilágyi, Eip-225: Clique proof-of-authority consensus protocol, 2017. URL: https://eips.ethereum.org/EIPS/eip-225.
[27] M. Castro, B. Liskov, et al., Practical byzantine fault tolerance, in: OSDI, volume 99, 1999, pp. 173–186.
[28] ConsenSys, Scaling consensus for enterprise: Explaining the ibft algorithm, 2018. URL: https://consensys.net/blog/enterprise-

blockchain/scaling-consensus-for-enterprise-explaining-the-ibft-algorithm/.
[29] V. Capocasale, G. Perboli, Standardizing smart contracts, IEEE Access 10 (2022) 91203–91212. doi:10.1109/ACCESS.2022.3202550.
[30] N. Szabo, Formalizing and securing relationships on public networks, First Monday 2 (1997). doi:10.5210/fm.v2i9.548.
[31] P. Sanz Bayón, Key legal issues surrounding smart contract applications, KLRI Journal of Law and Legislation 9 (2019) 63–91.
[32] Hyperledger Performance and Scale Working Group, Hyperledger blockchain performance metrics, 2019. URL: https://www.

hyperledger.org/resources/publications/blockchain-performance-metrics.
[33] Linux Foundation, About hyperledger, 2020. URL: https://www.hyperledger.org/about.
[34] Hyperledger, A blockchain platform for the enterprise, 2020. URL: https://hyperledger-fabric.readthedocs.io/en/release-

2.2/.
[35] ConsenSys, Goquorum enterprise ethereum client, 2020. URL: https://docs.goquorum.consensys.net/en/stable/.
[36] Hyperledger Besu community, Besu enterprise ethereum client, 2021. URL: https://besu.hyperledger.org/en/stable/.
[37] D. Mera, Quorum blockchain stress evaluation in different environments, 2019. URL: https://academicworks.cuny.edu/cgi/

viewcontent.cgi?article=1120&context=jj_etds.
[38] P. Thakkar, S. Nathan, B. Viswanathan, Performance benchmarking and optimizing hyperledger fabric blockchain platform, in: 2018 IEEE

26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), 2018,
pp. 264–276.

[39] C. Gorenflo, S. Lee, L. Golab, S. Keshav, Fastfabric: Scaling hyperledger fabric to 20 000 transactions per second, International Journal of
Network Management 30 (2020). doi:10.1002/nem.2099.

[40] J. Sousa, A. Bessani, M. Vukolic, A byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform, in: Proceedings
- 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2018, 2018, pp. 51–58. doi:10.1109/DSN.
2018.00018.

[41] A. Baliga, I. Subhod, P. Kamat, S. Chatterjee, Performance evaluation of the quorum blockchain platform, arXiv preprint arXiv:1809.03421
(2018).

[42] T. Dinh, J. Wang, G. Chen, R. Liu, B. Ooi, K.-L. Tan, Blockbench: A framework for analyzing private blockchains, in: Proceedings of the
ACM SIGMOD International Conference on Management of Data, volume Part F127746, 2017, pp. 1085–1100. doi:10.1145/3035918.
3064033.

[43] S. Pongnumkul, C. Siripanpornchana, S. Thajchayapong, Performance analysis of private blockchain platforms in varying workloads, in:
2017 26th International Conference on Computer Communications and Networks, ICCCN 2017, 2017, pp. 1–6. doi:10.1109/ICCCN.2017.
8038517.

[44] Q. Nasir, I. Qasse, M. Abu Talib, A. Nassif, Performance analysis of hyperledger fabric platforms, Security and Communication Networks
2018 (2018). doi:10.1155/2018/3976093.

[45] A. Sharma, D. Agrawal, F. Schuhknecht, J. Dittrich, Blurring the lines between blockchains and database systems: The case of hyperledger
fabric, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2019, pp. 105–122. doi:10.1145/3299869.
3319883.

[46] S. Shalaby, A. Abdellatif, A. Al-Ali, A. Mohamed, A. Erbad, M. Guizani, Performance evaluation of hyperledger fabric, in: 2020 IEEE

21

Jo
urn

al
Pre-

pro
of

International Conference on Informatics, IoT, and Enabling Technologies, ICIoT 2020, 2020, pp. 608–613. doi:10.1109/ICIoT48696.
2020.9089614.

[47] H. Sukhwani, N. Wang, K. Trivedi, A. Rindos, Performance modeling of hyperledger fabric (permissioned blockchain network), in:
NCA 2018 - 2018 IEEE 17th International Symposium on Network Computing and Applications, 2018, pp. 1–8. doi:10.1109/NCA.2018.
8548070.

[48] B. Ampel, M. Patton, H. Chen, Performance modeling of hyperledger sawtooth blockchain, in: 2019 IEEE International Conference on
Intelligence and Security Informatics, ISI 2019, 2019, pp. 59–61. doi:10.1109/ISI.2019.8823238.

[49] T. Sund, C. Lööf, S. Nadjm-Tehrani, M. Asplund, Blockchain-based event processing in supply chains—a case study at ikea, Robotics and
Computer-Integrated Manufacturing 65 (2020). doi:10.1016/j.rcim.2020.101971.

[50] A. Corso, Performance analysis of proof-of-elapsed-time (poet) consensus in the sawtooth blockchain framework, Ph.D. thesis, University of
Oregon, 2019.

[51] M. Rasolroveicy, M. Fokaefs, Performance evaluation of distributed ledger technologies for iot data registry: A comparative study, in:
Proceedings of the World Conference on Smart Trends in Systems, Security and Sustainability, WS4 2020, 2020, pp. 137–144. doi:10.
1109/WorldS450073.2020.9210358.

[52] S. Benahmed, I. Pidikseev, R. Hussain, J. Lee, S. Kazmi, A. Oracevic, F. Hussain, A comparative analysis of distributed ledger technologies
for smart contract development, in: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, volume
2019-September, 2019, pp. 1–6. doi:10.1109/PIMRC.2019.8904256.

[53] T. Nakaike, Q. Zhang, Y. Ueda, T. Inagaki, M. Ohara, Hyperledger fabric performance characterization and optimization using goleveldb
benchmark, in: IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2020, 2020, pp. 1–9. doi:10.1109/ICBC48266.
2020.9169454.

[54] C. Wang, X. Chu, Performance characterization and bottleneck analysis of hyperledger fabric, in: Proceedings - International Conference on
Distributed Computing Systems, volume 2020-November, 2020, pp. 1281–1286. doi:10.1109/ICDCS47774.2020.00165.

[55] Z. Shi, H. Zhou, Y. Hu, S. Jayachander, C. De Laat, Z. Zhao, Operating permissioned blockchain in clouds: A performance study of
hyperledger sawtooth, in: Proceedings - 2019 18th International Symposium on Parallel and Distributed Computing, ISPDC 2019, 2019, pp.
50–57. doi:10.1109/ISPDC.2019.00010.

[56] T. Guggenberger, J. Sedlmeir, G. Fridgen, A. Luckow, An in-depth investigation of the performance characteristics of hyperledger fabric,
Computers & Industrial Engineering (2022) 108716. doi:https://doi.org/10.1016/j.cie.2022.108716.

[57] M. Kwon, H. Yu, Performance improvement of ordering and endorsement phase in hyperledger fabric, in: 2019 6th International Confer-
ence on Internet of Things: Systems, Management and Security, IOTSMS 2019, 2019, pp. 428–432. doi:10.1109/IOTSMS48152.2019.
8939202.

[58] J. Sedlmeir, P. Ross, A. Luckow, J. Lockl, D. Miehle, G. Fridgen, The dlps: A new framework for benchmarking blockchains, in: HICSS,
2021, pp. 1–10.

[59] V. Capocasale, D. Gotta, S. Musso, G. Perboli, A blockchain, 5g and iot-based transaction management system for smart logistics: an
hyperledger framework, in: 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), 2021, pp. 1285–
1290.

[60] J. Polge, J. Robert, Y. Le Traon, Permissioned blockchain frameworks in the industry: A comparison, ICT Express 7 (2021) 229–233.
doi:10.1016/j.icte.2020.09.002.

[61] A. Monrat, O. Schelen, K. Andersson, Performance evaluation of permissioned blockchain platforms, in: 2020 IEEE Asia-Pacific Conference
on Computer Science and Data Engineering, CSDE 2020, 2020, pp. 1–8. doi:10.1109/CSDE50874.2020.9411380.

[62] Hyperledger Caliper, Getting started, 2022. URL: https://hyperledger.github.io/caliper/v0.5.0/getting-started/.
[63] D. Saingre, T. Ledoux, J.-M. Menaud, Bctmark: A framework for benchmarking blockchain technologies, in: Proceedings of IEEE/ACS

International Conference on Computer Systems and Applications, AICCSA, volume 2020-November, 2020, pp. 1–8. doi:10.1109/
AICCSA50499.2020.9316536.

[64] J. Shah, D. Sharma, Performance benchmarking frameworks for distributed ledger technologies, in: Proceedings of CONECCT 2021: 7th
IEEE International Conference on Electronics, Computing and Communication Technologies, 2021, pp. 1–5. doi:10.1109/CONECCT52877.
2021.9622659.

[65] G. Shapiro, C. Natoli, V. Gramoli, The performance of byzantine fault tolerant blockchains, in: 2020 IEEE 19th International Symposium
on Network Computing and Applications, NCA 2020, 2020, pp. 1–8. doi:10.1109/NCA51143.2020.9306742.

[66] H. Moog, A new “consensus”: The tangle multiverse [part 1], 2019. URL: https://husqy.medium.com/a-new-consensus-the-
tangle-multiverse-part-1-da4cb2a69772.

[67] J. Ma, Y. Jo, C. Park, Peerbft: Making hyperledger fabric’s ordering service withstand byzantine faults, IEEE Access 8 (2020) 217255–
217267. doi:10.1109/ACCESS.2020.3040443.

[68] Intel Corporation, Introduction, 2017. URL: https://sawtooth.hyperledger.org/docs/core/releases/1.2.6/introduction.
html.

[69] M. del Castillo, Blockchain 50 2021, 2021. URL: https://www.forbes.com/sites/michaeldelcastillo/2021/02/02/
blockchain-50/.

[70] Linux Foundation, Case studies, 2020. URL: https://www.hyperledger.org/learn/case-studies.
[71] M. Caro, M. Ali, M. Vecchio, R. Giaffreda, Blockchain-based traceability in agri-food supply chain management: A practical implementation,

in: 2018 IoT Vertical and Topical Summit on Agriculture - Tuscany, IOT Tuscany 2018, 2018, pp. 1–4. doi:10.1109/IOT-TUSCANY.2018.
8373021.

[72] D. Bumblauskas, A. Mann, B. Dugan, J. Rittmer, A blockchain use case in food distribution: Do you know where your food has been?,
International Journal of Information Management 52 (2020). doi:10.1016/j.ijinfomgt.2019.09.004.

[73] A. A. Khan, A. A. Laghari, D.-S. Liu, A. A. Shaikh, D.-A. Ma, C.-Y. Wang, A. A. Wagan, Eps-ledger: Blockchain hyperledger
sawtooth-enabled distributed power systems chain of operation and control node privacy and security, Electronics 10 (2021). doi:10.3390/
electronics10192395.

22

Jo
urn

al
Pre-

pro
of

[74] Chainstack, Enterprise blockchain protocols evolution index 2020, 2020. URL: https://chainstack.com/resources/#enterprise-
blockchain-protocols-evolution-index-2020.

[75] Chainstack, Enterprise blockchain protocols evolution index, 2021. URL: https://chainstack.com/download/enterprise-
blockchain-protocols-evolution-index-2021/.

[76] S. Motepalli, H.-A. Jacobsen, Decentralizing permissioned blockchain with delay towers, arXiv preprint arXiv:2203.09714 (2022).
[77] S. Wang, M. Yang, Y. Zhang, Y. Luo, T. Ge, X. Fu, W. Zhao, On private data collection of hyperledger fabric, in: Proceedings - International

Conference on Distributed Computing Systems, volume 2021-July, 2021, pp. 819–829. doi:10.1109/ICDCS51616.2021.00083.
[78] N. Adarme, Tessera: The privacy manager of choice for consensys quorum networks, 2021. URL: https://consensys.net/blog/

quorum/tessera-the-privacy-manager-of-choice-for-consensys-quorum-networks/.
[79] P. Lafourcade, M. Lombard-Platet, About blockchain interoperability, Information Processing Letters 161 (2020) 105976. doi:10.1016/j.

ipl.2020.105976.
[80] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-Sanchez, A. Kiayias, W. Knottenbelt, Sok: Communication across

distributed ledgers, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 12675 LNCS (2021) 3–36. doi:10.1007/978-3-662-64331-0_1.

[81] R. Belchior, A. Vasconcelos, S. Guerreiro, M. Correia, A survey on blockchain interoperability: Past, present, and future trends, ACM
Computing Surveys 54 (2022). doi:10.1145/3471140.

[82] M. Battagliola, A. Flamini, R. Longo, A. Meneghetti, M. Sala, Quadrans blockchain, 2021. URL: https://quadrans.io/content/
files/quadrans-yellow-paper-rev02.pdf.

[83] T. G. Crainic, G. Perboli, R. Tadei, Recent advances in multi-dimensional packing problems, New technologies-trends, innovations and
research (2012) 91–110.

[84] M. Boccia, A. Mancuso, A. Masone, C. Sterle, A feature based solution approach for the flying sidekick traveling salesman problem, in:
A. Strekalovsky, Y. Kochetov, T. Gruzdeva, A. Orlov (Eds.), Mathematical Optimization Theory and Operations Research: Recent Trends,
Springer International Publishing, Cham, 2021, pp. 131–146.

[85] G. Caselli, D. De Santis, M. Delorme, M. Iori, A mathematical formulation for reducing overcrowding in hospitals’ waiting rooms, in: 2021
IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2021, 2021, pp. 297–301. doi:10.1109/
IEEM50564.2021.9673050.

23

Jo
urn

al
Pre-

pro
of

Declaration of interests

☑The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

Jo
urn

al
Pre-

pro
of

