

Thomas Jefferson University

COLLEGE OF POPULATION HEALTH

Multi-Cancer Early Detection: Understanding the Pathfinder Study and Clinical Implementation

Mylynda Massart, MD, PhD Eric Klein, MD Alexis Skofalous, EdD December 8, 2022

Today's Presenters

Mylynda Massart, MD, PhD Medical Director, UPMC Primary Care Precision Medicine Center Assistant Professor University of Pittsburgh

Eric Klein, MD Emeritus Chairman, Glickman Urological & Kidney Institute Professor of Surgery Cleveland Clinic Lerner College of Medicine

Alexis Skoufalos, EdD (Moderator) Associate Dean for Strategic Development Program Director, Doctor of Health Science in Population Health Jefferson College of Population Health

The Promise of Multicancer Early Detection

Eric A. Klein, MD Emeritus Professor and Chair Glickman Urological and Kidney Institute Cleveland Clinic Lerner College of Medicine

Fellow, Stanford Distinguished Careers Institute

Disclosure:

I am a consultant for GRAIL, Inc

Paradigm Shift

Screening for individual cancers

Screening individuals for cancer

 Breast cancer Lung cancer Colon cancer Prostate cancer Cervical cancer Lymphoid neoplasm Plasma-cell neoplasm Ovarian cancer Bladder cancer Gastrointestinal cancer Liver cancer Pancreatic cance Head-and-neck cancer Anorectal cancer Uterine cancer Kidnev cancer Melanoma Thyroid Myeloid neoplasm Sarcoma **Multiple other cancers**

- Why is this necessary?
- How is it possible?

Why Early Detection is Important

Why is this Necessary?

Despite this:

USPSTF Recommendations for Cancer Screening

Cancer	Grade	Population	Modality/ Recommendation		
Cervical	Α	Women aged 21 to 65	Regular screening (3–5 years) using cervical cytology and/or HPV tests		
Colorectal	Α	Adults aged 50 to 75	Regular annual screening,		
Colorectar	В	Adults aged 45-49	available		> 600,000 people
	В	Women aged 50 to 74	Biennial screening	Mortality	die of cancer every
Breast	С	Women aged 40 to 49	mammography		vear In the US
Lung	В	Adults aged 55–80, with history of smoking	Annual low-dose computed tomography (LDCT) screening		
Prostate	С	Men aged 55 to 69	Periodic PSA screening on case- by-case basis		

Limitations of Current Screening Paradigm Compelling Rationale for a Paradigm Shift to Include MCED

~ 600,000 cancer deaths per year in the US despite current screening 70% of all cancers are not found Unscreened cancers account for ~70% of deaths

Adherence rates are sub-optimal 5% (lung) - 80% (cervical)

More likely to be diagnosed with a different cancer than those targeted by screening

PPV for single cancers is <10%

Cumulative false positive rates are high (40-50%)

Cumulative False-Positive Rate From Single-Cancer Screening

Cumulative probability of a false-positive result in the PLCO trial

A 60-year-old women with a history of smoking screened for 4 cancers would have a 43.6% false positive rate (FPR)^{1–4}

Croswell et al. Ann Fam Med 2009;7:212-222

Pinsky PF, et al. *Ann Intern Med.* 2015;162:485-491. 2. Melnikow J, et al. *JAMA*. 2018;320:687-705. 3. US Food and Drug Administration (FDA) premarket approval (PMA) P130017 4. Lehman CD, et al. *Radiology*. 2017;283:49-58

Universal Cancer Screening Improves Efficiency

Effect on NNS & PPV

Liquid Biopsy

Key Concepts for Understanding MCED

- MCED is not about finding a particular cancer type
- MCED should not be compared to tests that screen for individual cancers
- MCED is intended as an adjunct to standard screening tests
- MCED is a screening test and requires a diagnostic evaluation

Cancer Signals in Blood

- Methylation
- Mutations
- Chromosomal copy number alterations
- Fragmentomics
- Proteins
- miRNA
- Microvesicles
- Multi-Analyte

The targeted methylation assay underlying Galleri is based on a shared cancer signal across many cancer types

Biology of Methylation Integration of Genomic and Epigenomic Data

MCED Clinical Workflow

Results Report

Multi-cancer early detection test report

Sample

Patient

Name:	Firstname Lastname	GRAIL ID:	ID123456789
Patient ID:	PathPar1234567890	Report Date:	15-0CT-2019 / 18:13 PT
DOB:	01-JAN-1965	Collection Date:	20-SEP-2019 / 21:39 PT
Bio Sex:	Female		
Email:	firstnamelastname@email.com		

Ordering Provider Name: Firstname Lastname, MD Location: Academic Hospital - Clinic 1 123 Maple St. Unit 321 Address: Rainbow Town, CA 94000 Phone: (123) 456-7890 Fax: (987) 654-3210

Results

Cancer Signal Detected

The Galleri® test detected DNA methylation signals associated with cancer in the analyzed cell-free DNA obtained from the patient's sample. Detection of a cancer signal is not a diagnosis of cancer. Diagnostic evaluation for cancer should be conducted.

10

Top Predicted Signal Origins to Guide Diagnostic Evaluation Head & Neck

Signal Origin(s) Score

Included sub-categories of the predicted origins:

· Head & Neck: Oropharynx, Hypopharynx, Nasopharynx, Larynx, Lip and Oral Cavity (including Oral Tongue), Nasal Cavity, Paranasal Sinuses, Major Salivary Glands

· Lung: Lung, Bronchus

This chart displays the top score(s) of Cancer Signal Origins predicted by the Galleri test. The size of each bar represents confidence in predicting cell or tissue origin of detected cancer signal: long bar reflects higher confidence and short bar reflects lower confidence in cancer signal origin. This chart does not provide an indication of the overall likelihood of cancer.

Cancer signals are organized into 21 Cancer Signal Origins, which are listed in the Method section. For more information, please visit www.galleri.com/test-report.

Published MCED Studies

CancerSeek/DETECT-A

Circulating Cancer Genome Atlas (CCGA) Pathfinder

DETECT- A Study

• 10,000 women, ages 65 – 75

No current or previous known cancer

DETECT-A: Results and Test Performance

- 9,911 women were screened
 - 26 cancers were detected
 - Double the number of cancers detected by standard-of-care screening alone.

Lennon AM et al. Science. 2020;369:eabb9601.

Results of CCGA3 Prospective, Case-Control, Discovery & Validation Study

Sensitivity of Cancer Signal Detection by Cancer Type: Stage I-II

Klein EA, et al. Ann Oncol. 32:1167,2021

PATHFINDER Prospective Study in Intended Use Population

Results returned to provider and participant

PATHFINDER

Cancer signal was detected in 1.4% (92/6621 participants)

MCED Detected Cancers

Consistent Results Across Studies

Refined test used commercially; **1st or 2nd location prediction

Klein EA, et al. Ann Oncol. 32:1167, 2021 ESMO 2022 (Schrag et al.)

Galleri Commercial Experience Confirmed Diagnoses

Out of 130 voluntarily reported "Cancer Signal Detected" cases with diagnostic resolution

Voluntary reporting of diagnostic follow up and resolution by ordering physicians to GRAIL

Do MCEDs Overdetect Nonlethal Cancers?

Chen et al., Clin Cancer Res 27:422, 2021

False Positives

Eligible for screening (ages 50-79): 107M

Pathfinder, Schrag et al., ESMO (2022)

Current SOC cost: \$16.9B MCED cost: \$3B

2.2X increase in CDR results in a 12.6X reduction in cost

Hackshaw et al., Brit J Cancer (2021) 125:1432 – 1442

Intended Use

- Adjunct to current screening tests
- In the short term
 - Higher risk of cancer
 - Smokers
 - Strong family history
 - Known genetic carrier or syndrome (BRCA, others)
 - Prior history of cancer
 - Pediatric cancer survivors
 - Immunosuppressed
 - Worried well
 - In the long term
 - General population adults over 50

Despite this

USPSTF Recommendations for Cancer Screening

Cancer	Cancer Grade Population		Modality/ Recommendation	
Cervical A W		Women aged 21 to 65	Regular screening (3–5 years) using cervical cytology and/or HPV tests	
Colorectal	Colorectal A Adults aged 50 to 75 B Adults aged 45-49		Regular annual screening, multiple effective methods available	
Breast	B C	Women aged 50 to 74 Women aged 40 to 49	Biennial screening mammography	
Lung	в	Adults aged 55-80, with history of smoking	Annual low-dose computed tomography (LDCT) screening	
Prostate	с	Men aged 55 to 69	Periodic PSA screening on case- by-case basis	

> 600,000 people die of cancer every year In the US

To achieve this

Adding MCED has the potential...

26% Reduction in Cancer Mortality

Hackshaw et al., Brit J Cancer (2021) 125:1432

The Value of MCED at the Population Level

Advantages	Practical Effects	
Detects cancers not currently screened for	Increases overall cancer detection rate	
Improves efficiency of screening		
Shifts diagnosis to earlier stages		
Reduced cost per cancer detected		

MCED Implementation in the Clinic

Mylynda B. Massart, MD, PhD UPMC Primary Care Precision Medicine Department of Family Medicine Clinical and Translational Science Institute Institute for Precision Medicine University of Pittsburgh • • • • • • • • • • •

Disclosures:

Grail Speaker Bureau

Lung Cancer (high-risk groups)

Challenges of Current Cancer Screening Paradigm:

- Current challenges in cancer screening:
 - Second leading cause of death
 - Cancer has a huge cost burden
 - Screening is limited 5 cancers only 4 with USPSTF guidelines A/B
 - Current screening paradigms are invasive, time consuming and present significant barriers to access
 - Adherence to current screening is not at goal
 - Covid-19 has caused a dramatic drop in screening
 - Cancellations
 - De-prioritization by health systems early in pandemic
 - Fear of exposure by patients
 - Increased barriers and disparity gaps

Missing Many Cancers: USPSTF Screening covers 29% of annual cancer incidence age 50-79

71% incident cancers without current screening modality

Cancer	Prevalence (%)	USPSTF Recommended Screening	Sensitivity (%)	Specificity (%)	Positive Predictive Value (%)	Compliance with Recommended Screening (%)
Breast	0.6	Biennial mammography, women ages 50-74	87	89	4.4	78.3
Cervical	<0.1	Triennial cytology or quinquennial cytology/HPV test women ages 21-65	95	85.5	<1	80
Colorectal	0.65	Decennial colonoscopy Triennial stool-based screening (Cologuard) Annual Stool based screening (FIT) Ages 45-75	75-93%adenomas6mm orgreater92.373.8	86% 86.6 94.9	3.9-100 depending on study and reference (avg. 22.9%)3.78.7	69.7
Lung	1.1 (high risk)	Annual low-dose CT ages 50-80	85	87	6.9	5
Prostrate	15.5	Biennial PSA testing, men 55-69	21	91	30	33

Accuracy of Mammograms

The best we have needs To be better.

- Overall the sensitivity of mammography is about 87%
 - Mammography identifies 87% of women who have breast cancer
 - The chance of having a false positive result after one mammogram ranges from 7-12% depending on age.
 - It is estimated that over 10 years of annual mammography screening, 50% of women will experience at least one false positive recall, 17% false positive short-interval follow-up and 11% a false positive biopsy recommendation.

https://health.ucdavis.edu/news/headlines/half-of-all-women-experience-false-positive-mammograms-after-10-years-of-annual-screening-/2022/03

New Cancer Screening Paradigm

Goal:

- Shift cancer detection to earlier stage to hopefully increase treatability
- Provide screening for cancers without previous rigorous screening options

To be successful:

- Low false positives
- Ability to localize the cancer with high accuracy
- Limit over diagnosis (not over detect indolent cancers)
- Need data from prospective studies that show that liquid biopsies deliver benefits to patients beyond being non-invasive such as increasing quality-adjusted life-years.

The Galleri Test in My Practice

When do I discuss Galleri		Annual Physical/Wellness Cancer Screening Appointment Other
Who do I discuss Galleri with	•	All patients 50 years or over 50 years or over and additional risk factor 40y-50y with additional risk factors Other
How do I discuss Galleri		Pre-visit materials: videos, brochures, website During visit: brochures, flip chart, verbal Sample language
How to obtain a sample		In office blood draw Kit given to patient or sent to patient's home • Quest, Mobile phlebotomy
Discussing results		Copy of results for patient No cancer signal detected Cancer Signal detected

The Galleri test can easily be integrated into existing clinical workflows

GRAIL post-positive test support for ordering providers

Sample Test Reports

Positive Test - Cancer Signal Detected

* Galleri

Firstname Last | GRAIL ID: ID1234567890

Multi-cancer early detection test report

Patient		Sample		Orderina	Provider
Name:	Firstname Lastname	GRAIL ID:	ID123456789	Name:	Firstname Lastname, MD
Patient ID:	PathPar1234567890	Report Date:	15-0CT-2019 / 18:13 PT	Location:	Academic Hospital - Clinic 1
DOB:	01-JAN-1965	Collection Date:	20-SEP-2019 / 21:39 PT	Address:	123 Maple St. Unit 321
Bio Sex:	Female				Rainbow Town, CA 94000
Email:	firstnamelastname@email.com			Phone:	(123) 456-7890
				Fax:	(987) 654-3210

Results

Cancer Signal Detected The Galleri[®] test detected DNA methylation signals associated with cancer in the analyzed cell-free DNA obtained from the patient's sample.

Detection of a cancer signal is not a diagnosis of cancer. Diagnostic evaluation for cancer should be conducted.

Top Predicted Signal Origins to Guide Diagnostic Evaluation Head & Neck

Signal Origin(s) Score

This chart displays the top score(s) of Cancer Signal Origins predicted by the Galleri test. The size of each bar represents confidence in predicting cell or tissue origin of detected cancer signal: long bar reflects higher confidence and short bar reflects lower confidence in cancer signal origin. This chart does not provide an indication of the overall likelihood of cancer.

Cancer signals are organized into 21 Cancer Signal Origins, which are listed in the Method section. For more information, please visit www.galleri.com/test-report.

1 of 6

Included sub-categories of the predicted origins:

 Head & Neck: Oropharynx, Hypopharynx, Nasopharynx, Larynx, Lip and Oral Cavity (including Oral Tongue), Nasal Cavity, Paranasal Sinuses, Major Salivary Glands

Lung: Lung, Bronchus

Considerations from Clinical Studies

In the interim analysis of the PATHFINDER study, it was estimated that 40.4% (95% Cl 27.6%-54.7%) of participants had cancer diagnosed
among participants with "signal detected" results (see Positive Predictive Value in the 'Clinical Studies' section for details).

The Galleri test may produce a 'Cancer Signal Detected' result, but subsequent diagnostic evaluation may not reveal a cancer diagnosis. Even
if the diagnostic evaluation of the Cancer Signal Origin(s) is negative, the likelihood that the individual has cancer remains elevated and may
warrant further evaluation.

In the Circulating Cancer Genome Atlas (CCGA) validation study, Galleri detected cancer signals across more than 50 cancer types.
 Please visit www.galleri.com/test-report for more information or contact GRAIL at 833-694-2553.

Comments:

GRAIL

Laboratory Director: Rita Shaknovich MD, PHD | CLIA #05D2154430 | CAP #8149563 1525 0⁷Brien Dr., Menio Park, CA 94025 | 833-M⁺-GALLER (833-694-2533) | FAX 850-999-9000 | customerservice@grail.com #2021; GRALLIC AII Rinkth Reserved. Galleri is trademark of GRALLIL CI CLAB-DEV-0018 | V& 0

Page 1 only of sample test report shown.

*For intended use population: Adults with an elevated risk of cancer such as those aged 50+ years. Use of Galleri is not recommended in individuals who are pregnant, 21 years old or younger, or undergoing active cancer treatment.

Personalized medicine and weighing risk (SCREEN vs TEST):

Negative testing: how frequent to repeat?

Residual risk and False negatives (0.6%): specific cancer has poor sensitivity, type of tumor Does not secrete cfDNA into blood stream at high enough levels to detect Cancer is pre-detection level

Plan for positive results and collaboration of care 1-2% of those tested will have a positive results

Each positive results is a post test probability of 1 out of 2 for cancer

How can we best collaborate and prepare to care for patients with a positive screen.

- Support patients and their providers
- Minimize invasive procedures
- Minimize cost
- Maximize identification of cancer in timely manner

None to Date

Age: Overall Health: Cancer Screening History: Reason for MCED Test: Cancer Signal Origin Prediction:

Evaluation:

Diagnostic Resolution:

Additional Information:

DISCLAIMER: Information is provided by the treating provider for educational and illustrative purposes only and does not represent 45 GRAIL clinical data or claims.

PATIENT CLINICAL PROFILE

Age: 56 year old female **Overall Health**: obese, multiple fibrous cysts (pancreas, liver, abdomen, uterus)

Cancer Screening History: routine screening up to date **Reason for Test:** confused about biopsy results, cancer, not cancer?

Patient Response: Patient very relieved, had been anxious for years that a cancer was being missed.

Additional Information:

DISCLAIMER: Information is provided by the treating provider for educational and illustrative purposes only and does not represent 46 GRAIL clinical data or claims.

PATIENT CLINICAL PROFILE

Age: 57 year old male Overall Health: very healthy Cancer Screening History: current Reason for Test: family history significant for one or more cancers in every generation on both sides of the family including younger brother who died of cancer.

Patient Response: extremely relieved and excited to have a larger screening test that he can undergo each year given his family history and the constant stress of "waiting for cancer".

Additional Information:

PATIENT CLINICAL PROFILE

Age: 79

Overall Health: very healthy, hx of skin cancer x1 **Cancer Screening History:** current **Reason for Test:** patients husband had cancer and her mom and she feels empowered to have a test that can supplement routine screening and catch cancer early if possible.

Patient Response: relieved and planning to do annual screening

Additional Information:

Early detection can help reduce disparities in late stage diagnosis and mortality

African-Americans

African Americans have the **highest mortality rate** of any racial or ethnic group for all cancers combined and most major cancers

Hispanics/Latinos

Hispanics/Latinos are more likely to be diagnosed with advanced stages of disease Native Hawaiians and Pacific Islanders

Native Hawaiians and Pacific Islanders are **30 percent more likely to be diagnosed with cancer** compared to non-Hispanic whites

Thank you

Mylynda Massart, MD, PhD Assistant Professor of Family Medicine University of Pittsburgh massartmb@upmc.edu

THANK YOU FOR JOINING US!

Please visit our website to learn about upcoming programming: Jefferson.edu/jcph

Please fill out our survey at https://bit.ly/MCED_12_8_2022

