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Introduction 
The format of special issues is well proved and 
continues to develop at this time [1-15]. The main 
aim of this special issue “Nonlinear Dynamics, 
Dynamical Systems and Processes” is the thematic 
integration of the research results into mathematical 
modeling, theoretical analysis, synthesis and 
numerical simulation of nonlinear phenomena in 
dynamical systems and corresponding applications 
[e.g. 16-28].  

So, this special issue includes the following 
works with corresponding description of the aspects 
of the nonlinear dynamics: 
1). A Linear Temperature Measurement System 
Based on Cu100 [29].  
In this work a temperature measurement device is 
designed for the temperature measurement and 
control of industrial processes with high accuracy 
by using Cu100 thermal resistor. It consists of 
AD590M, resistors, amplifier, A/D converter, data 
sampling and processing system, digital display, 
alarming unit, serial output ports, etc. The single 
comparing method is used to find the thermal 
resistor value which is mapped to the corresponding 
temperature by looking into indexing table. 
Therefore, linearity is implemented, which greatly 
reduces the impact of temperature-drift and non-
linearity in amplifier.  
2). LMI based bounded output feedback control for 
uncertain systems [30].  
This paper provides conditions for constrained 
dynamic output feedback controller to be cost 
guaranteeing and assuring asymptotic stability for 
both continuous and discrete-time systems with 

quadratically constrained nonlinear/uncertain 
elements. The conditions are formulated in the form 
of matrix inequalities, which can be rendered to be 
linear fixing one of the scalar parameters. An 
abstract multiplier method is applied. Numerical 
examples illustrate the application of the proposed 
method. 
3).  Fault Detection and Diagnosis in Non-Linear 
Process using Multi Model Adaptive H∞ Filter [31]. 
Here the Kalman Filter (KF) is described, which is 
widely used in process industries as state estimator 
to diagnose the faults either in the sensor, actuator 
or in the plant because of its recursive nature. But, 
due to increase in non-linearity and exogenous 
perturbations in the monitored plant, it is often 
difficult to use a simple KF as state estimator for 
nonlinear process monitoring purposes. Thus, the 
first objective of this paper is to design an Adaptive 
Linear H∞ Filter (ALH∞F) using gain scheduling 
algorithm to estimate nonlinear process states in the 
presence of unknown noise statistics and unmodeled 
dynamics. Next the designed ALH∞F is used to 
detect sensor and actuator faults which may occur 
either sequentially or simultaneously using Multi 
Model ALH∞F (MMALH∞F). The proposed 
estimator is demonstrated on Continuously Stirred 
Tank Reactor (CSTR) process to show the efficacy. 
And the performance of MMALH∞F is compared 
with MMALKF. The proposed MMALH∞F is 
detecting and isolating the faults exactly in the 
presence of unknown noise statistics and unmodeled 
dynamics. 
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4). Permanence and Asymptotically Periodic 
Solution for A Cyclic Predator-PreyModelWith 
Sigmoidal Type Functional Response [32].  
This paper is concerned with a cyclic predator-prey 
system with Sigmoidal type functional response. By 
using the differential inequality theory, some 
sufficient conditions are derived for the permanence 
of the system. By constructing a suitable Liapunov 
function, it is obtained that the system has a unique 
asymptotically periodic solution which is globally 
asymptotically stable. Some numerical simulations 
that illustrate our analytical predictions are carried 
out. 
5). Dynamical Analysis and Synthesis of Inertia-
Mass Configurations of a Spacecraft with Variable 
Volumes of Liquids in Jet Engine Tanks [33].  
In this article the attitude motion of a spacecraft 
with variable mass/structure is considered at the 
variability of the volume of liquids (the fuel and the 
oxidizer) in tanks of the jet engines. The variability 
of the liquid’s volume is occurred under the action 
of systems of the extrusion of liquids by the 
pressure creation and, as a result, by the diaphragm 
(a thin soft foil) deformation inside the fuel/oxidizer 
tank. The synthesis of the attitude dynamics is 
fulfilled by the change of directions of the extrusion 
of the liquids in tanks – this modifies the inertia-
mass parameters (their corresponding time-
dependencies) and affects the final motion 
dynamics. Here it is showed that the extrusion in the 
lateral radial―outside direction is most preferable 
in comparison with the longitudinal extrusion (in the 
direction of jet-vector). It means that the precession 
cone of the longitudinal axis of the spacecraft (the 
axis of the jet-engine reactive thrust) is ―twisted up 
to the precalculated necessary direction of jet-
impulse, and it has not ―untwisted‖ phases. This 
scheme of the liquid extrusion is dynamically 
optimal, because it allows to improve the active 
inter-orbital manoeuvre by the 
natural/uncontrolled/passive way. 

So, in this special issue the dynamical 
aspects are quite broadly presented and the main 
aim of the issue is locally reached. 
 
 
Conclusions 
Finally before diving into the collected research 
works [29-33], let us remember the reader that 
WSEAS Transactions on Systems has broad 
spectr of Special Issues, e.g. [1-15]. This is has 
the objective of creating an active and 
contributing research community around the 
journal and to present their latest efforts which 

have achieved wide interest among its 
members. As a reader of the journal you are 
invited to take inspiration by the presented 
papers and to consider to submit your future 
works to the journal itself. 
Enjoy your reading! 
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Abstract: - A temperature measurement device is designed for the temperature measurement and control of 

industrial processes with high accuracy by using Cu100 thermal resistor. It consists of AD590M constant current 

source, resistors, amplifier, A/D converter, data sampling and processing system, digital display, alarming unit, 

serial output ports, etc. The single comparing method is used to find the thermal resistor value which is mapped 

to the corresponding temperature by looking into indexing table. Therefore, linearity is implemented, which 

greatly reduces the impact of temperature-drift and non-linearity in amplifier. Besides, the device implements 

the measuring of full temperature range of the reference table. The theoretical error of the device is less than 

0.1 ℃ and meets the requirements in most of industrial processes. 

 

 

Key-Words: - linear temperature measurement, Cu100  copper resistor, MCU, linear indexing table 
 

1 Introduction 
Temperature is one of the seven basic physical units 

in the international system of units (SI), which 

occupies an important position in all of relevant 

disciplines [1-6]. At present, there are many 

methods of measuring temperature in the world, as 

well as the classification methods of classifying 

those measuring methods. In general, it is difficult 

to find an ideal temperature measuring method 

because of the numerous measuring principles [7-9]. 

It can be roughly divided into contact measurement 

and non-contact temperature measurement 

according to different measurement ways. Contact 

temperature measurement device which is 

characterized by a higher measurement precision, 

simple design, high reliability, wide application 

range, is carried out according to the principle of 

heat exchange, such as double metal thermometer, 

glass thermometer, thermocouple thermometer, hot 

resistor thermometer and pressure thermometer, 

etc[10-12]. In order to make the measurement 

precise, contact temperature measurement method 

must ensure the device well contacting with the 

object being measured, and after sufficient heat 

exchange to get the actual temperature. But contact 

temperature measurement method can’t be used for 

too high temperature measurement due to the 

hysteretic response and the chemical reaction with 

the object being measured. At present non-contact 

temperature measurement is mainly the radiant 

temperature measurement in industry, which keeps a 

certain distance with the measured object. But it is 

vulnerable to the object emissivity, and the distance 

of the object being measured, as well as the media 

such as steam and smoke. The accuracy of the non-

contact temperature measurement can't be 

guaranteed, which is typically used for high 

temperature measurement [13-17]. 

The traditional thermal resistor and thermocouple 

temperature measurement technology are 

characterized by simple structure, mature 

technology and convenient use, etc, which can be 

widely used in the future [17-19]. With the full 

development of electronic technology, a small 

temperature measuring instrument which includes 

temperature sensing device and the corresponding 

integrated electronic circuit can be designed, with 

which we can see voltage, frequency, or directly 

temperature display. It is not only convenient but 

also easy to carry. 

Micro Controller Unit (MCU) [1-4,20-24] is 

usually applied to real-time measurement and 

control, especially to the development of 

electromechanical integration of intelligent systems 

and products which is characterized by small 

volume, low power consumption, cheap and strong 

control ability, etc. It has very extensive application 

in the field of measuring temperature because of 

high automation, intelligence in a system. In this 

paper, we design a copper resistor (Cu100) linear 
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temperature measurement system based on MCU 

which can meet general industrial temperature 

measurement occasions [1-4,20,24]. 

This paper is organized as follows. In Sec.2, we 

give the theoretical analysis of the thermal resistor 

temperature measurement. In Sec.3, we provide the 

hardware design of the system. In Sec.4, we provide 

the software design of the system. In Sec.5, the error 

analysis is given. In Sec.6, the conclusion is given. 

2 The theoretical analysis of the 

thermal resistor temperature 

measurement  

Thermal resistor temperature measurement device is 

based on the principle that the value of the metal 

conductor resistor has linear relation with the 

measuring temperature[12-17]. The relationship 

between the metal conductor resistor value and 

temperature can be expressed as 

       
0 0[1 ( )]t tR R t tα= + −         (1) 

Where tR and
0t
R represent the value of the metal 

conductor resistance at t  (℃) and 0t  (℃) 

respectively; α  represents the temperature 

coefficient of resistor, namely the relative variation 

of the resistor as the temperature rise per 1 ℃.  

Although the general metal material and 

temperature are not completely linear relationship, it 

can be approximate to linear relationship in a certain 

range, the commonly used thermal resistor 

characteristic curve is shown in figure 1. 

Fig.1 The commonly used thermal resistor 

characteristic curve 

The temperature coefficient of resistor α  is 

defined as 
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Formula (3) is the general expression which has a 

broader significance, but it should be linearized.  

Experiments show that the resistor of most metal 

conductor with a positive temperature coefficient 

increases 0.36% ~ 0.68% when the temperature 

raises 1℃. The purer a metal material is, the bigger 

α  is, and vice versa. So the α  of alloy is usually 

smaller than the pure metal. Copper resistor is 

commonly used in temperature measurement ranged 

from -50℃ to 150℃, whose resistor is linear with 

temperature. Its temperature coefficient is relatively 

big, and its price is cheap, as well as the material is 

easy purified. But it has low resistivity, and is easily 

oxidized, so it is reasonable to use copper resistor 

thermometer if the temperature is not too high and 

there is no special limit about the size of the 

temperature measuring element. In this paper, we 

choose Cu100 as the thermal resistor sensor. The 

relation between the copper thermal resistor and 

temperature can be expressed as 

)1( 32

0 CtBtAtRRt +++=        （4） 

Where tR and 0R represent the value of the copper 

thermal resistor at t  (℃) and 0 (℃) respectively; 

A=4.28899 × 10
3−

/℃，B= -2.133 × 10
7−

/℃ 2 ，
C=1.233 × 10

9−
/℃ 3

 . Within a certain range 

formula (4) can be approximated as formula (5) 

ignoring B and C. 

                )1(0 tRRt α+=                    （5） 

Where α =4.28 × 10
3−

/℃, to simplified the 

calculation, we can set α =4.25×10
3−
/℃, because 

the temperature coefficient of copper thermal 

resistor is very small and the purity of copper 

resistor material is not high. After determining the 

linear relation of copper thermal resistor and 

temperature, we can measure the value of thermal 
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copper resistor and check the linear indexing table 

to get temperature. 

 

2.1 The current method model for measuring 

thermal resistor 

With the control of the MCU, the thermal resistor 

adjusting circuit (Fig. 2) completes the signal data 

acquisition according to logic control table (Table 

1).The circuit uses AD590M as constant current 

source to realize the resistor measurement, which is 

called “current method”. 

As shown in table 1 and Fig. 2, the IN0 channel 

of M1 and M2 multi-channel is open at step 1, and 

the output current I of AD590M pass through R0 and 

R1 in calibration circuit forming voltage signal U1 as 

formula (6) 

                   01 RIU ⋅=                         (6) 

 Fig. 2 The signal disposal module of thermal 

resistor 

      

 

Table 1 Logic control function table 

steps U1 U2 P1.0 P1.1 P1.2 P1.3 collection the signal of 

1 IN0 open IN0 open 0 0 0 0 standard calibration signal U1 

2 IN1 open IN1 open 1 0 1 0 the measured signal U2 

3 IN2 open IN2 open 0 1 0 1 the line resistor signal U3 

4 IN1 open IN3 open 1 0 1 1 zero calibration signal U4 

 

To simplify the calculation process, we can assume 

the zero calibration signal U4 = 0. The calibrating 

signal sampling value S1 is available after the 

amplifier, A/D conversion and zero calibration, 

which can be got as  

   011 RIKUKS ⋅⋅=⋅=                   (7) 

The IN1 channel of M1 multi-channel and the IN2 

channel of M2 multi-channel are open at step 2, and 

the output current I of AD590M pass through Rt and 

R2, as well as the line resistor 2r forms voltage signal 

U2 as formula (8) 

 

                )2(2 rRIU t +⋅=                       (8) 

 

The thermal resistor signal sampling value S2 is 

available after the amplifier, A/D conversion and 

zero calibration, which can be expressed as follows 

 

)2(22 rRIKUKS t +⋅⋅=⋅=         (9) 

The IN2 channel of M1 and M2 multi-channel are 

open at step 3, and the output current I of AD590M 

pass through R3 and the line resistor 2r in correcting 

circuit forms line correcting voltage signal U3 as 

formula (10) 

   IrU ⋅= 23                            (10) 

The line resistor signal sampling value S3 is 

available after the amplifier, A/D conversion and 

zero calibration, which can be expressed as follows 

rIKUKS 233 ⋅⋅=⋅=            (11) 

The IN1 channel of M1 multi-channel and the IN3 

channel of M2 multi-channel is open at step 4 

forming voltage signal U4 and the zero calibrating 

signal sampling value 
'

4S  is available after the 

amplifier, A/D conversion and zero calibration 

4

'

4 UKS ⋅=                             (12) 

The value of U4 and S4 ， is too small to 

converge to zero and the formula (12) is used to 

the zero calibration of S1、S2、S3. We can get 

formula (13) based on formula (9) 
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r
IK

S
Rt 22

−
⋅

=                      (13) 

Formula (14) can be get based on formula (11) 

        
IK

S
r

⋅
=

32                         (14) 

Besides, Formula (15) which is not influenced by 

the line resistor can be get based on formula (13) and 

formula (14) 

 
IK

S

IK

S
Rt

⋅
−

⋅
=

32                    (15) 

Formula (16) can be get based on formula (7) 

       
0

1

R

S
IK =⋅                         (16) 

Finally, formula (17) can be get based on formula 

(15) and formula (16) 

    0

1

32 R
S

SS
Rt ⋅

−
=                  (17) 

Formula (17) is the theoretical calculation model 

of the current method model for measuring thermal 

resistor. The measurement accuracy error caused by 

the line resistor can be completely eliminated, which 

makes the device is not affected by environmental 

temperature. From formula (17), we can see that Rt is 

related to R0, S1, S2 and S3 rather than the output 

current I of AD590M and the amplification factor K 

of the Amplifier, so this design can ignore the zero 

drift and nonlinear effects. 

 

3. The hardware design of the system 

The hardware of the system is designed as the block 

diagram Fig. 3 shows. 

 

 

Fig. 3 The hardware block diagram of the system 

 

3.1 The temperature signal processing unit 
The signal measurement circuit is made up of the 

copper thermal resistor Rt, standard resistor R0(in this 

paper R0=164.27 Ω ), resistor R1~R3, the multi-

channel switch M1 and M2, etc. In addition, R1, R2 

and R3 can be calculated according to the standard 

that the total resistor of each line is nearly equal. In 

this paper, R1=835.73Ω , R2=868.62Ω , R3=990Ω , 

r=5Ω . The main functions of this unit are signal 

acquisition, the calibration of measuring range, zero 

calibration, the correction line resistor, etc. The 

hardware parts of the signal measurement circuit are 

shown as Fig. 4. 

Fig.4 The hardware parts of the signal measurement 

circuit 

 

3.2 The Signal amplification unit 

The amplifier unit adopts three-stage amplifier, 

which is composed of operational amplifiers IC0 ~ 

IC2, etc. The amplifier unit is designed as Fig.5. 

Because the input signal is transformed by the 

current I from AD590M, the input impedance of the 

amplifier must be designed to be relatively high. The 

maximum value of Cu100 thermal resistor is 
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164.27 Ω , and the line equivalent resistor 2r is 

approximate to 10 Ω . The AD converter AD574 

adopts 10V input method. The output current of 

AD590M is 323.2uA when the environment 

temperature is 50℃. We can get the magnification of 

the total amplifiers 

K=10V/[(164.27Ω +10Ω )×323.2 uA]=177.54. The 

magnification K1、K2、K3 of each amplifier can be 

calculated as follows 

              11 =K                             (18) 

             
4

6

2
R

R
K =                          (19) 

               
 

 

Fig.5 The signal amplification unit 

  

Fig.6 The data acquisition and processing unit 
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Fig.7 The interface circuit of the MCU and AD574 

 

 

              
7

9

3
R

R
K =                                 (20) 

Where R4=2K Ω ， R6=51K Ω ， R7=1 K Ω ，
R9=6.8K Ω ， R5=R4//R6 ， R8=R7//R9, the total 

magnification is 

  4.173
7

9

4

6

321 =⋅=⋅⋅=
R

R

R

R
KKKK         (21) 

The actual magnification is slightly less than the 

calculated value of 177.54, but as a result of using 

the real-time calibration, the calculation model does 

not contain the magnification. So the magnification 

does not affect the accuracy of the results. 

 

3.3 Sampling and Data Processing 

The data sampling process has been introduced in the 

current method of measuring thermal resistor model 

[1-2,24-25]. The MCU samples according to table 1 

and Fig. 6. We define the sampling value of U1、U2 
、U3 and U4 to be S1， 、 S2，  、 S3，  and S4，

respectively. After digital filter, bad data value 

processing and zero calibration (namely excluding 

the zero calibration signal S4， ), we can get the 

sampling data S1 、S2 and S3. 

'

4

'

11 SSS −=                      (22) 

              
'

4

'

22 SSS −=                       (23) 

              
'

4

'

33 SSS −=                      (24) 

 

3.4 The design of A/D conversion part 

This part adopts conversion chip AD574 with 

single polarity input method [1-4,25], which can 

convert the voltage ranging from 0V to 10V. After 

conversion, the eight high numbers is exported from 

DB11～DB4, while the low numbers is exported 

from DB3～DB0. Interface circuit is shown in Fig. 

7. The conversion process of AD574 can be seen as 

setting port address to DPTR � starting the 

transition � tracking the status of the output signal 

STS � reading the conversion result. 

 

3.5 The design of display unit 
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The interface circuit of the MCU and LED digital tube is shown in Fig. 8. 

 

Fig.8 The interface circuit of the MCU and LED digital tube 

 

3.6 The design of alarm unit  

The temperature measurement range of this device is 

- 50 ~ + 150 ℃, so the device must give an alarm 

when the measured temperature is beyond the scope  

of measurement. The interface circuit of the MCU 

and alarm unit is shown in Fig. 9. 

 

 

 

Fig.9 The alarm unit 

 

3.7 The design of serial output unit 

The serial output port is completed by MAX220. 

Each data contains 2 bytes and the baud rate is 9600, 

which can be accurate to 0.1 ℃. The interface circuit 

of the MCU and the serial output unit is shown in 

Fig. 10. 

 

Fig.10 The serial output unit 

 

4 The software design of the system 

 
The main function of the system software is to 

control the multi-channel logic switch completing the 

data acquisition and accomplish the bad value 

processing, digital filtering, the copper thermal 

resistor calculation, the reverse look-up of the 

indexing table, the calculation of fractional part 

between two integral temperature points, the warning 
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system and the temperature display part, etc. The 

software design uses block-based design method in 

order to facilitate the programming and modification. 

The block-based design is a set together with a 

family of subsets (repeated subsets are allowed at 

times) whose members are chosen to satisfy some set 

of properties that are deemed useful for a particular 

application. So we often adopt block-based design to 

exploit complex systems[1-4,24,27-29]. 

Through analysis, the software program design of 

this temperature measuring device can be divided 

into the program initialization, the bad value 

processing subprogram, digital filter subprogram, 

copper thermal resistor calculation subprogram, 

temperature calculation subprogram, alarm 

subprogram and display subprogram, etc. 

Additionally, the block diagram of the software 

design is presented as Fig. 11. 

There are 201 temperature points in the indexing 

table of Cu100 thermal resistor, ranging from -50 ℃ 

to 150 ℃. The value of the Cu100 thermal resistor of 

each temperature points adopts 10mΩ  as the base 

unit, which exists in two bytes using hexadecimal 

code. The temperature points were made into 

indexing table according to the sequence from low 

temperature to high temperature, which were stored 

in the memory with the memory address increasing. 

With the fitting function of Matlab software, we get 

the temperature characteristic curve of the value of 

the copper thermal resistor with temperature, where 

the R
2≈1, indicating that the linear relationship is 

relative good. The scatter diagram and the fitting 

curve of the Cu100 thermal resistor indexing table 

with the temperature are shown as Fig.12.  

 
Fig.12 The scatter diagram and the fitting curve 

of the Cu100 thermal resistor indexing table with 

the temperature 
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Fig.11 The block diagram of the software design 

The formula of the characteristic curve in Fig.12 

is shown as  

            34.233334.2 −⋅= tRt               （25） 

 

Where the unit of Rt and t are Ω  and ℃ 

respectively. 

The error of the fitting curve and characteristic 

curve of the copper thermal resistor is relatively 
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small. The maximum temperature error is 0.16 ℃, 

less than 1 ℃, between the same copper thermal 

resistor values, so we can find the whole 

temperature points without missing. 

We can get the value of Rt based on the formula 

(17). If the value of Rt equals to the value in the 

Cu100 thermal resistor indexing table, the 

temperature value is the corresponding temperature 

value which is requested. Otherwise, we should 

calculate the decimal part of the temperature with 

the linear interpolation method. The decimal part 

t∆  can be expressed as formula (26) 

 

   1
)()1(

)(
×

−+

−
=∆

ztz

ztt

tRtR

tRR
t ℃          （26） 

where Rt(tz) is the maximal integer thermal resistor 

value which is not greater than Rt, while Rt (tz + 1) is 

the minimum integer thermal resistor value which is 

not less than Rt , namely, the value of Rt is between 

Rt(tz) and Rt (tz + 1). If the accuracy of ∆ t is 0.1℃, 

the final temperature value for the measurement can 

be expressed as formula (27) 

                    ttt z ∆+=                              （27） 

 

5 The error analysis 

From formula (17) we can get the combined 

standard uncertainty of Rt as formula (28) 
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         (28) 

S1 represents the calibrating signal sampling value 

with the temperature changing and the minimum 

value of S1 is S1=（273.15/323.2uA）×4096=3462 

at 0℃. S2 represents the copper thermal resistor 

signal sampling value and the maximum value of S2 

is 4096. S2 represents the line resistor signal 

sampling value. If we approximate 2r as 10Ω , S3 

can be expressed as 

S3=10Ω ×4096/174.27Ω =235.04. u(S1) 、u(S2)、 

u(S3) represent the standard uncertainty of AD574 

whose mean value is 1/（2×4096 3 ）=7.04E-5. 

u(R0) represent the standard uncertainty of R0 whose 

value is 164.27Ω (the maximum error is 0.01Ω ). 

By choosing the confidence probability of normal 

distribution as 0.9973, we can get 

u(R0)=0.01/3Ω =3.33E
-3

 Ω . 

After calculating the minimum value of S1 , the 

maximum value of S2 ,S3 ,u(R0), we can get u(Rt) 

(the combined standard uncertainty of Rt). By 

choosing the confidence probability of normal 

distribution as 0.9973, we can get the extended 

combined standard uncertainty of Rt, which can be 

expressed as U=3×u(Rt)=0.011Ω . 

From the Cu100 thermal resistor indexing table, we 

can find the minimum difference of thermal resistor 

value between two integer temperature points is 

0.39Ω , which means that the maximum of copper 

resistor temperature conversion coefficient is 

1℃/0.39Ω . The total measuring error is determined 

by the error of Rt (0.011Ω ) and the rounding error 

of Rt (the maximum rounding error of Cu100 is 

0.005Ω ) when calculating. We convert the resistor 

error to the limit error of temperature which can be 

expressed as 
tR

δ =0.028℃ ， bδ =0.013℃ 

respectively. Finally, the limit temperature error of 

the device can be expressed as formula (29) 

 

   
2 2 2 2

1 2 0.028 0.013

0.031

δ δ δ= + = +

= ℃
            （29） 

Formula (29) is the theoretical limit error of the 

device, which can meet the general industrial design 

requirements. 

 

 

6 Conclusion 

The purpose of this paper is designing a copper 

resistance (Cu100) linear temperature measurement 

device, mainly used for the temperature control of 

industrial processes. The device is made up of signal 

acquisition unit, signal amplification unit, A/D 

converter, digital display unit, serial ports and other 

sectors, mainly to complete the data acquisition, 

logic control, bad value processing, digital filtering, 

the calculation of thermal resistance, look-up table, 

calculation, warning, serial output and display. The 

System uses AD590M constant current source 

instead of the constant current source, providing 
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current. Under the control of the AT89S51 MCU, 

the standard resistance uses the standard signal to 

calibrate the system, then conduct signal sampling, 

calculation of the copper resistance value and the 

temperature values corresponding to the reverse 

look-up of the indexing table, thus achieving a true 

sense of the linearization. The device greatly 

reduces the temperature drift and nonlinearity of the 

amplifier in the measurement process, realizing the 

whole temperature measurement range of the copper 

resistance. The theoretical error of the device is less 

than 0.1 ℃ to meet the requirements in most of 

industrial processes. 
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Abstract: - Kalman Filter (KF) is widely used in process industries as state estimator to diagnose the faults 
either in the sensor, actuator or in the plant because of its recursive nature. But, due to increase in non-linearity 
and exogenous perturbations in the monitored plant, it is often difficult to use a simple KF as state estimator for 
nonlinear process monitoring purposes. Thus, the first objective of this paper is to design an Adaptive Linear 
H∞ Filter (ALH∞F) using gain scheduling algorithm to estimate nonlinear process states in the presence of 
unknown noise statistics and unmodeled dynamics. Next the designed ALH∞F is used to detect sensor and 
actuator faults which may occur either sequentially or simultaneously using Multi Model ALH∞F 
(MMALH∞F). The proposed estimator is demonstrated on Continuously Stirred Tank Reactor (CSTR) process 
to show the efficacy. And the performance of MMALH∞F is compared with MMALKF. The proposed 
MMALH∞F is detecting and isolating the faults exactly in the presence of unknown noise statistics and 
unmodeled dynamics.      
 
Key-Words: - CSTR, Process Monitoring, Kalman Filter, Multi Model Adaptive Linear H∞ Filter, Residual 
generation, State Estimation. 
.
1 Introduction 

Due to increase in complexity, non-linearity and 
exogenous perturbations, it is often difficult to use a 
simple Kalman filter as state estimator for process 
monitoring purposes. To use linear estimator or 
controller for the non-linear applications multiple 
local linear model approach is used to represent the 
non-linear model. Each local linear model is valid 
around particular operating point. To get the global 
linear model all the local linear models are fused 
using gain scheduling algorithm at current operating 
point [1]. 

Process monitoring has become an essential task 
because of process automation with minimal manual 
intervention. To ensure the quality of the product, 
optimal utilization of the plant safety and to control 
the pollution level it becomes mandatory.   Kalman 
filter is widely used in process industries as state 
estimator to diagnose the faults either in the sensor, 
actuator or in the plant because of its recursive 
nature. Kalman filter is based on the assumption that 
the state and the measurement noises are 
uncorrelated and zero mean Gaussian noise with 
known covariance, and it is suitable for linear 
applications only [2]. The Kalman filter fails if 

either the noise statistics are unknown, if there is a 
plant model-mismatch or the process is non-linear 
and in the presence of unmodeled dymanics.  For 
non-linear systems the widely used estimator is 
Extended Kalman Filter (EKF). EKF linearizes all 
nonlinear transformations and substitutes Jacobian 
matrices in the KF equations [3]. But the nonlinear 
estimation methods are computationally complex. 
Most of the existing algorithms are designed for 
sequential faults and not for simultaneous faults.    

To overcome all these difficulties, first the 
Adaptive Linear H∞ Filter (ALH∞F) is designed 
using gain scheduling algorithm to use the H∞ filter 
for non-linear state estimation in the presence of 
unknown noise statistics and unmodeled dynamics. 
Next, multiple ALH∞Fs are designed with different 
hypothesis to isolate sensor and actuator faults 
which may occur either sequentially or 
simultaneously [4]. And the performance of 
MMALH∞F is compared with MMALKF in the 
presence of unknown noise statistics and unmodeled 
dynamics. The following section deals with the 
design of H∞ Filter and section 3 and 4 deals with 
the design of ALH∞F and MMALH∞F respectively. 
The process used for simulation studies is presented 
in section 5. Simulation results are presented in 
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section 6 and conclusion reached is given in section 
7.  

 
2. H∞ Filter 

The H∞ filter design is based on linear quadratic 
game theory approach. The filter is designed to 
estimate the process states in the presence of 
unknown noise statistics and unmodeled dynamics. 
Consider the following linear stochastic time 
invariant discrete-time system. 

kwkuukxxkx +Φ+Φ=+1                                  (1) 
kvkxyky +Φ=                                                   (2) 

Where nRkx ∈ represents state vector, mRkw ∈  

represents the process noise vector, pRky ∈  

represents measurement vector and pRkv ∈

represents measurement noise vector. ux ΦΦ ,  and 
yΦ are system matrices of appropriate dimension. 

The linear combination of state kx is given by,  
kxkLkZ =        (3) 

Where kL is a user defined matrix. State variables 
are estimated based on measurement history till (N-
1) sampling instant. Basically the H∞ filter is a one 
step ahead predictor, it tries to estimate the states 
with small estimation error .ˆkZkZke −=  Using 
game theory approach the H∞ filter will try to satisfy 
the following performance criterion. 
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Where 0x̂ is an apriori estimate of 0x . RQP ,,0

and S are symmetric, positive definite weighting 
matrices chosen by designer based on process 
dynamics. The estimate kZ should satisfy,  

θ
1

<J                                              (5) 

Where 0>θ  represents the desired level of noise 
attenuation. The H∞ filter can be interpreted as 
minmax problem. The performance criterion given 
in (4) becomes  
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(6)  

The performance criterion can be made less than 
θ
1  

with the following estimation strategy [5,6] 
SLTLS =                                                          (7) 

111 −Φ−Φ−Φ+−= RT
yPyRT

yPSIPK ][ θ             (8) 

)ˆ(ˆˆ kxykyKxkxT
xkx Φ−Φ+Φ=+1                        (9) 

QT
xPyRT

yPSIPxP +Φ−Φ−Φ+−Φ= 11 ][ θ     (10) 
If designer is interested in second element of kZ
then the corresponding ),( 22S should be chosen 
large relative to other element.  
 
3. Adaptive Linear H∞ Filter 

Let us consider a nonlinear stochastic system 
represented by the following state and output 
equations: 

),,( kwkukxfkx =+1                                            (11) 
),,( kvkukxhky =               (12) 

The nonlinear system is linearized around different 
operating points using Taylor series expansion. The 
linear system around operating points ),( iuix is 
given as follows, 

kwiukuuiixkxxiikx +−Φ+−Φ=+ )()()( 1           (13)                             
kvkixyikiy +Φ=                       (14) 

The nonlinear system is represented by a fused 
linear model using gain scheduling technique at a 
given operating point. For a given input vector ku  
the fused linear model is represented as follows: 

])()([ ixiukuui
N

i
ixkxxiigkx +−Φ+∑

=
−Φ=+

1
1 (15) 

kxyiky Φ=                                         (16) 
To cover the entire operating horizon, five 

operating points has been selected (i=1 to 5). Let cq
, is the actual value of the measured process variable 
at current sampling instant and ig  is the weighting 
factor . 
If )( 5cqcq ≥ , then 

1504321 ===== gandgggg
     

            (17) 

If )( 54 cqcqcq ≤< , then 

415
45

440321 ggand
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cqcq

gggg −=
−
−

==== ,

 
(18) 

If )( 43 cqcqcq ≤< , then 
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34
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cqcq
gggg −=

−
−
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(19)  

If )( 32 cqcqcq ≤< , then 
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213
23

220541 ggand
cqcq
cqcq

gggg −=
−
−

==== , (20)                           

If )( 21 cqcqcq ≤< , then 

0543112
12

11 ===−=
−
−

= gggandgg
cqcq
cqcq

g , (21)
                                                             

If )( 1cqcq ≤ , then 

0543211 ===== ggggandg            (22) 

The weighting factors are in the range of [0 1]. 
This approach consists of five local linear 

estimators and a scheduler. The local linear observer 
is designed using H∞ Filter. At a particular operating 
point, the local estimator is given below. 

111 −Φ−Φ−Φ+−= RT
yiiPyiRT

yiPSIiPiK ][ θ   (23) 
)ˆ(ˆ)(ˆ kxyikyiKxikxT

xikix Φ−Φ+Φ=+1           (24) 

QT
xiiPyiRT

yiiPSIiPxiiP +Φ−Φ−Φ+−Φ= 11 ][ θ   
                                                           (25) 
At each sampling instant the scheduler will assign 
weights (gain scheduling) for each local linear 
estimator and the weighted sum of the output will be 
the estimate of the current state. The scheduler 
assigns weight based on scheduling variable. The 
scheduling variable may be input variable or state 
variable or some auxiliary variable, the scheduling 
variable considered here is coolant flow rate cq of 
the process. The ALH∞F (global estimator) 
dynamics will be weighted sum of individual LH∞F 
and it is given below.  

[ ]{ }∑
=

+Φ−−+Φ=+
N

i
ixkixyiiykyiKikxT

xiigkx
1

1 ˆ)(ˆˆ
                                             

                                                                       
(26) 

4. Multi Model Adaptive Linear H∞ 

Filter 
MMALH∞F approach uses multiple ALH∞F. Each 

ALH∞F is designed based on specific hypothesis to 
detect a specific fault. The fault considered here is 
soft fault of fixed bias. The same approach can be 
used to detect dritf like faults. This approach is 
capable of detecting multiple sequential as well as 
multiple simultaneous faults  which  may occur 
either in sensors or in actuators [7]. 

The estimator 1 designed to estimator sensor bias 
and it is hypothesized with a sensor bias of 
magnitude sB  , then the measurement equation is 
given by, 

sBkvkxyiky ++Φ=                                      (27) 
Estimator 2 is designed to detect actuator bias and 

it is hypothesized with a actuator bias of magnitude 
aB , then the state equation is given by, 

kwaBkuukxkx ++Φ+Φ=+ )(1               (28) 

 All the ALH∞F except the one using correct 
hypothesis will produce large estimation error. By 
monitoring the residuals of each ALH∞F, the faulty 
element can be detected and isolated. The proposed 
MMALH∞F scheme is shown in Fig. 1. Each 
ALH∞F consists of five LH∞Fs developed at 
different operating  points. The weights are 
calculated by using coolant flow rate of the process 
as scheduling variable. The LH∞F outputs are 
weighted and added to get the global output 
estimate( y ). The process output is compared with 
the ALH∞F output to generate  residuals. Under 
fault free condition the magnitude of the residuals 
are maximum. If fault occurs in any of the sensor or 
actuator, the estimators except the one using the 
correct hypothesis will produce large estimation 
error. If the ALH∞F is designed for -5% bias and the 
bias occurred is less than or above 0.5%, then the 
residual generated will be different from the one 
during the normal operating condition. By closely 
observing the innovations, the faults which occurs 
either sequentially or simultaneously can be isolated 
and the time of occurance can also be detected. 

 
5. Continuously stirred Tank Reactor 
(CSTR)  
A simulated CSTR process was considered to test 
the efficacy of the proposed method. The schematic 
of the system is shown in Fig 2. An irreversible 
exothermic reaction A → B occurs in a constant-
volume reactor that is cooled by a single coolant 
stream The two state variables of the process are 
concentration and temperature. The first principle 
model of the system is given by the following 
equations.   


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The steady state operating point data used in the 
simulation studies is given in Table 1[8,9]. The 
continuous linear state space model is obtained by 
linearizing the differential equations (29) and (30) 
around nominal operating point AC  andT . The 
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state vector is ];[)( TACtx = and the input vector is
][)( cqtu = . 
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Fig. 1: Structure of the proposed MMALH∞F 

 

Fig. 2: Schematic of CSTR 

6. Simulation Results 

The CSTR process is simulated using first 
principles model as given in (29) and (30) and the 
true state variables are computed by solving the 
nonlinear differential equations using Matlab 7.1. 
The dynamic behavior of the CSTR process is not 
same at different operating points and the process is 
nonlinear.  
6.1 Fused Linear Model: To validate the 
performance of ALKF (local estimators designed 
using linear kalman filter are fused using gain 
scheduling algorithm) and ALH∞F, the process 

states are estimated using these estimators and 
compared with the rigorous non-linear model. The 
process and measurement noise covariance are 
assumed to be 0.25% of coolant flow rate and 0.5% 
of state variables respectively. Fig.3 shows the 
variation in coolant flow rate introduced. Fig.4 and 
Fig.5 shows the estimation of system states when 
the noise sequences are uncorrelated using ALKF 
and ALH∞F. It has been observed that both ALKF 
and ALH∞F exactly estimates the system states 
without dynamic and steady state error in the 
presence of uncorrelated noise. Fig.6 and Fig.7 
shows the estimation of system states when the 
measurement noise sequences are correlated.  It has 
been observed that the performance ALH∞F is better 
than the ALKF when the noise sequences are 
correlated. The ALKF tracks the changes with 
dynamic and steady state error. Fig.8 and Fig.9 
shows the residual generated when the noise 
sequences are correlated. Table 2 shows the 
performance comparison of ALKF and ALH∞F 
when the noise sequences are uncorrelated, 
correlated and after introducing distrubances in the 
feed temperature. It has been observed that the 
ALH∞F outperforms the ALKF when the noise 
sequences are correlated and in the presence of 
unmodeled dynamics.   
 

Table 1: Nominal operating condition for CSTR 
Process variable Normal Value 
Tank volume (V) 100 L 
Feed flow rate (q) 100.0 L/ min 

Feed concentration (CAf) 1 mol/ L 
Feed temperature (Tf) 350.0 K 
Coolant flow rate (qc) 103 L/ min 

Inlet coolant temperature (Tcf) 350.0 K 
Liquid density (ρ, ρc) 1 * 103 g/L 

Specific heats(Cp, Cpc) 1 cal/(g k) 
Reaction rate constant(k0) 7.2 * 1010 min−1 

Activation energy term (E/R) 1 * 104 K 
Heat of reaction (-ΔH ) -2 * 105 cal/ mol 
Heat transfer term (hA) 7 * 105 cal/(min k) 

product concentration (CA) 0.0989 mol/ L 
Reactor temperature (T) 438.7763 K 

 

 
Fig. 3: Coolant flow rate (L/min) 
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Fig. 4: Estimation of product concentration (mol/L) 

when the noise sequences are uncorrelated  
 

0 100 200 300 400 500 600 700 800 900 1000

434

436

438

440

442

Sampling instants

T
em

pe
ra

tu
re

 (
K

)

 

 

Process
ALKF
ALH∞F

 
Fig. 5: Estimation of reactor temperature (K) when 

the noise sequences are uncorrelated  
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Fig. 6: Estimation of product concentration (mol/L) 
when the noise sequences are correlated 
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 Fig.7. Estimation of reactor temperature (K) when 

the noise sequences correlated 
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Fig. 8: Product concentration error when the noise 

sequences are correlated (mol/L)  
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Fig. 9: Reactor temperature error when the noise 
sequences  are correlated 

6.2 Sensor and actuator bias detection: 
Estimator1 is designed to detect bias in CA sensor 
and T sensor and hypothesized with -5% sensor 
bias. Estimator2 is designed to detect bias in the 
actuator and hypothesized with 0% bias which 
manipulates cq . The designed MMALH∞F has been 
used to detect the biases which may occur either in 
the sensors or in the actuator.  

The magnitude of fault occurred is estimated 
from the magnitude of residual generated and the 
time of occurance of fault is the time at which the 
residual changes its trend, and the fault is confirmed 
by comparing the mean of the residual over a period 
of time with the threshold value. While analysing 
the efficacy of MMALH∞F the coolant flow rate is 
fixed at 100 L/min, the corresponding steady state 
values are [0.0885; 441.1475]. And the Estimator1 
is hypothesized with -5% bias so, in the absence of 
bias in the sensors, the residual generated by the 
estimator1 is [0.0044; 22.057]. Estimator2 is 
hypothesized with 0% actuator bias so, in the 
absence of both sensor and actuator bias the residual 
generated by estimator2 should be [0; 0]. Fig. 10, 
Fig.11 and Fig.12 shows the residuals generated by 
estimator1 and estimator2 after introducing -2% of 
bias in both sensors at 50th sampling instant. 
Actuator bias will be reflected in both state 
variables, and any one state variable is sufficient to 
estimate the actuator bias. So, here temperature 
residual is considered.  From Fig.13 and 14 it is 
clear that the H∞ Filter converges quickly compared 
to KF. And the kalman gain smaller than H∞ filter 
gain, so we can conclude that the KF rely more on 
process model and less on measurement and H∞ rely 
more on measurement and less on process model.   

 
7. Conclusion 

In this paper MMALH∞F is proposed which uses 
local linear H∞ filters. Local H∞ filters are fused 
using gain scheduling algorithm to estimate 
nonlinear process states in the presence of 
unmodeled dynamics and disturbances. To isolate 
faults which ocurrs sequentially or simultaneously 
multiple model estimators are used. The efficiency 
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of the proposed MMALH∞F is denonstrated on 
CSTR process to detect sequential and simultaneous 
faults. The MMALH∞F is detecting and isolating the 
faults in the presence of unmodeled dynamics as 
well as in the presence of unknown noise statistics 
and it outperforms the MMALKF. The H∞ Filter 
estimate depends more on measurement and less on 
process model, so it is not suitable for magnitude 
estimation of actuator faults. Magnitude of actuator 
fault can be estimated by setting threshold  using 
MMALH∞F. 

 

 
Fig. 10: Estimator1 concentration residual when  

-2% of bias is present in both sensors  

 
Fig. 11: Estimator1 temperature residual when -2% 

of bias is present in both sensors  
 

Fig. 12: Estimator2 temperature residual when -2% 
of bias is present in both sensors  

 

 
Fig. 13:  H∞ Filter gains 

 

 
Fig. 14:  Kalman Filter gains 

 
 
 

Table 2: Performance comparison of ALKF and ALH∞F 
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State1
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Noise Information 

RMSE 

State 1  -  CA State 2  -  T 
MMALK

F 
MMALH∞

F MMALKF MMALH∞

F 

Uncorrelated Noise 0.0032 8.1724*10-4 1.2536 0.0823 

Correlated Noise 0.0044 0.0014 1.7904 0.0880 

Uncorrelated Noise with 
Disturbance in Tf (350 K 

to 352 K) 
0.0062 0.0011 2.2590 0.2208 
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Table 3: Estimated residual in the presence of sensors and actuator faults 

% of bias Estimated residual by 
estimator1 

Estimated temperature  
residual by estimator2 

No bias 
-1% bias in actuator 
-2% bias in actuator 
-3% bias in actuator 

[0.004425; 22.057] 
[0.004425; 22.057] 
[0.004425; 22.057] 
[0.004425; 22.057] 

0.0000 
0.8525 
1.6525 
2.3091 

-1% bias in both sensors 
-2% bias in both sensors 
-3% bias in both sensors 

 [0.00354 ; 17.646] 
[0.00265 ; 13.234] 
[0.00177 ; 8.823] 

-4.4114 
-8.8228 
-13.2342 

-1% bias in both sensors & 
actuator 

-2% bias in both sensors & 
actuator 

-3% bias in both sensors & 
actuator 

-3% bias in both sensors & 
actuator 

[0.00354 ; 17.646] 
 

[0.00265 ; 13.234] 
 

[0.00177 ; 8.823] 
 

[0.000; 0.000] 

-3.5589 
 

-7.1703 
 

-10.9251 
 

-18.2048 

 
Table 4: Sequential and simultaneous bias detection using MMALKF and MMALH∞F 

% of bias introduced Mean value of the residual generated 

Sensor1 
(CA in 
mol/l) 

Sensor2 
(T in K) 

Actuator 
(qc in 
l/min) 

Estimator 1 for sensor bias detection (hypothesized 
with --5% bias) 

Estimator 2 for actuator bias 
detection (hypothesised 

with 0% bias) 

State 1  -  CA State 2  -  T State 2  -  T 
MMALKF MMALH∞F MMALKF MMALH∞F MMALKF MMALH∞F 

0% 0% 0% 0.0040 0.0045 22.2214 22.0935 0.1640 0.0362 
0% 0% -1% 0.0011 0.0045 22.9369 22.2087 0.8795 0.1514 
0% 0% -2% -0.0015 0.0046 23.6430 22.3047 1.5857 0.2474 
0% 0% -3% -0.0041 0.0047 24.3496 22.3766 2.2923 0.3193 
-1% -1% 0% 0.0031 0.0036 17.8064 17.6780 -4.2509 -4.3793 
-2% -2% 0% 0.0022 0.0028 13.4075 13.2675 -8.6498 -8.7899 
-3% -3% 0% 0.0013 0.0019 8.9836 8.8512 -13.0737 -13.2062 
-1% -1% -1% 2.735*10-4 0.0037 18.5214 17.7884     -3.5360 -4.2689 
-2% -2% -2% -0.0032 0.0029 14.7917 13.4505     -7.2657 -8.6070 
-3% -3% -3% -0.0065 0.0023 11.0452 9.0709 -11.0122 -12.8865 
-5% -5% -5% -0.013 0.0015 3.5649 0.2248 -18.492 -21.5326 
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Abstract:This paper is concerned with a cyclic predator-prey system with Sigmoidal type functional response. By
using the differential inequality theory, some sufficient conditions are derived for the permanence of the system.
By constructing a suitable Liapunov function, we obtain that the system has a unique asymptotically periodic solu-
tion which is globally asymptotically stable. Some numerical simulations that illustrate our analytical predictions
are carried out. The paper ends with a brief conclusion.

Key–Words:Predator-prey system, Permanence, Sigmoidal type functional response, Asymptotically periodic so-
lution, Liapunov function; Global stability

1 Introduction

In recent years, the interest in study of the dynami-
cal properties occurring in the predator-prey system
with delay has been growing rapidly. For example,
Li and Ye [1] had made discussion about the multi-
ple positive almost periodic solutions to an impulsive
non-autonomous Lotka-Volterra predator-prey system
with harvesting terms. Zhang and Luo [2] analyzed
the multiple periodic solutions of a delayed predator-
prey system with stage structure for the predator. Dai
et al. [3] focused on the multiple periodic solutions for
impulsive Gause-type ratio-dependent predator-prey
systems with non-monotonic numerical responses.
Wang and Fan [4] studied the multiple periodic so-
lutions for a non-autonomous delayed predator-prey
model with harvesting terms. Zhang et al. [5] studied
the multiplicity of positive periodic solutions to a gen-
eralized delayed predator-prey system with stocking.
For more investigation about predator-prey models or
related topic, one can see [6-67]. It shall be pointed
out that all the papers mentioned above are concerned
with periodic coefficients. However, the asymptot-
ically periodic system describe our real word more
realistic and more accurate than the periodic ones,
but the research work about asymptotically periodic
predator-prey is scare at present. Recently, Wei and
Wang [68] investigated a asymptotically periodic so-
lution multispecies competition predator-prey model
with Hilling III functional response. Yang and Chen

[69] studied the uniformly strong persistence of a non-
linear asymptotically periodic multispecies competi-
tion predator-prey system with general functional re-
sponse.

In this paper, we will deal with the following
cyclic predator-prey system with Sigmoidal type func-
tional response
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













































































ẋ1(t) = x1(t)

[

r1(t) − a1(t)x1(t)

−
d1(t)x1(t)x2(t)

c1(t) + b1(t)x1(t) + x2
1(t)

+
k3(t)d3(t)x

2
3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

]

,

ẋ2(t) = x2(t)

[

r2(t) − a2(t)x2(t)

−
d2(t)x2(t)x3(t)

c2(t) + b2(t)x2(t) + x2
2

+
k1(t)d1(t)x

2
1(t)

c1(t) + b1(t)x1(t) + x2
1(t)

]

,

ẋ3(t) = x3(t)

[

r3(t) − a3(t)x3(t)

−
d3(t)x1(t)x3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

+
k2(t)d2(t)x

2
2(t)

c2(t) + b2(t)x2(t) + x2
2(t)

]

,

(1)

where x2 is the predator ofx1, x3 is the predator
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of x2 and x1 is the predator ofx3, they have de-
pendent density and Sigmoidal functional response.
ai(t), bi(t), ci(t), di(t), ki(t), ri(t)(i = 1, 2, 3) are
continuous nonnegative and bounded function within
[0,+∞). Moreover,ai(t), ci(t)(i = 1, 2, 3) > 0.

Now we defineR+ = [0,+∞) and introduce the
concept of the asymptotically function.

Definition 1 If f ∈ C(R+, R), where f(t) =
g(t) + α(t), g(t) is continuousT -periodic function
and limt→+∞ α(t) = 0, thenf(t) is called asymptot-
ically T -periodic function.

Throughout this paper, we always assume that
(H1) ai(t), bi(t), ci(t), di(t), ki(t), ri(t)(i = 1, 2, 3)
are all continuous positive, bounded asymptotically
periodic functions.

This paper is organized as follows. In Section 2,
the permanence of system (1) are studied by using the
differential inequality theory. In Section 3, the exis-
tence and uniqueness of asymptotically periodic so-
lution are investigated by constructing a suitable Lia-
punov function. Some numerical simulations that il-
lustrate our analytical predictions are carried out in
Section 4. A brief conclusion is drawn in Section 5.

2 Permanence
For convenience in the following discussing, we al-
ways use the notations:

f l = inf
t∈R

f(t), fu = sup
t∈R

f(t),

wheref(t) is a continuous function. The initial value
condition of system (1) isxi(0) = φi(0) > 0(i =
1, 2, 3). In order to obtain the main result of this pa-
per, we shall first state some definitions and several
lemmas which will be useful in the proving the main
result.

Definition 2 We say that system (1) is permanence if
there are positive constantsm and M such that for
each positive solution(x1(t), x2(t), x3(t)) of system
(1) satisfies

m ≤ lim
t→+∞

inf xi(t) ≤ lim
t→+∞

supxi(t) ≤ M,

wherei = 1, 2, 3.

Definition 3 The solutionX(t, t0, φ) is called ulti-
mately bounded. If there existsB > 0 such that for
any t0 ≥ 0, φ ∈ C, there existsT = T (t0, φ) > 0
whent ≥ t0 + T, |X(t, t0, φ)| ≤ B.

Lemma 4 [70] If a > 0, b > 0 and ẋ ≥ x(b − ax),
whent ≥ 0 andx(0) > 0, we have

lim
t→+∞

inf x(t) ≥
b

a
.

If a > 0, b > 0 and ẋ ≤ x(b − ax), whent ≥ 0 and
x(0) > 0, we have

lim
t→+∞

supx(t) ≤
b

a
.

Now we state our permanence result for system (1).

Lemma 5 The setRn
+ = {(x1, x2, x3)|xi > 0, i =

1, 2, 3.} is the positively invariant set of system (1).

Proof: It follows from the initial value condition
xi(0) = φi(0 > 0(i = 1, 2, 3) that


























































































































































x1(t) = x1(0) exp

{

∫

t

0

[

r1(s) − a1(s)x1(s)

−
d1(s)x1(s)x2(s)

c1(s) + b1(s)x1(s) + x2
1(s)

+
k3(s)d3(s)x

2
3(s)

c3(s) + b3(s)x3(s) + x2
3(s)

]

ds

}

,

x2(t) = x2(0) exp

{

∫

t

0

[

r2(s) − a2(s)x2(s)

−
d2(s)x2(s)x3(s)

c2(s) + b2(s)x2(s) + x2
2(s)

+
k1(s)d1(s)x

2
1(s)

c1(s) + b1(s)x1(s) + x2
1(s)

]

ds

}

,

ẋ3(t) = x3(0) exp

{

∫

t

0

[

r3(s) − a3(s)x3(s)

−
d3(s)x1(s)x3(s)

c3(s) + b3(s)x3(s) + x2
3(s)

+
k2(s)d2(s)x

2
2(s)

c2(s) + b2(s)x2(s) + x2
2(s)

]

ds

}

.

(2)
The proof of Lemma 5 is complete.

Theorem 6 Let M1,M2,M3 are defined by (3),(5)
and (7), respectively. In addition to the condition
(H1), suppose that the following condition

(H2) bl
1r

l
1 > du

1M2, b
l
2r

l
2 > du

2M3, b
l
3r

l
3 > du

3M1

hold, then system (1) is permanent, that is, there ex-
ist positive constantsmi,Mi(i = 1, 2, 3) which are
independent of the solution of system (1), such that
for any positive solution(x1(t), x2(t), x3(t)) of sys-
tem (1) with the initial condition

xi(0) ≥ 0(i = 1, 2, 3),

one has

mi ≤ lim
t→+∞

inf xi(t) ≤ lim
t→+∞

supu(t) ≤ Mi.
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Proof: It is easy to see that system (1) with
the initial value condition(x1(0), x2(0), x3(0)) has
positive solution(x1(t), x2(t), x3(t)) passing through
(x1(0), x2(0), x3(0)). Let(x1(t), x2(t), x3(t)) be any
positive solution of system (1) with the initial con-
dition (x1(0), x2(0), x3(0)). It follows from the first
equation of system (1) that

dx1(t)

dt
= x1(t)

[

r1(t) − a1(t)x1(t)

−
d1(t)x1(t)x2(t)

c1(t) + b1(t)x1(t) + x2
1(t)

+
k3(t)d3(t)x

2
3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

]

≤ x1(t)
[

r1(t) − a1(t)x1(t)

+k3(t)d3(t)
]

≤ x1(t)
[

ru
1 + ku

3du
3 − al

1x1(t)
]

.

It follows from Lemma 4 that

lim
t→+∞

supx1(t) ≤
ru
1 + ku

3du
3

al
1

:= M1. (3)

For any positive constantε1 > 0, it follows (3) that
there exists aT1 > 0 such that for allt > T1,

x1(t) ≤ M1 + ε. (4)

By the second equation of system (1) that

dx2(t)

dt
= x2(t)

[

r2(t) − a2(t)x2(t)

−
d2(t)x2(t)x3(t)

c2(t) + b2(t)x2(t) + x2
2

+
k1(t)d1(t)x

2
1(t)

c1(t) + b1(t)x1(t) + x2
1(t)

]

≤ x2(t)
[

r2(t) − a2(t)x2(t)

+k1(t)d1(t)
]

≤ x2(t)
[

ru

2 + ku

1du

1 − al

2x2(t)
]

.

It follows from Lemma 4 that

lim
t→+∞

supx2(t) ≤
ru
2 + ku

1du
1

al
2

:= M2. (5)

For any positive constantε > 0, it follows (5) that
there exists aT2 > 0 such that for allt > T2,

x2(t) ≤ M2 + ε. (6)

By the third equation of system (1) that

dx3(t)

dt
= x3(t)

[

r3(t) − a3(t)x3(t)

−
d3(t)x1(t)x3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

+
k2(t)d2(t)x

2
2(t)

c2(t) + b2(t)x2(t) + x2
2(t)

]

≤ x2(t)
[

r3(t) − a3(t)x3(t)

+k2(t)d2(t)
]

≤ x2(t)
[

ru
3 + ku

2du
2 − al

3x3(t)
]

.

It follows from Lemma 4 that

lim
t→+∞

supx3(t) ≤
ru
3 + ku

2du
2

al
3

:= M3. (7)

For any positive constantε > 0, it follows (7) that
there exists aT3 > T2 > 0 such that for allt > T3,

x3(t) ≤ M3 + ε. (8)

For t ≥ T3, from (6) and the first equation of system
(1), we have

dx1(t)

dt
= x1(t)

[

r1(t) − a1(t)x1(t)

−
d1(t)x1(t)x2(t)

c1(t) + b1(t)x1(t) + x2
1(t)

+
k3(t)d3(t)x

2
3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

]

≥ x1(t)
[

r1(t) − a1(t)x1(t)

−
d1(t)x2(t)

b1(t)

]

≥ x1(t)
[

rl
1 − au

1x1(t)

−
du
1(M2 + ε)

bl
1

]

.

Thus, as a direct corollary of Lemma 4, one has

lim
t→+∞

inf x1(t) ≥
bl
1r

l
1 − du

1(M2 + ε)

au
1bl

1

. (9)

Settingε → 0, it follows that

lim
t→+∞

inf x1(t) ≥
bl
1r

l
1 − du

1M2

au
1bl

1

:= m1. (10)

WSEAS TRANSACTIONS on SYSTEMS Changjin Xu, Qiming Zhang

E-ISSN: 2224-2678 670 Volume 13, 2014



For t ≥ T3, from (8) and the second equation of sys-
tem (1), we have

dx2(t)

dt
= x2(t)

[

r2(t) − a2(t)x2(t)

−
d2(t)x2(t)x3(t)

c2(t) + b2(t)x2(t) + x2
2

+
k1(t)d1(t)x

2
1(t)

c1(t) + b1(t)x1(t) + x2
1(t)

]

≥ x2(t)

[

r2(t) − a2(t)x2(t)

−
d2(t)x3(t)

b2(t)

]

≥ x2(t)
[

rl
2 − au

2x2(t)

−
du
2(M3 + ε)

bl
2

]

. (11)

It follows Lemma 2.1 and (11) that

lim
t→+∞

inf x2(t) ≥
bl
2r

l
2 − du

2(M3 + ε)

au
2bl

2

. (12)

Settingε → 0 in (12) leads to

lim
t→+∞

inf x2(t) ≥
bl
2r

l
2 − du

2M3

au
2bl

2

:= m2. (13)

For t ≥ T3 > T1 > 0, from (4) and the second equa-
tion of system (1), we have

dx3(t)

dt
= x3(t)

[

r3(t) − a3(t)x3(t)

−
d3(t)x1(t)x3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

+
k2(t)d2(t)x

2
2(t)

c2(t) + b2(t)x2(t) + x2
2(t)

]

≥ x3(t)

[

r3(t) − a3(t)x3(t)

−
d3(t)x1(t)x3(t)

b3(t)

]

≥ x3(t)

[

rl
3 − au

3x3(t)

−
du
3(M1 + ε)

bl
3

]

.

It follows Lemma 4 that

lim
t→+∞

inf x3(t) ≥
bl
3r

l
3 − du

3(M1 + ε)

au
3bl

3

. (14)

Settingε → 0 in (2.13) leads to

lim
t→+∞

inf x3(t) ≥
bl
3r

l
3 − du

3M1

au
3bl

3

:= m3. (15)

In view of (3),(5),(7),(10), (13) and (15), we can con-
clude that system (1) is permanent. The proof of The-
orem 6 is complete.

Denote

Ω = {(x1, x2, x3)
T ∈ R+|mi ≤ xi ≤ Mi, i = 1, 2, 3}.

Corollary 7 The setΩ is the ultimately bounded set
of system (1).

3 Existence and uniqueness of
asymptotically periodic solution

Let us consider the asymptotically periodic system as
follows

dx

dt
= f(t, xt), (16)

wheref ∈ C([−r, 0], Rn) and for anyxt ∈ C. De-
fine xt(θ) = x(t + θ), θ ∈ [−r, 0]. For anyx =
(x1, x2, · · · , xn) ∈ Rn, we define|x| =

∑

n

i=1 |xi|,
from the above proof, we can see that there exists
H > 0 such that|x| ≤ nMi < H. For anyφ ∈ C,
define ||φ|| = sup−r≤θ≤0 |φ(θ)|. Let CH = {φ ∈
C, ||φ|| < H} and SH = {x ∈ Rn, |x| < H}.
In order to focus on the existence and uniqueness of
asymptotically periodic solution of system (16), we
consider the adjoint system











dx

dt
= f(t, xt),

dy

dt
= f(t, yt).

(17)

Then we begin with our analysis with Lemma 3.1.

Lemma 8 (Yuan [71]) Let V ∈ C(R+ × SH ×
SH , R+) satisfy
(i) a(|x − y| ≤ V (t, x, y) ≤ b(|x − y|), wherea(r)
and b(r) are continuously positively increasing func-
tions;
(ii) |V (t, x1, y1)−V (t, x2, y2)| ≤ l(|x1 −x2|+ |y1−
y2|), wherel is a constant and satisfiesl > 0;
(iii) there exists continuous non-increasing function
P (s), such that fors > 0, P (s) > s. And as
P (V (t, φ(0), φ(0))) > V (t + θ, φ(θ), φ(θ)), θ ∈

[−r, 0], it follows that V
′

(17)(t, φ(0), φ(0)) ≤

−δV (t, φ(0), φ(0)), whereδ is a constant and satis-
fiesδ > 0. Furthermore, system (16) has a solution
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ξ(t) for t ≥ t0 and satisfies||ξt|| ≤ H. Then sys-
tem (16) has a unique asymptotically periodic solu-
tion, which is uniformly asymptotically stable.

Theorem 9 Let θ1, θ2, θ3 and δ are defined by (24),
(25), (26) and (27), respectively. In addition to the
conditions (H1) and (H2), assume further thatδ >
0 is satisfied, then there exists a unique asymptoti-
cally periodic solution of system (1) wich is uniformly
asymptotically stable.

Proof: By Theorem 6 (or Corollary 7), we know that
the solution of system (1) is ultimately bounded.Ω
is the region of ultimately bounded. We consider the
adjoint system of system (1) as follows


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
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






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
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
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
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
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






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
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
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
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
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
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
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
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




















































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
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
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


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
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
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
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





















































ẋ1(t) = x1(t)

[

r1(t) − a1(t)x1(t)

− d1(t)x1(t)x2(t)
c1(t)+b1(t)x1(t)+x2

1
(t)

+
k3(t)d3(t)x2

3
(t)

c3(t)+b3(t)x3(t)+x2

3
(t)

]

,

ẋ2(t) = x2(t)

[

r2(t) − a2(t)x2(t)

− d2(t)x2(t)x3(t)
c2(t)+b2(t)x2(t)+x2

2

+
k1(t)d1(t)x2

1
(t)

c1(t)+b1(t)x1(t)+x2

1
(t)

]

,

ẋ3(t) = x3(t)

[

r3(t) − a3(t)x3(t)

− d3(t)x1(t)x3(t)
c3(t)+b3(t)x3(t)+x2

3
(t)

+
k2(t)d2(t)x2

2
(t)

c2(t)+b2(t)x2(t)+x2

2
(t)

]

,

u̇1(t) = u1(t)

[

r1(t) − a1(t)u1(t)

− d1(t)u1(t)u2(t)
c1(t)+b1(t)u1(t)+u2

1
(t)

+
k3(t)d3(t)u2

3
(t)

c3(t)+b3(t)u3(t)+u2

3
(t)

]

,

u̇2(t) = u2(t)

[

r2(t) − a2(t)u2(t)

− d2(t)u2(t)u3(t)
c2(t)+b2(t)u2(t)+u2

2

+
k1(t)d1(t)u2

1
(t)

c1(t)+b1(t)u1(t)+u2

1
(t)

]

,

u̇3(t) = u3(t)

[

r3(t) − a3(t)u3(t)

− d3(t)u1(t)u3(t)
c3(t)+b3(t)u3(t)+u2

3
(t)

+
k2(t)d2(t)u2

2
(t)

c2(t)+b2(t)u2(t)+u2

2
(t)

]

.

(18)

For X(t) = (x1(t), x2(t), x3(t)) and U(t) =
(u1(t), u2(t), u3(t)) are the solutions of system (18)

in Ω × Ω. Let x∗
i (t) = ln xi(t), u

∗
i (t) = ln ui(t), i =

1, 2, 3. Now we construct a Lyapunov functional as
follows

V (t) =
3

∑

i=1

|x∗
i (t) − u∗

i (t)|. (19)

Takinga(r) = b(r) =
∑3

i=1 |x
∗
i
(t)−u∗

i
(t)| and using

the inequality||a|− |b|| ≤ |a−b|, we can easily prove
that (i) and (ii) in Lemma 8 hold true. In the sequel,
we will investigate (iii) of Lemma 8. It follows from
(16) that

D+V (t) =
3

∑

i=1

(

ẋi(t)

xi(t)
−

u̇i(t)

ui(t)

)

×sign(xi(t) − ui(t))

≤ −al
1|x1(t) − u1(t)|

+

[

d1(t)x1(t)x2(t)

c1(t) + b1(t)x1(t) + x2
1(t)

−
d1(t)u1(t)u2(t)

c1(t) + b1(t)u1(t) + u2
1(t)

]

+

[

k3(t)d3(t)x
2
3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

−
k3(t)d3(t)u

2
3(t)

c3(t) + b3(t)u3(t) + u2
3(t)

]

−al

2|x2(t) − u2(t)|

+

[

d2(t)x2(t)x3(t)

c2(t) + b2(t)x2(t) + x2
2

−
d2(t)u2(t)u3(t)

c2(t) + b2(t)u2(t) + u2
2

]

+

[

k1(t)d1(t)x
2
1(t)

c1(t) + b1(t)x1(t) + x2
1(t)

−
k1(t)d1(t)u

2
1(t)

c1(t) + b1(t)u1(t) + u2
1(t)

]

−al
3|x3(t) − u3(t)|

+

[

d3(t)x1(t)x3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

−
d3(t)u1(t)u3(t)

c3(t) + b3(t)u3(t) + u2
3(t)

]

+

[

k2(t)d2(t)x
2
2(t)

c2(t) + b2(t)x2(t) + x2
2(t)

−
k2(t)d2(t)u

2
2(t)

c2(t) + b2(t)u2(t) + u2
2(t)

]

≤

[

− al
1 +

cM
1 dM

1 M2 + dM
1 M2

1 M2

(cl
1 + bl

1m1 + m2
1)

2

]
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×|x1(t) − u1(t)|

+

[

cM
1 dM

1 M1 + dM
1 bM

1 M2
1 + dM

1 M3
1

(cl
1 + bl

1m1 + m2
1)

2

]

×|x2(t) − u2(t)|

+

[

2kM
3 cM

3 dM
3 M3 + 2kM

3 bM
3 dM

3 M2
3

(cl
3 + bl

3m3 + m2
3)

2

]

×|x3(t) − u3(t)|

+

[

− al
2 +

dM
2 cM

2 M3 + dM
2 M2

2 M3

(cl
2 + bl

2m2 + m2
2)

2

]

×|x2(t) − u2(t)|

+

[

dM
2 cM

2 M2 + dM
2 bM

2 M2
2 + dM

2 M3
2

(cl
2 + bl

2m2 + m2
2)

2

]

×|x3(t) − u3(t)|

+

[

− al
3 +

dM
3 cM

3 M1 + 2dM
3 M3M1

(cl
3 + bl

3m3 + m2
3)

2

]

×|x3(t) − u3(t)|

+

[

dM
3 cM

3 M3 + 2dM
3 bM

3 M3 + 2dM
3 M2

3

(cl
3 + bl

3m3 + m2
3)

2

]

×|x1(t) − u1(t)|. (20)

Nothing that

|xi(t) − ui(t)|

= | exp(x∗
i (t)) − exp(u∗

i (t))|

= exp(ξi(t))||x
∗
i (t) − u∗

i (t)|, (21)

whereξi(t) lies betweenxi(t) and ui(t). Then we
have

mi|x
∗
i (t) − u∗

i (t)|

≤ |xi(t) − ui(t)|

≤ Mi|x
∗
i (t) − u∗

i (t)|, i = 1, 2, 3. (22)

It follows from (20)and (22) that

D+V (t) ≤

[

−al
1 +

cM
1 dM

1 M2 + dM
1 M2

1 M2

(cl
1 + bl

1m1 + m2
1)

2

]

×m1|x
∗
1(t) − u∗

1(t)|

+

[

cM
1 dM

1 M1 + dM
1 bM

1 M2
1 + dM

1 M3
1

(cl
1 + bl

1m1 + m2
1)

2

]

×M2|x
∗
2(t) − u∗

2(t)|

+

[

2kM
3 cM

3 dM
3 M3 + 2kM

3 bM
3 dM

3 M2
3

(cl
3 + bl

3m3 + m2
3)

2

]

×M3|x
∗
3(t) − u∗

3(t)|

+

[

−al
2 +

dM
2 cM

2 M3 + dM
2 M2

2 M3

(cl
2 + bl

2m2 + m2
2)

2

]

×m2|x
∗
2(t) − u∗

2(t)|

+

[

dM
2 cM

2 M2 + dM
2 bM

2 M2
2 + dM

2 M3
2

(cl
2 + bl

2m2 + m2
2)

2

]

×M3|x
∗
3(t) − u∗

3(t)|

+

[

−al
3 +

dM
3 cM

3 M1 + 2dM
3 M3M1

(cl
3 + bl

3m3 + m2
3)

2

]

×m3|x
∗
3(t) − u∗

3(t)|

+

[

dM
3 cM

3 M3 + 2dM
3 bM

3 M3 + 2dM
3 M2

3

(cl
3 + bl

3m3 + m2
3)

2

]

×M1|x
∗
1(t) − u∗

1(t)|

= −θ1|x
∗
1(t) − u∗

1(t)|

−θ2|x
∗
2(t) − u∗

2(t)|

−θ3|x
∗
3(t) − u∗

3(t)|, (23)

where

θ1 =

[

al
1 −

cM
1 dM

1 M2 + dM
1 M2

1 M2

(cl
1 + bl

1m1 + m2
1)

2

]

m1

−

[

dM
3 cM

3 M3 + 2dM
3 bM

3 M3 + 2dM
3 M2

3

(cl
3 + bl

3m3 + m2
3)

2

]

×M1, (24)

θ2 =

[

al
2 −

dM
2 cM

2 M3 + dM
2 M2

2 M3

(cl
2 + bl

2m2 + m2
2)

2

]

m2

−

[

cM
1 dM

1 M1 + dM
1 bM

1 M2
1 + dM

1 M3
1

(cl
1 + bl

1m1 + m2
1)

2

]

×M2, (25)

θ3 =

[

al
3 −

dM
3 cM

3 M1 + 2dM
3 M3M1

(cl
3 + bl

3m3 + m2
3)

2

]

m3

−

[

2kM
3 cM

3 dM
3 M3 + 2kM

3 bM
3 dM

3 M2
3

(cl
3 + bl

3m3 + m2
3)

2

]

×M3

−

[

dM
2 cM

2 M2 + dM
2 bM

2 M2
2 + dM

2 M3
2

(cl
2 + bl

2m2 + m2
2)

2

]

×M3. (26)

Let

δ = min{θ1, θ2, θ3}. (27)

It follows from (23) and (27) that

D+V (t) ≤ −δV (t). (28)

Then (iii) of Lemma 3.1 is fulfilled. Therefore system
(1) has a unique positive asymptotically periodic solu-
tion in domainΩ, which is uniformly asymptotically
stable. The proof is complete.
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4 Numerical example

To illustrate the theoretical results, we present some
numerical simulations. Let us consider the following
cyclic predator-prey system with Sigmoidal type func-
tional response:


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


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


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



























ẋ1(t) = x1(t)

[

r1(t) − a1(t)x1(t)

−
d1(t)x1(t)x2(t)

c1(t) + b1(t)x1(t) + x2
1(t)

+
k3(t)d3(t)x

2
3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

]

,

ẋ2(t) = x2(t)

[

r2(t) − a2(t)x2(t)

−
d2(t)x2(t)x3(t)

c2(t) + b2(t)x2(t) + x2
2

+
k1(t)d1(t)x

2
1(t)

c1(t) + b1(t)x1(t) + x2
1(t)

]

,

ẋ3(t) = x3(t)

[

r3(t) − a3(t)x3(t)

−
d3(t)x1(t)x3(t)

c3(t) + b3(t)x3(t) + x2
3(t)

+
k2(t)d2(t)x

2
2(t)

c2(t) + b2(t)x2(t) + x2
2(t)

]

,

(29)

where






















































b1(t) = 20 + 0.2 sin t, b2(t) = 10 + 0.4 cos t,

b3(t) = 15 + 0.3 sin t, a1(t) = 10 + sin t,

a2(t) = 11 + cos t, a3(t) = 12 − cos t,

r1(t) = 10 + 0.3 sin t, r2(t) = 12 + 0.2 cos t,

r3(t) = 13 − 0.2 sin t, d1(t) = 0.2 + 0.2 cos t,

d2(t) = 0.2 + 0.1 sin t, d3(t) = 0.1 + 0.1 cos t,

k1(t) = 1 + sin t, k2(t) = 1 + sin t,

k3(t) = 1 + sin t.

Then


































bl
1 = 19.8, bl

1 = 9.6, bl
3 = 14.7,

rl
1 = 9.7, rl

2 = 11.8, rl
3 = 12.8,

al
1 = 9, al

2 = 10, al
3 = 11,

ru
1 = 10.3, ru

2 = 12.2, ru
3 = 13.2,

du
1 = 0.4, du

2 = 0.3, du
3 = 0.2,

M1 = 1.1889,M2 = 1.3,M3 = 1.2181.

It is easy to check that the coefficients of system (29)
satisfy all the conditions in Theorem 9. The phase
diagram of system (29) is illustrated in Figures 1-
3. Numerical simulations show that system (29) has
a unique positive periodic solution which is globally
asymptotically stable.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

t

x 1(t
)

Fig.1. The dynamical behavior of the solution
(x1(t), x2(t), x3(t)) of system (29).
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Fig.2. The dynamical behavior of the solution(x1(t),
x2(t), x3(t)) of system (29).
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Fig.3. The dynamical behavior of the solution
(x1(t), x2(t), x3(t)) of system (29).
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5 Conclusions

In this paper, we have analyzed a cyclic predator-
prey system with Sigmoidal type functional response.
Applying the differential inequality theory, we obtain
some sufficient conditions for the permanence of the
system. By constructing a suitable Liapunov func-
tion, we find that under some suitable conditions, the
system has a unique asymptotically periodic solution
which is globally asymptotically stable. Numerical
simulations show the feasibility of our main results.
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Abstract: The paper provides conditions for constrained dynamic output feedback controller to be cost guarantee-
ing and assuring asymptotic stability for both continuous and discrete-time systems with quadratically constrained
nonlinear/uncertain elements. The conditions are formulated in the form of matrix inequalities, which can be
rendered to be linear fixing one of the scalar parameters. An abstract multiplier method is applied. Numerical
examples illustrate the application of the proposed method.
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1 Introduction

Treatment of nonlinearities in dynamical and control
systems is one of the research focuses of control the-
ory (see e.g. [7], [10], [29], [31], [32]). The areas of
applications of nonlinear control theory cover physics,
engineering (see [3], [6], [8], [9], [13], [26], [30],
[32], [39] from the recent literature) and also eco-
nomics (e.g. [19], [21], [27], [28]). The performance
of control systems may not be satisfactory because of
the presence of exogenous disturbances and of sys-
tem uncertainties stemming from the mismatch of the
model and the real dynamics. A performance index
assigned to the system cannot be minimized at the
presence of unknown uncertainties, however it is pos-
sible to design a controller guaranteeing that the per-
formance index will not exceed a certain bound, and it
stabilizes the system for any admissible uncertainties
and disturbances (see e.g., [2], [14], [15], [17], [20],
[23], [35], [38], [41] and the references therein). It is
favorable, if such robust controls can be given in feed-
back form. However, the state of the system is often
not available for feedback. An extended static output
feedback is applied e.g. by [33] for continuous-time
systems using both the output and its derivatives in the
construction of the controller. The same approach is
applied to discrete-time systems with polytopic uncer-
tainties in [34]. Paper [40] applies a dynamic output
feedback for T-S fuzzy systems with norm bounded
uncertainties. A dynamic output feedback can still
guarantee an adequate level of system performance
and stability (see also [18]). The present paper applies
the latter approach for both discrete and continuous-

time systems with a broad class of admissible system
nonlinearities/uncertainties. The control is also sup-
posed to be quadratically constrained (cf. [4] on sta-
bilization of uncertain linear systems by bounded in-
puts).

A recently published paper [22] gave a suffi-
cient condition for the existence of robust stabiliz-
ing observer-based dynamic output feedback control
by solving linear matrix inequalities (LMIs). Unfor-
tunately, this paper contains a technical error. The
present paper proposes a method eliminating the mis-
take, and extends the range of solvable problems in
several aspects. In our paper both continuous and
discrete-time systems are discussed. We consider
quadratically constrained uncertainties. This repre-
sentation includes, among many others, the norm
bounded uncertainty considered in [24] and [22], as
a special case. In fact, this approach proposed orig-
inally by ([1]) and further developed by ([16]) as an
abstract multiplier method allows to treat both uncer-
tainties and system nonlinearities in a common frame-
work, therefore the proposed method of design can be
applied to a broad class of dynamic systems. Further-
more, exogenous disturbances are also taken into con-
sideration. The control is also supposed to be quadrat-
ically constrained. It is assumed furthermore, that the
exact initial state is not known, but it lies in a given
ball.

The paper is organized as follows. The problem
will be stated, and some preliminary results will be
recalled in Section 2. The main results for continuous
and discrete time systems will be presented in Section
3. Two numerical examples illustrate the results in
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Section 4. Finally, the conclusion will be drawn.
Standard notations are used. The transpose of ma-

trix A is denoted by AT , In is the identity matrix of
size n × n, and P > 0 (≥ 0) denotes the positive
(semi-) definiteness of P . The maximum eigenvalue
of the symmetric matrix P is λM (P ). Symbol ∇V
stands for the gradient of the multivariable function
V , symbol ⊗ is used for Kronecker-product, while ⊕
is the direct sum. The notation of time-dependence
is omitted, if it does not cause any confusion. For
the sake of brevity, asterisks replace the blocks in hy-
permatrices, and matrices in expressions that are in-

ferred readily by symmetry (e.g.
[
A B
∗ C

]
stands for[

A B
BT C

]
, and (∗)PX stands for XTPX). In gen-

eral, we shall write nv for the number of coordinates
of a vector v, i.e. v ∈ Rnv .

2 Problem statement and prelimi-
naries

Consider system

δx = Ax+Bu+ Exw +Hxpx, (1)

y = Cx+Hypy + Eyw, (2)

ζT =
(
xTCTζ uTDT

ζ

)
, (3)

qx = Aqx+Bqu+Gxpx, (4)

qy = Cqx+Dqu+Gypy, (5)

where x ∈ Rnx is the state, u ∈ Rnu is the input,
w ∈ Rnw is the exogenous disturbance, δx stands for
ẋ in the continuous-time and x+ in the discrete-time
case. The measured output is y ∈ Rny , and ζ ∈ Rnζ

represents the penalty output, where Dζ is assumed to
be nonsingular.

Uncertainty constraints. All system
nonlinearities/uncertainties are represented by
functions px and py possibly depending on t, x
and u. Functions qx and qy are the uncertain
outputs. The only available information about
pT =

(
pTx , p

T
y

)
∈ Rlp and qT =

(
qTx , q

T
y

)
∈ Rlq

is that their values are constrained by the set
Ω = Ω1 × ...× Ωs,

Ωi =

{[
pi
qi

]
∈ Rlpi+lqi :[
pi
qi

]T [
Q0i S0i

ST0i R0i

] [
pi
qi

]
≥ 0

}
, (6)

i = 1, ..., s, where Q0i = QT0i, R0i = RT0i ≥ 0 and
S0i are constant matrices, p ∈ Rlp , and q ∈ Rlq are

partitioned appropriately. We shall use the notations
Q0 = diag{Q01, ..., Q0s}, R0 = diag{R01, ..., R0s},
S0 = diag{S01, ..., S0s}. We note that the positive
semi-definiteness of R0 assures that the system (1)-
(5) is well posed, i.e. for any (x, u) there is a p so
that

[
pT , qT

]T ∈ Ω. It is worth noting that the con-
sidered model of uncertainties involves several types
of uncertainties frequently investigated in the litera-
ture. For example, if Q0 = 0, S0 = I and R0 = 0,
then one speaks about positive real uncertainty, if
Q0 = −I , S0 = 0 and R0 = I , then one has norm-
bounded uncertainties, (thus, the uncertainty of [24]
and [22] can be obtained as a special case), and if
Q0 = 1

2(KT
1 K2 + KT

2 K1), S0 = 1
2(K1 + K2)T and

R0 = I , then one faces the case of sector-bounded
uncertainties.

Control constraints. The control is supposed to
be quadratically constrained, i.e.

uTQuu ≤ 1 (7)

must be satisfied for a given matrix Qu = QTu > 0.
State constraints. Since the state is not measured,

its initial value is not supposed to be known, but it is
assumed that

‖x0‖2 ≤ ρ,

where ρ is a given positive constant. We remark
however that the initial state x0 may supposed to be
known.

Constraints on disturbances. The disturbances
are produced by an exosystem, the input of which is
the penalty output ζ of the original system, the output
is w, and (ζ, w) satisfy the inequality

‖w‖2SL = wTSLw ≤ γ∆‖ζ‖2

with a given positive definite and symmetric matrix
SL and with γ∆ < 1.

Assign the cost function

J(x0, u, w) =



∞∫
0

L(x(t), u(t), w(t))dt,

if t ∈ R,
∞∑
t=1

L(x(t), u(t), w(t)),

if t ∈ Z

(8)

to system (1)-(2), where

L(x, u, w) = xTQLx+ uTRLu− wTSLw

with QL = CTζ Cζ , RL = DT
ζ Dζ and SL given above.

Thus, it follows from their definitions that QL, RL
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and SL are symmetric, QL is positive semidefinite,
RL and SL are positive definite matrices.

The aim is to keep the value of the cost function
by the appropriate choice of the control as low as pos-
sible for all realizations of the uncertainties and the
external perturbations. Because of the presence of un-
certainties a minimum (or minimax) value of the cost
cannot be achieved; one can only expect a guaranteed
upper bound of it. The corresponding guaranteed cost
control has to be determined in feedback form. Since
the state is not available for feedback, a dynamic out-
put feedback is sought. We look for the controller in
the following form:

δx̂ = Acx̂+ Lcy, x̂(0) = 0, (9)

u = Kcx̂ (10)

where x̂ ∈ Rnx .
Introduce the new variable z =

(
xT , x̂T

)T
. With

this notation, u = κz, where κ = (0,Kc) , and the
augmented closed-loop system is

δz = Az + Ew +Hp, (11)

q = Aqz + Gp, (12)

where G = diag{Gx, Gy},

A =

[
A BKc

LcC Ac

]
, Aq =

[
Aq BqKc

Cq DqKc

]
, (13)

E =

[
Ex
LcEy

]
, H =

[
Hx 0
0 LcHy

]
. (14)

Set K = diag{Inx ,Kc}. The running cost of the aug-
mented closed-loop system is

L(z, w) = zTQLz − wTSLw,

where QL = KT diag{QL, RL}K.
To formulate the notion of guaranteeing cost con-

troller, consider an arbitrary nonlinear/uncertain sys-
tem

δz = f(z, u, w, p), (15)

q = g(z, u, p),
[
pT , qT

]T ∈ Ω,

and a function V : Rnz → R+.
For system (15) introduce the following notation:

V∗(15)(z, u, w, p) =

=

{
∇VT (z) f(z, u, w, p), if t ∈ R,
V(f(z, u, w, p))− V(z), if t ∈ Z.

Definition 1 Consider the nonlinear/uncertain sys-
tem (15) with cost function of the type (8) and with a
given set of nonlinearities/uncertainties Ω. The state-
feedback u = k(z) is a guaranteeing cost robust mini-
max strategy if there exists a function V : Rnz → R+

such that

sup[
pT , qT

]T
∈Ω

{V∗(15)(z, k(z), w, p)

+ L(z, k(z), w)} < 0 (16)

holds for all z and w,
[
zT , wT

]
6=
[
0T , 0T

]
. In this

case V(z0) is called a guaranteed cost.

Remark 2 (A) Similar definitions of guaranteed cost
are frequently used in the literature (see e.g. [23],
[42], [14], and the references therein). The rational-
ity of this definition is explained by Theorem 7 given
below.
(B) Observe that a cost guaranteeing control with spe-
cial choice of matricesQL, RL and SL is anH∞ con-
trol with the penalty output (3).

The main problem is to find an appropriate V and
a feedback k(z) because of the need of maximization
over Ω. The main idea of the multiplier method is that
an equivalent inequality will be solved over a linear
space at the expense of introducing a new matrix vari-
able. The method assures that the feasibility set of the
new inequality is the same as that of the original prob-
lem. In this way, the investigation of the inequality
and of the uncertainty bounding set is separated and
the problem becomes tractable. Paper [16] presented
an abstract multiplier method. We recall here the ba-
sic definitions and the lemma to be used. Let Q ⊂Rl

be given.

Definition 3 ([1], [16]) A symmetric matrix M is
called a multiplier matrix for Q if ξTMξ ≥ 0 for all
ξ ∈ Q. If this inequality is strict, then M is called a
positive multiplier matrix for Q. The setM+ of pos-
itive multiplier matrices for Q is called a sufficiently
rich set of positive multipliers forQ, if for any positive
multiplier M for Q there exists an element M ∈M+

such that M ≤M .

Consider positive constants τi and εi, i = 1, ..., s and
set

τ = diag
{
τ1Ilp1 , ..., τsIlps

}
,

τ = diag
{
τ1Ilq1 , ..., τsIlqs

}
,

ε = diag
{
ε1Ilp1 , ..., εsIlps

}
,

ε = diag
{
ε1Ilq1 , ..., εsIlqs

}
.
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We note that, if s = 1, matrices τ , τ , ε and ε consist of
a single block, thus two scalar parameters can be used
instead. In order to avoid the repetition of big formu-
las, we shall use the matrix notations in the special
case of s = 1, as well.

Lemma 4 ([17]) The set

M+ =

{
M : M =

[
τQ0 + ε τS0

ST0 τ τR0 + ε

]
,

τi, εi > 0, i = 1, ..., s

}
(17)

consists of positive multiplier matrices for Ω. If s =
1, thenM+ is sufficiently rich.

The recently published paper [22] gave a suffi-
cient condition for the existence of robust stabiliz-
ing feedback based on a Luenberger type observer for
continuous-time systems with norm-bounded uncer-
tainties. The condition was formulated as an LMI.
It was stated that the given LMI contains three ad-
justable parameters. In fact, there is only one free
parameter. The source of the error was that authors
failed to multiply the 6th and the 8th term from the left
hand side and the 7th and 9th term from the right hand
side by P−1 in equation (10). If the Schur comple-
ment is applied two more times after the correct con-
gruence transformation, it turns out that only param-
eter ε1 is adjustable. This certainly results in a lower
αmax in the second numerical example of that paper.
We made several experiments for fixed ε4 = 0.01 and
for different values of ε2 and ε3 with changing mag-
nitudes. It was found that αmax < 0.98 for the con-
sidered parameter combination.

The present paper solves a more general prob-
lem. Both continuous and discrete-time systems
are examined with a far broader class of uncertain-
ties/nonlinearities, and exogenous disturbances are
considered, too. Also state and control constraints can
a priori be given.

3 Main results

Assumption 1 Inequalities (1) R0 ≥ 0 and

(2) Q0 + GTST0 + S0G + GTR0G < 0
hold true.

The second inequality of the Assumption 1 implies
that

[
pT , pT GT

]T ∈ Ω if and only if p = 0, thus
the origin is an equilibrium point of the unperturbed
uncertain/nonlinear system. Moreover, the set of un-
certain input vectors satisfying

[
pT , qT

]T ∈ Ω is
bounded if q is defined by (4)-(5) and (x, u) comes

from a bounded set, which is also a reasonable re-
quirement. Similar conditions are applied e.g. in [41].

Set N = 5nx + nu + nw + lp + lq, Ξ =
diag{QL, RL,−SL}. Introduce the 2nx× 2nx matrix

φ =


φc =

[
0 I
I 0

]
, if t ∈ R,

φd =

[
−I 0
0 I

]
, if t ∈ Z,

and the matrices

LT1 =

[
I AT KT 0 0 ATq
0 ET 0 I 0 0

]
,

LT0 =
[
0 HT 0 0 I GT

]
. (18)

Lemma 5 Suppose that Assumption 1 holds true for
the set Ω given by (6). The dynamic output feedback
controller (9)-(10) defined by the matrices Ac, Lc,
Kc yields a guaranteeing cost robust minimax strat-
egy k(z) = κz and V(z0) is the guaranteed cost with
V(z0) = zT0 Pz0, P = P T > 0 if there exists an
M ∈ M+ such that P , M satisfy the matrix inequal-
ity [

∗
]

diag {φ⊗ P, Ξ, M}
[
L1,L0

]
< 0, (19)

where L1, L0 correspond to matrices Ac, Lc, Kc

as defined by (13), (14) and (18). The existence of
M ∈ M+ is also necessary, if the uncertainty is un-
structured, i.e. if s = 1.

Proof. Introduce function F : R2nx+nw+np → R
with the definition

F (z, w, p) =
[
∗
] [
∗
] [
φ⊗ P

] [ I 0 0
A E H

]zw
p


+
[
∗
] [
∗
]

Ξ

[
K 0 0
0 I 0

]zw
p


Then inequality (16) with respect to (11) is equivalent
to

sup[
pT , qT

]T
∈Ω

F (z, w, p) < 0 (20)

for all z and w,
[
zT , wT

]
6=
[
0T , 0T

]
.

Set Ψ = diag{φ ⊗ P, Ξ, 0} and B0 = imL0,
B1 = imL1, B = im (L1,L0) . Then B = B1 ⊕ B0

and B1 ∩ B0 = {0}. A straightforward calculation
shows that F (z, w, p) = yTΨy, if y ∈ B , i.e. if
y = L1

[
zT wT

]T
+ L0 p. Set

V =

[
0 0 0 0 I 0
0 0 0 0 0 I

]
∈ R(lp+lq)×N ,

WSEAS TRANSACTIONS on SYSTEMS Eva Gyurkovics, Tibor Takacs

E-ISSN: 2224-2678 682 Volume 13, 2014



and

BΩ =
{
y ∈ B ⊂ RN : V y ∈ Ω

}
.

Thus inequality (20) is equivalent to

yTΨy < 0 for all y ∈ BΩ, y 6= 0. (21)

It was proven in ([16]) that inequality (21) holds true
if there exists an M ∈M+ such that

Ψ + V TMV < 0 for all y ∈ B,

which is identical to (19). The necessity of the exis-
tence ofM ∈M+ with this property has been proven
in ([16]), as well. �

Remark 6 Since x̂(0) is fixed, the guaranteed cost
depends on x(0) only. Moreover, since any matrix in
M+ is determined by two scalar parameters τ and ε,
the existence of an appropriate M ∈ M+ is equiva-
lent to the existence of these two scalar parameters.

In what follows, we shall show that a guarantee-
ing cost controller in the sense of Definition 1 yields
an upper bound of the cost function and a closed-loop
system for which the origin is asymptotically stable.
This gives the rationality of Definition 1.

Denote the ellipsoid in R2nx as

Γ(P, α) =
{
ξ ∈ R2nx : ξTPξ ≤ α

}
.

Theorem 7 Consider the augmented closed-loop sys-
tem (11)-(12) with Ω satisfying Assumption 1, and
suppose that for a given P = P T > 0, inequal-
ity (19) holds true. Then α = λM (P )ρ is an upper
bound of the cost function for any admissible initial
state, disturbance and uncertainty. Moreover, the el-
lipsoid Γ(P, α) is positively invariant and the origin
is asymptotically stable for the closed-loop uncertain
system.

Proof. If inequality (19) holds true then there exists
a δ > 0 such that[
∗
]

diag {φ⊗ P, Ξ, M}
[
L1,L0

]
+ δ diag

{
I2nx , 0, 0

}
< 0,

This means in compliance with Lemma 5 that for
k(z) = κz

V∗(11)(z, k(z), w, p)

+ L(z, k(z), w) + δ‖z‖2 < 0 (22)

holds true for any (z, w) 6= (0, 0) and for any uncer-
tainty/nonlinearity satisfying

[
pT , qT

]T ∈ Ω.

For the sake of definiteness, suppose that we are
facing the continuous-time case. (The discrete-time
case is completely analogous.) Integrating inequality
(22) from 0 to T > 0, we obtain that

V(z(T ))− V(z(0)) +

∫ T

0
z(t)TQLz(t)dt

−
∫ T

0
w(t)TSLw(t)dt+ δ

∫ T

0
‖z(t)‖2dt < 0. (23)

Omitting the first and the last (nonnegative) terms on
the left hand side, we obtain that for all T > 0∫ T

0
L(z(t), w(t))dt < V(z(0)). (24)

For the considered w(.), L(z(t), w(t)) ≥ 0 for all t,
therefore the integral on the left hand side of (24) is
convergent as T → ∞, and it tends to the value of
the cost function. Since x̂(0) = 0, for any x0 with
‖x0‖2 ≤ ρ, we have that

V(z(0)) ≤ λM (P )ρ = α.

From (23) it follows that V(z(T )) < α for any T > 0,
thus the ellipsoid Γ(P, α) is invariant. Furthermore
P is assumed to be positive definite, thus it follows
from (22) that function V is an appropriate Lyapunov-
function having a derivative along the solutions of the
closed-loop system (11) strictly smaller than −δ‖z‖2.
Therefore the origin is asymptotically stable with a
basin of attraction containing Γ(P, α).

Corollary 8 If zT0 Pz0 ≤ 1 for any z0 = (xT0 , 0T )T

with ‖x0‖2 ≤ ρ, then Γ(P, 1) is invariant for the
closed-loop uncertain system. Moreover, if[

P ∗
κ Q−1

u

]
≥ 0, (25)

then for any z ∈ Γ(P, 1), the control u = κz satisfies
the control constraint (7).

Proof. The first part of the statement immediately
follows from Theorem 7. The second part follows
from (25) using Schur complements. �

We remark that other types of exogenous distur-
bances can be treated too. For example, disturbances
of finite ’energy’ are formulated as

∞∫
0

w(t)2dt ≤ η, if t ∈ R,

∞∑
t=1

w(t)2 ≤ η, if t ∈ Z,
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where η is a given positive constant. A similar state-
ment can be proven in this case, but the invariant el-
lipsoid is slightly different.

In what follows we propose methods to deter-
mine matrices P, Ac, Lc, Kc, and scalars εi, τi,
(i = 1, ..., s) in the discrete and in the continuous-
time case. In order to obtain the matrix inequalities
on the basis of which these parameters can be deter-
mined, we apply an approach similar to that of [12].
Represent matrix P and its inverse as

P =

[
X N1

NT
1 Z

]
, P−1 =

[
Y N2

NT
2 W

]
(26)

with X = XT > 0, Y = Y T > 0, and consider
matrices

F1 =

[
X I
NT

1 0

]
, F2 =

[
I Y
0 NT

2

]
, (27)

where each block is of dimension nx × nx. Clearly,

F T1 P
−1F1 =

[
X I
I Y

]
, P−1F1 = F2. (28)

Introduce furthermore the notations

K̃ = KcN
T
2 , L̃ = N1Lc, (29)

Ã = XAY +XBK̃ + L̃CY +N1AcN
T
2 . (30)

Now we derive a matrix inequality equivalent to (19),
which is linear in all of the unknown matrices except
for parameters τi.

3.1 The continuous-time case

In this subsection φ is fixed as φ = φc.

Theorem 9 Inequality (19) holds true for the sym-
metric and positive definite matrix P partitioned as
in (26) and for the coefficient matrices Ac, Lc, Kc of
the controller and for the positive scalars τi and εi if
and only if X , Y , Ã, L̃, K̃, εi and τi (i = 1, . . . , s)
satisfy the following matrix inequalities:

[
Φ11 ∗
Φ21 Φ22

]
< 0,

[
X I
I Y

]
> 0, (31)

Φ11 =


ϕ11
11 ∗ ∗ ∗

ϕ11
21 ϕ11

22 ∗ ∗
ϕ11
31 ϕ11

32 −SL ∗
ϕ11
41 ϕ11

42 0 ϕ11
44

 ,

ϕ11
11 = ATX +XA+ CT L̃T + L̃C,

ϕ11
22 = AY +BK̃ + Y TAT + K̃TBT ,

ϕ11
44 = Q0τ

−1 + S0Gτ−1 + τ−1GTST0 ,

ϕ11
21 = A+ ÃT ,

ϕ11
31 = ETxX + ETy L̃

T , ϕ11
32 = ETx ,

ϕ11
41 = τ−1

[
HT
x X

HT
y L̃

T

]
+ S0

[
Aq
Cq

]
,

ϕ11
42 = τ−1

[
HT
x

0

]
+ S0

[
AqY +BqK̃

CqY +DqK̃

]
,

Φ21 =


0 0 0 τ−1

ϕ21
21 ϕ21

22 0 R
1/2
0 Gτ−1

ϕ21
31 ϕ21

32 0 Gτ−1
Cζ CζY 0 0

0 K̃ 0 0

 ,

ϕ21
21 = R

1/2
0

[
Aq
Cq

]
,

ϕ21
22 = R

1/2
0

[
AqY +BqK̃

CqY +DqK̃

]
,

ϕ21
31 =

[
Aq
Cq

]
, ϕ21

32

[
AqY +BqK̃

CqY +DqK̃

]
,

Φ22 = diag
{
−ε−1,−τ−1,−ε−1,−I,R−1L

}
.

Proof. Consider inequality (21) with an arbitrary
M ∈ M+ given in (18), and multiply the middle
block-diagonal matrix from left and right by LTL =
I, where L is an appropriate permutation matrix to
obtain that

[
∗
]


0 ∗ ∗ ∗ ∗ ∗
P 0 ∗ ∗ ∗ ∗
0 0 −SL ∗ ∗ ∗
0 0 0 τQ0 + ε ∗ ∗
0 0 0 0 Υ ∗
0 0 0 ST0 τ 0 τR0 + ε

×

×


I 0 0
A E H
0 I 0
0 0 I
K 0 0
Aq 0 G

 < 0 (32)

with Υ = diag{QL, RL}. Applying the definition
QL = CTζ Cζ and the linearization lemma (see [37])
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one obtains that (32) is equivalent to
ATP + PA ∗ ∗ ∗ ∗
ETP −SL ∗ ∗ ∗

HTP + τS0Aq 0 ϑ+ ε ∗ ∗
CζK 0 0 −R−1

L ∗
Aq 0 G 0 −(τR0 + ε)


< 0,

where the notations ϑ = τQ0 + τS0G + GTST0 τ
and Cζ = diag{Cζ , I} and RL = diag{I,RL} have
been used. Now we can apply the Schur complement
lemma to get rid of the inverse of (τR0 + ε). Then
apply the Schur complement again, the congruence
transformation with diag{P−1, I, τ−1, I, I, I, I} and
notations

θ1 = ATP−1 + P−1AT , θ2 = τ−1HT + S0AqP−1

θ3 = R
1/2
0 AqP−1, θ4 = R

1/2
0 Gτ−1, θ5 = CζKP−1

to derive the equivalent inequality

θ1 ∗ ∗ ∗ ∗ ∗ ∗
ET −SL ∗ ∗ ∗ ∗ ∗
θ2 0 ϕ11

44 ∗ ∗ ∗ ∗
0 0 τ−1 −ε−1 ∗ ∗ ∗
θ3 θ4 0 0 τ−1 ∗ ∗

AqP−1 0 Gτ−1 0 0 ε−1 ∗
θ5 0 Gτ−1 0 0 0 −R−1

L


< 0. (33)

Multiply (33) by diag{F T1 , I, I, I, I, I, I} from the
left and by its transpose from the right, and take into
consideration (27)-(28) to obtain that

FT1 AF2 =

[
ϕ11
11 ∗

ϕ11
21 ϕ11

22

]
, CζKF2 =

[
Cζ CζY

0 K̃

]
,

ETF1 =
[
ϕ11
31, ϕ

11
32

]
,

τ−1HF1 + S0AqF2 =
[
ϕ11
41, ϕ

11
42

]
,

R
1/2
0 AqF2 =

[
ϕ21
21, ϕ

21
22

]
, AqF2 =

[
ϕ21
31, ϕ

21
32

]
. �

We observe that the matrix inequality (31) is non-
linear in the unknown parameters τi. However, if τi’s
are fixed, this inequality becomes linear in variables
X , Y , K̃, L̃, Ã and ε−1

i , i = 1, ..., s. If (31) is feasi-
ble, inequality[

X I
I Y

]
> 0,

is equivalent to I − XY < 0 , hence the left hand
side is factorizable as N1N

T
2 = I −XY , where N1

and N2 are invertible, i.e. matrices Kc, Lc and Ac
can be expressed uniquely from the solution of (31)
employing (29)-(30).

3.2 The discrete-time case

In this subsection φ is fixed as φ = φd.

Theorem 10 Inequality (19) holds true for the sym-
metric and positive definite matrix P partitioned as in
(26) and for the coefficient matricesAc, Lc,Kc, of the
controller and for the positive scalars τi and εi if and
only if X , Y , Ã, L̃, K̃, εi and τi, (i = 1, ..., s), satisfy
the following matrix inequality:

ψ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −SL ∗ ∗ ∗ ∗ ∗ ∗
ψ31 0 ψ33 ∗ ∗ ∗ ∗ ∗
ψ41 ψ42 ψ43 ψ44 ∗ ∗ ∗ ∗
0 0 I 0 −ε−1 ∗ ∗ ∗
ψ61 0 G 0 0 −ε−1 ∗ ∗
ψ71 0 R

1/2
0 G 0 0 0 −τ−1 ∗

ψ81 0 0 0 0 0 0 −R−1L


< 0, (34)

where

ψ11 = −
[
X I
I Y

]
, ψ31 = τS0ψ71,

ψ33 = τQ0 + τS0G + GTST0 τ ,

ψ41 =

[
XA+ L̃C Ã

A AY +BK̃

]
,

ψ42 =

[
XEx + L̃Ey

Ex

]
,

ψ43 =

[
XHx L̃Hy

Hx 0

]
, ψ44 = ψ11,

ψ61 =

[
Aq AqY +BqK̃

Cq CqY +DqK̃

]
,

ψ71 = R
1/2
0 ψ61, ψ81 =

[
Cζ CζY

0 K̃

]
,

Proof. The theorem can be proved completely analo-
gously to the previous one, the details are omitted for
the lack of space. �

Inequality (34) is nonlinear in he unknown pa-
rameters τi, but for any fixed values, it is an LMI in
the remaining unknown matrices. Observations simi-
lar to the continuous-time case can be made concern-
ing the computation of the coefficient matrices of the
controller, as well.

3.3 Control constraint LMIs

For a given value of parameters τi, Theorems 9 and
10 provide LMIs on the basis of which one can ob-
tain the solution of the formulated problem, if no con-
trol constraint is imposed. Next we shall derive ad-
ditional LMIs to assure the satisfaction of the control
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constraint presuming that the initial value x0 is admis-
sible.

Theorem 11 Assume that the condition of Corollary
8 is valid. Suppose that in addition to (31) in the
continuous-time case and to (34) in the discrete-time
case inequalities

X − 1

ρ
I ≤ 0, (35)

 X I
I Y

0

K̃T

0 K̃ Q−1
u

 ≥ 0 (36)

hold true. Then z(t)TPz(t) ≤ 1 for any t ≥ 0, and
u(t) = κz(t) satisfies the control constraint (7) for all
t ≥ 0.

Proof. Suppose that P is partitioned according
to (26) and ‖x0‖2 ≤ ρ, x̂(0) = 0. Then we have
zT0 Pz0 = xT0 Xx0, thus it follows from (35) that
zT0 Pz0 ≤ 1. Therefore, Corollary 8 involves that
z(t)TPz(t) ≤ 1 for any t ≥ 0. On the other hand,
if

z(t)TκTQuκz(t) ≤ z(t)TPz(t), (37)

then (7) holds true for any t ≥ 0. Inequality (37) holds
true, if

P − κTQuκ ≥ 0,

which is equivalent to[
P ∗
κ Q−1

u

]
≥ 0. (38)

If we apply the congruence transformation for (38)
with diag

{
P−1F1, I

}
, we get that the latter inequal-

ity is equivalent to the required one (36). �

Remark 12 Every feasible solution of systems (31),
(35)-(36) or (34), (35)-(36), provides a cost guaran-
teeing controller. Several types of objective functions
can be assigned to the systems of inequalities. For ex-
ample, paper [11] proposes to minimize trP to obtain
the largest set of admissible states of the augmented
system. (Matrix P was kept there as the unknown of
the LIMs.) Similar purpose can be achieved by mini-
mizing µ := 1/%.

4 Numerical examples

Example 1. ([24], [22]) To illustrate the effectiveness
of our approach we consider the same example as [24]
and [22]. The system is described by the following
parameters:

A =

1 1 1
0 −2 1
1 −2 −5

 , B =

1 0
0 1
0 0

 , Aq =

0 0 α
0 β 0
γ 0 0

 ,
p =

[
px
py

]
∈ R4, q =

[
qx
qy

]
∈ R4, pi = Fi(t)qi,

with |Fi(t)| ≤ 1, i = 1, . . . , 4, (i.e. Q0i = −1,
S0i = 0, R0i = 1,) and Ex = 0, Hx = I3,
C = (1 0 1), Ey = 0, Hy = 1, Cq = (0 δ 0)Gx = 0,
Gy = 0. Similarly to [24] and [22], we assumed that
α = β = γ = δ. The maximum value of α achieved
by [24] was 1.35, while inequality (31) has a feasible
stabilizing solution up to αmax = 3.48. (The results
of the second paper are not comparable, the best result
that we could achieve with the corrected inequality
and with a wide range of parameter combinations was
αmax < 0.98. Figure 1 illustrates that the dynamic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

x1(t)

x2(t)

x3(t)

Figure 1: Time evolution of the state variables.

output feedback control obtained with αmax = 3.4
provides a quick convergence and smaller deviations
than in [24], when the initial state and the uncertain-
ties in the simulation are same as there.

Example 2. ([5]) To illustrate the applicability of
our approach to nonlinear systems we consider the
example of a flexible joint robotic arm investigated
e.g. in [5]. The the dynamics of this model con-
tains a sector bounded nonlinearity. [5] constructed a
stabilizing predictive control supposing that the state
was available for feedback. We applied here the dy-
namic output feedback control (9)-(10) supposing that
only x1 and x3 were measured. Moreover, we allowed
the effect of exogenous disturbances with w(t) ∈ R,
ETx =

[
0 1 0 1

]
. In our representation, the prob-
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lem to be solved was characterized by matrices

A =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −16.7 0

 , B =


0

21.6
0
0

 ,
C =

[
1 0 0 0
0 0 1 0

]
, HT

x =
[
0 0 0 −3.33

]
,

Aq =
[
0 0 1 0

]
, Q0 = −1, S0 = 1, R0 = 0,

Qu = 1/2.25, Cζ = diag{1,
√

0.1, 1,
√

0.1}, RL =
0.1, and px = sinx3 + x3, qx = x3. The initial state
is x0 =

(
1.2 0 0 0

)T and we set ρ = 1.21
and SL = QL. Figures 2 illustrates that the dynamic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

1.5

x1(t)

x3(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

5

10

x2(t)

x4(t)

Figure 2: Time evolution of the state variables.

output feedback control still provides a quick conver-
gence at the presence of exogenous disturbances. The
disturbances were simulated asw(t) = 0.1 sin(t)x(t),
which was admissible with any 0.01 ≤ γ∆ < 1.

The computations were made in both examples
using YALMIP ([25]) and MATLAB.

5 Conclusion

The paper establishes sufficient (and necessary) con-
ditions for dynamic output feedback to be cost guar-
anteeing and stabilizing in the case of systems with
quadratically constrained nonlinearities/uncertainties.
It is shown that this condition was sufficient for the
boundedness of the cost and the trajectories, if the
constructed dynamic feedback is applied. The con-
sidered class of nonlinearities/uncertainties permits to

treat a great number of nonlinearity/uncertainty types
by the appropriate choice of system parameters. Both
the discrete and continuous-time cases are examined.
The conditions are formulated as matrix inequalities.
When one scalar parameter is fixed, the matrix in-
equality system to be solved is linear. The proposed
method extends the results of a recently published pa-
per in several aspects. Numerical examples illustrate
the application of the proposed method.
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[31] L. Pekař and F. Neri, An introduction to the
special issue on time delay systems: modelling,
identification, stability, control and applications,
WSEAS Transactions on Systems 11, 2012, pp.
539–540.
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Abstract: - In the article the attitude motion of a spacecraft with variable mass/structure is considered at 

the variability of the volume of liquids (the fuel and the oxidizer) in tanks of the jet engines. The 

variability of the liquid’s volume is occurred under the action of systems of the extrusion of liquids by the 

pressure creation and, as a result, by the diaphragm (a thin soft foil) deformation inside the fuel/oxidizer 

tank. The synthesis of the attitude dynamics is fulfilled by the change of directions of the extrusion of the 

liquids in tanks – this modifies the inertia-mass parameters (their corresponding time-dependencies) and 

affects the final motion dynamics. Here we showed that the extrusion in the lateral radial ―outside‖ 

direction is most preferable in comparison with the longitudinal extrusion (in the direction of jet-vector). 

It means that the precession cone of the longitudinal axis of the spacecraft (the axis of the jet-engine 

reactive thrust) is ―twisted up‖ to the precalculated necessary direction of jet-impulse, and it has not 

―untwisted‖ phases. This scheme of the liquid extrusion is dynamically optimal, because it allows to 

improve the active inter-orbital maneuver by the natural/uncontrolled/passive way. 

 

 

Key-Words: - Spacecraft; Variability of the Volume of Liquids; Tanks of the Jet-Engines; Attitude 

Dynamics; The Curvature Method; Precession Motion 

 

 

1. Introduction. 

The task of the spacecraft (SC) attitude 

dynamics investigation/synthesis at the 

implementation of the active maneuvers is one of 

the main tasks of the space flight mechanics.  

This task is considered in different 

formulations taking into account many different 

aspects, including regimes of 

controlled/uncontrolled regular/chaotic attitude 

motion of rigid and flexible SC with constant and 

variable inertia-mass parameter, an 

implementation of the attitude reorientation using 

mechanical actuators and thrusters, etc. The 

corresponding research results are described in 

many works [e.g. 1-44], which are not limited by 

the indicated references list.  

In this research we give the short 

description of some features of the SC with two 

types of the liquids extrusion in spherical jet-

engines tanks. We will consider symmetrical 

bunches of four spherical tanks (for example, two 

tanks contain the fuel, and other two tanks contain 

the oxidizer). This scheme is usually used in the 

upper stages and boosters configurations. So, let 

us describe the scheme with spherical tanks 

(fig.1).  

The attitude motion of the SC is considered 

in this research as the angular motion around the 

fixed point, coincided at the initial time-moment 

with the initial position of the center of mass of 

SC [9-11]. 

 
Fig.1 The bunch/block of spherical tanks 

 

This mechanical model allows applying the 

simple type of the definition of the internal 

geometry (inertia-mass geometry) and 

corresponding variable inertia-mass parameters. 

So, the mathematical model of the attitude 

motion was built in the works [9-11] for the case 

of dual-spin spacecraft (with four degrees of 

freedom). This model represents the dynamical 
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equations connected with the angular momentum 

components, and we will use this model in this 

article without essential modifications at the 

fixing/elimination of the relative rotation of 

coaxial bodies. 

 

2. The mathematical model of motion 

Let us investigate the free (without the 

action of any external perturbations) attitude 

motion of the spacecraft with the variable volume 

of the liquids (the fuel/oxidizer) in the tanks. The 

equations [9-11] in the considering case can be 

reduced to the simple form: 

 

      

      

      

0,

0,

0,

A t p C t B t qr

B t q A t C t pr

C t r B t A t pq

   


  


  







 (1) 

where    A t B t ,  C t  — the variable inertia 

moments of the SC calculated relatively the point 

O; and  p, q, r — are the angular velocity’s 

components. The total values of the inertia 

moments are summarized by the terms   

       

   

2 ,

,

S T C

S T

A t A A t M t z t

C t C C t

  

 
 

where AS, CS are the constant parts of the inertia 

moments corresponding to the rigid part of the SC 

structure (the main SC body including the empty 

tanks), and AT, CT – are the varied (depending on 

time) parts corresponding to inertia moments of 

the tanks with momentary ―current-freezing‖ 

forms of liquids (    , CM t z t  the current values 

of the mass of the SC and the coordinate of the 

current position of the center of mass (zC(0)=0). 

The angular/attitude/spatial orientation of 

the SC (fig.2) is described by the Euler’s type 

angles (ψ→γ→φ).   

 
Fig. 2 The spatial orientation angles 

The kinematical equations for the spatial 

angles are follows: 

 

 

sin cos ,

1
cos sin ,

cos

sin
cos sin .

cos

p q

p q

r p q

  

  



  



 

 

  







 (2) 

It will be quite useful to make the change 

of the variables [9-11]: 

( )sin ( ),

( )cos ( ).

p G t F t

q G t F t




  (3) 

Then the dynamical equations (1) can be 

rewritten: 

 
1

( ) ( ) ,
( )

cosnt 0, const

F C t A t r
A t

G r


      


   


 (4) 

Let us consider the case of the attitude motion of 

the gyroscopic stabilized SC with the 

predominance of the longitudinal component of 

the angular velocity (r) in comparison with the 

equatorial component: 

2 2 1.p q r     

In this case we can rewrite the kinematical 

equations in the simplified form [9-11]: 

cos ( ), sin ( ),

, ( ) ( ) ( ).

G t G t

r t F t t

 

 

   

   

 


 (5) 

where ( )t  is the phase of spatial oscillations. 

The equations (5) allow to consider the dynamics 

of the SC longitudinal axis (OC z) with the help of 

the phase point (the apex of the axis OC z) at the 

phase-plane {ψ-γ}. Then the velocity (V) and the 

acceleration (W) of this phase point, and the 

curvature (k) of the corresponding trajectory of 

this point are: 

, , , .V V W W              

   
322 2 2 2 2 .k G            

 

For the analysis/synthesis of the dynamics 

we can apply the qualitative ―curvature‖ method 

[9-11], which is very useful for the optimization 

of the form of the hodograph vector of the jet-

thrust direction of the SC at the gyroscopic 

attitude stabilization. This method is based on the 

evaluation of the roots of the ―evolution function‖ 

 P t , which describes the evolution of the 

curvature of the trajectory of the phase point 

(excluding the multipliers of constant signs): 
2const .P kk G G          (6) 
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Taking into account the equations (4) we 

can rewrite the expression for the ―evolution 

function‖ (excluding the multipliers of constant 

signs): 

  P t CA AC    (7) 

The intervals of the positive sign 

conservation of this function correspond to the 

SC’s monotonous phases of the angular motion 

with twisting (Fig.3-a) sections of the longitudinal 

axis (the trust direction) hodograph (on the plane 

of parameters γ-ψ). The alternation of the signs of 

the function (the existence of real roots) results in 

the alternation of the hodograph’s phases. At the 

Fig.3 it is possible to see the clotoid (Fig.3-b, that 

corresponds to the existence of one root of  P t ) 

and the complex phase-alternation-spiral (Fig.3-c, 

that corresponds to the existence of many roots of 

 P t ). 

 

 
Fig.3 The hodographs of the longitudinal SC 

axis (Ocz) on the tangential plane {ψ-γ} 

 

These evolutions of the hodographs’ affect the 

inter-orbital transitions’ implementation [9] due to 

the corresponding ―travel‖ of the trust-vector 

(Fig.4) with the accumulation of the impulses’ 

error. 

 

 
Fig.4 The influence of the attitude motion on the 

inter-orbital transitional maneuver 

 

So, in the purposes of the ―positive‖ 

dynamics (with the inside twisting hodograph 

(Fig.3-a)) synthesis the function  P t  has to be 

positive on the whole time-interval of the motion 

[9-11]. 

The following references’ frames are used 

in the research: 

1. 
CO xyz  — the main coordinates frame 

connected to the main axes of the SC (Fig.1) 

with the origin in the point OC of the SC 

coincided with the initial position of the 

system’s mass center. 

2. 
S S S SO x y z  — the frame connected to the 

rigid part of the system’s structure (the SC 

without the tanks). Moreover, the frame axes 

(Fig.1) are collinear with the axes of the 

main coordinates frame 

 ; ;S S Sx x y y z z   . 

3. 
0 0 0Ox y z  — the frame geometrically 

connected to the tank (coinciding with its 

main axes) with the origin in the geometrical 

center of the tank (Fig.5). 

 

 
Fig. 5. The frame connected with the tank  

 

4. T T T TO x y z  — the frame (Fig. 6) connected to 

the bunch of the tanks  with the origin in the 

geometrical center of the tanks bunch. 

 

 
Fig. 6 The frame connected with the geometrical 

center of the tanks bunch 

 

5. ' ' ' 'O x y z  — the frame with axes which 

is collinear to the axes CO xyz , and with 

the origin in the ―lowest‖ point of the 

SC O.  
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Now we can calculate the inertia moments: 

 
   

   

2 ,

,

S T C

S T

A t A A t Mz

C t C C t

  

 
 (8) 

where ,SA SC — are the constant parts of the 

inertia moments corresponding to the rigid part of 

the SC structure (the main SC body with the 

empty tanks), and AT, CT – are the varied parts 

corresponding to inertia moments the tanks 

(including momentary ―current-freezing‖ forms of 

liquids and the empty tanks) calculated in the 

frame CO xyz ;  M M t  — is the mass of SC in 

the current time-moment;  
C Cz z t  — is the 

current coordinate of the SC mass center, that can 

be calculated as follows  

 
0

' ' ,C C Cz z z   (9)

  ,S ET TM m m m t    (10) 

where 'Cz  — is the coordinate of the position of 

the mass center at present time in the frame 

' ' ' 'O x y z  and  
0

' ' 0C Cz z  — the coordinate of 

the center of mass at the initial time moment (also 

in the frame ' ' ' 'O x y z ); 
Sm  — the constant mass 

of the rigid part of the SC without the empty 

tanks; 
ETm  - is the mass of the empty tanks; 

 
Tm t  — is mass of liquids in the tanks at the 

current time. 

The recalculation of the inertia moments of 

the rigid part of the SC without empty tanks can 

be fulfilled as follows: 
2

0

0

,

,

S S S SC

S S

A A m z

C C

 


 

где 0 ,SA 0SC  — the inertia moments of the rigid 

SC body in the frame S S S SO x y z , with the 

defined/known values; constSCz   — is the 

distance between the mass center of the rigid SC 

body and point OC (the initial position of the mass 

center of the system with the filled tanks).  

The inertia moments of the tanks can be 

find in the form: 

 
 

 

2

0

0

,

,

T T T T

T T

A A t m z

C C t

 


 (11) 

where  
0 ,TA t  

0TC t  — are the inertia moments 

calculated in the frame T T T TO x y z , and  

 
T Tz z t  — is the distance between the mass 

center of the tanks bunch and the point OC. 

The value SCz  also formally follows from 

the expression: 

 
0

' ' ,SC C SCz z z   (12) 

where 'KCz  — the position of the mass center of 

the SC’s rigid part/structure in the frame 

' ' ' 'O x y z . The value 
Tz  satisfies to the equality: 

 
0

' ' ,T C Tz z z   (13) 

where 'Tz  is the position of the mass center of the 

bunch of the tanks in the frame ' ' ' 'O x y z . 

Now it is possible to formally find the 

position of the system mass center in the frame 

' ' ' 'O x y z : 

  
1

' ' ' ,C SC S T Tz z m z m
M

   (14) 

For example, we consider the SC with the 

height of the main rigid part HS and with the 

bunch of the tanks with the diameter a. Then we 

have  

 
 

1
' / 2 ,

2

.

SC S S ET

SC

SC S ET

a
z m a H m

m

m m m

 
   

 

    

(15) 

The defined geometrical values 

undoubtedly depend on the selected shapes of the 

tanks. In turn, it is clear that the tanks can have 

different shapes (spheres, cylinders, conical parts, 

compound forms). Also methods of the liquids 

extrusion from the tanks differ from each other. 

For example, the fuel-tank pressurization with the 

tissue-type or foil-type diaphragms is quite useful.  

Let us consider in this research the 

spherical tanks equipped with the extrusion 

systems with the hemispherical foil-type 

diaphragms edge-stiffened in the line of the 

internal diameter of the tank – the pressure is 

injected into the gap between the diaphragm and 

the internal tank’s wall, then the irretrievable 

foil’s deflection forms. Such types of the 

diaphragms allow to fulfill the liquid extrusion 

without formation of the free liquid’s surface at 

the conservation of the current reached lens-

shaped deformity (Fig.5) of the foil (this lens-

shaped deformity/deflection rises with the time, 

and in limit it coincides with the complete 

spherical tank). 

 

So, the main considering task is the search 

of the tanks dispositions providing the realization 

of the ―positive‖ attitude dynamics of the SC on 

active sections of the trajectory/orbital motion, 

when the accuracy of the jet propulsion inter-

orbital impulse increases by natural way during 

the SC precession motion with the spiral-

convolving hodograph of the SC longitudinal axis 

(coinciding with the vector of the jet-engine 

thrust).  

Here the most important part of the task is 

the selection of the direction of the internal 
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motion of the extrusive diaphragms inside the 

tank. We can dispose the extrusive diaphragm 

inside the tank along the thrust vector 

(―downward extrusion‖ – Fig.1); or the 

diaphragms can be disposed in the orthogonal 

direction and the liquid will be extruded radially 

outwards (―radial extrusion‖ – Fig.6). 

It is possible to expect that the attitude 

dynamics at the radial extrusion will differ from 

the downward one. Let us to make an 

investigation of this question. 

 

3. The comparative modeling of the 

extrusions 

 

3.1. The radial extrusion 

 

Let us consider the attitude motion at the 

radial extrusion realization (Fig.6).  

The inertia moments  
0TA t  and  

0TC t  in 

the frame T T T TO x y z  can be calculated as follows: 

 

    2 2

0 2 2 2 ,T F F TA t A C m l r     (16) 

    2 2

0 4 4 ,T F TC t A m l r    (17) 

 

where  
F FA A t

 
and  

F FC C t  — are the 

inertia moment of the current volume of the liquid 

in the single tank in the frame 0 0 0Ox y z  (Fig.5); 

 l l t  — is the distance between the point TO  

and the mass center of the current volume of the 

liquid in one tank along
 T TO x ;  r r t  — the 

distance between the geometrical center of the of 

the single tank and the mass center of the current 

volume of the liquid in one tank along T TO x . 

We must additionally comment the process 

of the liquid extrusion: the foil-type diaphragm 

deforms under the action of the pressure such 

way, that the created empty space (between the 

internal tank’s wall and the sagged diaphragm) 

always has symmetrical lens-type shape (Fig.5). 

In this case the inertia moments (16) and 

(17) have the concretized form: 

 

 

0

5 5

4 2 3

1 1

8 1

5 3 4

15 5

4 6

2 ,

F

C

A I

R h

R h R h

m h h z



 


  




  



 

 (18) 

 

0

5 5

4 2 3

8

5 3

10
5 ,

3

FC I

R h

R h R h



 


  




  



 (19) 

where
0I  – the inertia moment of the single full 

spherical tank completely filled with the liquid; 

  – the liquid density; R  – the radius of the tank; 

 h h t  – the distance between the geometrical 

center of the tank and the median plane of the 

empty lens-type space (Fig.5); 
1m  – the mass of 

the current extruded volume of the liquid in the 

tank;
1Cz  – the distance between the geometrical 

center of the of the single tank and the spherical 

segment (one half of the ―lens‖). 

 2 3

0 0 0

2 4
,

5 3
I m R m R   (20) 

  
2

1

2 1
2

3 3
m R h R h

 
   

 
 (21) 

 
 

2
2 2

1 3 2 3

3

4 2 3
C

R h
z

R R h h




 
 (22) 

The value l and r are calculated as: 

    1

0 1

m
r t h t

m m



 (23) 

 
   2l t R r t   (24) 

 'Tz R  
Let us consider the linear time-

dependence of  h t : 

 
0 1h t h h t  . 

Now we can plot the graph (Fig.7) for the 

function of the thrust’s hodograph curvature 

 P t at the parameters from the table 1.  

 

Table 1 – The parameters of the SC  

The parameter The value 
3, kg m

 
780 

0 , mh  1 

1, m/ sh  0.025 

R, m 1 
2, kg mSA   8600 
2, kg mSC   18600 

, kgSm  100 

, mSH  2 
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Fig.7 The thrust’s hodograph curvature function 

 P t  at the radial extrusion: 

the function is positive;  

and it has no roots 

 

As we can see, the thrust’s hodograph 

curvature function is positive and has no roots. 

The corresponding hodograph is presented at the 

figure (Fig.8) – as it was expected this hodograph 

is spiral-convolving curve and the corresponding 

attitude dynamics is also ―positive‖ in the above 

mentioned sense.  

 

 
(a) 

 
(b) 

Fig.8 The thrust’s hodograph at the radial 

extrusion of the liquids in the tanks: 
(a) – the schematic monotone type of the hodograph   

(b) – the real implementation 

(G0=1.5 [1/s]; F0=0; r=2 [1/s]; the small blue circle 

corresponds to the initial position) 

 

3.2. The downward extrusion 
 

Let us now consider the second type of 

extrusion – the ―downward extrusion‖ (like at the 

Fig.1). the inertia moments  
0TA t  and  

0TC t  

can be calculated from (11): 

   2

0 4 2 ,T F TA t A m d   (25) 

   2

0 4 4 ,T F TC t C m d   (26) 

where 2 constd R   — is the distance 

between the point TO  and the geometrical center 

of the tank. 

The inertia moments (16) and (17) in 

considering case have the form (18) and (19). 

Also the following values take place: 

  
 

 
 1

0 1

'T
m t

z t R h t
m m t

 


 (27) 

Then the evolution functions  P t  (at the 

conditions from tab.1) is sign-alternating and has 

real roots (Fig.9). 

 

 
Fig.9 The thrust’s hodograph curvature function 

 P t  at the downward extrusion: 

the function is sign-alternating;  

and it has two roots in the open interval t=(0,T) 

 

The corresponding hodograph is presented 

at the figure (Fig.10) – as it was expected, this 

hodograph is not monotonously twisting, and it 

has the first twisting phase (the black section of 

the schematic hodograph – Fig.10-a), the second 

untwisting phase (the red section of the schematic 

hodograph – Fig.10-a) and the third twisting 

phase (the blue section of the schematic 

hodograph – Fig.10-a). So, the untwisting phase is 

realized in the time-interval t=(12..28) where the 

evolution function is negative) – it characterizes 

the attitude dynamics as not-positive because 

inside the ―untwisting phase’s‖ time-interval the 

thrust defocusing takes place, and corresponding 

jet-impulse is ―nebulized in parasite directions‖.  

 

 
(a) 

 
(b) 

Fig.10 The thrust’s hodograph at the downward 

extrusion of the liquids in the tanks 
(a) – the schematic three-section type of the hodograph   

(b) – the real implementation 
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So, as we can see, the radial type of the 

extrusion system is optimal in the dynamical 

sense, when the accuracy of the inter-orbital jet 

impulse increases by the natural way during the 

SC precession motion with the spiral-convolving 

hodograph of the SC longitudinal axis (coinciding 

with the vector of the jet-engine thrust), that in its 

turn corresponds to the precessional motion with 

the twisting nutation cone.  

The attitude dynamics at the downwards 

extrusion is not positive, and we can recommend 

to change this type of extrusion system on the 

radial one – this is the main applied/technical 

result of the fulfilled research. 

 

Conclusion 

 

The attitude dynamics of the SC with the 

variable volume of the liquids (the fuel and the 

oxidizer) in the bunch of spherical tanks was 

investigated based on the qualitative method for 

the analysis of the curvature of phase trajectories. 

Two schemes of the extrusion system (the radial 

and the downward extrusion) were considered.  

As it was shown, the attitude dynamics at 

the downwards extrusion is not positive, that 

results in the complex trajectory of the apex of the 

longitudinal axis of the SC (coinciding with the 

thrust vector of the jet-engine) – this trajectory 

represents the complex spiral with the twisted and 

untwisted sections, and the corresponding attitude 

motion negative affects the jet-engine-impulse.  

Owe of the main results of the work is the 

recommendation of using of the radial extrusion 

scheme instead the downward scheme. The radial 

extrusion scheme is optimal in the dynamical 

sense, when the accuracy of the inter-orbital jet-

impulse increases by the natural way during the 

SC precession motion with the spiral-convolving 

hodograph of the SC longitudinal axis (coinciding 

with the vector of the jet-engine thrust), that in its 

turn corresponds to the precessional motion with 

the twisting nutation cone.  

So, the work additionally confirms the fact 

that the attitude dynamics of the SC with the 

variable mass/structure strongly affects its orbital 

motion.  
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