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Abstract: In this study, the scaling properties of the oil and gold return volatilities have been 
analyzed in the context of bull and bear periods. In the determination of bull and bear turning 
points, we used the Modified Bry-Boschan Quarterly (MBBQ) algorithm. Results showed 
that the business cycle phase shapes of the bear periods in the oil market are almost linear, 
whereas the bull and bear periods of the gold and bull period of the oil market are convex. 
This means that there are sharper declines in the bear period of the oil market. Following the 
detection of bull and bear periods, scaling exponent H analysis was performed via the 
aggregated variance, Higuchi’s statistic, Peng’s statistic, rescaled range, boxed periodogram 
and wavelet fit models, which are from the time, frequency and wavelet domains. As there 
are conflicts about the credibility of these methods in the literature, we have used the 
shuffling procedure in order to determine the most robust methods. According to the results, 
bear periods have higher volatility persistency than bull periods. 
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1. Introduction 

After the studies of Benoit Mandelbrot, a great deal of interest started as concerns the fractal 
dimension, self-similarity and long memory features of the financial time series in the finance and 
econometrics literature. Despite the fact that these concepts are different from each other, scaling can be 
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accepted as the common feature of these notions. As is stated by Barenblatt [1], if the spatial 
distributions of the features in different times can be obtained by similarity transformation from one 
another, then this time-dependent phenomenon is stated as self-similar, and it is one of the key concepts 
of the scaling notion. A stochastic process Y(t) can be stated as self-similar when:  

ℒ(𝑌𝑌(𝑐𝑐𝑐𝑐)) = ℒ(𝑐𝑐𝐻𝐻𝑌𝑌(𝑐𝑐)) 𝑐𝑐 > 0 (1) 

where ℒ denotes the finite joint distribution of 𝑌𝑌(𝑐𝑐). 𝐻𝐻 is the self-similarity parameter, scaling 
exponent or scale-invariant property (Wang et al. [2]). Fractals are the best known example of the  
self-similarity and scale-invariant property. As stated by Kobeissis [3], a fractal is self-similar and 
scaled identically in all directions. Self-similarity can also exist in the probability distributions; for 
example, in the case that its statistical properties remain the same at all times, a probability density 
function is statistically self-similar. Every fractal piece presents the diminished image of the whole 
fractal, and they are characterized by a power law. Power law functions, which describe the probability 
density function of returns and autocorrelations of the volatility scales, have scale-invariant features 
(Segnon and Lux [4]). A general definition of the power law can be presented by Equation (2) below:  

𝑦𝑦(𝑥𝑥) = 𝑥𝑥−𝑛𝑛 (2) 

and:  

𝑦𝑦(𝜆𝜆𝑥𝑥) = 𝜆𝜆−𝑛𝑛𝑦𝑦(𝑥𝑥) (3) 

In this function, the frequency of an occurrence is inversely proportional to the power (n) of its size.  
If we take the logarithms of both sides of the Equation (2), then we can obtain the following form: 

log�𝑦𝑦(𝑥𝑥)� = −𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥) (4) 

where 𝑛𝑛 denotes the fractal dimension. The relationship, which links the self-similarity to the power 
law and fractal dimension, can be demonstrated by the scaling equation. For instance, for a self-similar 
y(t) process, a scaling relationship satisfies the following condition:  

𝑦𝑦(𝜆𝜆𝑐𝑐) = 𝜆𝜆𝐻𝐻 𝑦𝑦(𝑐𝑐) (5) 

where λ is a constant, 𝐻𝐻 is the scaling exponent and 𝑐𝑐 is a measure of the scale, which in this 
equation, denotes the time. It is clear that the power law obeys the scaling relationship (Komulainen [5]). 
One of the processes that satisfies the scaling-invariant and fractality features is the fractal Brownian 
motion that was first introduced by Kolmogorov [6] and presented by Mandelbrot and Van Ness [7] 
(Segnon and Lux [4]). For a series that follows the fractal Brownian motion: 0 < 𝐻𝐻 < 1. If 𝐻𝐻 = 0.5, 
this series is a geometric Brownian motion; if 0.5 < 𝐻𝐻 < 1, the series is a long memory process with 
persistent increments; and finally, in the case of 0 < 𝐻𝐻 < 0.5, the series is the short memory process. 
Therefore, modeling the Hurst exponent gives information about the scaling features of the time series. 

Long memory and scaling properties of financial time series have been broadly discussed in the 
finance and econometrics literature, and as a result, a large model family has been created that also 
considers structural breaks and regime shifts. However, it is seen that in these studies, scaling properties 
of time series have been examined for the whole series. After all, many studies have demonstrated that 
all of the time series do not have the same statistical characteristics, and different subperiods may have 
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different properties. For example, Pagan and Sossounov [8] and Lunde and Timmermann [9] have 
conducted important studies in order to determine the periods of bull and bear markets. Marcucci [10] 
stated that time series may consist of different regimes and showed that the Markov Regime Switching 
Generalized Autoregressive Conditional Heteroskedasticity model (MRS-GARCH ) outperforms the 
standard GARCH family models considering this reality. On the other hand, Kantelhardt et al. [11] 
modified the classical Detrended Fluctuations Analysis (DFA) analysis and presented the Multifractal 
DFA (MF-DFA) model that consider multiple scaling properties of the time series; because, it is clear 
that in the case of the existence of different regimes, series will have multiple scaling properties in each 
regime or subperiod. Under these circumstances, unlike the current literature, in this study, we analyze 
the scaling properties of the volatility of gold and oil markets within the context of subperiods consisted 
by bull and bear markets. The goal of this approach is to present the characteristics of every subperiod 
and to find out whether or not different periods that contain various financial or social crises affect the 
general behavior of the volatility of gold and oil returns. In order to reveal the idiosyncratic features of 
bull and bear periods, we used a long time interval consisting of the period of 20 May 1987–5 May 2014 
and 1 May 1987–9 May 2014. 

2. Literature Reviews 

Studies about self-similarity date back to Mandelbrot [12], who is accepted as the father of fractals.  
In his seminal paper, Mandelbrot pointed out a new stylized fact in the financial time series, self-similarity, 
by exhibiting that cotton prices display the same behavior in different time scales. In the period that 
follows the study of Mandelbrot, a great deal of interest in self-similarity has occurred in the finance 
literature, and different researchers separately presented new methods for the calculation of the Hurst 
exponent as an alternative to Mandelbrot’ [13] rescaled range (R/S) analysis. 

Geweke and Porter-Hudak [14] presented a new Hurst exponent estimator that is calculated in the 
frequency domain, known as the periodogram method. In fact, even though this estimator is the 
fractional difference operator, it can be transformed to the Hurst exponent by the equation 𝑑𝑑 = 𝐻𝐻 − 0.5. 
Another study about the calculation of the Hurst exponent 𝐻𝐻 was conducted by Higuchi [15]. Higuchi 
provided a model to measure the fractal dimension of the set of points (t, f(t)) forming the graph of  
a function f defined on the unit interval and gave evidence, performing his model using two different 
data; one of them has a scaling property, and the other does not. Using daily and monthly data, Lo [16] 
has shown that when short memory is taken into account, R/S analysis fails, and that is why he proposed 
to modify R/S analysis, so that it is robust to the short memory. Using the long memory and short 
memory series, Peng et al. [17] analyzed the issue of whether long memory features arise from the 
mosaic structure of DNA or not. They used a fluctuation analysis in order to distinguish the properties of 
these two different data. Taqqu et al. [18] proposed variance type models for the calculation of the Hurst 
exponent. Teverovsky and Taqqu [19] examined the performances of different models via the fractional 
Gaussian noise and the Fractional Autoregressive Integrated Moving Average (ARFIMA) (0.d.0) 
simulations. Abry and Veitch [20] developed a wavelet-based estimator for the estimation of the Hurst 
exponent. According to the results, this estimator gave efficient results under a normal distribution and 
very general conditions. As was stated by the authors, their model was quite robust, even with the 
conditions that there were deterministic trends in the series. Audit et al. [21] analyzed different 
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wavelet-based estimators, and as a conclusion, they showed that the wavelet transform modulus maxima 
(WTMM) gives the best results on the basis of mean square error. Recently, Simonsen et al. [22] 
proposed a new wavelet-based estimator. According to their results, when one or only a few samples are 
available, the wavelet method outperforms the Fourier method. In another recent study, Liu et al. [23] 
presented a new estimator that is based on the refined form of the spectral density function. They  
also showed the robustness of this estimator against the wavelet maximum likelihood model via Monte 
Carlo simulations. 

The aforementioned studies, which can be classified in the context of the time, frequency and  
wavelet domain, examine the scaling exponent 𝐻𝐻 in the monofractal basis. However, Mandelbrot [24], 
Mandelbrot et al. [25] and Mandelbrot et al. [26] proposed multiscaling, that is the multifractal concept. 
In one of these studies, Mandelbrot et al. [25] exhibited the multifractal model of asset returns model as 
an alternative to the Autoregressive Conditional Heteroskedasticity (ARCH) type models.  
Kantelhardt et al. [11] presented the MF-DFA model improving the mono-scaling model of  
Peng et al. [17] via the multiscaling approach. As for Calvet and Fisher [27], they proposed the 
discrete-time stochastic volatility model in the modeling of multifractal processes. 

In the business cycles literature, the first robust algorithm about the turning points was presented by 
Bry and Boschan [28]. Afterwards, this model was modified by Pagan and Sossounov [8] in order to 
apply it to a monthly time series. Likewise, Harding and Pagan [29] built the Bry-Boschan Quarterly 
(BBQ) model, which is based on the Bry and Boschan [28] algorithm. In the following years, many 
models have been improved by different researchers in order to analyze the business cycle phases of the 
financial and economic time series. In one of these studies, Lunde and Timmermann [9] used a cumulative 
return threshold for the establishment of turning points. More recently, Maheu et al. [30] presented a new 
Markov switching model for the determination of bull and bear market regimes in stock returns. They 
stated that their model fully describes the return distribution while, treating business cycles as 
unobservable. As an alternative, Engle [31] presented the Modified Bry-Boschan Quarterly (MBBQ) 
algorithm modifying the model of Harding–Pagan. Subsequently, in many studies, this algorithm has 
been used in order to determine the bull and bear periods or turning points. In one of these studies, 
Abbritti and Fahr [32] analyzed the effects of the degree of downward wage rigidities to the other 
variables in the economy. Tsouma [33] examined whether or not the Greek economy entered recession 
during the period of mortgage crisis via the MBBQ algorithm and concluded that Greece could not 
overcome the recession still in 2010. Einarsson et al. [34] investigated the structure of Icelandic business 
cycles and showed that the business cycle of Iceland is to a large extent asymmetric to the business cycle 
of other developed countries. In a different study, Aastveit et al. [35] determined four recessions via the 
MBBQ algorithm during the period of 1978Q1 to 2011Q4 in the GDP of the Norwegian mainland. More 
recently, Ingram [36] analyzed the cycles of commodity prices via the MBBQ algorithm and obtained 
similar results for different commodities. According to the findings, when the commodity prices rise, the 
highest risings are observed in the last period. Similarly, the largest falls occur in the last period of the 
market crash. 

Following the literature reviews, the rest of the paper is organized as follows: In Section 3, we present 
the theoretical framework of the models that are used in the empirical analysis. In Section 4, we examine 
the findings of statistical tests of the scaling analysis of gold and oil volatilities after the identification of 
bull and bear periods. Finally, Section 5 discuss the results of the overall analysis. 
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3. Econometrical Methodology 

In this study, in order to analyze the scaling behaviors of the oil and gold volatilities, we used 
different methods from the time, frequency and wavelet domains. This section gives theoretical 
information about the MBBQ algorithm and scaling exponent H estimators. 

As stated before, in the analyzing of the scaling properties of oil and gold market volatilities, we use 
different methods, such as: aggregated variance, Higuchi’s statistic, Peng’s statistic, rescaled range, 
boxed periodogram and wavelet fit models. According to the existing literature, there is not a consensus 
about the performance of these models. It is hoped that our findings will be beneficial to this argument. 
Some of the recent studies revealed that R/S analysis underperforms compared to other alternative 
models. For example, Witt and Malamud [37] suggest not to use R/S analysis because of the large 
systematic errors of the model. They also stated that Peng’s statistic displays successful performance 
when the tail of the probability density function is thin. Similarly, Rea et al. [38] stated that R/S analysis 
has some problems: the model displays upward biases when H is low and otherwise shows downward 
biases. In addition, they showed that boxed periodogram and Higuchi’s statistic were also biased 
towards underestimating H values. Ye et al. [39] showed that in the case of the long memory process 
displaying linear trends, the wavelet statistic presents unbiased results. Likewise, Jeonga et al. [40] 
demonstrated that wavelet statistic and Whittle maximum likelihood estimators have the lowest biases. 

3.1. MBBQ Algorithm 

James Engle presented the MBBQ algorithm by modifying Harding and Pagan’s [29] BBQ algorithm, 
which was based on the Bry and Boschan [28] study. Let ∧𝑡𝑡= 1 and ∨𝑡𝑡= 1 denote peaks and troughs 
at time 𝑐𝑐, respectively. In this case, peaks and troughs can be stated as follows:  

∧𝑡𝑡 = 1{(𝑦𝑦𝑡𝑡−𝑘𝑘, … , 𝑦𝑦𝑡𝑡−1) < 𝑦𝑦𝑡𝑡 > (𝑦𝑦𝑡𝑡+1, … ,𝑦𝑦𝑡𝑡+𝑘𝑘)} 
∨𝑡𝑡= 1{(𝑦𝑦𝑡𝑡−𝑘𝑘, … , 𝑦𝑦𝑡𝑡−1) > 𝑦𝑦𝑡𝑡 < (𝑦𝑦𝑡𝑡+1, … ,𝑦𝑦𝑡𝑡+𝑘𝑘)} (6) 

where 𝑦𝑦𝑡𝑡 is the unobserved series. Regarding alternate phases, if 𝑆𝑆𝑡𝑡 indicates the business cycle,  
it takes a value of one in expansions and zero in contractions. Equation (7) below indicates the 
minimum phase duration of the recursion for monthly data:  

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1(1 − 𝑆𝑆𝑡𝑡−2) + 𝑆𝑆𝑡𝑡−1𝑆𝑆𝑡𝑡−2(1 − 𝑆𝑆𝑡𝑡−3) + 𝑆𝑆𝑡𝑡−1𝑆𝑆𝑡𝑡−2𝑆𝑆𝑡𝑡−3(1 − 𝑆𝑆𝑡𝑡−4) 
+ 𝑆𝑆𝑡𝑡−1𝑆𝑆𝑡𝑡−2𝑆𝑆𝑡𝑡−3𝑆𝑆𝑡𝑡−4(1 − 𝑆𝑆𝑡𝑡−5) 

+ 𝑆𝑆𝑡𝑡−1𝑆𝑆𝑡𝑡−2𝑆𝑆𝑡𝑡−3𝑆𝑆𝑡𝑡−4𝑆𝑆𝑡𝑡−5(1 −∧𝑡𝑡−1) 
+ (1 − 𝑆𝑆𝑡𝑡−1)(1 − 𝑆𝑆𝑡𝑡−2)(1 − 𝑆𝑆𝑡𝑡−3)(1 − 𝑆𝑆𝑡𝑡−4)(1 − 𝑆𝑆𝑡𝑡−5) ∨𝑡𝑡−1 

(7) 

The first two lines in the above equation establish that the expansions have a minimum period of five 
months. The third line permits the continued expansion to exceed the five-month period, provided that 
we do not come across a peak. If we do come across a peak, the phase is switched to a contraction. The 
fourth line removes the contractions of more than a five-month duration resulting from detecting  
a trough. For further reading, see Harding [41]. 
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3.2. Aggregated Variance Method 

Using the process stated by Sun et al. [42], we can demonstrate the calculation of the scaling exponent 
𝐻𝐻 via the aggregated variance method as follows: A time series of length N is divided into subgroups of 
length m. The mean of the each subgroup can be calculated as below:  

𝑋𝑋�𝑘𝑘
(𝑚𝑚): =

1
m

 � 𝑋𝑋𝑡𝑡

𝑘𝑘𝑚𝑚

𝑡𝑡=(𝑘𝑘−1)𝑚𝑚+1

 (8) 

variance:  

𝜎𝜎�𝑚𝑚2 ≔
1

�𝑁𝑁𝑚𝑚� − 1
�  �𝑋𝑋�𝑘𝑘

(𝑚𝑚) − 𝑋𝑋��
2

 

�𝑁𝑁𝑚𝑚�

𝑘𝑘=1

 (9) 

The slope of the plot of 𝑛𝑛𝑛𝑛𝑛𝑛𝜎𝜎�𝑚𝑚2  versus log𝑚𝑚 provides the calculation of the scaling exponent 𝐻𝐻.  
If the slope of this plot is −1, this means that scaling exponent 𝐻𝐻 = 0.5 and demonstrates that there is 
no long memory or resistance in the series. 

3.3. Higuchi’s Statistic 

In this method, first, the partial sums of the time series 𝑋𝑋𝑖𝑖 , 𝑖𝑖 = 1, . . . ,𝑁𝑁 , are calculated:  
𝑌𝑌(𝑛𝑛) = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 . Afterwards, the normalized line of the curve is found as follows: 
 

𝐿𝐿(𝑚𝑚) =
𝑁𝑁 − 1
𝑚𝑚3 ��

𝑁𝑁 − 𝑖𝑖
𝑚𝑚

�
−1

� |𝑌𝑌(𝑖𝑖 + 𝑘𝑘𝑚𝑚) − 𝑌𝑌(𝑖𝑖 + (𝑘𝑘 − 1)𝑚𝑚)|

�𝑁𝑁−𝑖𝑖𝑚𝑚 �

𝑘𝑘=1

𝑚𝑚

𝑖𝑖=1

 (10) 

where 𝑁𝑁 is the length of the series, 𝑚𝑚 is the block size and [] demonstrates the highest integer 
function. The slope of the 𝐿𝐿(𝑚𝑚) in the log-log plot versus 𝑚𝑚 gives 𝑑𝑑. Using the equation 𝑑𝑑 = 2 − 𝐻𝐻, 
we can obtain the scaling exponent 𝐻𝐻 (Taqqu et al. [18]). 

3.4. Rescaled Range Analysis (𝑅𝑅/𝑆𝑆) 

Following the explanation of Lo [16], we can calculate the scaling exponent 𝐻𝐻 as below:  

𝐻𝐻 =
1
𝜎𝜎𝑛𝑛
� Max
1≤𝑘𝑘≤𝑛𝑛

�(𝑟𝑟𝑗𝑗 − �̅�𝑟𝑛𝑛)
𝑘𝑘

𝑗𝑗=1

− Min
1≤𝑘𝑘≤𝑛𝑛

�(𝑟𝑟𝑗𝑗 − �̅�𝑟𝑛𝑛)
𝑘𝑘

𝑗𝑗=1

� (11) 

where 𝑟𝑟1,𝑟𝑟2,..., 𝑟𝑟𝑛𝑛 are the returns of the time series and �̅�𝑟𝑛𝑛 is the mean of the returns. As for 𝜎𝜎𝑛𝑛, it 
denotes the maximum likelihood estimator of the standard deviation. 

3.5. Peng’s Statistic 

Let 𝑥𝑥𝑘𝑘 be a time series of length 𝑁𝑁. First, we build the profile as follows: 𝑌𝑌(𝑖𝑖) ≡ ∑ [𝑥𝑥𝑘𝑘 − �̅�𝑥]𝑖𝑖
𝑘𝑘=1 . 

Splitting the 𝑌𝑌(𝑖𝑖) into subdivisions (𝑣𝑣 ) of equal length 𝑠𝑠  from beginning to end and end to 
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beginning, we obtain 𝑁𝑁𝑠𝑠 number divisions and fit local trends for every subdivision with OLS. 
Afterwards, we remove the local trends and calculate the variance for every subdivision:  

𝐹𝐹2(𝑣𝑣, 𝑠𝑠) ≡
1
𝑠𝑠
�{𝑌𝑌[(𝑣𝑣 − 1)𝑠𝑠 + 𝑖𝑖] − 𝑦𝑦𝑣𝑣(𝑖𝑖)}2
𝑠𝑠

𝑖𝑖=1

 (12) 

The variance of the detrended profile for every subdivision provides the mean-square fluctuation:  

𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚2 (𝑣𝑣, 𝑠𝑠) =
1
𝑠𝑠
�𝑌𝑌�𝑠𝑠2
𝑠𝑠

𝑖𝑖=1

(𝑖𝑖) (13) 

In the next step, we obtain mean fluctuations by calculating the means for all of the subdivisions: 
𝐹𝐹2(𝑠𝑠). The scaling relationship 𝐹𝐹2(𝑠𝑠)~𝑠𝑠𝛼𝛼 exhibits the scaling exponent, 𝛼𝛼 = 𝐻𝐻 (Kantelhardt [43]). 

3.6. Boxed Periodogram Method 

The periodogram method gives a plot of the logarithms of the spectral density of the time series that 
is studied on the logarithm of frequencies. The slope of this plot provides the estimation of the scaling 
exponent 𝐻𝐻. The periodogram can be stated as below: 

𝐼𝐼(𝜆𝜆) =
1

2𝜋𝜋𝜋𝜋
 ��𝑥𝑥(𝑗𝑗)𝑒𝑒𝑖𝑖𝑗𝑗𝑖𝑖

𝑁𝑁

𝑗𝑗=1

�

2

 (14) 

where 𝑥𝑥 is the time series, 𝜋𝜋 is the length of the time series and 𝜆𝜆 is the frequency (Goergen  
and Viala [44]). In the boxed periodogram method, the frequency axis is divided into equal boxes,  
and the mean of the periodogram values concerning the frequencies within boxes are calculated 
(Paxson et al. [45]). 

3.7. Wavelet Statistic 

Abry and Veitch [20] presented a wavelet-based Hurst estimator. Let 𝑗𝑗1 and j2 denote the scales; in 
this case, the weighted least square fit between these two scales exhibits the Hurst exponent formula  
as follows:  

𝐻𝐻(𝑗𝑗1, 𝑗𝑗2) ≡
1
2
�
∑ 𝑆𝑆𝑗𝑗𝑗𝑗𝜂𝜂𝑗𝑗 − ∑ 𝑆𝑆𝑗𝑗𝑗𝑗 ∑ 𝑆𝑆𝑗𝑗𝜂𝜂𝑗𝑗

𝑗𝑗2
𝑗𝑗=𝑗𝑗1

𝑗𝑗2
𝑗𝑗=𝑗𝑗1

𝑗𝑗2
𝑗𝑗=𝑗𝑗1

∑ 𝑆𝑆𝑗𝑗 ∑ 𝑆𝑆𝑗𝑗𝑗𝑗2 − (∑ 𝑆𝑆𝑗𝑗𝑗𝑗)
𝑗𝑗2
𝑗𝑗=𝑗𝑗1

2𝑗𝑗2
𝑗𝑗=𝑗𝑗1

𝑗𝑗2
𝑗𝑗=𝑗𝑗1

+ 1� (15) 

where 𝜂𝜂𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛2 �
1
𝑛𝑛𝑗𝑗
∑ |𝑑𝑑𝑥𝑥(𝑗𝑗, 𝑘𝑘)|2𝑘𝑘 �  and weight 𝑆𝑆𝑗𝑗 = 𝑛𝑛ln22

2𝑗𝑗+1
 is the inverse of the theoretical 

asymptotic variance of 𝜂𝜂𝑗𝑗. 

4. Empirical Analysis and Data 

In this study, we analyzed the scaling properties of the volatilities of the oil and gold returns 
concerning bull and bear markets. Oil data is the daily Brent crude oil absolute returns, and gold is the 
daily troy ounce absolute returns. The period of the data consisting of the oil and gold series is  
20 May 1987–5 May 2014 and 1 May 1987–9 May 2014, respectively. Although the scaling analysis has 
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been conducted with daily data, in order to determine turning points for the bull and bear markets, we 
have used monthly price data for both of the series due to the necessity of the MBBQ algorithm. 

4.1. Determination of Bull and Bear Periods 

Table 1 presents the peak and trough dates obtained via the MBBQ algorithm in the oil and gold 
markets. For the oil and gold data, we have determined seven peaks/eight troughs and five peaks/five 
troughs, respectively. In addition to this information, as can be seen from Figure 1, the oil market has 
eight bull and nine bear periods, whereas the gold market has six bear and five bull periods. Due to its 
very short duration, we leave the last bear period out of the assessment in the oil data. Therefore, in the 
following sections of the paper, we will use eight bear and eight bull periods for the oil market. 

Table 1. Peak and trough dates of the oil and gold markets. 

OIL GOLD 
Peaks Troughs Peaks Troughs 

03.01.1989 09.01.1988  10.31.1991 05.31.1990 
09.01.1990 05.01.1990  06.30.1993 01.29.1993 
09.01.1996 11.01.1993  12.29.1995 12.30.1994 
08.01.2000 11.01.1998  01.31.2008 07.30.1999 
06.01.2006 11.01.2001  07.29.2011 09.30.2008 
06.01.2008 12.01.2006  - - 
02.01.2012 11.01.2008  - - 

- 03.01.2013 - - 

Figure 1. Bull and bear periods of the oil market. 

 

As can be seen from Figure 1, the longest bear market period in oil price is between the last quarter of 
1990 and 1994, whereas the longest bull market is between 2002 and the first half of 2006. On the other 
hand, the period between the second half of 2008 and 2009 is the strongest bear market. However, it is 
seen that this drop recovered in six months, similar to black Monday in 1987. 

In the gold market, Figure 2 exhibits that the longest bear periods are seen between the second half of 
1987 and the first half 1990 and also between 1996 and the last quarter of 1999. In addition, there is a 
long bull period between the last quarter of 1999 and the first quarter of 2008. On the other hand, we 
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have seen that while its slope is not as sharp as the oil market, there is a drastic fall in the period of the 
mortgage crises, which recovered in nine months. 

Figure 2. Bull and bear periods of the gold market. 

 

In order to characterize the bull and bear periods better, we have presented in Table 2 three statistics: 
duration (D), amplitude (A) and excess (E), described by Harding and Pagan [29]. One of these statistics, 
duration, demonstrates the mean duration of every phase (C). The second statistic, amplitude, gives the 
magnitude of the log price difference of any asset from one turning point to another. As for excess, it is 
the mean of overall phases, and it exhibits an index value for the shape of the phases. As stated by 
Camacho et al. [46], the excess statistic measures the deviations of the time series from the hypothetical 
linear path that is described by the model. The duration, amplitude and excess can be commented on as 
the features of business cycles: length, depth and shape, respectively. 

Table 2. Harding and Pagan’s bull and bear market statistics. 

 OIL GOLD 
 Bears Bulls Bears Bulls 

Duration 
16.7143  
(0.6975) 

25.2857  
(0.7298) 

21  
(0.7264) 

34  
(1.1615) 

Amplitude 
−0.6364  

(−0.6099) 
0.9377  

(0.3510) 
−0.2417  

(−0.7090) 
0.5181  

(1.1196) 

Excess 1 
−0.9683  

(−21.7465) 
6.7198  

(2.2837) 
12.1319  
(3.2496) 

9.2775  
(7.0006) 

As can be seen from the results of Table 2, the mean duration of the bull period is longer than the bear 
period in both the oil and gold markets. On the other hand, both durations in the gold market are longer 
than the oil market. Results obtained for the oil market correspond to the findings of Pagan and 
Sossounov [8]. They analyzed the stock prices of the U.S. for three different periods, January 1835–May 
1997, January 1889–May 1997 and January 1945–May 1997, and showed that the bull-bear durations 
are 25–15, 25–14 and 27–12, respectively. 

1  Excess movements are the percent of the triangle area. 
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The findings of the gold market are quite different from the oil market. The duration of its bull and 
bear periods is longer than the oil market’s results. This situation can be explained by the gold market 
being more stable than the oil market. Using the excess statistics, we can comment about the shape of the 
business cycle phases. For instance, close to zero, but negative excess value, −0.9683, of the bear periods 
in the oil market means that this phase is approximately linear and slightly concave. Conversely, the 
positive excess value, 12.1319, of the bear periods of the gold market indicates that the phase has  
a convex shape. These results are also valid for the bull periods in the gold market. The positive values in 
the oil and gold market indicate that here, the phases have a convex structure, that is the bull period is 
formed by a smooth growth rate in the beginning, but in the last part of the expansion, there are sharp 
movements. As a conclusion, we can say that small excess values in the oil market means that there are 
sharper movements in the bull and bear periods than the gold market. 

4.2. Scaling Analysis of the Oil and Gold Return Volatilities 

In this section of the study, we perform the scaling analysis for the volatilities of the oil and gold 
returns. The scaling analysis has been conducted for the bull and bear periods separately, and we have 
used the time, frequency and wavelet domains in the calculation of the scaling exponent H. The methods 
that we have used can be classified as follows: the aggregated variance, Higuchi’s statistic, Peng’s 
statistic and rescaled range methods are in the time domain; the boxed periodogram is in the frequency 
domain; and finally, the wavelet fit method is in the wavelet domain. 

4.2.1. Scaling Analysis of the Oil Return Volatility in the Bull and Bear Periods 

Before we separated the oil return volatility for different bull and bear periods, we first examined the 
scaling property of the whole series under all of the methods and presented the findings in Table 3.  
As stated by Teverovsky et al. [47], because there are difficulties in performing the modified R/S 
analysis of Lo [16], we left the modified R/S analysis out of the context of this study. According to the 
results, oil return volatilities have scaling persistency features for all of the methods that we have used. 
According to the results of Table 3, the Higuchi’s statistic has the highest H value, whereas the lowest 
scaling exponent H value belongs to the R/S method. As is seen, all of the methods exhibit a scaling 
exponent value that is in a wide range and has a persistency property in the volatility.  

Table 3. Scaling exponent H test results of oil return volatilities (full period). 

 
Aggregated 

Variance 
Higuchi’s 
Statistic 

Peng’s  
Statistic 

R/S 
Statistic 

Boxed 
Periodogram 

Wavelet  
Fit 

Original 
Oil_abs 
Series 

0.8298 ** 
(0.0377) 
0.0000 

0.9725 ** 
(0.0299) 
0.0000 

0.7073 ** 
(0.0526) 
0.0000 

0.7930 ** 
(0.0191) 
0.0000 

0.6626 ** 
(0.0317) 
0.0000 

0.7819 ** 
(0.0345) 
0.0000 

** indicates the 95% and 99% confidence level. 

In this stage, we analyze the robustness of the results via the shuffling method. The shuffling method 
gives a randomly shuffled series and, therefore, removes all of the correlations in the series. Hence, 
theoretically, we expect that there will not be persistent volatility in the shuffled series, that is the new 
scaling exponent 𝐻𝐻 values will be close to 0.5, which demonstrates the random walk behaviors. In this 
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situation, any large deviations from the 0.5 value means that the related method is not robust, and its 
results are spurious. As stated by Lina et al. [48], the shuffling procedure randomizes the order of returns 
of original series and breaks the memory structure of series. Therefore, the power law behavior of the 
scaling function displays random walk properties. On the other hand, we can save the mean and variance 
of the series in the shuffling process, and as the frequency properties are not changed, the probability 
density function of the series remains the same.  

In Figures 3 and 4, we present the original and shuffled series of the oil absolute returns. As can be 
seen, the volatility clustering of the series has been removed by the shuffling method. 

Figure 3. Oil absolute returns (original data). 

 

Figure 4. Oil absolute returns (shuffled data). 

 

The results of the scaling exponent 𝐻𝐻 of the shuffled data are presented in Table 4. Although the 
correlations of the absolute returns have been destroyed by the shuffling procedure, we see that there are 
still findings related to persistency in some results. For instance, the Higuchi’s statistic result is almost 
the same as its previous value; the method still demonstrates high persistency in the volatility, even after 
the shuffling operation. On the other hand, unlike the findings of Cano and Manzoni [49], we see that the 
results of the aggregated variance method are quite robust, whereas the credibility of the R/S analysis is 
not explicit. 
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Table 4. Robustness analysis of the scaling exponent H models. 

 
Aggregated 

Variance 
Higuchi’s 
Statistic 

Peng’s  
Statistic 

R/S  
Statistic 

Boxed 
Periodogram 

Wavelet  
Fit 

Shuffled 
Oil_abs 
Series 

0.5146 ** 
(0.0199) 
0.0000 

0.9660 ** 
(0.0284) 
0.0000 

0.5024 ** 
(0.0104) 
0.0000 

0.5813 ** 
(0.0343) 
0.0000 

0.4475 ** 
(0.0294) 
0.0000 

0.5216 ** 
(0.0115) 
0.0000 

** indicates the 95% and 99% confidence level. 

In order to efficiently comment on the results, we have presented the scaling exponent 𝐻𝐻 results of 
both the original and shuffled series in the same graph in Figure 5. The graph indicates that every 
model’s scaling exponent 𝐻𝐻 value, except for Higuchi’s statistic, has explicitly decreased after the 
shuffling operation. The closest values to 0.50 were obtained by the aggregated variance, Peng’s statistic  
and wavelet fit methods. Consequently, in this stage, it is clear that the most credible methods are these 
three models. 

Figure 5. Original and shuffled series’ scaling exponent test results.2 

 

After the establishment of the credibility of the scaling exponent methods, we analyze the scaling 
behaviors of the return volatility of the bull and bear markets separately and exhibit the differences 
between the periods depending on its existence. In the following section, first, we present the scaling 
exponent test results of the oil return volatility for the bull and bear markets. As is stated above, we 
identified nine bull and eight bear periods in the oil price series using the MBBQ algorithm. As the last 
bull market’s duration was quite short, we did not take this period into account in the scaling analysis. 
Therefore, we examined the eight bull and eight bear periods for the oil market. 

In the comparison of the bull and bear markets’ performances, concerning the data interval, we 
matched the first bull or bear period with the following phase. As is seen from Figure 1, the first phase in 
the oil market is the bear period; hence, we compared the first bear period with the first bull period, and 
we implemented the same principle for the following periods. Table 5 demonstrates that, except for the 
seventh bull and bear periods, all of the bear phases have higher scaling exponent 𝐻𝐻 values, that is  
self-similarity and persistency features are much greater in the bear periods. These results also coincide 
with the findings of Gursakal [50]. She shows that the stock return persistency in the Turkish stock 
market is higher in the bear periods than the bull periods. Another important result of our analysis is that 
the volatility persistency of the bull market starts to get higher following the fifth period. It is beneficial 

2  In this figure, abbreviations are Aggregated Variance, Higuchi’s Statistic, Peng’s Statistic, Rescaled Range, Boxed 
Periodogram and Wavelet Fit, respectively.  
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to note that the volatility persistence in the seventh bull market, which corresponds to the mortgage 
crisis, is much higher than the previous bull market, meaning that there is a positive recovering period 
after the mortgage crisis. 

Table 5. Scaling exponent H results of the bull and bear periods of the oil data. 

PANEL A 
BEARS 

1 
BEARS 

2 
BEARS 

3 
BEARS 

4 
BEARS 

5 
BEARS 

6 
BEARS 

7 
BEARS 

8 

Aggregated 
Variance 

0.6807 ** 
(0.0271) 
0.0000 

0.7107 ** 
(0.0249) 
0.0000 

0.8862 ** 
(0.0161) 
0.0000 

0.7619 ** 
(0.0226) 
0.0000 

0.6121 ** 
(0.0306) 
0.0000 

0.5382 ** 
(0.0427) 
0.0000 

0.8370 ** 
(0.0753) 
0.0016 

0.7720 ** 
(0.0206) 
0.0000 

Peng’s 
Statistic 

0.7802 ** 
(0.0194) 
0.0000 

0.7725 ** 
(0.0240) 
0.0000 

0.8098 ** 
(0.0342) 
0.0000 

0.5763 ** 
(0.0147) 
0.0000 

0.6533 ** 
(0.0163) 
0.0000 

0.5218 ** 
(0.0233) 
0.0000 

0.4607 ** 
(0.0322) 
0.0000 

0.6915 ** 
(0.01942) 

0.0000 

Wavelet 
Fit 

0.8597 * 
(0.0974) 
0.0126 

0.5661 * 
(0.0882) 
0.0234 

0.8673 * 
(0.1938) 
0.0208 

0.5838 * 
(0.1458) 
0.0279 

0.3886 * 
(0.0893) 
0.0490 

0.4934 
(0.2030) 
0.2485 

0.1849 
(0.1523) 
0.4386 

0.6568 
(0.1843) 
0.0705 

PANEL B 
BULLS 

1 
BULLS 

2 
BULLS 

3 
BULLS 

4 
BULLS 

5 
BULLS 

6 
BULLS 

7 
BULLS 

8 

Aggregated 
Variance 

0.5620 ** 
(0.0503) 
0.0000 

0.7980 ** 
(0.2077) 
0.0003 

0.7040 ** 
(0.0186) 
0.0000 

0.6759 ** 
(0.0233) 
0.0000 

0.4475 ** 
(0.0436) 
0.0000 

0.3302 ** 
(0.0242) 
0.0000 

0.8916 ** 
(0.0227) 
0.0000 

0.6977 ** 
(0.0369) 
0.0000 

Peng’s 
Statistic 

0.6695 ** 
(0.0603) 
0.0000 

0.5533 ** 
(0.0944) 
0.0000 

0.6243 ** 
(0.0210) 
0.0000 

0.5366 ** 
(0.0125) 
0.0000 

0.6311 ** 
(0.0130) 
0.0000 

0.5304 ** 
(0.0149) 
0.0000 

0.7315 ** 
(0.0245) 
0.0000 

0.5160 ** 
(0.0226) 
0.0000 

Wavelet 
Fit 

0.4977 
(0.2109) 
0.2551 

0.4519 
(0.4753) 
0.5160 

0.6690 ** 
(0.0559) 
0.0002 

0.5144 ** 
(0.0709) 
0.0053 

0.6685 ** 
(0.0617) 
0.0004 

0.4897 
(0.1736) 
0.1060 

0.6258 * 
(0.1281) 
0.0164 

0.5332 ** 
(0.0530) 
0.0097 

* and ** indicate the 95% and 99% confidence level. 

4.2.2. Scaling Analysis of the Gold Return Volatility in the Bull and Bear Periods 

Similar to the analysis conducted for the oil market, before the examination of the scaling properties 
of the bull and bear periods for the gold market, we performed the scaling exponent analysis using all of 
the methods for whole data of the gold absolute return series. As can be seen from the results in Table 6, all 
of the 𝐻𝐻 values are statistically significant at a 99% confidence level, that is the scaling property of the 
series exhibits persistency in the volatility. The lowest 𝐻𝐻 value (0.5604) belongs to the R/S analysis, 
whereas Higuchi’s statistic has the highest scaling exponent 𝐻𝐻 value (0.9654) between different methods. 

Table 6. Scaling exponent H test results of gold return volatilities (full period). 

 
Aggregated 

Variance 
Higuchi’s 
Statistic 

Peng’s  
Statistic 

R/S  
Statistic 

Boxed 
Periodogram 

Wavelet  
Fit 

Original 
Gold_abs 

Series 

0.8758 ** 
(0.0218) 
0.0000 

0.9654 ** 
(0.0284) 
0.0000 

0.6995 ** 
(0.0490) 
0.0000 

0.5604 ** 
(0.0603) 
0.0000 

0.6784 ** 
(0.0293) 
0.0000 

0.7187 ** 
(0.0344) 
0.0000 

** indicates the 95% and 99% confidence level. 
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In order to determine the credibility of the different methods, we have used the shuffled version  
of the gold absolute return series. The original and shuffled absolute return series are presented in  
Figures 6 and 7. As is seen from the graphs, volatility clusterings have been removed by the shuffling 
procedure. Our expectation is to destroy the correlations in the original series and, therefore, obtain 
scaling exponent 𝐻𝐻 values that are close to 0.5 in the shuffled series.  

Figure 6. Gold absolute returns (original data). 

 

Figure 7. Gold absolute returns (shuffled data). 

 

The findings in Table 7 are obtained using the shuffled version of the gold absolute return series. 
Results show that, except for Higuchi’s statistic, all of the scaling exponent 𝐻𝐻 values decreased to about 
0.5. This situation is consistent with our theoretical expectations. In the analysis of the bull and bear 
periods of gold return volatilities, we use the methods that provide the closest scaling exponent 𝐻𝐻 
values to 0.5 in the shuffled data. These methods are the aggregated variance, Peng’s statistic and 
wavelet fit. However, the boxed periodogram results are surprisingly remarkable, because the scaling 
exponent 𝐻𝐻 value is well below our theoretical expectation; it is 0.3778 for the shuffled data, whereas it 
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is 0.6784 for the original data. In fact, these results correspond with the findings of Rea et al. [38], which 
state that the boxed periodogram method underestimates the scaling exponent 𝐻𝐻 value. 

Table 7. Robustness analysis of the scaling exponent H models. 

 
Aggregated 

Variance 
Higuchi’s 
Statistic 

Peng’s  
Statistic 

R/S  
Statistic 

Boxed 
Periodogram 

Wavelet  
Fit 

Shuffled 
Gold_abs 

Series 

0.5240 ** 
(0.0226) 
0.0000 

0.9643 ** 
(0.0285) 
0.0000 

0.4604 ** 
(0.0211) 
0.0000 

0.5380 ** 
(0.0333) 
0.0000 

0.3778 ** 
(0.0301) 
0.0000 

0.4589 ** 
(0.0293) 
0.0000 

** indicates the 95% and 99% confidence level. 

The plot form of the results of Tables 6 and 7 can be seen in Figure 8 below. Figure 8 presents the 
scaling exponent results of the original and shuffled data together. It is clear that Higuchi’s statistic value 
is almost the same for both data. On the other hand, as the R/S value of the original data is quite small 
after the shuffling procedure, there is a little change in its value. Similarly, we remember that the R/S 
results of the oil data are not credible. Therefore, we leave both Higuchi’s statistic and the R/S method 
out of the assessment in the bull and bear period analysis. 

Figure 8. Original and shuffled series’ scaling exponent test results.3 

 

After determining the credible methods that will be used in the analysis of the bull and bear periods, 
we present the scaling exponent results for both of the business cycle phases. According to the findings 
in Table 8, the scaling exponents 𝐻𝐻 of the second, third and fourth bear periods are substantially higher 
than the bull periods. This situation demonstrates that persistency in the gold return volatility for this 
period is stronger than the bull periods. However, the first and the fifth periods have a different behavior;  
the bull periods in these business cycles have higher scaling exponent values. 

The first period corresponds to the second half of 1990, whereas the fifth period coincides with the 
years 2008–2011. Although the aforementioned period is bull, if this period is considered in the 
mortgage crises duration, it is striking that there is high persistent volatility in the recovering market. 
  

3  In this figure, abbreviations are Aggregated Variance, Higuchi’s Statistic, Peng’s Statistic, Rescaled Range, Boxed 
Periodogram and Wavelet Fit, respectively. 
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Table 8. Scaling exponent 𝐻𝐻 results of the bull and bear periods of the gold data. 

PANEL A BEARS 
1 

BEARS 
2 

BEARS 
3 

BEARS 
4 

BEARS 
5 

BEARS 
6 

Aggregated 
Variance 

0.6187 ** 
(0.0149) 
0.0000 

0.6345 ** 
(0.0321) 
0.0000 

0.8841 ** 
(0.0347) 
0.0000 

0.8632 ** 
(0.0422) 
0.0000 

0.7774 ** 
(0.0451) 
0.0000 

0.7998 ** 
(0.0271) 
0.0000 

Peng’s 
Statistic 

0.5797 ** 
(0.0088) 
0.0000 

0.5602 ** 
(0.0193) 
0.0000 

0.6412 ** 
(0.0184) 
0.0000 

0.6541 ** 
(0.0244) 
0.0000 

0.5875 ** 
(0.0340) 
0.0000 

0.6566 ** 
(0.0216) 
0.0000 

Wavelet 
Fit 

0.4605 
(0.1630) 
0.0665 

0.4029 * 
(0.0841) 
0.0409 

0.4509 
(0.1476) 
0.0925 

0.7391 ** 
(0.1223) 
0.0090 

−0.0304 
(0.1712) 
0.8879 

0.4693 * 
(0.1529) 
0.0490 

PANEL B BULLS 
1 

BULLS 
2 

BULLS 
3 

BULLS 
4 

BULLS 
5 - 

Aggregated 
Variance 

0.9157 ** 
(0.0632) 
0.0000 

0.5053 ** 
(0.0789) 
0.0000 

0.8724 ** 
(0.0679) 
0.0000 

0.7955 ** 
(0.0420) 
0.0000 

0.8273 ** 
(0.0285) 
0.0000 

- 

Peng’s 
Statistic 

0.4384 ** 
(0.0243) 
0.0000 

0.5538 ** 
(0.0353) 
0.0000 

0.4803 ** 
(0.0224) 
0.0000 

0.6756 ** 
(0.0338) 
0.0000 

0.6949 ** 
(0.0366) 
0.0000 

- 

Wavelet 
Fit 

0.3378 * 
(0.0932) 
0.0362 

0.0414 
(0.4184) 
0.9370 

0.2481 
(0.0879) 
0.2169 

0.6269* 
(0.0487) 
0.0000 

0.2480 * 
(0.0586) 
0.0241 

- 

* and ** indicate the 95% and 99% confidence level.  

5. Conclusions   

Although there is a great deal of interest in the scaling properties of the financial markets, the share of 
these studies in commodity markets is quite restricted. Additionally, there is no information about the 
scaling properties of the subperiods of the examined time series in the existing studies. As stated by  
Marcucci [10], financial asset returns can exhibit sudden jumps, but these jumps do not only arise from 
the structural breaks, but also can originate from future expectations regarding the current information 
level. On the other hand, in the periods of character change, even if they arise from the structural breaks or 
expectations, we can see different patterns in the behavior of asset returns. Therefore, rather than the 
whole period, modeling of the subperiods can be more beneficial in capturing the properties that can be 
missed when we focus on the whole series. Hence, in this study, we examined the subperiod in the 
analysis of scaling properties of two important commodities: gold and oil. In order to obtain the bull and 
bear turning points, we used the MBBQ algorithm for the period of May 1987–March 2014, and we 
determined eight bull and eight bear and five bull and six bear periods for the oil and gold markets, 
respectively. Using the duration, amplitude and excess measures suggested by Harding and Pagan [29] 
we characterized the shape and other properties of the business cycle phases. According to the results, 
the excess statistics of the bull and bear periods of the gold market exhibit that both of the periods have 
convex shapes. However, we have seen that the bear periods of the oil market are approximately linear 
and slightly concave, meaning that there are hard drops in the oil market, whereas the bear periods of the 
gold markets are more smooth and stable. 

After the determination of the bull and bear markets, we performed scaling exponent 𝐻𝐻 methods, 
which are the aggregated variance, Higuichi’s statistic, Peng’s statistic, rescaled range (R/S), boxed 
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periodogram and wavelet fit, based on the time, frequency and wavelet domains. First, in order to 
determine the robustness of all of these models, we used the shuffled data and compared the results with 
the original data. Results showed that for both the oil and gold returns, Higuichi’ statistic, the rescaled 
range and the boxed periodogram models have a strong bias, whereas the aggregated variance, Peng’s 
statistic and wavelet fit methods are quite robust. Hence, in the closing parts of the study, we used only 
these three methods: the aggregated variance, Peng’s statistic and wavelet fit. The obtained scaling 
exponent values for the bull and bear periods demonstrated that both the oil and gold markets’ bear 
periods have substantially higher scaling exponent 𝐻𝐻  values than the bull periods. This situation 
exhibits the higher volatility persistency of the bear periods. Another important finding is that both oil 
and gold market return volatility persistency begins to increase following the period of the mortgage crisis. 

Conflicts of Interest 

The author declares no conflict of interest. 

References 

1. Barenblatt, G.I. Scaling, Self-similarity, and Intermediate Asymptotics; Cambridge University Press: 
Cambridge, UK, 1996. 

2. Wang, Y.; Cavanaugh, J.E.; Song, C. Self-similarity index estimation via wavelets for locally  
self-similar processes. J. Stat. Plan. Inference 2001, 99, 91–110. 

3. Kobeissis, Y.H. Multifractal Financial Markets an Alternative Approach to Asset and Risk Management; 
Springer: London, 2013. 

4. Segnon, M.; Lux, T. Multifractal models in finance: Their origin, properties, and applications.  
Available online: https://www.econstor.eu/dspace/bitstream/10419/78711/1/756790433.pdf 
(accessed on 11 June 2014). 

5. Komulainen, T. Self-Similarity and Power Laws, Session 10; Helsinki University of Technology: 
Espoo, Finland, 2014; pp. 108–122. Available online: http://neocybernetics.com/report145/ 
Chapter10.pdf (accessed on 11 June 2014). 

6. Kolmogorov, A.N. The Wiener spiral and some other interesting curves in Hilbert space.  
Dokl. Akad. Nauk SSSR 1940, 26, 115–118. 

7. Mandelbrot, B.B.; van Ness, J.W. Fractional Brownian motion, fractional noises and applications. 
SIAM Rev.1968, 10, 422–437. 

8. Pagan, A.R.; Sossounov, K.A. A simple framework for analysing bull and bear markets.  
J. Appl. Econom. 2003, 18, 23–46. 

9. Lunde, A.; Timmermann, A.G. Duration dependence in stock prices: An analysis of bull and bear 
markets. J. Bus. Econom. Stat. 2004, 22, 253–273. 

10. Marcucci, J. Forecasting stock market volatility with regime-switching GARCH models.  
Stud. Nonlinear Dyn. Econom. 2005, 9, 1–53. 

11. Kantelhardt, J.; Zschiegner, S.; Koscielny-Bunde, E.; Bunde, A.; Havlin, S.; Stanley, E.  
Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 2002, 316, 87–114. 

12. Mandelbrot, B.B. The variation of certain speculative prices. J. Bus. 1963, 36, 392–417. 

 

http://en.wikipedia.org/wiki/Espoo
http://en.wikipedia.org/wiki/Finland


Int. J. Financial Stud. 2014, 2 332 
 
13. Mandelbrot, B.B. Statistical methodology for nonperiodic cycles from covariance to R/S analysis. 

Ann. Econom. Soc. Meas. 1972, 1, 259–290. 
14. Geweke, J.; Porter-Hudak, S. The estimation and appication of long memory time series models.  

J. Time Ser. Anal. 1983, 4, 221–238. 
15. Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Physica D 1988, 31, 

277–283. 
16. Lo, A.W. Long-term memory in stock market prices. Econometrica 1991, 59, 1279–1313. 
17. Peng, C.; Buldyrev, S.; Havlin, S.; Simons, M.; Stanley, H.; Goldberger, A. Mosaic organization of 

DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. 
18. Taqqu, M.; Teverovsky, V.; Willinger, W. Estimators for long-range dependence: An empirical 

study. Fractals 1995, 3, 785–798. 
19. Teverovsky, V.; Taqqu, M. Testing for long-range dependence in the presence of shifting mean or a 

slowly declining trend, using a variance-type estimator. J. Time Ser. Anal. 1997, 18, 279–304. 
20. Abry, P.; Veitch, D. Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inf. Theory 

1998, 44, 2–15. 
21. Audit, B.; Bacry, E.; Muzy, J.F.; Arneodo, A. Wavelet-based estimators of scaling behavior.  

IEEE Trans. Inf. Theory 2002, 48, 2938–2954. 
22. Simonsen, I.; Hansen, A.; Nes, M.O. Determination of the hurst exponent by use of wavelet 

transforms. Phys. Rev. E 1998, 2, 2779, doi:10.1103/PhysRevE.58.2779. 
23. Liu, Y.; Wang, K.; Jiang, T.; Yang, L. Modified periodogram method for estimating  

the Hurst exponent of fractional Gaussian noise. Phys. Rev. E 2009, 80, 066207,  
doi:10.1103/PhysRevE.80.066207. 

24. Mandelbrot, B.B. Fractals and Scaling in Finance: Discontinuity, Concentration, Risk; Springer: 
Berlin, Germany, 1997. 

25. Mandelbrot, B.B.; Fisher, A.; Calvet, L. A Multifractal Model of Asset Returns; Cowles Foundation 
Discussion Paper No. 1164; Yale University: New Haven, CT, USA, 1997; pp. 1–33. 

26. Mandelbrot, B.B.; Fisher, A.J.; Calvet, L.E. Multifractality of Deutschemark/US Dollar exchange 
Rates; Cowles Foundation Discussion Paper No. 1166; Sauder Shool of Business Working Paper. 
Available online: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=78628 (accessed on 23  
May 2014). 

27. Calvet, L.; Fisher, A. Regime-Switching and the Estimation of Multifractal Processes; NBER 
Working Papers No. 9839; National Bureau of Economic Research: Cambridge, MA, USA, 2003. 

28. Bry, G.; Boschan, C. Cyclical Analysis of Time Series: Selected Procedures and Computer 
Programs; NBER Technical Paper. No. 20; National Bureau of Economic Research: Cambridge, 
MA, USA, 1971. 

29. Harding, D.; Pagan, A. Dissecting the cycle: A methodological investigation. J. Monet. Econom. 
2002, 49, 365–381. 

30. Maheu, J.M.; McCurdy, T.H.; Song, Y. Extracting Bull and Bear Markets from Stock Returns; 
Working Papers; University of Toronto: Toronto, ON, Canada, 2009. 

31. Engel, J. James engel’s business cycle dating matlab programs. Available online: 
http://www.ncer.edu.au/data/data.jsp (accessed on 24 May 2014). 

 

http://en.wikipedia.org/wiki/New_Haven,_Connecticut
http://www.ncer.edu.au/data/data.jsp


Int. J. Financial Stud. 2014, 2 333 
 
32. Abbritti, M.; Fahr, S.A. Macroeconomic implications of downward wage rigidities. Available 

online: http://econpapers.repec.org/paper/terwpaper/0088.htm (accessed on 24 May 2014). 
33. Tsouma, E. Dating business cycle turning points: The greek economy during 1970–2010 and the 

recent recession. Available online: http://epp.eurostat.ec.europa.eu/portal/pls/portal/!PORTAL. 
wwpob_page.show?_docname=2306314.pdf (accessed on 27 May 2014). 

34. Einarsson, B.G.; Emilsson, G.; Haraldsdóttir, S.J.; Pétursson, T.G.; Sveinsdóttir, R.B. On Our Own? 
The Icelandic Business Cycle in an International Context; Central Bank of Iceland Working Papers 
63. Available online: http://rafhladan.is/handle/10802/4790 (accessed on 27 May 2014). 

35. Aastveit, K.A.; Gerdrup, K.R.; Jore, A.S.; Ravazzolo, F. Short-term forecasting: Norges Bank’s 
density combination approach. In Proceedings of the 32nd Annual International Symposium on 
Forecasting, Boston, MA, USA, 25 June 2012. 

36. Ingram, S.R. Commodity Price Changes are Concentrated at the End of the Cycle; The University 
of Western Australia: Perth, Australia, 2014. Available online: http://www.business.uwa.edu. 
au/__data/assets/pdf_file/0005/2585201/14-20-Commodity-Price-Changes-are-Concentrated-at-th
e-End-of-the-Cycle.pdf (accessed on 21 May 2014). 

37. Witt, A.; Malamud, B.D. Quantification of long-range persistence in geophysical time series: 
Conventional and benchmark-based ımprovement techniques. Surv. Geophy. 2013, 34, 541–651. 

38. Rea, W.; Oxley, L.; Reale, M.; Brown, J. Estimators for long range dependence: An empirical study. 
Electron. J. Stat. 2009, arXiv:0901.0762. Available online: http://arxiv.org/pdf/0901.0762.pdf 
(accessed on 20 May 2014). 

39. Ye, X.; Xia, X.; Zhang, J.; Chen, Y. Effects of trends and seasonalities on robustness of the Hurst 
parameter estimators. IET Signal Process. 2012, 6, 849–856. 

40. Jeonga, H.D.J.; Leeb, J.S.R.; McNicklec, D.; Pawlikowskic, K. Comparison of various estimators 
in simulated FGN. Simul. Model. Pract. Theory 2007, 15, 1173–1191. 

41. Harding, D. Detecting and forecasting business cycle turning points. In Proceedings of the 5th 
Eurostat Colloquium on Modern Tools for Business Cycle Analysis, Luxembourg, Luxembourg,  
29 September–1 October 2008. Available online: http://mpra.ub.uni-muenchen.de/33583/ (accesed 
on 5 May 2014). 

42. Sun, W.; Rachev, S.; Fabozzi, F.J. Long-Range dependence, fractal processes, and intra-daily data. 
In Handbook on Information Technology in Finance; Seese, D., Weinhardt, C., Schlottmann, F., Eds.; 
Springer: Berlin, Germany, 2008. 

43. Kantelhardt, J.W. Fractal and multifractal time series. In Mathematics of Complexity and 
Dynamical Systems; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2011. 

44. Goergen, A.; Vialar, T. Complex and Chaotic Nonlinear Dynamics: Advances in Economics and 
Finance, Mathematics and Statistics; Springer: Berlin, Germany, 2009. 

45. Paxson, V.; Beran, J.; Taqqu, M.S.; Fraley, C.; Nason, G.; Wuertz, D. Package “fArma”.  
Available online: http://www.rmetrics.org (accessed on 17 May 2014). 

46. Camacho, M.; Perez-Quiros, G.; Saiz, L. Do European business cycles look like one? J. Econ. 
Dynam. Contr. 2008, 32, 2165–2190. 

47. Teverovsky, V.; Taqqu, M.; Willinger, W. A critical look at Lo’s modified R/S statistic.  
J. Stat. Plan. Inference 1999, 80, 211–227. 

 



Int. J. Financial Stud. 2014, 2 334 
 
48. Lina, X.; Tangb, Z.; Feic, F. Testing for relationships between Shanghai and Shenzhen stock 

markets: A threshold cointegration perspective. Physica A 2013, 392, 4064–4074. 
49. Cano, J.C.; Manzoni, P. On the use and calculation of the hurst parameter with MPEG videos data 

traffic. In Proceedings of the 26th Euromicro Conference, Informatics: Inventing the Future, Maastricht, 
The Netherlands, 5–7 September 2000; pp. 1448–1455. 

50. Gursakal, S. Detecting long memory in bulls and bears markets: Evidence from Turkey. J. Money 
Invest. Bank. 2010, 18, 95–104. 

© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 

 


	1. Introduction
	2. Literature Reviews
	3. Econometrical Methodology
	3.1. MBBQ Algorithm
	3.2. Aggregated Variance Method
	3.3. Higuchi’s Statistic
	3.4. Rescaled Range Analysis (𝑅/𝑆)
	3.5. Peng’s Statistic
	3.6. Boxed Periodogram Method
	3.7. Wavelet Statistic

	4. Empirical Analysis and Data
	4.1. Determination of Bull and Bear Periods
	4.2. Scaling Analysis of the Oil and Gold Return Volatilities
	4.2.1. Scaling Analysis of the Oil Return Volatility in the Bull and Bear Periods

	4.2.2. Scaling Analysis of the Gold Return Volatility in the Bull and Bear Periods

	5. Conclusions
	Conflicts of Interest
	References

