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Abstract: The paper deals with a microsatellite and the related deployable recovery capsule. The aero-brake is 
folded at launch and deployed in space and is able to perform a de-orbiting controlled re-entry. This kind of 
capsule, with a flexible, high temperature resistant fabric, thanks to its lightness and modulating capability, can 
be an alternative to the current “conventional” recovery capsules. The present authors already analyzed the 
trajectory and the aerodynamic behavior of  low ballistic coefficient capsules during Earth re-entry and Mars 
entry. In previous studies, aerodynamic longitudinal stability analysis and evaluation of thermal and 
aerodynamic loads for a possible suborbital re-entry demonstrator were carried out in both continuum and 
rarefied regimes. The present study is aimed at providing preliminary information about thermal and 
aerodynamic loads and longitudinal stability for a similar deployable capsule, as well as information about the 
electronic composition of the plasma sheet and its possible influence on radio communications at the altitudes 
where GPS black-out could occur. Since the computer tests were carried out at high altitudes, therefore in 
rarefied flow fields, use of Direct Simulation Monte Carlo codes was mandatory. The computations involved 
both global aerodynamic quantities (drag and longitudinal moment coefficients) and local aerodynamic 
quantities (heat flux and pressure distributions along the capsule surface). The results verified that the capsule 
at high altitude (150 km) is self-stabilizing; it is stable around the nominal attitude or at zero angle of attack 
and unstable around the reverse attitude or at 180 deg angle of attack. The analysis also pointed out the 
presence of extra statically stable equilibrium trim points. 

 
keywords: deployable capsule aerodynamics; longitudinal stability analysis; plasma frequency; hypersonic  
rarefied gas dynamics; direct simulation Monte Carlo method. 
 

 
Nomenclature  
 
B = ballistic coefficient 
CD, CMz = drag, longitudinal moment coefficients 
CG, Cp = gravity center, pressure center  
D = open aero-brake diameter 
e- = electron charge 
fe = plasma frequency 
g = gravity acceleration 
h = altitude 
I = stability index  
Kn = Knudsen number 
L = length  
m = capsule mass 
me = electron mass 
M = Mach number  
N = number density  
p = pressure 
q&  = heat flux 

Q = thermal  load 
r = nose radius 
R = trajectory curvature radius 
Re = Reynolds number  
s = curvilinear abscissa 
S = surface 
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t = trajectory travel time 
T = temperature  
V = velocity 
xcg = position of the gravity center along the x-axis 
xp = position of pressure center along the x-axis 
 
Greek symbols 
α = angle of attack  
γ = flight path angle 
ε0 = permittivity of vacuum 
λ = mean free path  
ρ = density  
 
Subscripts, superscripts and special symbols 
BCK = backward 
CFD = Computational Fluid-Dynamics 
DSMC = Direct Simulation Monte Carlo 
e = electron 
f = fluid-dynamic 
FWD = forward 
GPS = Global Positioning System 
IMU = Inertial Measurement Unit 
IRDT = Inflatable Re-entry Demostrator Technology 
IRVE = Inflatable Re-entry Vehicle Experiment 
max = maximum 
mcs = mean collision separation 
OBDH = On-Board Data Handling 
ref = reference 
s = simulated 
TPS = Thermal Protection System 
w = wall  
∞ = free stream 
(0) = stagnation point 
 
 
1. Introduction  
 

It is well known that a deployable, or umbrella like, re-entry capsule [1-4], thanks to lightness and to low 
construction and management costs, can be an alternative to the current “conventional” capsules. In fact, a deployable 
capsule is made of flexible, high temperature resistant fabric, folded at launch and deployed in space at the beginning of 
re-entry for de-orbit and for other re-entry operations. Reducing size, mass and power implies a significant reduction of 
launch costs and an increment of management capability, therefore of accessibility to space. 

A key feature of such capsules is the low ballistic coefficient. This feature guarantees low peak stagnation point 
heating rate and temperature. As reported by Akin [5], the ballistic coefficient of a entry vehicle can be considered as a 
design parameter and not a consequence of other design requirements, like: the launch vehicle payload, influencing the 
mass, the aerodynamic configuration, influencing the drag coefficient, the launch vehicle diameter, influencing the 
reference area (typically the cross-section area). The possibility of changing the aero-brake geometry allows to properly 
adapt the ballistic coefficient to the flight conditions. 

The present authors already analyzed the trajectory and the aerodynamic behavior of such a kind of capsule during 
Earth re-entry [3] and Mars entry [4]. In those studies, aerodynamic longitudinal stability analysis and evaluation of  
thermal and mechanical loads have been carried out in both continuum and rarefied regimes. Results verified that 
during the Earth re-entry for certain conditions the capsule can be aerodynamically self-stabilizing,, i.e. equilibrium is 
stable around the nominal attitude at zero angle of attack and is unstable around the reverse attitude at 180 angle of 
attack. 

The present study is aimed at providing preliminary information about the aerodynamic behavior of a complete 
satellite system, including an orbital module and a re-entry module, equipped with a deployable adjustable aero-brake to 
control the de-orbiting phase and to thermally protect the payload during the atmospheric re-entry phase. It is assumed 
that a reversible deployment mechanism, including linear actuators, allows to adjust the rotation and the simultaneous 
elongation or shortening of the ribs, so that an umbrella can be closed or deployed to change aerodynamic drag and to 



adjust the deorbit phase. During the atmospheric re-entry phase, after separation of the service module from the re-entry 
module, the aero-brake reduces velocity, allowing the capsule to maintain the inner payload at lower temperatures. 

The present paper is focused on the aerothermodynamics of the orbital module and of the re-entry module, before 
and after separation of the service module, investigating local quantities (pressure, shear stress, heat flux) and global 
coefficients (lift, drag and longitudinal moment). Focal points were the evaluation of the longitudinal stability and of the 
plasma characteristics along the re-entry phase. The longitudinal stability can ensure that the satellite and the capsule do 
not assume, at high altitudes, wrong attitudes compromising the effectiveness of the system, since, in order to control 
the aerodynamic drag, the satellite axis has to be always aligned with the relative free stream velocity, with the forward 
stagnation point on the nose. This is a very important requirement considering that, during the orbital phase, if the 
system is aerodynamically stable in the suitable attitude, small size and relatively low power consuming reaction wheels 
and magneto-torques can be used for attitude control, especially in presence of large aerodynamic torques at lower 
altitudes. In addition, after separation of the service module from the re-entry capsule, the deployable re-entry system 
can not be equipped with an independent attitude control system and the correct attitude is only guaranteed if the system 
is aerodynamically stable. It is also important that the capsule has only one statically stable trim point (monostability), 
as reported by Chen et al. [6] who verified that a capsule configuration with secondary statically stable trim points is 
highly undesirable because it is extremely dangerous when a capsule stabilizes at the secondary trim point during re-
entry because the payload could be exposed to the flow. 

Hypersonic re-entry velocity creates a bow shock wave in front of the capsule, producing dissociation and ionization 
of air. The plasma layer, surrounding the capsule, can cause communication interference or blackout, especially to the 
Global Positioning System (GPS). Therefore, the evaluation of the plasma frequency is important, even though it is not 
relevant in terms of heat flux. Furthermore, since electrical connections between the service module and the capsule 
must be ensured by umbilical electrical connectors, after the capsule separation from the platform, connector pins can 
be exposed to the ionized layer enveloping the capsule during re-entry into the Earth atmosphere. Knowledge of the 
concentrations of charged particles, in particular positive ions and free electrons, together with a number of neutral 
particles, can be important to evaluate the possibility to generate variations in the electrostatic potential of the spacecraft 
surface, with respect to the surrounding plasma environment, and/or potential variations among different portions of the 
spacecraft that can affect the proper functioning of electric or electronic instruments.  

Since both the stability and the black-out problems occur at high altitude, computer tests were carried out  in rarefied 
flow fields, therefore the use of Direct Simulation Monte Carlo codes was mandatory. Computation, in continuum or at 
low altitude (≤50 km) of the drag coefficient, needed for the tracing of the re-entry trajectory (Sec.3), was carried out 
for a very similar capsule by Iacovazzo et. al. [3] by means of a Computational Fluid-Dynamics (CFD) code; for this 
reason, the same values of drag coefficient were also considered in the present paper.  
 
 
2. Re-entry demonstrator configuration 
 

Figure 1 shows the outline of the satellite in deployed configuration. The complete satellite, including service 
module and re-entry module, is a cylinder with 30 cm diameter and total length of 62 cm. The solid lines identify the re-
entry module (length 38 cm), the dashed lines identify the service module (length 24 cm). The re-entry module also 
includes a rigid hemispherical nose (7 cm thick, with a radius at the stagnation point of 19.5 cm). The re-entry module 
contains the payload and other subsystems needed for the mission, umbrella-like framework, ceramic fabric for the 
conical deployable aero-brake and a light-weight, temperature-resistant material (e.g. carbon fiber composites) for the 
rigid hemispherical nose. Other subsystems include, for instance, linear actuators, batteries, sensors, recovery systems 
in the re-entry module, as well as On-Board Data Handling (OBDH), power, telecommunication, attitude control 
systems, thermal control systems in the service module. A total mass of 15 kg and 35 kg was assumed for the re-entry 
and service modules, respectively. 

When completely deployed, the aero-brake is a half cone of 45 deg and a maximum diameter (D) of 104 cm. The 
drag and the moment coefficients are computed considering as reference area (S) the base area (8494.6 or 706.8 cm2, 
depending on the configuration) and as reference length the diameters of the deployed aero-brake and of the satellite 
(104 or 30 cm). Table 1 summarizes some parameters of the re-entry demonstrator. The reference system was assumed 
according to Fig. 1, with the z-axis forming a right-handed triad with the longitudinal x-axis and the radial y-axis. 

It has to be pointed out that there is no ideal shape for such a kind of capsule because many aspects influence its 
design like aerodynamic stability, heating, functionality, etc. Many sphere-cone aero-brake configurations exist whose 
aperture angle can be up to 60 deg. The 45 deg aperture angle is typical of low ballistic capsules both for Earth and for 
interplanetary missions [7] and it is a compromise between an efficient aerodynamic deceleration (the higher the angle 
the stronger the deceleration) and longitudinal stability (the higher the angle the less stable the equilibrium). For the 
present capsule, the cylindrical shape provides a good solution for the link and the detachment of the service module, 
the aero-brake deployment mechanics and the housing in the launcher ogive.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

Fig. 1. Geometrical characteristics of the re-entry demonstrator (dimensions are in centimeters) 
 
 

Table 1: Parameters of the re-entry demonstrator 
 

Cylinder length [cm] 38 ÷ 62 
Cylinder diameter [cm] 30 

Mass [kg] 15 ÷ 50  
Aero-Brake diameter [cm] 104 
Reference surface [cm2] 707 ÷8495 

Nose radius [cm] 19.5 
Reference length [cm] 30÷104 

 
 
3. Re-entry Trajectory 
 

Equations 2.a and 2.b compute the trajectory of the capsule after its separation from the satellite:  
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where V is velocity, γ is flight path angle, CD is drag coefficient, S is reference area (i.e. the capsule base area), m is 
capsule mass, g is gravity acceleration and R is curvature radius of the trajectory. The inverse of the ratio SCD/m is 
defined as ballistic coefficient (B [kg/m2]). Pressure at the stagnation point of the capsule (p(0)) was preliminary 
evaluated assuming a pressure coefficient of 2, thus: 

p(0)≅ρV
2
      (3.a) 

 
whereas stagnation point convective heat flux ()0(q& ) was evaluated by the Tauber's engineering formula [8]:  
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where r is curvature radius of the capsule nose at the stagnation point. Equation 3.b provides an engineering estimation 
of heat flux. More precise values were computed by DSMC (see Sec.6). 

Equations 2.a and 2.b were integrated numerically by a forward scheme with a first order approximation (Euler 
method). The following Eq. 4 computes the thermal load at the stagnation point Q(0): 
 
 

      (4) 
 
 
where t is the trajectory travel time.  
 
 
4. Direct Simulation Monte Carlo (DSMC) Codes 
 

It is well known that the Direct Simulation Monte Carlo (DSMC) method [9, 10, 11] is currently the most widely 
used tool for the solution of rarefied flow fields from continuum low density (or slip flow) to free molecular regimes. 
DSMC considers the gas as made up of discrete molecules. It is based on the kinetic theory of gases and computes the 
evolution of millions of simulated molecules, each one representing a large number (say 1015) of real molecules in the 
physical space. Intermolecular and molecule-surface collisions are taken into account. The computational domain is 
divided in cells, used both to select the colliding molecules and to sample the macroscopic, fluid-dynamic quantities. 
The most important advantage of the method is that it does not suffer from numerical instabilities and does not directly 
rely on similarity parameters (i.e. Mach and Reynolds numbers). On the other hand, it is inherently unsteady. A steady 
solution is achieved after a sufficiently long simulated time. 

The DSMC codes used in the present study are: 2-D/axial-symmetric DS2V-4.5 64 bits [12] and 3-D DS3V-2.6 
[13]. DS2V can consider, optionally, two built-in chemical models by Gupta-Yos-Thompson [14] for air. A model 
considers air as made up of five neutral species (O2, N2, O, N and NO) and 23 chemical reactions, the other model 
considers air as made up of ten reacting species (O2, N2, O, N, NO, O+

2, N+
2, O+, N+, and NO+) and 45 chemical 

reactions. This code was utilized to study the aerothermodynamic behavior of the axial-symmetric capsule, with its 
deployed aero-brake, during atmospheric re-entry. DS3V implements only the first Gupta-Yos-Thompson model. The 
three-dimensional model was utilized to study the aerodynamic stability of both the complete satellite and the re-entry 
capsule after separation. 

Both codes are “sophisticated”. As widely reported in literature [15, 16, 17], a DSMC code is defined sophisticated 
if it implements computing procedures able to guarantee a higher efficiency and accuracy with respect to a “basic” 
DSMC code. A sophisticated code, in fact, considers two sets of cells (collision and sampling cells) with the related cell 
adaptation, and implements methods promoting nearest neighbor collisions. This type of code automatically generates 
computational parameters such as number of cells and of simulated molecules by the input numbers of megabytes and 
of free stream number density. It uses a radial weighting factor in solving axial-symmetric flow fields and provides 
optimal time step. Finally, the same collision pair cannot have sequential collisions; this is physically impossible 
because after a collision, the molecules move away in opposite directions. 

Besides being sophisticated, these codes are also advanced; the user can verify that the numbers of simulated 
molecules and of collision cells are adequate by means of the online visualization of the ratio between the molecule 
mean collision separation (mcs) and the mean free path (λ) in each collision cell. In addition, the codes allow the user to 
change (or to increase) the number of simulated molecules during the run. The mcs/λ ratio has to be less than unity 
everywhere in the computational domain. Bird [15] suggests 0.2 as a limit value for an optimal quality of the run. In 
addition, the code gives the user information about the stabilization of the runs by means of the profile of the number of 
simulated molecules as a function of the simulated time. The stabilization of a DSMC calculation is achieved when this 
profile becomes jagged and included within a band defining the standard deviation.  
 
 
5. Test Conditions and Quality of the Results 
 

The re-entry trajectory was computed from 170 km. The initial conditions are: V∞=7800 m/s, γ=0, 2, 4 or 6 deg and 
CD=1, the latter constant along the whole trajectory. A subsequent computation of the trajectory relies on variable drag 
coefficient as function of altitude. The environmental parameters at each altitude were calculated by a computer version 
of the US Standard Atmosphere 1976. Tables 2 and 3 report some input data and free stream parameters for the 3-D and 
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2-D DSMC simulations, respectively. Velocity and related parameters (M∞, Re∞D) are those computed by Eq.2.a and 
2.b with γ=0 deg. According to Moss [18], the capsule in deployed configuration is in transitional regime: 
10-3<Kn∞D<50. 

The 3-D runs were performed by DS3V at the altitude of h=150 km and in the angle of attack interval of  0-180 deg, 
with a 5 deg spacing, for the evaluation of the capsule longitudinal stability. The 2-D runs were performed by DS2V for 
the evaluation of the capsule drag coefficient along the re-entry path.  
 

Table 2: Input data and free stream parameters in rarefied flow for DS3V simulations 
 
 

 
Table 3: Input data and free stream parameters in rarefied flow for DS2V simulations 

 
 
 
 
 
 
 
 

 
 
 
 

 
The DS3V and DS2V runs were carried out with a number of simulated molecules of about 9.0×106 and 2.0×107, 

respectively. For all runs, the codes suggested a number of 6 molecules/cell for the adaptation process of the collision 
cells, while, for the sampling cells, DS3V suggested a number of 30 molecules/cell, DS2V suggested a number of about 
250 molecules/cell.  

Besides from the above mentioned DSMC criterion (see Sec. 4), the stabilization of the runs was also verified from 
a fluid dynamic point of view by means of the ratio of the simulated time (ts) to the fluid-dynamic time (tf), which is the 
time needed to cross the computing region at the free stream velocity. A rule of thumb suggests that a fluid-dynamic 
computation is reasonably stabilized when ts/tf≅10. As reported in Table 4, even though the value of mcs/λ for the 2-D 
runs does not always satisfy the suggested limit value of 0.2, it is less than unity up to the altitude of 73 km, as 
requested by the method, and it is only slightly higher than 1 at h=68 km. Moreover, the ratio ts/tf satisfies the 
stabilization criterion of the runs from a fluid-dynamic point of view. These criteria are even more satisfied at altitudes 
higher than 100 km, therefore the parameters at such altitudes are not reported in Table 4. All 3-D tests satisfy the 
quality requirements. As an example, Table 5 reports typical values of both parameters, that do not significantly change 
in the whole interval of angles of attack. 

 
Table 4: Quality parameters for the DS2V runs  

 
h [km] 100 95 88 83 78 73 68 
mcs/λ 0.007 0.018 0.07 0.18 0.42 0.61 1.31 
ts/tf 10.08 9.62 23.79 19.03 14.70 10.05 6.60 

 
Table 5: Quality parameters for the DS3V runs 

 
h [km] 150 
mcs/λ 0.03 
ts/tf 50.00 

 
 
6. Analysis of the results 
 
6.1 2-D tests 
 

Two-dimensional computations were carried out by the DS2V code to study the aerothermodynamic behavior of the 
re-entry capsule, in deployed configuration, after separation from the service module, during its descent into the dense 

h [km] V∞ [m/s] N∞ [m-3] T∞ [K] M ∞ Re∞D Kn∞D 
150 7800 5.15×1016 634 13.3 0.42 47.8 

h [km] V∞ [m/s] N∞ [m-3] T∞ [K] M ∞ Re∞D Kn∞D 
   130 7800 1.94×1017 468 16.6 2.4 1.0×101 
   110 7800 2.14×1018 244 24.0 48 7.1×10-1 

100 7735 1.19×1019 196 27.2 339 1.2×10-1 
95 7632 2.92×1019 189 27.5 857 4.6×10-2 
88 7293 1.01×1020 187 26.5 2910 1.3×10-2 
83 6843 2.37×1020 193 24.5 6270 5.6×10-3 
78 6263 5.25×1020 203 19.7 10951 2.6×10-3 
73 5233 1.12×1021 212 17.9 20850 1.2×10-3 
68 4109 2.27×1021 225 13.6 31645 6.1×10-4 



atmosphere. As said before, for a preliminary analysis, the aerodynamic drag coefficient used in Eq. 2.a and 2.b was 
assumed equal to 1 along the whole trajectory. The computation of the trajectories was then corrected using drag 
coefficients computed by DS2V at the altitudes reported in Table 3 and by Iacovazzo [3] at altitudes between 10-50 km. 
The drag coefficient was assumed 0.75 for altitudes less than 10 km and 2.05 for altitudes higher than 130 km while it 
was calculated by the following equation, in the altitude interval 10≤h≤130 km. Figure 2(a) shows the drag coefficient 
profile and the related best fit curve: 
 

CD=0.8432-4.7193×10-3h+1.3510×10-4h2-1.7869×10-7h3
   (5) 

 
where altitude h is in kilometers. The correlation coefficient is 0.9858. Figure 2(b) shows the profile of the ballistic 
coefficient B [kg/m2] as a function of altitude. B is very low, compared with the ballistic coefficient of the current re-
entry capsules: B ranges from 8 to 22 in the interval 10-130 km. As reported by Akin [5], typical values of the ballistic 
coefficient range from 250 to 500 kg/m2. For example, the Dragon V1 capsule (m=3310 kg, S=10.8 m2) [19], re-
entering from the International Space Station and assuming a drag coefficient of 1, has a ballistic coefficient of 308. The 
very low value of B computed for the present capsule is due to its small dimensions (30 cm diameter with closed aero-
brake, 104 with open aero-brake); however, similar capsules of larger dimensions, both deployable or inflatable, still 
have low ballistic coefficients. In fact, deploying or inflating the aero-brake involves a surface increase with no mass 
increment.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

         (a)            (b) 
Fig. 2 – Profiles of (a) drag coefficient, with related polynomial best fit curve (α=0 deg), and (b) ballistic parameter as 
functions of altitude 
 

Figures 3(a) to 3(d) show the profiles of velocity (a), Mach number (b), stagnation point pressure (c) and 
stagnation point heat flux (d) along the four re-entry trajectories, computed with variable drag coefficient and with four 
different re-entry angles: γ=0, 2, 4 and 6 deg. Table 6 reports the travel time of the trajectories, the maximum values of 
pressure and heat flux, plus the thermal load. Both pressure and heat flux increase with the flight path angle; the values 
at γ=6 deg are more than double than the ones at γ=0 deg. The maximum values of these quantities are met between 
h=60 and 80 km. Even though the maximum heat flux at the stagnation point increases with γ, the heat load decreases 
because the travel time of the trajectory decreases. 
 

Table 6: Maximum values of stagnation point pressure and of heat flux, heat load 
 

γ [deg] t [min.] pmax [Pa] )0(q& max [kW/m2] Q(0) [kJ/m2] 
0 80 2447 541 112 
2 21 2696 710 82 
4 18 4360 993 62 
6 16 6268 1209 52 
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Fig. 3 - – Influence of flight path angle on the profiles of (a) velocity, (b) Mach number, (c) stagnation point pressure 
and (d) stagnation point heat flux along the four computed re-entry trajectories 
 

Figures 4(a) and (b) show the profiles of pressure and heat flux at the capsule stagnation point as a function of 
altitude, computed by the DS2V code. The free stream velocity used in the computations, reported in Table 3, is related 
to the re-entry path angle of 0 deg.  

While conditions at the stagnation point are not critical, because of the presence of the thermal resistant rigid 
hemispherical nose (see Sec.2), information about pressure and heat flux on the aero-brake (made up of fabric and 
supporting ribs) can be relevant. In order to verify the resistance of the aero-brake to both the aerodynamic and the 
thermal loads, Fig.5(a) and (b) show the pressure profile and heat flux along the aero-brake surface at the altitude of 78 
km where heat flux meets a maximum value (see Fig.4(b)). The shear stress is negligible; its maximum value is 61 Pa 
compared to 1375 Pa for pressure. The influence of chemical (dissociation, vibration, etc.) and ionization reactions was 
also evaluated; the capsule surface was considered non-catalytic and at a wall temperature of 300 K. Both figures 
clearly show that the influence of ionization on heat flux is negligible, while the influence of chemical reactions is 
pretty relevant. Considering that a possible fabric is the 3M NEXTEL, whose maximum operating temperature is 
around 1500 K and that the supporting ribs can be made of Titanium, thermal and mechanical aero-brake resistance 
requirements should be satisfied. 
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Fig. 4 – Profiles of pressure (a) and heat flux (b) at the capsule stagnation point as functions of altitude 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (a)            (b) 
 

Fig. 5 – Profiles of pressure (a) and heat flux (b) along the capsule surface by three chemical states of air: h=78 km 
 

As well known, local stiffness effects, such as circumferential and axial modes, are strongly dependent on the 
material stiffness, aero-brake or TPS boundary conditions and dimensions (e.g. thickness). Since the purpose of the 
present study is to assess the aerodynamic field in rarefied regime, it was supposed that the stiffness of the structure is 
high enough to not deal with flutter effects. The aeroelastic deformation was not considered because it requires an 
iterative calculation scheme that involves aerodynamics and structure, but it will be the subject of future work. 

Furthermore, due to the different configurations, it is not possible to compare a deployable aero-brake (such as the 
structure presented in this work) with an inflatable TPS (such as the IRDT or the IRVE) in terms of vibration behavior. 
However, there are some works [20, 21] that show how the ratio of the radius of the conical shell to the TPS length 
influences the flutter behavior of a conical shell. As shown in [20, 21] for simple cases (simply supported and single 
layered TPS), the flutter behavior is strongly dependent on the material mechanical and geometric properties of the TPS 
(such as thickness, bending stiffness, BCs, etc). For larger dimensions (corresponding to larger capsules) the structure 
should be more flexible but, as well known, in dynamic aero-elasticity the essential point is the coupling between the 
unsteady aerodynamic forces and their structural modes.  
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The plasma frequency (fe [GHz]) is related to the number density of electrons around the capsule and is computed 
by the following formula, reported by Kim et al. [22]: 

 
 

             (6) 
 
 
where Ne [m

-3] is the number density of electrons, e- is the electron charge, ε0 is the permittivity of vacuum and me is 
the electron mass. In the present application Ne was approximated by the sum of the number density of cations of all 
species (O2

+, N2
+, O+, N+, NO+) that impacted the capsule surface. Since DS2V considers the gas globally neutral from 

an electrical point of view, the number of cations is equal to that of electrons. As an example, Fig 6(a) shows a 
polynomial (third order) best fit curve of the electron number density along the capsule surface at h= 78 km. In the 
present application Ne, used in Eq.6, was  the average value on the capsule surface. 

According to Kim [22], the GPS black-out occurs in the range of plasma frequency 0.3-3 GHz. Assuming the 
intermediate limit value of 1.65 GHz, fig. 6(b) shows that the plasma frequency overcomes the limit value in the 
altitude interval 70-85 km, approximately, and that the maximum plasma frequency altitude is 78 km. Since this issue is 
crucial for the success of a mission, the analysis was enhanced, at this altitude, considering the effect of possible errors 
of the free stream velocity (therefore of the capsule kinetic energy) on the air ionization level and then on the plasma 
frequency. The effects of ±10% variations of the computed velocity (in this case 5637 and 6889 m/s) is relevant; it 
involves variations of about -60%and 90% of the plasma frequency, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
        (a)       (b) 

Fig. 6 – Polynomial best fit curve of the electron number density along the capsule surface at h=78 km (a) and profile of 
the plasma frequency as functions of altitude (b)  
 
6.2 3-D tests 
 

Three dimensional computations were carried out by the DS3V code on three system configurations: i) service 
module with attached re-entry module and closed aero-brake, identified in the figures as “closed satellite”, ii) service 
module with attached re-entry module and open aero-brake, identified in the figures as “open satellite”, iii) re-entry 
module with open aero-brake, identified in the figures as “open capsule”. In order to compare the drag and the 
longitudinal moments for the three configurations, the results are presented as dimensional for less than the dynamic 
pressure. More precisely, they are shown in terms of CDSref and CMzSrefLref. Lref and Sref are the reference length and 
the reference surface, respectively; Lref and Sref are the diameter and the base area of the deployed aero-brake for the 
“open satellite” and “open capsule” configurations, the diameter and the surface of the base of the cylinder for “closed 
satellite” configuration. Considering that the beginning of the re-entry is the most delicate phase and that the service 
module separates from the capsule at h=150 km, the analysis was carried out only at this altitude.  

To verify the influence of the configurations on Aerodynamics, or of the length of the cylinder, figures 7(a), (b) and 
(c) show 3-D maps of pressure on the capsule surface for the “open satellite” configuration, for example at three angles 
of attack: 0, 45, 90 deg, respectively. The positions of the gravity center (CG) and of the pressure center (Cp) are shown 
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in the same figures. The position of the pressure center along the x-axis moves forward with the increase of the angle of 
attack; it moves from 0.2 m at α= 45 deg to 0.13 m at α= 90 deg, almost overlapping the gravity center. As shown in 
Fig.7(c), at α= 90 deg the service module is exposed to the flow. This alters the position of the center of pressure and 
therefore the size of the moment, and increases the drag. 

In order to quantify the influence of the service module on the longitudinal moment, Table 7 reports the stability 
index I (I=(xcg-xp)/Lref) for the “open satellite” and “open capsule” configurations. The index is slightly higher for the 
“open capsule” configuration. This is probably due to a backward movement of the pressure center higher than the 
supposed backward movement of the position of the gravity center. This verifies that the service module produces a 
destabilizing effect. Fig.8 shows the profiles of drag for the three configurations. The presence of the service module 
increases the drag. For example at α=90 deg, CDSref increases from 0.58 to 0.67 [m2]. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.7 – Pressure 3-D maps on the capsule surface at (a) α=0 deg, (b) α=45 deg and (c) α=90 deg: h=150 km 
 
 

Table 7: Stability Index for two configurations 
“open satellite” “open capsule” α [deg] 

xcg [m] I xcg [m] I 
0.125 0.4247 0.100 0.4269 
0.250 0.4244 0.200 0.4269 150 
0.375 0.4242 0.300 0.4269 
0.125 0.4240 0.100 0.4266 
0.250 0.4199 0.200 0.4267 160 
0.375 0.4253 0.300 0.4266 
0.125 0.4244 0.100 0.4260 
0.250 0.4243 0.200 0.4267 170 
0.375 0.4243 0.300 0.4261 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 – Profiles of the capsule drag for the three configuration: h=150 km 

 
Taking into account the reference system shown in Fig.1, a negative longitudinal moment indicates a nose-down 

pitching moment. Thus, the condition CMz=0 identifies a longitudinal equilibrium, while a negative value of the 
derivative dCMz/dα identifies a stable equilibrium; the more negative the derivative, the more stable the equilibrium. 

The positions of the moment reduction pole, identifying possible positions of the gravity center (xcg) along the axis, 
are: 0.125 m, 0.250 m and 0.375 m for the “open satellite” and “closed satellite” configurations and 0.1 m, 0.2 m, 0.3 m 
for the “open capsule” configuration. Figures 9(a), (b), (c) show the profiles of CMz as functions of the angle of attack 
in the interval 0-180 deg. Figures clearly verify that: 
 

i) when the aero-brake is open, the capsule is stable in forward (FWD) attitude (i.e. around zero angle of attack), and 
is unstable in backward (BCK) attitude (i.e. around 180 deg angle of attack), for every position of the pole. On the 
contrary, when the aero-brake is closed, this behavior is met when the position of the pole is not rearward, for 
example xcg=0.375 m (see Fig.9(c)). 
ii) when xcg is in rearward position and the aero-brake is open, the capsule shows extra equilibrium points. For the 
“open satellite” configuration, two extra equilibrium points are located around α=70 and 110 deg; equilibrium is 
unstable for the first angle, stable for the second one. The “open capsule” configuration shows only one extra 
equilibrium point around α=90 deg. In this point equilibrium is unstable or stable, depending on whether α=90 deg 
is approached from lower or higher angles of attack. As already said, according to Chen at al. [6], the presence of 
these extra statically stable equilibrium points could be dangerous. In fact, for the “open satellite” configuration, at 
α=110 deg, the capsule could stabilize in a wrong attitude because the stagnation point would not lay on the nose 
and the module, containing the payload, would be exposed to the flow. The same occurs for the “open capsule” 
configuration when α=90 deg is approached from higher angles of attack. 
iii) the position of the gravity center along the capsule axis influences the equilibrium stability; the more advanced  
this position, the more stable the equilibrium. 
iv) the influence of the aero-brake is stabilizing. 
 
Tables 8(a), (b) and (c) quantify the stability level by means of the stability derivatives. The effect of the aero-brake 

increases the stability level by an order of magnitude. 
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Fig.9 – Longitudinal moment (for less than dynamic pressure) as a function of the angle of attack for three reduction 
poles: (a) xcg=0.125/0.100 m, (b) xcg=0.250/0.200 m, (c) xcg=0.375/0.300 m 
 
 

Table 8(a): Stability derivatives for “closed satellite” configuration 

 
 

 
 
 

Attitude xcg=0.125 m xcg=0.250 m xcg=0.375 m 
FWD -0.0009 -0.0004 0.0002 

Medium FWD // // // 
Medium BCK // // // 

BCK 0.0009 0.0004 -0.0002 
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Table 8(b): Stability derivatives for “open satellite” configuration 
 

 
Table 8(c): Stability derivatives for “open capsule” configuration 

 
 
7. Conclusions and further developments 
 

Deployable, or umbrella like, re-entry capsules, thanks to lightness and to low construction and management costs, 
seem to be a viable alternative to the current “conventional” capsules. The present authors already did successful 
computer tests, simulating the Earth re-entry and the Mars entry of such a kind of capsule. 

Tests in the present paper are aimed at providing preliminary information about global parameters, such as drag 
coefficient and pitching moment, therefore at evaluating the longitudinal stability and local quantities such as heat flux 
and pressure. The present analysis also provides a preliminary altitude interval for the GPS black-out due to plasma 
frequency as well as preliminary information about the structural and thermal resistance of the fabric and of the support 
ribs. A more detailed analysis about the black-out, the thermal and structural resistance, as well as aeroelastic and 
vibrational effects has already been scheduled.  

The 3-D tests verified that the capsule is longitudinally stable and the effect of the aero-brake increases the stability 
level by an order of magnitude. 
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