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Abstract
High-intensity focused ultrasound (HIFU) waves are known to induce localised
heat to a targeted area during medical treatments. In turn, the rise in tempera-
ture influences their speed of propagation. This coupling affects the position
of the focal region as well as the achieved pressure and temperature values. In
this work, we investigate a mathematical model of nonlinear ultrasonic heating
based on the Westervelt wave equation coupled to the Pennes bioheat equation
that captures this so-called thermal lensing effect. We prove that this quasi-
linear model is well-posed locally in time and does not degenerate under a
smallness assumption on the pressure data.

Keywords: ultrasonic heating, Westervelt’s equation, nonlinear acoustics,
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(Some figures may appear in colour only in the online journal)

1. Introduction

High-intensity focused ultrasound (HIFU) is an innovative medical tool that relies on focused
sound waves to induce localised heating to the targeted tissue [37]. Due to its non-invasive
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Figure 1. The dependency of the sound speed on the temperature in water.

nature and relatively brief treatment time, it has excellent potential to be used in the therapy of
various benign and malignant tumors; see, e.g., [11, 14, 23, 25, 39]. The ability to accurately
determine the properties of the pressure and temperature field in the focal region is crucial in
these procedures and motivates the research into the validity of the corresponding mathematical
models.

It is well-known that the heating of tissue influences the speed of propagation of sound
waves and, in turn, the position of the focal region; this effect is commonly referred to as ther-
mal lensing [7, 12, 13]. In this work, we analyse a mathematical model of nonlinear ultrasonic
heating that captures this effect. More precisely, we study a coupled problem consisting of the
Westervelt wave equation of nonlinear acoustics [38]:

ptt − c2(Θ)Δp− bΔpt = k(Θ)
(

p2
)

tt
(1.1)

and the Pennes bioheat equation [29]:

ρaCaΘt − κaΔΘ+ ρbCbW(Θ−Θa) = Q(pt). (1.2)

Westervelt’s equation (1.1) is given in terms of the acoustic pressure p = p(x, t). The coeffi-
cient c = c(Θ) denotes the speed of sound, which is known to change with the temperature.
Experimentally determined values of the speed of sound are usually represented as polynomial
functions of the temperature using a least squares fit; see, e.g., [2]. In water, for instance, the
speed of sound is taken to be

c(Θ) = 1402.39 + 5.0371Θ− 5.8085 × 10−2Θ2 + 3.3420 × 10−4Θ3

− 1.4780 × 10−6Θ4 + 3.1464 × 10−9Θ5; (1.3)

see [7, section 2.2] and [2] and figure 1.
The term −bΔpt in Westervelt’s equation (1.1) accounts for the losses in propagation due

to the viscosity and thermal conductivity of the propagation medium. The damping parameter
b > 0 is called the sound diffusivity [24] as the strong damping −bΔpt is responsible for
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the parabolic character of the acoustic equation. Assuming harmonic excitation with angular
frequency ω, sound diffusivity b is connected to the absorption coefficient α via

b =
αc3

a

ω2
,

where ca is the ambient speed of sound (in the tissue) [28]. Note that if the attenuation obeys
a frequency power law, equation (1.1) generalises to involve a fractional damping term; see,
e.g., [28]. This case is thus of interest for future analysis as well, but outside the scope of the
current work. The right-hand side coefficient in (1.1) is given by

k(Θ) =
1

ρc2(Θ)
βacou. (1.4)

Here ρ is the medium density and βacou the acoustic coefficient of nonlinearity.
Westervelt’s equation (1.1) can be seen as an approximation of the thermoviscous

Navier–Stokes–Fourier system of governing equations of sound propagation. In its derivation,
it is assumed that the deviations of the involved quantities from their equilibrium values of
order three and higher can be neglected. Thus, the nonlinearity in the resulting wave equation
is of quadratic type. We refer the reader to, e.g., [8] and [20, chapter 5] for details on this so-
called weakly nonlinear approach to acoustic modelling. The right-hand side term in (1.1) can
be written out as

k(Θ)(p2)tt = 2k(Θ)(pptt + p2
t ). (1.5)

In the course of the analysis one thus needs to handle the nonlinearities pptt and p2
t . The first

one represents the main challenge as it contributes to the quasilinear character of the equation.
This can be seen if we rewrite (1.1) equivalently as

(1 − 2k(Θ)p)ptt − c2(Θ)Δp− bΔpt = 2k(Θ)p2
t .

To ensure the validity of this wave model, a well-posedness analysis of Westervelt’s equation
must guarantee that the leading factor remains positive almost everywhere. This invokes the
condition 1 − 2k(Θ)p > 0 almost everywhere, which in turn requires ‖p‖L∞ to remain small
enough in time. This issue is commonly resolved by using a Sobolev embedding under the
assumption of small pressure data, e.g., H2(Ω) ↪→ L∞(Ω), as in [15]. Note that in practice this
condition is less restrictive than it appears since k(Θ) is proportional to the inverse of speed of
sound squared (see (1.4)) and thus relatively small. Values of the involved acoustic coefficients
in different thermoviscous fluids can be found in, e.g., [33, chapter 8].

Pennes bioheat equation (1.2) is solved for the temperature Θ = Θ(x, t). The function
Q = Q(pt) represents the acoustic energy absorbed by the tissue at any given point. The term
ρbCbW(Θ−Θa) models the removal of heat by blood circulation. Here, ρb and Cb are the den-
sity and specific heat capacity of blood, respectively, and W is the volumetric perfusion rate of
the tissue measured in milliliters of blood per milliliter of tissue per second. The values of these
material properties in the human tissue can be found, for example, in [7, table 3]. The coeffi-
cients ρa and κa denote the ambient density and thermal conductivity (i.e., the tissue density
and thermal conductivity). Ca is the ambient heat capacity and Θa is the ambient temperature.
In the body, the latter is usually taken to be 37◦C; see [7].

To the best of our knowledge, this is the first work dealing with a rigorous mathematical anal-
ysis of a coupled Westervelt–Pennes model. Westervelt’s equation has been extensively studied
by now in various settings with constant material parameters; see, e.g., [15, 16, 18, 19, 26]
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and the references given therein, where results concerning local well-posedness, global well-
posedness, and asymptotic behaviour of the solution have been established. The results on
the well-posedness of the Westervelt equation with an additional strong nonlinear damping
and with L∞(Ω) varying coefficients have been obtained in [4, 27]. We mention that this
wave equation can also be rigorously recovered in the limit of a third-order nonlinear acoustic
equation for vanishing thermal relaxation time; see the analysis in [3, 17].

A prominent feature of the present quasilinear thermo-acoustic problem is the dependence
of propagation speed on the temperature, which we will assume in the analysis to be polynomial
and non-degenerate in accordance with (1.3). Our approach in proving the local-in-time well-
posedness of the Westervelt–Pennes system relies on an energy method, where an energy anal-
ysis of a suitable linearisation is combined with a fixed-point argument under an assumption
of smooth and small (with respect to pressure) data. Although the heat equation (1.2) has reg-
ularising properties, it does not seem feasible to transfer these to the pressure equation (1.1)
and make use of the damping property of heat conduction as in the classical thermo-elastic
systems; see, e.g., [21, 22, 31] and the references given therein. This issue arises due to the
very weak coupling in the present model, meaning that the coupling is realised through the
source term Q(pt) only and the linearised model will be decoupled; see section 3 below. In the
classical thermoelasticity, the coupling is achieved already in the linear model through terms
of the form ∇Θ in the elastic equation and ∇ · pt in the heat equation. Such a coupling allows
stabilising the system by using only the damping coming from the heat equation, which is not
the case here. In fact, the assumption b > 0 will be crucial for obtaining the energy bounds.

As mentioned above, a critical step in any analysis involving Westervelt’s equation is han-
dling the higher-order time-derivative of the pressure in the nonlinear term; that is, k(Θ)

(
p2
)

tt
.

Due to the temperature-dependentcoefficients, we here rely on higher-orderenergies compared
to the analysis of Westervelt equation in homogeneous media in [15] and assume

(p, pt)|t=0 = (p0, p1) ∈ H3(Ω) × H2(Ω).

More precisely, the energy functional for the acoustic pressure used in the analysis will be the
sum of the following:

E0[p](t) =
1
2

{
‖
√

1 − 2k(Θ)p(t)pt(t)‖2
L2 + ‖c(Θ)∇p(t)‖2

L2

}
,

E1[p](t) =
1
2

{
‖
√

1 − 2k(Θ)p(t)ptt(t)‖2
L2 + ‖c(Θ)∇pt(t)‖2

L2+ ‖c(Θ)Δp(t)‖2
L2

}
,

and

E2[p](t) =
1
2
‖
√

b∇Δp(t)‖2
L2 .

Note that in a linear wave equation where k = 0 and the speed of sound is constant, E0 would
reduce to the standard energy functional for the wave equation; see, e.g., [9, chapter 7] and
[34, chapter 9]. Here due to the quasilinear character of Westervelt’ equation we have to involve
higher-order (with respect to space and time) energy functionals to handle the nonlinearities in
the analysis.

For clarity of exposition, in this work we consider pressure nonlinearities in the form of (1.5)
and with Dirichlet boundary data. However, we emphasise that our theoretical framework can
be extended in a straightforward manner to nonlinearities in the form of k(Θ) f (p, pt, ptt) with
suitable assumptions on the function f as well as to more general pressure and temperature
boundary data, such as Neumann conditions or absorbing boundary conditions for the pressure.
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We organise the rest of our exposition as follows. We provide more detailed insight into
mathematical bio-acoustic modelling in section 2. Section 3 focuses on the energy analysis of
a (partially) linearised uncoupled problem. In section 4, we present the study of the coupled
nonlinear model by relying on the result from the previous section and Banach’s fixed-point
theorem. Our main well-posedness result is contained in theorem 4.1. We conclude the paper
with a discussion and an outlook on future work.

2. Theoretical preliminaries

As discussed above, volume coupling of the acoustic pressure p to the temperature field Θ is
achieved via appropriate source terms and the use of temperature-dependent acoustic material
parameters; [6, 7, 12, 28, 35]. We therefore study the following coupled problem:{

ptt − q(Θ)Δp− bΔpt = k(Θ)
(

p2
)

tt
, in Ω× (0, T),

ρaCaΘt − κaΔΘ+ ρbCbW(Θ−Θa) = Q(pt), in Ω× (0, T),
(2.1a)

where we have introduced the function

q(Θ) = c2(Θ).

We consider (2.1a) together with homogeneous Dirichlet boundary conditions

p|∂Ω = 0, Θ|∂Ω = 0, (2.1b)

and the initial data

(p, pt)|t=0 = (p0, p1), Θ|t=0 = Θ0. (2.1c)

The constant medium parameters appearing in (2.1) are all assumed to be positive. As dis-
cussed, the speed of sound c = c(Θ) exhibits polynomial dependence on the temperature, so
we make the following assumptions on the function q in our analysis. Note that throughout the
paper, we use x � y to denote x � Cy, where C > 0 is a generic constant that may depend on
Ω, the final time T, and medium parameters.

Assumption 1. Let q ∈ C2(R). We assume that there exists q0 > 0, such that

q(s) � q0 ∀ s ∈ R.

Furthermore, there exist γ1 � 0 and C1 > 0, such that

|q′′(s)| � C1(1 + |s|γ1 ) ∀ s ∈ R.

By these assumptions and Taylor’s formula, it further follows that

|q′(s)| � 1 + |s|γ1+1. (2.2)

The function k is assumed to be related to q via (1.4) throughout this work. Therefore, we have

|k(Θ)| � 1
q0

. (2.3)

5753



Nonlinearity 35 (2022) 5749 V Nikolíc and B Said-Houari

Furthermore, since

|k′(Θ)| � 1
q2

0

|q′(Θ)| � 1
q2

0

(1 + |Θ|γ1+1),

|k′′(Θ)| � 1
q2

0

|q′′(Θ)|+ 1
q3

0

|q′(Θ)|2 � 1
q2

0

(1 + |Θ|γ1 ) +
1
q3

0

(1 + |Θ|γ1+1)2,

we conclude that there exists γ2 > 0, such that

|k′(Θ)| � 1 + |Θ|γ2+1, |k′′(Θ)| � 1 + |Θ|γ2 . (2.4)

Modelling the absorbed acoustic energy. The acoustic energy absorbed by the tissue is
represented by the source term Q = Q(pt) in the heat equation. We will make the follow-
ing general assumptions concerning its properties in our analysis, which allow us to cover
important particular cases from the literature.

Assumption 2. The mapping Q is Lipschitz continuous on bounded subsets of the space
L∞(0, T; L∞(Ω)) with values in L2(0, T; L2(Ω)), that is,

‖Q(u) −Q(v)‖L2(L2) � (‖u‖L∞(L∞) + ‖v‖L∞(L∞))‖u − v‖L2(L2), (2.5)

and such that Q(0) = 0. Additionally,

‖∂t[Q(u) −Q(v)]‖L2(L2) � ‖u‖L2(L∞)‖ut − vt‖L∞(L2) + ‖vt‖L∞(L2)‖u − v‖L2(L∞).

(2.6)

Note that by plugging in v = 0 above, these assumptions further imply that

‖Q(u)‖L2(L2) � ‖u‖L∞(L∞)‖u‖L2(L2),

‖∂t[Q(u)]‖L2(L2) � ‖u‖L2(L∞)‖ut‖L∞(L2).

In [28, 30], the absorption term is modelled as

Q(pt) =
2b
ρac4

a
p2

t ,

which clearly satisfies our assumptions if pt ∈ L∞(0, T; L∞(Ω)) and ptt ∈ L∞(0, T; L2(Ω)).
More commonly, the absorption term appears in the literature averaged over a certain time
interval. In, e.g., [7, section 2.2], the absorbed energy is given by

Q(pt) =
1
jτ

2b
ρac4

a

∫ t′+ jτ

t′
p2

t dt.

Here j is a positive integer, τ is the period of ultrasound excitation and t′ is a sufficient time
from the start of the simulation so that a steady-state has been reached. In [12], the absorbed
energy is averaged over the whole time interval

Q(pt) =
1
T

2b
ρac4

a

∫ T

0
p2

t dt. (2.7)
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Both of these functionals satisfy assumption 2. In case of (2.7), for example, we note that for
all t ∈ [0, T], and by using Minkowski’s inequality (see [1, proposition 1.3]),∥∥∥∥∥
∥∥∥∥ 1

T

∫ T

0
(u2

t − v2
t )dt

∥∥∥∥
L2(Ω)

∥∥∥∥∥
L2(0,t)

�
∥∥∥∥ 1

T

∫ T

0
‖u2

t − v2
t ‖L2(Ω)dt

∥∥∥∥
L2(0,t)

=

∥∥∥∥ 1
T

∫ T

0
(‖ut‖L∞ + ‖vt‖L∞)‖ut − vt‖L2dt

∥∥∥∥
L2(0,t)

� (‖ut‖L∞(L∞) + ‖vt‖L∞(L∞))‖ut − vt‖L2(L2).

In case of a time-averaged absorbed energy, we have ‖∂t[Q(ut) −Q(vt)]‖L2(L2) = 0.

Auxiliary results. We collect here several useful inequalities that are repeatedly used in the
analysis below. We assume throughout that Ω ⊂ R

d , where d ∈ {1, 2, 3}, is a, bounded and
sufficiently smooth domain. We will often rely on the Ladyzhenskaya inequality for u ∈ H1(Ω):

‖u‖L4 � C‖u‖1−d/4
L2 ‖u‖d/4

H1 . (2.8)

By using (2.8) together with Young’s inequality, we further find that for u ∈ H1
0(Ω) and any

ε > 0

‖u‖2
L4 � ‖u‖2(1−d/4)

L2 ‖u‖d/2
H1 � ‖u‖2(1−d/4)

L2 ‖∇u‖d/2
L2

� 1

ε̃
4

4−d
‖u‖2

L2 + ε̃4/d‖∇u‖2
L2 = C(ε)‖u‖2

L2 + ε‖∇u‖2
L2

(2.9)

with ε = Cε̃4/d. This estimate can also be obtained (on bounded domains) by employing
Ehrling’s lemma; see [32, lemma 8.2].

Further, given u ∈ H−1(Ω) and v ∈ W1,3(Ω) ∩ L∞(Ω), the following bound holds:

‖uv‖H−1 � ‖u‖H−1(‖∇v‖L3 + ‖v‖L∞). (2.10)

To keep the presentation self-contained, we also state here the version of Gronwall’s inequality
that will be employed in the proofs.

Lemma 2.1. Let I = [0, t] and let α : I → R and β : I → R be locally integrable functions.
Let v be non-negative and integrable. Suppose that u : I →R is in C1(I) and satisfies:

u′(t) + v(t) � α(t)u(t) + β(t), for t ∈ I and u(0) = u0.

Then it holds that

u(t) +
∫ t

0
v(s)ds � u0 eA(t) +

∫ t

0
β(s)eA(t)−A(s) ds,

where

A(t) =
∫ t

0
α(s)ds.

Proof. The inequality follows by combining the arguments of [5, appendix B] and [10,
lemma 3.1]. �

5755



Nonlinearity 35 (2022) 5749 V Nikolíc and B Said-Houari

3. Analysis of a linearised problem

We first analyse a decoupled linearisation of (2.1a), given by

{
α(x, t)ptt − r(x, t)Δp− bΔpt = f 1(x, t), in Ω× (0, T),

ρaCaΘt − κaΔΘ+ ρbCbW(Θ−Θa) = Q(pt) + f 2(x, t), in Ω× (0, T),

(3.1)

and supplemented by the boundary (2.1b) and initial (2.1c) conditions. To facilitate the anal-
ysis, we make the following regularity and non-degeneracy assumptions on the involved
coefficients and source terms.

Assumption 3. Given T > 0, the variable coefficients and the source terms satisfy the
following assumptions.

(A) Let α ∈ L∞(0, T; L∞(Ω) ∩ W1,3(Ω)) and αt ∈ L2(0, T; L3(Ω)) ∩ L∞(0, T; L2(Ω)). Fur-
ther, we assume that there exist α0, α1 > 0, such that

α0 � α(x, t) � α1 a.e. in Ω× (0, T).

(R) We assume that r ∈ L∞(0, T; L∞(Ω) ∩ W1,4(Ω)) and rt ∈ L∞(0, T; L2(Ω)). Further, there
exist r0, r1 > 0, such that

r0 � r(x, t) � r1 a.e. in Ω× (0, T).

(F) Let f 1 ∈ L2(0, T; H1
0(Ω)), ∂t f1 ∈ L2(0, T; H−1(Ω)), and f2 ∈ H1(0, T; L2(Ω)).

From the last assumption, by [34, theorem 7.22], we have f1 ∈ C([0, T]; L2(Ω)) and

max
0�t�T

‖ f 1(t)‖L2 � CT (‖ f 1‖L2(H1) + ‖∂t f 1‖L2(H−1)). (3.2)

Energies. To accommodate the energy analysis, we introduce the following lower and
higher-order acoustic energies:

E0[p](t) =
1
2

{
‖
√
α(t)pt(t)‖2

L2 + ‖
√

r(t)∇p(t)‖2
L2

}
,

E1[p](t) =
1
2

{
‖
√
α(t)ptt(t)‖2

L2 + ‖
√

r(t)∇pt(t)‖2
L2 + ‖

√
r(t)Δp(t)‖2

L2

}
,

E2[p](t) =
1
2
‖
√

b∇Δp(t)‖2
L2 .

(3.3)

In the analysis, we will also use the combined acoustic energy

E[p](t) = E0[p](t) + E1[p](t) + E2[p](t), t ∈ [0, T]

with the associated dissipation rate

D[p](t) = ‖
√

b∇ptt(t)‖2
L2 + ‖

√
bΔpt(t)‖2

L2

+ ‖
√

r(t)∇Δp(t)‖2
L2 + ‖

√
b∇pt(t)‖2

L2 .
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The initial acoustic energy is set to

E[p](0) =
1
2

{
‖
√
α(0)p1‖2

L2 + ‖
√

r(0)∇p0‖2
L2 + ‖

√
r(0)∇p1‖2

L2

+ ‖
√
α(0)ptt(0)‖2

L2 + ‖
√

bΔ∇p0‖2
L2 + ‖

√
r(0)Δp0‖2

L2

}
with

ptt(0) = α(0)−1(r(0)Δp0 + bΔp1 + f 1(0)).

Further, the heat energy is given by

E[Θ](t) =
1
2

{
‖Θ(t)‖2

H2 + ‖Θt(t)‖2
L2

}
with the associated dissipation

D[Θ](t) = ‖Θt(t)‖2
H1 + ‖Θtt(t)‖2

H−1 .

Solution spaces. To formulate the existence result, we also introduce the following solutions
spaces for the pressure:

Xp =
{

p ∈ L∞(0, T; H3
♦(Ω)): pt ∈ L∞(0, T; H2

♦(Ω)) ∩ L2(0, T; H3
♦(Ω)),

ptt ∈ L∞(0, T; L2(Ω)) ∩ L2(0, T; H1
0(Ω)),

pttt ∈ L2(0, T; H−1(Ω))
}

,

and the temperature:

XΘ =
{
Θ ∈ C([0, T]; H2

♦(Ω)):Θt ∈ C([0, T]; L2(Ω)) ∩ L2(0, T; H1
0(Ω)),

Θtt ∈ L2(0, T; H−1(Ω))
}

,

with the short-hand notation

H2
♦(Ω) = H1

0(Ω) ∩ H2(Ω),

H3
♦(Ω) =

{
u ∈ H3(Ω) : tr∂Ω u = 0, tr∂Ω Δu = 0

}
.

We claim that the linearised problem is well-posed under the above-made assumptions.

Proposition 3.1. Let T > 0 and let assumption 3 hold. Further, assume that

(p0, p1) ∈ H3
♦(Ω) × H2

♦(Ω), Θ0 ∈ H2
♦(Ω).

Then there exists a unique solution (p,Θ) ∈ Xp × XΘ of (3.1). Furthermore, the acoustic
pressure satisfies

E[p](t) + ‖Δpt(t)‖2
L2 +

∫ t

0
D[p](s)ds +

∫ t

0
(‖pttt(s)‖2

H−1 + ‖∇Δpt(s)‖2
L2 )ds

� E[p](0) exp

(∫ t

0
(1 + Λ(s))ds

)
+

∫ t

0
exp

(∫ t

s
(1 + Λ(σ))dσ

)
F(s)ds

(3.4)
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a.e. in time, with

Λ(t) = ‖ rt(t) ‖L2 + ‖ rt(t) ‖2
L2+ ‖ ∇r(t)‖L4+ ‖ ∇r(t)‖2

L4 + ‖ αt(t) ‖L2+ ‖ αt(t)‖2
L3 + ‖ ∇α(t) ‖2

L3

(3.5)

and

F(t) = ‖ f 1(t)‖2
H1 + (1 + ‖∇α(t)‖2

L3 )‖∂t f 1(t)‖2
H−1 , (3.6)

whereas the temperature satisfies

E[Θ](t) +
∫ t

0
D[Θ](s)ds � CT

(
‖Θ0‖2

H2
♦(Ω) + ‖ f 2‖2

H1(L2) + ‖pt‖2
L∞(L∞)

× ‖pt‖2
L2(L2) + ‖pt‖2

L2(L∞)‖ptt‖2
L∞(L2) + 1

)
for all t ∈ [0, T].

Proof. Since the system is decoupled, we can analyse the equations in (3.1) sequentially.

Analysis of the pressure equation. The analysis of the pressure equation can be rigorously
conducted by employing a Galerkin discretisation in space based on the smooth eigenfunctions
of the Dirichlet–Laplacian; see, e.g., [9, chapter 7]. We focus here on presenting the energy
analysis.

Energy analysis. Testing the (semi-discrete) pressure equation with pt, integrating over Ω,
and using integration by parts yields the following identity:

1
2

d
dt
‖
√
α(t)pt(t)‖2

L2 + ‖
√

b∇pt(t)‖2
L2 =

1
2

(αt pt, pt)L2 + (rΔp, pt)L2 + ( f 1, pt)L2

a.e. in time. From here, by Hölder’s and Young’s inequalities, we have

1
2

d
dt
‖
√

α(t)pt(t)‖2
L2 + ‖

√
b∇pt(t)‖2

L2 �
∥∥∥∥αt(t)

b

∥∥∥∥
L2
‖
√

bpt(t)‖2
L4 +

∥∥∥∥∥
√

r(t)
α(t)

∥∥∥∥∥
L∞

(
‖
√

r(t)Δp(t)‖2
L2

+ ‖
√

α(t)pt(t)‖2
L2

)
+

1√
b
‖ f 1(t)‖L2‖

√
bpt(t)‖L2 .

On account of assumption 3, we know that∥∥∥√r(t)/α(t)
∥∥∥

L∞
�

√
r1/α0 a.e. in time,

and thus for any ε > 0, it holds that

1
2

d
dt
‖
√
α(t)pt(t)‖2

L2 + ‖
√

b∇pt(t)‖2
L2 �

∥∥∥∥αt(t)
b

∥∥∥∥
L2
‖
√

bpt(t)‖2
L4 + E0[p](t) + E1[p](t)

+
1
4ε

‖ f 1(t)‖2
L2 + ε‖

√
b∇pt(t)‖2

L2 , (3.7)

where we have applied Poincare’s inequality together with Young’s ε-inequality in the estimate
of the last term. Note that by fixing ε > 0 small enough, we can absorb the last term in (3.7)
by the dissipative term on the left.
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By using the embedding H1(Ω) ↪→ L4(Ω) together with the Poincaré inequality, the first
term on the right-hand side of (3.7) can be absorbed by the dissipative term ‖

√
b∇pt(t)‖2

L2

as well if we assume the norm ‖αt/b‖L∞(L2) to be small. However, to avoid this smallness
assumption, we use inequality (2.9) instead and split this term into two parts: an energy term
and a dissipation term with an arbitrary small factor ε > 0. This idea will be used repeatedly
in the proof below. Indeed, by using inequality (2.9), we have

‖
√

bpt(t)‖2
L4 � C(ε)

∥∥∥∥ b
α(t)

∥∥∥∥
L∞

‖
√
αpt(t)‖2

L2 + ε‖
√

b∇pt(t)‖2
L2 .

Consequently, by recalling assumption 3 and fixing ε > 0 small enough, so that

1 − Cε sup
t∈(0,T)

‖αt(t)/b‖L2 > 0,

where C is the hidden constant in (3.7), we obtain

d
dt

E0[p](t) + ‖
√

b∇pt(t)‖2
L2 � E0[p](t) + E1[p](t) +

∥∥∥∥αt(t)
b

∥∥∥∥
L2

× ‖
√
α(t)pt(t)‖2

L2 + ‖ f 1(t)‖2
L2 , (3.8)

where we have also used again the uniform bound on α given in assumption 3.
Estimate (3.8) indicates that further testing is needed to absorb the energy E1 on the right.

Thus, we test the first (semi-discrete) equation in (3.1) with−Δpt and integrate in space, which
yields

1
2

d
dt
‖
√

r(t)Δp(t)‖2
L2 + ‖

√
bΔpt(t)‖2

L2 = (α(t)ptt,Δpt)L2 +
1
2

(rt(t)Δp,Δp) − ( f 1(t),Δpt)L2

� 1
4ε

‖
√

α(t)ptt(t)‖2
L2 + ε

∥∥∥∥∥
√

α(t)
b

∥∥∥∥∥
L∞

‖
√

bΔpt(t)‖2
L2

+

∥∥∥∥ rt(t)
b

∥∥∥∥
L2
‖
√

bΔp(t)‖2
L4 +

1
b
‖ f 1(t)‖2

L2 + ε‖
√

bΔpt(t)‖2
L2 .

Clearly, by selecting ε > 0 small enough in the above estimate, the second term on the right-
hand side will be absorbed by the dissipation on the left. Hence, by choosing ε > 0 as small
as needed, keeping in mind that Δp = 0 on ∂Ω, and using Poincaré’s inequality, we obtain

1
2

d
dt
‖
√

rΔp(t)‖2
L2 + ‖

√
bΔpt(t)‖2

L2 � E1[p](t) +

∥∥∥∥ rt(t)
b

∥∥∥∥
L2
× ‖

√
b∇Δp(t)‖2

L2 + ‖ f 1(t)‖2
L2 .

(3.9)

To retrieve the energy E1 on the left, we will next work with the time-differentiated pressure
equation. Indeed, on account of the regularity assumptions on the coefficients and source term,
we can differentiate the semi-discrete pressure equation with respect to t:

α(x, t)pttt − r(x, t)Δpt − bΔptt = ∂t f 1(x, t) − αt(x, t)ptt + rt(x, t)Δp. (3.10)

Multiplying (3.10) by ptt, integrating over Ω, and using integration by parts with respect to
time in the first term, we obtain
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1
2

d
dt

{
‖
√
α(t)ptt(t)‖2

L2 + ‖
√

r(t)∇pt(t)‖2
L2

}
+ ‖

√
b∇ptt(t)‖2

L2

=
1
2

(αt ptt, ptt)L2 − (∇rpt,∇ptt)L2 +
1
2

(rt∇pt,∇pt)L2

+ 〈∂t f 1, ptt〉H−1,H1 − (αt ptt, ptt)L2 + (rtΔp, ptt)L2 . (3.11)

The first two r terms on the right can be estimated as follows:

−(∇rpt,∇ptt)L2 +
1
2

(rt∇pt,∇pt)L2 � ε ‖
√

b∇ptt(t)‖2
L2 + C(ε)‖ 1√

r
‖2

L∞

× ‖ ∇r‖2
L4 ‖

√
r∇pt‖2

L2 +
1
2

(rt∇pt,∇pt)L2

for some ε > 0, where we have relied on the embedding H1(Ω) ↪→ L4(Ω). By applying estimate
(2.9), we can further bound the last term:

1
2

(rt∇pt,∇pt)L2 � ‖rt‖L2‖∇pt‖2
L4

� C(ε)‖rt‖2
L2‖r−1‖L∞‖

√
r∇pt‖2

L2 + ε‖Δpt‖2
L2 ,

where we have also utilised elliptic regularity (since ∂Ω is smooth):

‖∇pt‖H1 � ‖pt‖H2 � C‖Δpt‖L2 .

The first and the fifth term on the right-hand side of (3.11) can be estimated as follows:

1
2

(αt ptt, ptt)L2 − (αt ptt, ptt)L2 = −1
2

(αt ptt, ptt)L2 �
∥∥∥∥αt(t)

b

∥∥∥∥
L2
‖
√

bptt(t)‖2
L4 .

(3.12)

We then further estimate the last term above using again inequality (2.9):

‖
√

bptt(t)‖2
L4 � C(ε)

∥∥∥∥ b
α(t)

∥∥∥∥
L∞

‖
√
α(t)ptt(t)‖2

L2 + ε‖
√

b∇ptt(t)‖2
L2 . (3.13)

Keeping in mind assumption 3, and plugging (3.13) into (3.12), we have

−1
2

(αt ptt, ptt)L2 �
∥∥∥∥αt(t)

b

∥∥∥∥
L2

(
ε‖
√

b∇ptt(t)‖2
L2 + C(ε)‖

√
αptt(t)‖2

L2

)
.

By using Young’s inequality together with the Poincaré’s inequality, we find that

〈∂t f 1(t), ptt(t)〉H−1,H1 � 1√
b
‖∂t f 1(t)‖H−1‖

√
bptt(t)‖H1

� 4ε
1
b
‖∂t f 1(t)‖2

H−1 + ε‖
√

b∇ptt(t)‖2
L2 .

Recalling that Δp = 0 on ∂Ω, we can estimate the last term on the right-hand side of (3.11) as
follows:
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(rtΔp, ptt)L2 � ε‖
√

bptt‖2
L4 + C(ε)

∥∥∥rt

b

∥∥∥2

L2
‖
√

bΔp‖2
L4

� ε‖
√

b∇ptt‖2
L2 + C(ε)

∥∥∥rt

b

∥∥∥2

L2
‖
√

b∇Δp‖2
L2 .

We see that the first term on the right can be absorbed by the dissipation in (3.11) and the last
one is an energy term. By collecting the above estimates with ε > 0 small enough, we arrive
at

1
2

d
dt

(‖
√
αptt(t)‖2

L2+ ‖
√

r(t)∇pt(t)‖2
L2 )+ ‖

√
b∇ptt(t)‖2

L2

� ‖ rt

b
‖2

L2 ‖
√

b∇Δp‖2
L2 + (‖ ∇r‖2

L4+ ‖ rt‖2
L2 ) ‖

√
r∇pt‖2

L2

+ ‖ ∂ t f 1(t)‖2
H−1 + ε ‖ Δpt‖2

L2 . (3.14)

Adding (3.14) to (3.9), exploiting assumption 3, using Poincaré’s inequality, and possibly
reducing ε, so that the ε terms can be absorbed by the left side, we obtain

d
dt

1
2

[
‖
√

r(t)Δp(t)‖2
L2 + ‖

√
α(t)ptt(t)‖2

L2 + ‖
√

r(t)∇pt(t)‖2
L2

]
︸ ︷︷ ︸

:=E1[p](t)

+ ‖
√

b∇ptt(t)‖2
L2 + ‖

√
bΔpt(t)‖2

L2

�
(
1 + ‖∇r‖L4 + ‖rt‖L2 + ‖rt‖2

L2

)
E1[p](t) +

∥∥∥∥ rt(t)
b

∥∥∥∥2

L2

× ‖
√

b∇Δp(t)‖2
L2 + ‖ f 1(t)‖2

L2 + ‖∂t f 1(t)‖2
H−1 . (3.15)

To be able to absorb the term ‖
√

b∇Δp(t)‖2
L2 on the right, we should additionally test the

pressure equation with Δ2 p:

(α(t)ptt − r(t)Δp− bΔpt,Δ
2 p)L2 = ( f 1(t),Δ2 p)L2 .

Integrating by parts and using the fact that ptt = Δp = Δpt = 0 on the boundary for smooth
Galerkin approximations, as well as that f 1(t) ∈ H1

0(Ω), yields

(r∇Δp+ b∇Δpt,∇Δp)L2 = −(α∇ptt + ptt∇α+∇rΔp,∇Δp)L2 + (∇ f 1,∇Δp)L2 .

Recalling how the energy E2 is defined in (3.3), from here we obtain

d
dt

E2[p](t) + ‖
√

r(t)∇Δp(t)‖2
L2 = −(α∇ptt + ptt∇α+∇rΔp,∇Δp)L2 + (∇ f 1(x, t),∇Δp)L2 .

By Hölder’s inequality, we further have

d
dt

E2[p](t) + ‖
√

r(t)∇Δp(t)‖2
L2 � ‖α(t)‖L∞‖∇ptt(t)‖L2‖∇Δp(t)‖L2 + ‖ptt(t)‖L6‖∇α(t)‖L3

× ‖∇Δp(t)‖L2 + ‖∇r(t)‖L4‖Δp(t)‖L4‖∇Δp(t)‖L2 +
1
4ε

‖∇ f 1(t)‖2
L2

+ ε‖r(t)−1‖L∞‖
√

r(t)∇Δp(t)‖L2 .

Using Young’s and Poincaré’s inequalities, and the embedding H1(Ω) ↪→ L6(Ω) yields
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d
dt

E2[p](t) + ‖
√

r(t)∇Δp(t)‖2
L2 � ε

b
‖α(t)‖2

L∞‖
√

b∇ptt(t)‖2
L2 +

1
4εb

‖
√

b∇Δp(t)‖2
L2 + ε‖∇ptt(t)‖2

L2

× ‖∇α(t)‖2
L3 + ‖

√
b∇Δp(t)‖2

L2 + ‖∇r(t)‖L4‖
√

b∇Δp(t)‖2
L2 + ‖∇ f 1(t)‖2

L2 .

(3.16)

By adding inequalities (3.15) and (3.16), and selecting ε > 0 small enough, we have

d
dt
{E1[p](t) + E2[p](t)}+ ‖

√
b∇ptt(t)‖2

L2+ ‖
√

bΔpt(t)‖2
L2+ ‖

√
r(t)∇Δp(t)‖2

L2

� (1+ ‖ ∇r(t)‖L4+ ‖ ∇r(t)‖2
L4+ ‖ rt‖L2+ ‖ rt‖2

L2){E1[p](t) + E2[p](t)}

+ ‖ ∂ t f 1(t)‖2
H−1+ ‖ f 1(t)‖2

H1 .

By collecting the above estimates, we arrive at a bound that involves the combined acoustic
energy:

d
dt
E[p](t) +D[p](t) � (1 + Λ(t))E[p](t) + F(t), (3.17)

where Λ(t) and F(t) are defined in (3.5) and (3.6), respectively. By Gronwall’s inequality, we
then immediately have

E[p](t) +
∫ t

0
D[p](s)ds � E[p](0) exp

(∫ t

0
(1 + Λ(s))ds

)

+

∫ t

0
exp

(∫ t

s
(1 + Λ(σ))dσ

)
F(s)ds. (3.18)

Additional bootstrap arguments. We can obtain more information on the pressure field by
relying on the (semi-discrete) PDE. Indeed, by the acoustic PDE we have

‖Δpt(t)‖2
L2 � α2

1‖ptt(t)‖2
L2 + r2

1‖Δp(t)‖2
L2 + ‖ f 1(t)‖2

L2 . (3.19)

We can then further estimate the right-hand side of (3.19) by employing the acoustic energy:

‖Δpt(t)‖2
L2 � E[p](t) + ‖ f 1(t)‖2

L2

� E[p](0) exp

(∫ t

0
(1 + Λ(s))ds

)
+

∫ t

0
exp

(∫ t

s
(1 + Λ(σ))dσ

)
F(s)ds,

where we have also used estimate (3.2) to bound the ‖ f 1(t)‖2
L2 term. Adding this bound to

(3.18) yields

E[p](t) + ‖Δpt(t)‖2
L2 +

∫ t

0
D[p](s)ds

� E[p](0) exp

(∫ t

0
(1 + Λ(s))ds

)
+

∫ t

0
exp

(∫ t

s
(1 + Λ(σ))dσ

)
F(s)ds.

Similarly,

‖
√

b∇Δpt(t)‖2
L2 � α2

1‖∇ptt(t)‖2
L2 + ‖∇α(t)‖L3‖ptt(t)‖L6 + r1

× ‖
√

r∇Δp(t)‖2
L2 + ‖∇r(t)‖2

L4‖Δp(t)‖2
L4 + ‖∇ f 1(t)‖2

L2 . (3.20)
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Adding γ (3.20) to (3.17) with small enough γ > 0 yields

d
dt
E[p](t) +D[p](t) + ‖

√
b∇Δpt(t)‖2

L2 � (1 + Λ(t))E[p](t) + F(t),

on which we can apply Gronwall’s inequality.
Additionally, from the time-differentiated equation (3.10), standard arguments (see, e.g., [9,

chapter 7, p 383]) give the following bound in the dual space H−1(Ω):

‖∂t(α(t)ptt)(t)‖H−1 � ‖r(t)Δpt(t)‖H−1 + ‖rt(t)Δp(t)‖H−1 + ‖bΔptt(t)‖H−1 + ‖∂t f 1(t)‖H−1

� ‖r(t)‖L∞‖Δpt(t)‖L2 + ‖rt(t)‖L2‖∇Δp(t)‖L2 + ‖∇ptt(t)‖L2 + ‖∂t f 1(t)‖H−1 ,

where we have used the embedding L6/5(Ω) ↪→ H−1(Ω) together with Hölder’s inequality to
get

‖rtΔp‖H−1 � ‖rtΔp‖L6/5 � ‖rt‖L2‖Δp‖L3 � ‖rt‖L2‖∇Δp‖L2 .

Thus, we have

ptt ∈ L2(0, T; H1
0(Ω)), ∂t(α(·)ptt) ∈ L2(0, T; H−1(Ω))

with a uniform bound

‖pttt‖H−1 � ‖αpttt‖H−1

(∥∥α−1
∥∥

L∞ +
∥∥∇(α−1)

∥∥
L3

)
� (‖∂t(αptt)‖H−1 + ‖αt ptt‖H−1 )

(
α−1

1 + α−2
1 ‖∇α‖L3

)
.

By using again the embedding L6/5(Ω) ↪→ H−1(Ω) and Hölder’s inequality, we have, similarly
to before,

‖αt ptt‖H−1 � ‖αt ptt‖L6/5 � ‖αt‖L3‖ptt‖L2 ,

and thus

‖pttt‖2
H−1 � (1 + ‖∇α‖2

L3 )
(
‖r‖2

L∞‖Δpt‖2
L2 + ‖rt‖2

L2‖r−1‖L∞‖
√

r∇Δp‖2
L2

+ ‖∇ptt‖2
L2 + ‖∂t f 1‖2

H−1 + ‖αt‖2
L3‖ptt‖2

L2

)
. (3.21)

Then adding γ (3.21) to (3.17) with γ > 0 small enough, and using Gronwall’s inequality
yields

E[p](t) + ‖pttt‖2
L2(H−1)

+

∫ t

0
D[p](s)ds � E[p](0) exp

(∫ t

0
(1 +Λ(s))ds

)
+

∫ t

0
exp

(∫ t

s
(1 +Λ(σ))dσ

)
F(s)ds.

Combining the three derived estimates yields (3.4), at first in a semi-discrete setting. The
obtained uniform bound allows us to employ standard compactness arguments and prove
existence of a solution p ∈ Xp to the pressure equation; see, e.g., [9, chapter 7] for similar
arguments. By the weak/weak- lower semi-continuity of norms, p satisfies the same energy
bound (3.4). Note that p ∈ Xp implies

p ∈ C([0, T]; H3
♦(Ω)), pt ∈ Cw([0, T]; H2

♦(Ω));

cf [36, lemma 3.3].

5763



Nonlinearity 35 (2022) 5749 V Nikolíc and B Said-Houari

Uniqueness. Uniqueness in the pressure equation follows by showing that the only solution
of the homogeneous problem is zero. To this end, let p ∈ Xp solve

α(x, t)ptt − r(x, t)Δp− bΔpt = 0, p(x, 0) = pt(x, 0) = 0, p|∂Ω = 0.

We can repeat our previous energy analysis up to (3.17), where instead of testing with Δ2 p
(which is not a valid test function), we take the gradient of the equation and test with ∇Δp ∈
L∞(L2(Ω)). In this manner, from (3.4) we obtain E[p](t) = 0, which immediately yields p = 0.

Analysis of the heat equation. We next rewrite the heat equation as

Θt −
κa

ρaCa
ΔΘ+

ρbCbW
ρaCa

Θ = f̃

with

f̃ =
1

ρaCa
Q(pt) +

1
ρaCa

f 2(x, t) +
ρbCbWΘa

ρaCa
.

According to, e.g., [40, chapter 1, theorem 1.3.2], the unique solution Θ ∈ XΘ of this problem
satisfies

‖Θ(t)‖2
H2
♦(Ω) + ‖Θt(t)‖2

L2 +

∫ t

0
(‖Θtt‖2

H−1 + ‖Θt‖2
H1)ds

� CT

(
‖Θ0‖2

H2
♦(Ω) + ‖ f̃ (0)‖2

L2 +

∫ t

0
‖ f̃ t‖2

L2ds

)
(3.22)

for all t ∈ [0, T]; see also [36, chapter 2, theorem 3.2]. Thanks to the assumed properties of the
mapping Q, we have

‖ f̃‖L2(L2) � ‖ f 2‖L2(L2) + ‖pt‖L∞(L∞)‖pt‖L2(L2) + C(T,Ω,Θa).

Further,

‖ f̃ t‖L2(L2) � ‖∂t f 2‖L2(L2) + ‖pt‖L2(L∞)‖ptt‖L∞(L2).

Thus, by the embedding H1(0, T) ↪→ C[0, T], from (3.22) we have

‖Θ(t)‖2
H2
♦(Ω) + ‖Θt(t)‖2

L2 +

∫ t

0
(‖Θtt‖2

H−1 + ‖Θt‖2
H1)ds

� CT

(
‖Θ0‖2

H2 + ‖ f 2‖2
H1(L2) + ‖pt‖2

L∞(L∞)‖pt‖2
L2(L2)+ ‖pt‖2

L2(L∞)‖ptt‖2
L∞(L2) + 1

)
,

as claimed. This finishes the proof of proposition 3.1. �

4. Local well-posedness of the nonlinear problem

To prove local well-posedness of the coupled Westervelt–Pennes model, we intend to rely
on Banach’s fixed point theorem. To this end, let us introduce the fixed-point mapping
T : (p∗,Θ∗) �→ (p,Θ), which associates

(p∗,Θ∗) ∈ B ⊂ XT :=Xp × XΘ,
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where B will be a suitably chosen ball in XT, with the solution (p,Θ) ∈ Xp × XΘ of

{
(1 − 2k(Θ∗)p∗)ptt − q(Θ∗)Δp− bΔpt = 2k(Θ∗)p2

∗t, in Ω× (0, T),

ρaCaΘt − κaΔΘ+ ρbCbW(Θ−Θa) = Q(pt), in Ω× (0, T),

(4.1)

with the boundary (2.1b) and initial (2.1c) conditions. Our main results reads as follows.

Theorem 4.1. Let T > 0 and

(p0, p1) ∈ H3
♦(Ω) × H2

♦(Ω), Θ0 ∈ H2
♦(Ω).

There exists δ = δ(T) > 0, such that if

E[p](0) � δ, (4.2)

then there exist a unique solution (p,Θ) of (2.1) in XT. Furthermore, the solution depends
continuously on the data with respect to ‖ · ‖XT .

Proof. As already announced, we intend to rely on Banach’s fixed-point theorem to arrive
at the claim. To facilitate the fixed-point argument, we define the pressure and temperature
norms:

‖p‖Xp = ‖p‖L∞(H3) + ‖pt‖L∞(H2) + ‖∇Δpt‖L2(L2) + ‖ptt‖L∞(L2)

+ ‖ptt‖L2(H1(Ω)) + ‖pttt‖L2(H−1(Ω))

and

‖Θ‖XΘ
= ‖Θ‖L∞(H2) + ‖Θt‖L∞(L2) + ‖Θt‖L2(H1) + ‖Θtt‖L2(H−1).

We can then also define the combined norm as follows:

‖(p,Θ)‖XT = ‖p‖Xp + ‖Θ‖XΘ
.

To have an equivalence between this norm and the energies, we introduce the total pressure
energy E[p] as

E[p](T) = sup
t∈(0,T)

E[p](t) + sup
t∈(0,T)

‖Δpt(t)‖2
L2

and the associated dissipation rate as

D(t) = D[p](t) +
∫ t

0
(‖pttt(s)‖2

H−1 + ‖∇Δpt(s)‖2
L2)ds.

Then on account of assumption 3, there exist positive constants C1, . . . , C4, such that

C1(E[p](T) + D[p](T)) � ‖p‖2
Xp

� C2(E[p](T) + D[p](T)) (4.3)

and

C3

(
sup

t∈(0,T)
E[Θ](t) +D[Θ](T)

)
� ‖Θ‖2

XΘ
� C4

(
sup

t∈(0,T)
E[Θ](t) +D[Θ](T)

)
. (4.4)
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We next introduce a ball in XT:

B = {(p∗,Θ∗) ∈ XT :‖p∗‖L∞(L∞) � γ <
1

2k1
, ‖p∗‖Xp � R1,

‖Θ∗‖XΘ
� R2, (p∗, p∗t,Θ∗)|t=0 = (p0, p1,Θ0)

}
,

where the radii R1 > 0 and R2 > 0 are to be determined by the proof. The constant k1 > 0 is
such that

|k(Θ)| � k1;

cf assumption (2.3). In the course of the proof we will impose a smallness condition on the
pressure, but not on the temperature data, which is why we have introduced two different radii
here.

Note that the solution of the linear problem with α = r = 1 and f1 = f2 = 0, belongs to
this ball if δ > 0 is small enough and R2 large enough, so that

R2
1 � CTδ � CTE[p](0), R2

2 � C̃T (‖Θ0‖2
H2
♦(Ω) + δ2 + 1),

so this set is non-empty. We consider the ball to be equipped with the distance

d[(p1, p2), (Θ1,Θ2)] = ‖p1 − p2‖Xp + ‖Θ1 −Θ2‖XΘ
.

Then (B, d) is a complete metric space. We first prove that T is a self-mapping.

Lemma 4.1. For sufficiently small R1 and δ, it holds that T (B) ⊂ B.

Proof. We wish to rely on the well-posedness result from the previous section. To this end,
we set

α(x, t) = 1 − 2k(Θ∗)p∗, r(x, t) = q(Θ∗), f 1(x, t) = 2k(Θ∗)p2
∗t, f 2(x, t) = 0.

to fit problem (4.1) into the framework of proposition 3.1. We next verify assumption 3 on
these functions. Since

‖2k(Θ∗)p∗‖L∞(L∞) � 2k1‖p∗‖L∞(L∞) � 2k1γ

we have

0 < α0 = 1 − 2k1γ � α(x, t) = 1 − 2k(Θ∗)p∗ � 1 + 2k1γ = α1

and so the non-degeneracy condition is fulfilled. Further, by the embeddings H1(Ω) ↪→ L3(Ω)
and H2(Ω) ↪→ L∞(Ω), we have

‖α‖L∞(W1,3) � ‖1 − 2k(Θ∗)p∗‖L∞(L3) + ‖∇(k(Θ∗))p∗‖L∞(L3)

+ ‖k(Θ∗)∇p∗‖L∞(L3)

� 1 + k1‖p∗‖L∞(H1) + ‖k′(Θ∗)‖L∞(L∞)‖∇Θ∗‖L∞(L3)

× ‖p∗‖L∞(H2) + k1‖p∗‖L∞(H1).

From here and properties (2.4) of the function k, it follows that

‖α‖L∞(W1,3) � 1 + R1 + (1 + Rγ2+1
2 )R1R2.
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Again by the embedding H1(Ω) ↪→ L3(Ω) and properties of the function k, it holds that

‖αt‖L2(L3) = ‖ − 2k(Θ∗)p∗t − 2k′(Θ∗)Θ∗t p∗‖L2(L3)

� q−1
0 ‖∇p∗t‖L2(L2) + q−2

0 (1 + ‖Θ∗‖γ2+1
L∞(L∞))‖∇Θ∗t‖L2(L2) × ‖p∗‖L∞(L∞),

which implies

‖αt‖L2(L3) � R1 + (1 + Rγ2+1
2 )R1R2.

Similarly,

‖αt‖L∞(L2) = ‖ − 2k(Θ∗)p∗t − 2k′(Θ∗)Θ∗t p∗‖L∞(L2)

� q−1
0 ‖∇p∗t‖L∞(L2) + q−2

0 (1 + ‖Θ∗‖γ2+1
L∞(L∞)) × ‖Θ∗t‖L∞(L2)‖p∗‖L∞(L∞)

� R1 + (1 + Rγ2+1
2 )R1R2.

We can analogously estimate the function r:

‖rt‖L∞(L2) � ‖q′(Θ∗)‖L∞(L∞)‖Θt∗‖L∞(L2),

‖∇r‖L∞(L4) = ‖q′(Θ∗)∇Θ∗‖L∞(L4) � ‖q′(Θ∗)‖L∞(L∞)‖Θ∗‖L∞(H2),

and thus

‖rt‖L∞(L2) � 1 + (1 + Rγ1+1
2 )R2, ‖r‖L∞(W1,4) � 1 + (1 + Rγ1+1

2 )R2.

We can further estimate the source term in the pressure equation as follows:

‖ f 1‖L2(H1) + ‖∂t f 1‖L2(H−1) � ‖k(Θ∗)p2
∗t‖L2(H1) + ‖∂t(k(Θ∗)p2

∗t)‖L2(H−1)

� ‖k′(Θ∗)∇Θ∗p2
∗t‖L2(L2) + ‖k(Θ∗)p∗t∇p∗t‖L2(L2) + ‖k(Θ∗)p2

∗t‖L2(L2)

+ ‖k′(Θ∗)Θt∗p2
∗t‖L2(H−1) + ‖k(Θ∗)p∗t p∗tt‖L2(H−1).

By using the embedding L6/5(Ω) ↪→ H−1(Ω) and the inequality

‖uvw‖L6/5 � ‖u‖L2‖v‖L3‖w‖L∞

we then further have

‖ f 1‖L2(H1) + ‖∂t f 1‖L2(H−1) � ‖k′(Θ∗)‖L∞(L∞)‖∇Θ∗‖L∞(L6)‖p2
∗t‖L2(L3) + k1‖p∗t‖L∞(L4)

× ‖∇p∗t‖L2(L4) + k1‖p2
∗t‖L2(L2) + ‖k′(Θ∗)‖L∞(L∞)‖Θt∗‖L2(L3)

× ‖p2
∗t‖L∞(L2) + k1‖p∗t‖L∞(L3)‖p∗tt‖L2(L2). (4.5)

Thus,

‖ f 1‖L2(H1) + ‖∂t f 1‖L2(H−1) � (1 + Rγ2+1
2 )R2R2

1 + R2
1.

On account of proposition 3.1, the mapping T is well-defined, and, furthermore,
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E[p](t) + ‖Δpt(t)‖2
L2 +

∫ t

0
D[p](s)ds +

∫ t

0
‖pttt(s)‖2

H−1ds

� E[p](0) exp

(∫ t

0
(1 + Λ(s))ds

)
+

∫ t

0
exp

(∫ t

s
(1 + Λ(σ))dσ

)
F(s)ds

(4.6)

a.e. in time, with Λ(t) and F(t) defined in (3.5) and (3.6), respectively; that is,

Λ(t) = ‖ rt(t) ‖L2 + ‖ rt(t) ‖2
L2+ ‖ ∇r(t)‖L4+ ‖ ∇r(t)‖L4 + ‖ αt(t) ‖L2+ ‖ αt(t)‖2

L3 + ‖ ∇α(t) ‖2
L3

and

F(t) = ‖ f 1(t)‖2
H1 + (1 + ‖∇α(t)‖2

L3 )‖∂t f 1(t)‖2
H−1 .

By our calculations above, we immediately have

‖Λ‖L1(0,t) � C1(R1, R2, T),

where C1 = C1(T, R1, R2) is a positive constant that depends on T, R1, and R2. Furthermore, by
relying on (4.5), we obtain

‖F‖L1(0,t) � (1 + ‖∇α‖2
L∞(L3))(‖ f 1‖2

L2(H1) + ‖∂t f 1‖2
L2(H−1))

� (1 + R2
1 + (1 + R2γ2+2

2 )R2
1R2

2)
{

(1 + R2γ2+2
2 )R2

2R4
1 + R4

1

}
.

Altogether, from (4.6) and the above bounds, we have

‖p‖2
Xp

� δ exp(C1(R1, R2, T)T) + exp(C1(R1, R2, T)T)R4
1C2(R1, R2). (4.7)

Thus, from (4.7), by decreasing R1 and δ, we can achieve that

‖p‖2
Xp

� R2
1.

Further, by the embedding H2(Ω) ↪→ L∞(Ω), we know that

‖p‖2
L∞(L∞) � ‖Δp‖2

L∞(L2) � ‖p‖2
Xp

,

which we can then bound by γ ∈ (0, 1/(2k)) by possibly additionally reducing δ and R1. It
remains to show that ‖Θ‖XΘ

� R2. Proposition 3.1 with f2 = 0 implies that

E[Θ](t) +
∫ t

0
D[Θ](s)ds � CT

(
‖Θ0‖2

H2
♦(Ω) + ‖pt‖2

L∞(L∞)‖pt‖2
L2(L2)

+ ‖pt‖2
L2(L∞)‖ptt‖2

L∞(L2) + 1
)
.

With the equivalence of the temperature norm and energy (4.4), we have

‖Θ‖2
XΘ

� CT

(
‖Θ0‖2

H2
♦(Ω) + ‖pt‖2

L∞(L∞)‖pt‖2
L2(L2)

+ ‖pt‖2
L2(L∞)‖ptt‖2

L∞(L2) + 1
)

� C̃T

(
‖Θ0‖2

H2
♦(Ω) + 2R4

1 + 1
)
.
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Thus, if we additionally choose R2 large enough, so that

R2
2 � C̃T

(
‖Θ0‖2

H2
♦(Ω) + 2R4

1 + 1
)

,

we have (p,Θ) ∈ B. �

Lemma 4.2. For sufficiently small R1 and δ, the mapping T is strictly contractive in the
topology induced by ‖ · ‖XT .

Proof. To prove contractivity, take any (p(1)
∗ ,Θ(1)

∗ ) and (p(2)
∗ ,Θ(2)

∗ ) from B. Denote their
images by (p(1),Θ(1)) = T (p(1)

∗ ,Θ(1)
∗ ) and (p(2),Θ(2)) = T (p(2)

∗ ,Θ(2)
∗ ). We introduce the differ-

ences

p = p(1) − p(2), p∗ = p(1)
∗ − p(2)

∗ ,

Θ = Θ(1) −Θ(2), Θ∗ = Θ(1)
∗ −Θ(2)

∗ .

Our goal now is to prove that

‖T (p(1)
∗ ,Θ(1)

∗ ) − T (p(2)
∗ ,Θ(2)

∗ )‖XT � R1C(T, R1, R2)‖(p(1)
∗ − p(2)

∗ ,Θ(1)
∗ − Θ(2)

∗ )‖XT ,

where C is a positive constant that depends on T, R1, and R2. Observe that (p,Θ) solves the
following problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 − 2k(Θ(1)
∗ )p(1)

∗ )ptt − q(Θ(1)
∗ )Δp− bΔpt = f 1 in Ω× (0, T),

ρaCaΘt − κaΔΘ+ ρbCbWΘ = f 2 in Ω× (0, T),

p = Θ = 0, on ∂Ω× (0, T),

p(x, 0) = pt(x, 0) = Θ(x, 0) = 0, in Ω,

(4.8)

with the right-hand sides

f 1 =
{

2k(Θ(1)
∗ )p(1)

∗ − 2k(Θ(2)
∗ )p(2)

∗
}

p(2)
∗tt +

{
q(Θ(1)

∗ ) − q(Θ(2)
∗ )

}
Δp(2)

∗

+ 2k(Θ(1)
∗ )(p(1)

∗t )2 − 2k(Θ(2)
∗ )(p(2)

∗t )2 (4.9)

and

f 2 = Q(p(1)
∗t ) −Q(p(2)

∗t ). (4.10)

We can rearrange the acoustic source term f 1 as follows:

f 1 = 2
{

k(Θ(1)
∗ ) − k(Θ(2)

∗ )
}

p(1)
∗ p(2)

∗tt + 2k(Θ(2)
∗ )p∗p(2)

∗tt +
{

q(Θ(1)
∗ ) − q(Θ(2)

∗ )
}

×Δp(2)
∗ + 2

{
k(Θ(1)

∗ ) − k(Θ(2)
∗ )

}
(p(1)

∗t )2 + 2k(Θ(2)
∗ )p∗t(p(1)

∗t + p(2)
∗t )

= 2
{

k(Θ(1)
∗ ) − k(Θ(2)

∗ )
}(

p(1)
∗ p(2)

∗tt + (p(1)
∗t )2

)
+
{

q(Θ(1)
∗ ) − q(Θ(2)

∗ )
}

×Δp(2)
∗ + 2k(Θ(2)

∗ )
(

p∗p(2)
∗tt + p∗t(p(1)

∗t + p(2)
∗t )

)
:= f 11 + f 12 + f 13

and next wish to show that it satisfies assumption 3.
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The estimate of ‖ f 1‖L2(H1). Note that since f 1 = 0 on ∂Ω, it is sufficient to estimate
‖∇ f 1‖L2(L2). We first estimate the f 11 contribution, that is

f 11 = 2
{

k(Θ(1)
∗ ) − k(Θ(2)

∗ )
}(

p(1)
∗ p(2)

∗tt + (p(1)
∗t )2

)
.

By Hölder’s inequality, we have

‖∇ f 11‖L2(L2) � ‖k(Θ(1)
∗ ) − k(Θ(2)

∗ )‖L∞(L∞)‖∇(p(1)
∗ p(2)

∗tt + (p(1)
∗t )2)‖L2(L2)

+ ‖∇(k(Θ(1)
∗ ) − k(Θ(2)

∗ ))‖L∞(L4)‖p(1)
∗ p(2)

∗tt + (p(1)
∗t )2‖L2(L4).

(4.11)

Recalling properties (2.3) and (2.4) of the function k, and using the algebraic inequality:

(A + B)ν � max{1, 2ν}(Aν + Bν), for A, B � 0, ν > 0,

we have

‖k(Θ(1)
∗ ) − k(Θ(2)

∗ )‖L∞(L∞) =

∥∥∥∥(Θ(1)
∗ −Θ(2)

∗ )
∫ 1

0
k′(Θ(1)

∗ + τ (Θ(1)
∗ −Θ(2)

∗ ))dτ

∥∥∥∥
L∞(L∞)

� ‖Θ(1)
∗ −Θ(2)

∗ ‖L∞(L∞)

(
1 + ‖Θ(1)

∗ + τ (Θ(1)
∗ −Θ(2)

∗ )‖γ2+1
L∞(L∞)

)
� ‖(p(1)

∗ − p(2)
∗ ,Θ(1)

∗ −Θ(2)
∗ )‖XT

{
1 + ‖Θ(1)

∗ ‖γ2+1
XΘ

+ ‖Θ(2)
∗ ‖γ2+1

XΘ

}
.

(4.12)

We also have, by using the embeddings H1(Ω) ↪→ L4(Ω) and H2(Ω) ↪→ L∞(Ω), the following
estimate:

‖∇(p(1)
∗ p(2)

∗tt + (p(1)
∗t )2)‖L2(L2) � ‖∇p(1)

∗ ‖L∞(L4)‖p(2)
∗tt‖L2(L4) + ‖p(1)

∗ ‖L∞(L∞)‖∇p(2)
∗tt‖L2(L2)

+ ‖p(1)
∗t ‖L2(L∞)‖∇p(1)

∗t ‖L∞(L2)

� ‖Δp(1)
∗ ‖L∞(L2)‖∇p(2)

∗tt‖L2(L2) + ‖Δp(1)
∗ ‖L∞(L2)‖∇p(2)

∗tt‖L2(L2)

+ ‖Δp(1)
∗t ‖L2(L2)‖∇p(1)

∗t ‖L∞(L2). (4.13)

Thus, from (4.13) it follows that

‖∇(p(1)
∗ p(2)

∗tt + (p(1)
∗t )2)‖L2(L2) � ‖p(1)

∗ ‖2
Xp
.

Further, we know that

∇(k(Θ(1)
∗ ) − k(Θ(2)

∗ )) = k′(Θ(1)
∗ )∇Θ(1)

∗ − k′(Θ(2)
∗ )∇Θ(2)

∗

= k′(Θ(1)
∗ )∇(Θ(1)

∗ −Θ(2)
∗ ) +∇Θ(2)

∗ (k′(Θ(1)
∗ ) − k′(Θ(2)

∗ ))

and

k′(Θ(1)
∗ ) − k′(Θ(2)

∗ ) = (Θ(1)
∗ −Θ(2)

∗ )
∫ 1

0
k′′(Θ(1)

∗ + τ (Θ(1)
∗ −Θ(2)

∗ ))dτ.
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By keeping in mind properties (2.3) and (2.4) of the function k, this implies that

‖∇(k(Θ(1)
∗ ) − k(Θ(2)

∗ ))‖L∞(L4) �
(

1 + ‖Θ(1)
∗ ‖γ2+1

L∞(L∞)

)
‖∇(Θ(1)

∗ −Θ(2)
∗ )‖L∞(L4) +

(
1 + ‖Θ(1)

∗ ‖γ2
L∞(L∞)

+ ‖Θ(2)
∗ ‖γ2

L∞(L∞)

)
‖∇Θ(2)

∗ ‖L∞(L4)‖Θ(1)
∗ −Θ(2)

∗ ‖L∞(L∞)

and thus

‖∇(k(Θ(1)
∗ ) − k(Θ(2)

∗ ))‖L∞(L4) �
{

1 + ‖Θ(1)
∗ ‖γ2

XΘ
+ ‖Θ(2)

∗ ‖γ2
XΘ

+ ‖Θ(1)
∗ ‖γ2+1

XΘ

}
× ‖(p(1)

∗ − p(2)
∗ ,Θ(1)

∗ −Θ(2)
∗ )‖XT . (4.14)

To obtain a bound on ∇ f 11, we note that

‖p(1)
∗ p(2)

∗tt + (p(1)
∗t )2‖L2(L4) � ‖p(1)

∗ ‖L2(L∞)‖p(2)
∗tt‖L2(L4) + ‖p(2)

∗t ‖L∞(L4)‖p(2)
∗t ‖L2(L∞)

�
√

T‖Δp(1)
∗ ‖L∞(L2)‖∇p(2)

∗tt‖L2(L2) + ‖∇p(1)
∗t ‖L∞(L2)‖Δp(1)

∗t ‖L2(L2)

� (1 +
√

T)
(
‖p(1)

∗ ‖2
Xp

+ ‖p(2)
∗ ‖2

Xp

)
.

Plugging the derived estimates into (4.11) yields

‖∇ f 11‖L2(L2) � (1 +
√

T)R2
1

(
1 + Rγ2

2 + Rγ2+1
2

)
× ‖(p(1)

∗ − p(2)
∗ ,Θ(1)

∗ −Θ(2)
∗ )‖XT .

We can similarly estimate f 12 =
{

q(Θ(1)
∗ ) − q(Θ(2)

∗ )
}
Δp(2)

∗ as follows:

‖∇ f 12‖L2(L2) �
∥∥∇(q(Θ(1)

∗ ) − q(Θ(2)
∗ ))

∥∥
L∞(L4)

‖Δp(2)
∗ ‖L2(L4)

+ ‖q(Θ(1)
∗ ) − q(Θ(2)

∗ )‖L∞(L∞)‖∇Δp(2)
∗ ‖L2(L2). (4.15)

The first term on the right-hand side of (4.15) can be estimated analogously to (4.14). Thus we
have by recalling assumption 1,∥∥∇(q(Θ(1)

∗ ) − q(Θ(2)
∗ ))

∥∥
L∞(L4)

�
{

1 + ‖Θ(1)
∗ ‖γ1+1

XΘ
+ ‖Θ(2)

∗ ‖γ1+1
XΘ

}
‖(p(1)

∗ − p(2)
∗ ,Θ(1)

∗ −Θ(2)
∗ )‖XT .

By using the embedding H1(Ω) ↪→ L4(Ω), we obtain

‖Δp(2)
∗ ‖L2(L4) � ‖Δp(2)

∗ ‖L2(L2) + ‖Δ∇p(2)
∗ ‖L2(L2) �

√
T‖p(2)

∗ ‖Xp.

We also have as in (4.12),∥∥q(Θ(1)
∗ ) − q(Θ(2)

∗ )
∥∥

L∞(L∞)

�
{

1 + ‖Θ(1)
∗ ‖γ1+1

XΘ
+ ‖Θ(2)

∗ ‖γ1+1
XΘ

}
‖(p(1)

∗ − p(2)
∗ ,Θ(1)

∗ −Θ(2)
∗ )‖XT .

Consequently, we obtain from above the following estimate:

‖∇ f 12‖L2(L2) � (1 +
√

T)R1

(
1 + Rγ1

2 + Rγ1+1
2 + R2γ1+2

2

)
× ‖(p(1)

∗ − p(2)
∗ ,Θ(1)

∗ −Θ(2)
∗ )‖XT .

5771



Nonlinearity 35 (2022) 5749 V Nikolíc and B Said-Houari

Next we estimate f 13 = 2k(Θ(2)
∗ )

(
p∗p(2)

∗tt + p∗t(p(1)
∗t + p(2)

∗t )
)

. We note that

‖∇ f 13‖L2(L2) � ‖k′(Θ(2)
∗ )∇Θ(2)

∗ ‖L∞(L4)

(
‖p‖L∞(L∞)‖p(2)

∗tt‖L2(L4)

+ ‖pt‖L∞(L4)(‖p(1)
∗t ‖L2(L∞) + ‖p(2)

∗t ‖L2(L∞))
)

+ ‖k(Θ(2)
∗ )‖L∞(L∞)‖∇(p∗p(2)

∗tt + p∗t(p(1)
∗t + p(2)

∗t ))‖L2(L2).

Using properties (2.4) of the function k, we can bound the first term on the right:

‖k′(Θ(2)
∗ )∇Θ(2)

∗ ‖L∞(L4) � ‖k′(Θ(2)
∗ )‖L∞(L∞)‖∇Θ(2)

∗ ‖L∞(L4)

� (1 + ‖Θ(2)
∗ ‖γ2+1

L∞(L∞))‖Θ(2)
∗ ‖L∞(H2

♦(Ω))

� (1 + Rγ2+1
2 )R2.

Further, we have

‖p‖L∞(L∞)‖p(2)
∗tt‖L2(L4) + ‖pt‖L∞(L4)(‖p(1)

∗t ‖L2(L∞) + ‖p(2)
∗t ‖L2(L∞))

� ‖Δp‖L∞(L2)‖∇p(2)
∗tt‖L∞(L2) + ‖∇pt‖L∞(L2)

× (‖Δp(1)
∗t ‖L2(L2) + ‖Δp(2)

∗t ‖L2(L2))

� R1‖(p(1)
∗ − p(2)

∗ ,Θ(1)
∗ −Θ(2)

∗ )‖XT .

By using the fact that |k(s)| � 1
q0

, we find

‖k(Θ(2)
∗ )‖L∞(L∞)‖∇(p∗p(2)

∗tt + p∗t(p(1)
∗t + p(2)

∗t ))‖L2(L2)

� ‖∇p∗‖L∞(L4)‖p(2)
∗tt‖L2(L4) + ‖p∗‖L∞(L∞)‖∇p(2)

∗tt‖L2(L2) + ‖∇p∗t‖L2(L4)

× ‖p(1)
∗t + p(2)

∗t ‖L∞(L4) + ‖p∗t‖L2(L∞)‖∇p(1)
∗t +∇p(2)

∗t ‖L∞(L2)

� ‖Δp∗‖L∞(L2)‖∇p(2)
∗tt‖L2(L2) + ‖Δp∗‖L∞(L2)‖∇p(2)

∗tt‖L2(L2)

+ ‖Δp∗t‖L2(L2)‖∇p(1)
∗t +∇p(2)

∗t ‖L∞(L2)

+ ‖Δp∗t‖L2(L2)‖∇p(1)
∗t +∇p(2)

∗t ‖L∞(L2).

Hence,

‖k(Θ(2)
∗ )‖L∞(L∞)‖∇(p∗p(2)

∗tt + p∗t(p(1)
∗t + p(2)

∗t ))‖L2(L2)

� R1‖(p(1)
∗ − p(2)

∗ ,Θ(1)
∗ −Θ(2)

∗ )‖XT .

Consequently, from the derived bounds we infer

‖∇ f 13‖L2(L2) � CT R1(1 + R2 + Rγ2+2
2 )‖(p(1)

∗ − p(2)
∗ ,Θ(1)

∗ −Θ(2)
∗ )‖XT .

By collecting the derived estimates of separate contributions to f 1, we arrive at

‖∇ f 1‖L2(L2) � CT (R1 + R2
1)
(

1 + Rγ1
2 + Rγ1+1

2

)
× ‖(p(1)

∗ − p(2)
∗ ,Θ(1)

∗ −Θ(2)
∗ )‖XT . (4.16)
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The estimate of ‖∂t f 1‖L2(H−1). Our next task is to estimate ‖∂t f 1‖L2(H−1). As above, we
estimate the contributions ‖∂t f 1 j‖L2(H−1) for j = 1, 2, 3 separately. We start by noting that

∂t f 11 =2
{

k(Θ(1)
∗ ) − k(Θ(2)

∗ )
}(

p(1)
∗ p(2)

∗ttt + p(1)
∗t p(2)

∗tt + 2p(1)
∗t p(1)

∗tt

)
+ 2∂t

{
k(Θ(1)

∗ ) − k(Θ(2)
∗ )

}(
p(1)
∗ p(2)

∗tt + (p(1)
∗t )2

)
.

By employing the H−1 estimate stated in (2.10), we then find that

‖∂t f 11‖H−1 �
(
‖k(Θ(1))∗ − k(Θ(2)

∗ )‖L∞ + ‖∇(k(Θ(1))∗ − k(Θ(2)
∗ ))‖L3

)
× ‖p(1)

∗ p(2)
∗ttt‖H−1 + ‖k(Θ(1))∗ − k(Θ(2)

∗ )‖L∞)(‖p(1)
∗t p(2)

∗tt‖L2 + ‖p(1)
∗t p(1)

∗tt‖L2 )

+ ‖∂t(k(Θ(1)
∗ ) − k(Θ(2)

∗ ))‖L6‖(p(1)
∗t )2‖L3

+
∥∥∂t

{
k(Θ(1)

∗ ) − k(Θ(2)
∗ )

}
p(1)
∗ p(2)

∗tt

∥∥
H−1 .

(4.17)

Hence, we obtain from above

‖∂t f 11‖L2(H−1) �
(
‖k(Θ(1))∗ − k(Θ(2)

∗ )‖L∞(L∞) + ‖∇(k(Θ(1))∗ − k(Θ(2)
∗ ))‖L∞(L3)

)
× ‖p(1)

∗ p(2)
∗ttt‖L2(H−1) + ‖k(Θ(1))∗ − k(Θ(2)

∗ )‖L∞(L∞)

× (‖p(1)
∗t p(2)

∗tt‖L2(L2) + ‖p(1)
∗t p(1)

∗tt‖L2(L2)) + ‖∂t(k(Θ(1)
∗ ) − k(Θ(2)

∗ ))

× ‖L2(L6)‖(p(1)
∗t )2‖L∞(L3) +

∥∥∂t

{
k(Θ(1)

∗ ) − k(Θ(2)
∗ )

}
p(1)
∗ p(2)

∗tt

∥∥
L2(H−1)

.

We estimate the second term by using the H−1 inequality (2.10) as follows:

‖p(1)
∗ p(2)

∗ttt‖L2(H−1) � ‖p(2)
∗ttt‖L2(H−1)(‖∇p(1)

∗ ‖L∞(L3) + ‖p(1)
∗ ‖L∞(L∞))

� ‖p(2)
∗ttt‖L2(H−1)‖Δp(1)

∗ ‖L∞(L2)

� R2
1,

where we have also used the embeddings H1(Ω) ↪→ L3(Ω), H2(Ω) ↪→ L∞(Ω), and elliptic reg-
ularity. Next, as in (4.12), we have

‖k(Θ(1))∗ − k(Θ(2)
∗ )‖L∞(L∞) � (1 + Rγ2+1

2 )‖(p∗,Θ∗)‖XT .

Further,

‖p(1)
∗t p(2)

∗tt‖L2(L2) + ‖∂t(p(1)
∗t )2‖L2(L2)

� ‖p(1)
∗t ‖L2(L∞)‖p(2)

∗tt‖L∞(L2) + ‖p(1)
∗t ‖L2(L∞)‖p(1)

∗tt‖L∞(L2)

� ‖Δp(1)
∗t ‖L2(L2)‖p(2)

∗tt‖L∞(L2) + ‖Δp(1)
∗t ‖L2(L2)‖p(1)

∗tt‖L∞(L2) � R2
1.

Now, we can use the following re-arrangement:

∂t(k(Θ(1)
∗ ) − k(Θ(2)

∗ )) = k′(Θ(1)
∗ )Θ(1)

∗t − k′(Θ(2)
∗ )Θ(2)

∗t

= k′(Θ(1)
∗ )(Θ(1)

∗t −Θ(2)
∗t ) +Θ(2)

∗t (k′(Θ(1)
∗ ) − k′(Θ(2)

∗ )).
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Hence, by the embedding H1(Ω) ↪→ L6(Ω),

‖∂t(k(Θ(1)
∗ ) − k(Θ(2)

∗ ))‖L2(L6) � ‖k′(Θ(1)
∗ )‖L∞(L∞)‖Θ(1)

∗t −Θ(2)
∗t ‖L2(L6)

+ ‖Θ(2)
∗t ‖L2(L6)‖k′(Θ(1)

∗ ) − k′(Θ(2)
∗ )‖L∞(L∞)

� ‖Θ(1)
∗t −Θ(2)

∗t ‖L2(H1)

(
1 + ‖Θ(1)

∗ ‖γ2+1
L∞(L∞)

)
+ ‖Θ(2)

∗t ‖L2(H1)‖Θ(1)
∗ −Θ(2)

∗ ‖L∞(L∞)
(
1 + ‖Θ(1)

∗ ‖γ2
L∞(L∞)

)
� (1 + R2 + Rγ2+1

2 )‖(p∗,Θ∗)‖XT . (4.18)

Furthermore, we have

‖(p(1)
∗t )2‖L∞(L3) � ‖p(1)

∗t ‖2
L∞(L6) � ‖∇p(1)

∗t ‖2
L∞(L2) � R2

1.

Next by using the embedding L6/5(Ω) ↪→ H−1(Ω) and Hölder’s inequality, we infer∥∥∂t

{
k(Θ(1)

∗ ) − k(Θ(2)
∗ )

}
p(1)
∗ p(2)

∗tt

∥∥
L2(H−1)

� ‖∂t(k(Θ(1)
∗ ) − k(Θ(2)

∗ ))‖L2(L3)‖p(1)
∗ p(2)

∗tt‖L∞(L2).

As in (4.18), using the embedding H1(Ω) ↪→ L3(Ω) yields

‖∂t(k(Θ(1)
∗ ) − k(Θ(2)

∗ ))‖L2(L3) � (1 + R2 + Rγ2+1
2 )‖(p∗,Θ∗)‖XT ,

whereas

‖p(1)
∗ p(2)

∗tt‖L∞(L2) � ‖Δp(1)
∗ ‖L∞(L2)‖p(2)

∗tt‖L∞(L2) � R2
1.

Consequently, by collecting the derived estimates, we obtain from (4.17),

‖∂t f 11‖L2(H−1) � CR2
1(1 + Rγ2

2 + Rγ2+1
2 + R2γ2+2

2 )‖(p∗,Θ∗)‖XT .

Next, we estimate f 12 =
{

q(Θ(1)
∗ ) − q(Θ(2)

∗ )
}
Δp(2)

∗ . We have ‖∂t f 12‖L2(H−1) � ‖∂t f 12‖L2(L2)

and further

‖∂t f 12‖L2(L2) � ‖q(Θ(1)
∗ ) − q(Θ(2)

∗ )‖L∞(L∞)‖Δp(2)
∗t ‖L2(L2)

+ ‖∂t(q(Θ(1)
∗ ) − q(Θ(2)

∗ ))‖L2(L4)‖Δp(2)
∗ ‖L∞(L4).

Similarly to the estimate of ‖∂t f 11‖L2(L2) and by using the fact that

‖Δp(2)
∗ ‖L∞(L4) � ‖Δp(2)

∗ ‖L∞(L2) + ‖Δ∇p(2)
∗ ‖L∞(L2) � ‖p(2)

∗ ‖Xp,

we obtain

‖∂t f 12‖L2(L2) � CT R2
1(1 + R2 + Rγ1+1

2 )‖(p∗,Θ∗)‖XT .

It remains to estimate ‖∂t f 13‖L2(H−1). Indeed, recalling that

f 13 = 2k(Θ(2)
∗ )

(
p∗p(2)

∗tt + p∗t(p(1)
∗t + p(2)

∗t )
)
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we have

‖∂t f 13‖L2(H−1) � ‖∂t(p∗p(2)
∗tt + p∗t(p(1)

∗t + p(2)
∗t ))‖L2(H−1)

+ ‖k′(Θ(2)
∗ )Θ(2)

∗t ‖L2(L4)‖p∗p(2)
∗tt + p∗t(p(1)

∗t + p(2)
∗t )‖L∞(L4). (4.19)

We estimate the first term in (4.19) as follows:

‖∂t(p∗p(2)
∗tt + p∗t(p(1)

∗t + p(2)
∗t ))‖L2(H−1)

� ‖p∗t‖L2(L4)‖p(2)
∗tt‖L∞(L4) + (‖p∗‖L∞(L∞) + ‖∇p∗‖L∞(L3))

× ‖p(2)
∗ttt‖L2(H−1) + ‖p∗tt‖L∞(L2)(‖p(1)

∗t ‖L2(L∞) + ‖p(2)
∗t ‖L2(L∞))

+ ‖p∗t‖L2(L4)(‖p(1)
∗tt‖L∞(L4) + ‖p(2)

∗tt‖L∞(L4))

� ‖∇p∗t‖L2(L2)‖∇p(2)
∗tt‖L∞(L2) + ‖Δp∗‖L∞(L2)‖p(2)

∗ttt‖L2(H−1)

+ ‖p∗tt‖L∞(L2)(‖Δp(1)
∗t ‖L2(L2) + ‖Δp(2)

∗t ‖L2(L2))

+ ‖∇p∗t‖L2(L2)(‖∇p(1)
∗tt‖L∞(L2) + ‖∇p(2)

∗tt‖L∞(L2)).

Hence, we obtain

‖∂t(p∗p(2)
∗tt + p∗t(p(1)

∗t + p(2)
∗t ))‖L2(H−1) � R1‖(p∗,Θ∗)‖XT . (4.20)

Next, we estimate the second term on the right-hand side of (4.19) as:

‖k′(Θ(2)
∗ )Θ(2)

∗t ‖L2(L4) � ‖k′(Θ(2)
∗ )‖L∞(L∞)‖Θ(2)

∗t ‖L2(L4)

�
(

1 + ‖Θ(2)
∗ ‖γ2+1

L∞(L∞)

)
‖Θ(2)

∗t ‖L2(H1)

� R2(1 + Rγ2+1
2 ). (4.21)

Finally, we estimate the last term on the right-hand side of (4.19) as

‖p∗p(2)
∗tt + p∗t(p(1)

∗t + p(2)
∗t )‖L∞(L4) � ‖p∗‖L∞(L∞)‖p(2)

∗tt‖L∞(L4)

+ ‖p∗t‖L∞(L4)(‖p(1)
∗t ‖L∞(L∞) + ‖p(2)

∗t ‖L∞(L∞))

� ‖Δp∗‖L∞(L2)‖∇p(2)
∗tt‖L∞(L2)

+ ‖∇p∗t‖L∞(L2)(‖Δp(1)
∗t ‖L∞(L2) + ‖Δp(2)

∗t ‖L∞(L2)).

(4.22)

Using the embedding H1(0, t) ↪→ C[0, t], we find that

‖∇p∗t‖L∞(L2) � ‖∇p∗t‖L2(L2) + ‖∇p∗tt‖L2(L2) � ‖p∗‖Xp.

Consequently, we obtain from (4.22),

‖p∗p(2)
∗tt + p∗t(p(1)

∗t + p(2)
∗t )‖L∞(L4) � R1‖(p∗,Θ∗)‖XT . (4.23)

Collecting (4.20), (4.21) and (4.23) results in

‖∂t f 13‖L2(H−1) � R1(1 + R2 + Rγ2+2
2 )‖(p∗,Θ∗)‖XT .
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Finally, by collecting the bounds of separate contributions, we infer that

‖∂t f 1‖L2(H−1) � CT (R1 + R2
1)(1 + R2 + Rγ2+1

2 + Rγ2+2
2 )‖(p∗,Θ∗)‖XT . (4.24)

The estimate of ‖ f 2‖H1(L2). We can bound the source term in the heat equation as follows:

‖ f 2‖H1(L2) � ‖Q(p(1)
∗t ) −Q(p(2)

∗t )‖L2(L2) + ‖∂t(Q(p(1)
∗t ) −Q(p(2)

∗t ))‖L2(L2). (4.25)

Since p( j)
∗t ∈ B for j = 1, 2, we have by the Sobolev embedding

‖p( j)
∗t ‖L∞(L∞) � ‖Δp( j)

∗t ‖L∞(L2) � ‖p( j)
∗t ‖L∞(Xp) � R1.

Hence, in view of the assumption (2.5), this yields

‖Q(p(1)
∗t ) −Q(p(2)

∗t )‖L2(L2) � R1‖p(1)
∗t − p(2)

∗t ‖L2(L2) � R1‖p(1)
∗t − p(2)

∗t ‖Xp. (4.26)

Similarly, using (2.6), we have

‖∂t(Q(p(1)
∗t ) −Q(p(2)

∗t ))‖L2(L2) � ‖p(1)
∗t ‖L2(L∞)‖p(1)

∗tt − p(2)
∗tt‖L∞(L2)

+ ‖p(2)
∗tt‖L∞(L2)‖p(1)

∗t − p(2)
∗t ‖L2(L∞)

� ‖Δp(1)
∗t ‖L2(L2)‖p(1)

∗tt − p(2)
∗tt‖L∞(L2)

+ ‖p(2)
∗tt‖L∞(L2)‖Δ(p(1)

∗t − p(2)
∗t )‖L2(L2)

� R1‖p(1)
∗t − p(2)

∗t ‖Xp. (4.27)

Plugging (4.26) and (4.27) into (4.25), we obtain

‖ f 2‖H1(L2) � R1‖(p∗,Θ∗)‖XT . (4.28)

The energy bound for the difference equations. Now we can apply the energy results of
proposition 3.1 to system (4.8) by setting

α = 1 − 2k(Θ(1)
∗ )p(1)

∗ , r = q(Θ(1)
∗ ), f 1 = f 1, f 2 = f 2.

Adding the energy estimate for the pressure to the energy bound (3.22) for the temperature
(where now f̃ = f 2 = f 2), we obtain

‖(p,Θ)‖2
XT

= ‖T (p(1)
∗ ,Θ(1)

∗ ) − T (p(2)
∗ ,Θ(2)

∗ )‖2
XT

�
∫ t

0
exp

(∫ t

s
(1 +Λ(σ))dσ

)(
‖ f1(t)‖2

H1 + (1 + ‖∇α(t)‖2
L3 )‖∂t f 1(t)‖2

H−1

)
ds + ‖∂t f 2‖2

L2(L2)

with Λ = Λ(t) defined in (3.5). We have

‖Λ‖L1(0,T) � ‖rt‖L1(L2) + ‖αt‖L1(L2) + ‖∇r‖L1(L4) + ‖αt‖2
L2(L4) + ‖rt‖2

L2(L4)

� ‖q′(Θ(1)
∗ )Θ(1)

∗t ‖L1(L2) + ‖k′(Θ(1)
∗ )Θ(1)

∗t p(1)
∗ ‖L1(L2) + ‖k(Θ(1)

∗ )p(1)
∗t ‖L1(L2)

+ ‖q′(Θ(1)
∗ )∇Θ(1)

∗ ‖L1(L4) + ‖k′(Θ(1)
∗ )Θ(1)

∗t p(1)
∗ ‖2

L2(L4)

+ ‖k(Θ(1)
∗ )p(1)

∗t ‖2
L2(L4) + ‖q′(Θ(1)

∗ )Θ(1)
∗t ‖2

L2(L4). (4.29)
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We estimate the terms on the right-hand side of (4.29) as follows: using (2.2), we have

‖q′(Θ(1)
∗ )Θ(1)

∗t ‖L1(L2) �
√

T‖q′(Θ(1)
∗ )‖L∞(L∞)‖Θ(1)

∗t ‖L2(L2)

�
√

T(1 + ‖Θ(1)
∗ ‖γ1+1

L∞(L∞))‖Θ(1)
∗t ‖L2(L2)

�
√

TR2(1 + Rγ1+1
2 ).

Further, by using assumption (2.4) we have

‖k′(Θ(1)
∗ )Θ(1)

∗t p(1)
∗ ‖L1(L2) � ‖k′(Θ(1)

∗ )‖L∞(L∞)‖Θ(1)
∗t ‖L2(L2)‖p(1)

∗ ‖L2(L∞)

�
√

T(1 + ‖Θ(1)
∗ ‖γ2+1

L∞(L∞))‖Θ(1)
∗t ‖L2(L2)

× ‖Δp(1)
∗ ‖L∞(L2)

�
√

TR1(R2 + Rγ2+2
2 ).

Next we find that

‖k(Θ(1)
∗ )p(1)

∗t ‖L1(L2) � T‖k(Θ(1)
∗ )‖L∞(L∞)‖p(1)

∗t ‖L∞(L2) � TR1,

where we have used (2.3) in the last estimate. Using the bound ‖∇Θ(1)
∗ ‖L4 � ‖Θ(1)

∗ ‖H2
♦(Ω), we

also have

‖q′(Θ(1)
∗ )∇Θ(1)

∗ ‖L1(L4) � ‖q′(Θ(1)
∗ )‖L∞(L∞)‖∇Θ(1)

∗ ‖L1(L4)

� T(1 + ‖Θ(1)
∗ ‖γ1+1

L∞(L∞))‖∇Θ(1)
∗ ‖L∞(H2

♦(Ω))

� T(R2 + Rγ1+2
2 ).

Also, we have as above

‖k′(Θ(1)
∗ )Θ(1)

∗t p(1)
∗ ‖2

L2(L4) � ‖k′(Θ(1)
∗ )‖2

L∞(L∞)‖Θ(1)
∗t ‖2

L2(L4)‖p(1)
∗ ‖2

L∞(L∞)

� (1 + ‖Θ(1)
∗ ‖2γ2+2

L∞(L∞))‖Θ(1)
∗t ‖2

L2(H1)‖Δp(1)
∗ ‖2

L∞(L2)

� R2
1R2

2(1 + R2γ2+2
2 ).

Further, we have the estimate

‖k(Θ(1)
∗ )p(1)

∗t ‖2
L2(L4) � ‖p(1)

∗t ‖2
L2(L4) � ‖∇p(1)

∗t ‖2
L2(L2) � R2

1.

Finally, we have

‖q′(Θ(1)
∗ )Θ(1)

∗t ‖2
L2(L4) � ‖q′(Θ(1)

∗ )‖2
L∞(L∞)‖Θ(1)

∗t ‖2
L2(L4)

� (1 + ‖Θ(1)
∗ ‖2γ1+2

L∞(L∞))‖Θ(1)
∗t ‖2

L2(H1)

� R2
2(1 + R2γ1+2

2 ).

Collecting the above estimates leads to

‖Λ‖L1(0,T) � C(T, R1, R2),

where C = C(T, R1, R2) is a positive constant that depends on T, R1, and R2.
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Finally, taking into account (4.29) and recalling (4.16), (4.24), (4.26) and (4.28) we obtain

‖T (p(1)
∗ ,Θ(1)

∗ ) − T (p(2)
∗ ,Θ(2)

∗ )‖XT � eC(T,R1,R2)(R1 + R2
1)C(T , R2)‖(p(1)

∗ − p(2)
∗ ,Θ(1)

∗ −Θ(2)
∗ )‖XT .

Thus, by selecting the radius R1 > 0 sufficiently small, we can guarantee that T is a strict
contraction in B. �

On account of lemmas 4.1 and 4.2, an application of the contraction mapping theorem
implies that there exists a unique (p,Θ) = T (p,Θ) in B which solves the coupled problem.

Continuous dependence on the data. To prove continuous dependence on the data, take
(p(1),Θ(1)) and (p(2),Θ(2)) to be two solutions of (2.1a) that correspond to the initial data
(p(1)

0 , p(1)
1 ,Θ(1)

0 ) and (p(2)
0 , p(2)

1 ,Θ(2)
0 ), respectively. Similarly to the proof of contractivity, we have

the following energy bound:

‖(p(1) − p(2),Θ(1) −Θ(2))‖2
XT

� E[p(1) − p(2)](0) + E[Θ(1) −Θ(2)](0)

+

∫ t

0
exp

(∫ t

s
(1 + Λ(σ))dσ

)(
‖ f 1(t)‖2

H1 + (1 + ‖∇α(t)‖2
L3 )

× ‖∂t f 1(t)‖2
H−1

)
ds + CT‖∂t f 2‖2

L2(L2).

Here f 1 and f 2 are functions of p(1) = p(1)
∗ and p(2) = p(2)

∗ ; see (4.9) and (4.10) for their defini-
tions. Following the same steps as in the proof of contractivity, we can deduce that there exists
a function Ψ that depends on ‖p( j)‖Xp and ‖Θ( j)‖Xp with j = 1, 2, such that

‖(p(1) − p(2),Θ(1) −Θ(2))‖2
XT

� ‖(p(1)
0 − p(2)

0 ,Θ(1)
0 −Θ(2)

0 )‖2
XT

+

∫ t

0
Ψ
(
‖p(1)‖Xp , ‖p(2)‖Xp , ‖Θ(1)‖XΘ ,

× ‖Θ(2)‖XΘ

)
‖(p(1) − p(2),Θ(1) −Θ(2))‖2

XT
ds.

An application of Gronwall’s inequality leads to

‖(p(1) − p(2),Θ(1) −Θ(2))‖2
XT

� ‖(p(1)
0 − p(2)

0 ,Θ(1)
0 −Θ(2)

0 )‖2
XT

exp

{∫ T

0
Ψ(t)dt

}
.

This last inequality yields the desired result, which also implies uniqueness in XT by taking the
data to be the same. �

5. Conclusion and outlook

In this work, we have analysed the coupled Westervelt–Pennes model of HIFU-induced heat-
ing. By relying on the energy analysis of a linearised problem and a subsequent fixed-point
argument, we proved the local-in-time well-posedness of this model under the assumption of
smooth and (with respect to pressure) small data. Physically, the results imply that, for a given
final propagation time, if the initial acoustic pressure is chosen to be small enough in the sense
of (4.2), one can guarantee that a unique (and smooth) pressure-temperature field exists up to
this time. The smallness condition imposed on the data is in practice mitigated by the fact that
the weighting factor k(Θ) in the involved nonlinearities is quite small as it is proportional to
the inverse of speed of sound squared (1.4). In addition to establishing sufficient conditions
for the validity of the Westervelt–Pennes model, the present theoretical work also provides a
rigorous foundation for devising accurate and reliable numerical simulation strategies for the
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models of HIFU-induced heating. These can help practitioners set up lab experiments for HIFU
treatments and reduce the need to repeat them unnecessarily.

We note that in the energy estimates in section 3, b must be a positive constant, independent
of Θ. To permit more realistic modelling scenarios in complex propagation media, future
analysis will involve studying the case b = b(Θ) together with allowing for (time- or space-)
fractional damping in the model.
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