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Perturbative renormalization and thermodynamics of quantum crystalline membranes
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We analyze the statistical mechanics of a free-standing quantum crystalline membrane within the framework
of a systematic perturbative renormalization group (RG). A power-counting analysis shows that the leading
singularities of correlation functions can be analyzed within an effective renormalizable model in which the
kinetic energy of in-plane phonons and subleading geometrical nonlinearities in the expansion of the strain
tensor are neglected. For membranes at zero temperature, governed by zero-point motion, the RG equations of
the effective model provide a systematic derivation of logarithmic corrections to the bending rigidity and to the
elastic Young modulus derived in earlier investigations. In the limit of a weakly applied external tension, the
stress-strain relation at T = 0 is anomalous: the linear Hooke’s law is replaced with a singular law exhibiting
logarithmic corrections. For small, but finite temperatures, we use techniques of finite-size scaling to derive
general relations between the zero-temperature RG flow and scaling laws of thermodynamic quantities such as
the thermal expansion coefficient α, the entropy S, and the specific heat C. A combination of the scaling relations
with an analysis of thermal fluctuations shows that, for small temperatures, the thermal expansion coefficient α is
negative and logarithmically dependent on T , as predicted in earlier work. Although the requirement limT →0 α =
0, expected from the third law of thermodynamics is formally satisfied, α is predicted to exhibit such a slow
variation to remain practically constant down to unaccessible small temperatures.
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I. INTRODUCTION

The statistical mechanics of fluctuating elastic membranes
has been investigated extensively over the last decades, in
connection with a broad variety of physical systems, from
biological layers to graphene and other atomically thin two-
dimensional materials. As it has long been realized, models
of flexible surfaces subject to vanishing or small external
tension exhibit a rich and striking physical behavior, con-
trolled by an interplay between fluctuations and mechanical
nonlinearities [1–19]. A crucial prediction, in particular, is
that for homogeneous free-standing membranes without an
imposed stress, anharmonicities inherent in the geometrical
definition of the elastic strain tensor are responsible for the
stabilization of a macroscopically flat phase at finite temper-
atures [1–4] and for a dramatic power-law renormalization of
the effective scale-dependent bending rigidity and elastic con-
stants. The presence of a quenched disorder, besides thermal
fluctuations, has been predicted to induce an even richer phys-
ical behavior [1,11,13,14,16]. Renormalizations of elastic and
thermodynamic properties by ripples have also been analyzed
in experiments on graphene membranes [20–23].

Over the last years, aiming at a more complete theory of
fluctuations in graphene, several authors have revisited and
extended the analysis by considering the effects of quantiza-
tion [24–26] and of the coupling between membrane phonons
and Dirac electrons [27–30]. The interaction between flexural
and electronic degrees of freedom, in particular, has been
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predicted to generate mechanical instabilities leading to a
spontaneous rippling of the membrane.

Despite the progress in investigations of the coupled
membrane-electron problem, the theory of purely mechani-
cal degrees of freedom in a flexible surface subject to both
thermal and quantum fluctuations is already highly nontriv-
ial. By a combination of elasticity theory and a one-loop
momentum-shell renormalization group, Ref. [24] showed
that, for a homogeneous and unstressed membrane at absolute
zero, mechanical nonlinearities give rise to logarithmic renor-
malizations of the wave-vector-dependent bending stiffness
and elastic constants, in sharp contrast with the much stronger
power-law renormalizations induced by thermal fluctuations.

In Ref. [25], the theory of quantum flexible membranes
was reanalyzed, and extended to the finite temperature case,
within the framework of nonperturbative renormalization
group (NPRG) techniques. For zero temperature, the weak-
coupling limit of the NPRG recovers results consistent with
the momentum-shell predictions of Ref. [24]. At nonzero tem-
perature, the NPRG analysis allowed to smoothly interpolate
a crossover between a short wavelength region of zero-point
character, and a long-wavelength region, determined by ther-
mal fluctuations. In more detail, the results of Ref. [25]
predicted a RG flow exhibiting a first quantum region in which
anharmonicities are marginally irrelevant, followed, after a
smooth crossover, by a classical region in which nonlinearities
are relevant, destabilize the weak-coupling approximation,
and drive the system to the universal interacting fixed
point describing classical thermally fluctuating membranes
[1,4–6,8,9]. The corresponding correlation functions, in par-
ticular, behave in the long-wavelength limit according to the

2469-9950/2022/105(19)/195434(14) 195434-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1445-1470
https://orcid.org/0000-0001-5165-7553
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.195434&domain=pdf&date_stamp=2022-05-26
https://doi.org/10.1103/PhysRevB.105.195434


ACHILLE MAURI AND MIKHAIL I. KATSNELSON PHYSICAL REVIEW B 105, 195434 (2022)

anomalous scaling law characteristic of classical membranes:
in the limit of vanishing wave vector k → 0, the effective
bending rigidity diverges as κ (k) ≈ k−η∗ and the elastic Lamé
constants vanish as λ(k), μ(k) ≈ k2−2η∗ . A similar picture
was derived in Ref. [26], by combining a one-loop RG with
a physical approximation: the replacement of the full an-
harmonic free energy with a Bose-Einstein function with
renormalized phonon dispersions. Other field-theoretical anal-
yses on quantum flexible membranes, such as the expansion
for large embedding-space dimension and a generalization
of the classical self-consistent screening approximation, were
developed in Ref. [29], as a part of a wider analysis includ-
ing the coupling between phonons and Dirac electrons. We
finally note that, by different approaches, Refs. [31,32], have
predicted a dynamical behavior qualitatively in contrast with
Refs. [24–26]: that flexural phonon modes acquire a nonzero
sound velocity and a linear dispersion relation ω(k) ∝ |k|.

In parallel with analytical approaches, fluctuations of a
quantum graphene sheet have also been studied by numerical
path-integral simulations based on realistic empirical poten-
tials for interatomic interactions in carbon (see, for example,
Refs. [33,34]).

The objective of this work is to analyze the anharmonic
effects in quantum membranes by systematic perturbative
renormalization group methods. By a power-counting anal-
ysis, we construct an effective renormalizable model which
we expect to capture the dominant singularities of physical
quantities in the limit of low energies, momenta, temperatures
and tensions. At T = 0, the model is renormalizable in the
sense of power counting, although it exhibits anisotropic scal-
ing between space and time, in analogy with other theories
with “weighted power counting” [35–40]. The corresponding
RG equations recover in a systematic framework the earlier
results derived in Refs. [24–26]. We also note that the model is
mathematically equivalent to a theory of the decoupled lamel-
lar phase of a three-dimensional stack of classical crystalline
membranes analyzed in Ref. [6].

For finite temperatures, we use techniques well-known in
the theory of finite size scaling and other finite-temperature
field theories [35,41]. In particular, we use the general prop-
erty that ultraviolet divergences are temperature-independent
and can be renormalized by T -independent counterterms
[35,41] to derive scaling laws for various thermodynamic
quantities: the thermal expansion coefficient α̃, the entropy
S̃, and the specific heat C̃. By combining the scaling relations
with an analysis of thermal fluctuations, we recover the result
that, for a membrane subject to zero external tension, α̃ is
negative and tends to zero in the limit T → 0 as a logarithmic
function of T , as predicted in Ref. [26].

The effective model and the method used to derive scal-
ing equations are intrinsically focused on the behavior of
thermodynamic quantities in the limit of small temperatures.
Therefore, the theory developed here cannot capture the de-
tailed T dependence of the thermal expansion coefficient
at moderately high temperatures. In particular, the question
whether α̃ changes sign at a certain temperature [32,34,42,43],
is beyond the scope of this work. We note, however, that the
behavior of out-of-plane fluctuations analyzed here contrasts
with the prediction of a linear dispersion relation for flexural
phonons, which was used in the analyses of Refs. [31,32].

The coefficient of in-plane thermal expansion of graphene
has been estimated by a number of experimental techniques,
both for suspended samples and for samples bound to a
substrate (see, for example, Refs. [23,44–47] and references
therein). Experimental results indicate usually a negative
thermal expansion at not too large temperatures, although a
positive expansion has been identified in Ref. [48] in the case
of graphene on a Ir(111) substrate down to liquid helium
temperatures.

It would be interesting to test experimentally the prediction
of that α̃ is nearly temperature-independent (the logarithmic
functions of T change very slowly over broad temperature
scales). This prediction applies only to membranes without a
supporting substrate and without stress. For a nonzero applied
tension, the low-temperature behavior of the thermal expan-
sion coefficient was predicted to vanish in a faster way as
T → 0 in Ref. [26].

II. MODEL

To study fluctuations of a quantum membrane, we analyze
throughout this work an effective low-energy model defined
by the path integral

Z =
∫

[dh(x, τ )duα (x, τ )]e−S/h̄ (1)

and the imaginary-time action

S[h(x, τ ), uα (x, τ )] =
∫ h̄/(kBT̃ )

0
dτ

∫
d2x

{
ρ̃

2
ḣ2 + κ̃

2
(∂2h)2

+ λ̃

2
(uαα )2 + μ̃uαβuαβ − σ̃ ∂αuα

}
.

(2)

The degrees of freedom uα (x, τ ) and h(x, τ ) represent, re-
spectively, in-plane and out-of-plane displacements of the
mass points in the layer. The second line of the action repre-
sents the standard elastic energy [1,2,17] of a medium with
bending rigidity κ̃ and Lamé coefficients λ̃ and μ̃, and is
defined in terms of the strain tensor uαβ = (∂αuβ + ∂βuα +
∂αh · ∂βh)/2. The term −σ̃ ∂αuα describes an externally ap-
plied isotropic in-plane tension [17]. A positive σ̃ > 0 drives
a stretching of the membrane, while σ̃ < 0 corresponds to a
compressive stress, which tends to buckle the system out of
plane. The first term in the action, ρ̃ḣ2/2, describes instead the
kinetic energy of out-of-plane fluctuations, and is proportional
to the areal mass density ρ̃ and to the square of the out-of-
plane velocity ḣ = ∂h(x, τ )/∂τ . Although physically h is a
scalar quantity, we consider in general h to be a vector with
dc components (dc = 1 for physical membranes embedded in
three-dimensional space).

To regularize ultraviolet divergences we implicitly assume
a large-momentum cutoff � of the order of the inverse lattice
spacing.

A. Rescaled units

By the change of variables τ → (ρ̃/κ̃ )1/2τ , h → h̄1/2/

(ρ̃κ̃ )1/4h, uα → h̄/(ρ̃κ̃ )1/2uα , the reduced action S = S/h̄
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can be recast as

S =
∫ 1/T

0
dτ

∫
d2x

{
ḣ2

2
+ 1

2
(∂2h)2 + λ

2
(uαα )2

+ μuαβuαβ − σ∂αuα

}
, (3)

where uαβ = (∂αuβ +∂βuα+∂αh · ∂βh)/2, λ = h̄λ̃/(ρ̃κ̃3)1/2,
μ = h̄μ̃/(ρ̃κ̃3)1/2, T = (ρ̃/κ̃ )1/2kBT̃ /h̄, and σ = σ̃ /κ̃ . After
these rescalings, all quantities have a dimension in units of
wave vector. The elastic parameters λ and μ, which play
the role of coupling constants, are dimensionless, while the
temperature T and the tension σ have the dimension of a wave
vector squared.

Throughout the rest of this paper, we always use rescaled
units, unless explicitly mentioned. Quantities in standard units
of measurements are marked with tilde symbols. The in-
plane strain ṽ, the Gibbs free energy per unit area G̃ =
−kBT̃ A−1 lnZ , the entropy density S̃ = −∂G̃/∂T̃ , the spe-
cific heat C̃ = T̃ dS̃/dT̃ , and the thermal expansion coefficient
α̃ = 2d ṽ/dT̃ , expressed in conventional units, are related to
the corresponding rescaled quantities v, G = −TA−1 lnZ ,
S = −∂G/∂T , C = T dS/dT , α = 2dv/dT as

ṽ = h̄v

(ρ̃κ̃ )1/2
, G̃ = h̄κ̃1/2

ρ̃1/2
G, S̃ = kBS,

C̃ = kBC, α̃ = kBα/κ̃. (4)

B. Derivation of the effective model

The effective action (2) can be derived from a more com-
plete theory by a power counting argument. Focusing on the
case of a vanishing external tension σ = 0, a more com-
plete model, which includes the kinetic energy of in-plane
modes is given by the manifestly rotationally invariant action
[25,26,49,50]

S[r(x, τ )] =
∫ h̄/(kBT̃ )

0
dτ

∫
d2x

{
ρ̃

2
ṙ2 + κ̃

2
(∂2r)2

+ λ̃

2
(Uαα )2 + μ̃UαβUαβ

}
, (5)

where r ∈ Rd denotes fluctuating coordinates in the
d-dimensional ambient space and Uαβ = (∂αr · ∂βr − δαβ )/2.
This fully rotationally invariant theory can be analyzed by
parametrizing r(x, τ ) = (ξx + u(x, τ ), h(x, τ )), where u and
h are in-plane and out-of-plane displacement fields, while
ξ encodes the tendency of the membrane to shrink due to
fluctuations [6,17,25,26,49]. At zero temperature, a loop ex-
pansion (formally an expansion in powers of h̄ [35]) can
be given by calculating order by order correlation functions
and ξ = 1 + c1h̄ + c2h̄2 + · · · The noninteracting propaga-
tors of in-plane and out-of-plane modes, defining the basic
elements in the corresponding diagrammating expansion, are

respectively

D̄(0)
αβ (ω, k) = h̄kαkβ

(ρ̃ω2 + (λ̃ + 2μ̃)|k|2 + κ̃|k|4)k2

+ h̄(k2δαβ − kαkβ )

(ρ̃ω2 + μ̃|k|2 + κ̃|k|4)k2
,

Ḡ(0)
i j (ω, k) = h̄δi j

ρ̃ω2 + κ̃|k|4 . (6)

For small k, D̄(0)
αβ (ω, k) has a pole for ω ∼ |k| reflecting the

linear dispersion of acoustic phonons while Ḡ(0)
αβ (ω, k) has a

pole for ω ∼ k2, corresponding to the ultrasoft dispersion of
flexural fluctuations at zero external tension. Due to the softer
infrared behavior of flexural phonons, we can assume that
poles of Ḡ(0) generate the leading singularities at long wave-
lengths. In the region ω ∼ k2, interactions can be analyzed
within power counting by assigning dimension [x] = −1 to
the spacial coordinates and [τ ] = −z = −2 to the time coor-
dinate [25] (see Refs. [36–40] for discussions of of various
field theories which lack Lorentz and Euclidean invariance
and which exhibit “weighted power counting,” with different
weigth for space and time coordinates). The behavior of prop-
agators for k → 0, ω → 0, ω ∼ k2 implies that the canonical
dimensions of fields are, respectively, [h] = (2 + z − 4)/2 =
0 and [uα] = (2 + z − 2)/2 = 1. An analysis of dimensions
of operators then shows that the elastic parameters λ and μ

are marginal, whereas the term κ̃ (∂2uα )2/2, the nonlinear con-
tribution ∂αuγ ∂βuγ to the strain tensor Uαβ = ((ξ 2 − 1)δαβ +
ξ∂αuβ + ξ∂βuα + ∂αh · ∂βh + ∂αuγ ∂βuγ )/2, and the in-plane
kinetic energy ρ̃u̇2

α/2 are all irrelevant in the sense of power
counting. By dropping all power-counting irrelevant interac-
tions, we arrive, after a change of variables uα → uα/ξ −
(ξ 2 − 1)xα/(2ξ ), to the effective model (2) with σ = 0.

Clearly, the effective model cannot describe the dynamics
of in-plane phonons, which occurs at scales ω ∼ |k|. Power
counting indicates however that it should capture in an exact
way the leading singularities at long wavelengths of static
correlation functions (diagrams with all external frequencies
ω = 0), and more generally, singularities of diagrams with ex-
ternal legs in the region ω ∼ k2 [51], relevant for the behavior
of flexural phonons.

For simplicity, we will use the effective model (2) also
to calculate thermodynamical properties of the membrane,
such as the entropy and the average projected area, at finite
temperature T and nonzero tension σ . We expect that the the-
ory describes the leading singular behavior of thermodynamic
quantities for small T and σ [52].

As a further remark, we note that, the theory (2) de-
scribes only the contribution to thermodynamic quantities
of membrane-type fluctuations. In crystal lattices, the ther-
mal expansion coefficient and other thermodynamic quantities
receive additional contributions from the temperature depen-
dence of the interatomic bond length. We expect that these
effects are suppressed at small T and do not contribute to
the dominant low-temperature singularities. Within a quasi-
harmonic theory, the Grüneisen parameters associated with
optical and acoustic in-plane phonons can be assumed to
remain finite for T → 0 and σ → 0 [7]. Thus we can esti-
mate that the effects of a temperature dependent bond length
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vanishes at low temperatures proportionally to the specific
heat of these phonon branches [7]. By contrast, the fluctuation
modes considered here generate infrared singularities, and, as
shown in Ref. [26] and discussed below, produce a contribu-
tion to the thermal expansion which remains almost constant
as T → 0.

C. Symmetries

In full analogy with the theory of classical membranes, it
can be checked that, when σ = 0, S is invariant under the
“linearized rotations” [4,6,37]

h → h + Aαxα,

uα → uα − (Aα · h) − 1

2
(Aα · Aβ )xβ, (7)

where Aα is any fixed vector. This symmetry represents a
linearized form of the original SO(d) invariance of the full
theory, and reflects the fact that the layer is located in an
isotropic ambient space (without external forces and with no
externally imposed in-plane tension). The associated Ward
identities [4,6,37] play a crucial role in the dynamics and the
renormalization of the model.

As a remark, we note that the linearized invariance (7)
only emerges when all irrelevant terms are dropped from the
action at the same time. If, instead, we had neglected the
nonlinear contribution ∂αuγ ∂βuγ /2 to the strain tensor but
we had kept the kinetic energy of in-plane phonons ρ̃u̇2

α/2, we
would have arrived at a theory which lacks both the full rota-
tional SO(d ) symmetry and the linearized, effective rotational
symmetry (7). In this case, renormalization would generate
generic anisotropic interactions, including anisotropies which
are relevant in the sense of power counting. This would then
result in an artificial modification of the qualitative behavior of
fluctuations. Although the crucial role of symmetries has been
appreciated, several approaches in the earlier literature used
actions or approximations which, in some steps of derivations,
violate both the exact and the linearized SO(d ) symmetries.

In particular, we note that the prediction of a contribu-
tion �(0, k) ∝ k2 to the self-energy of flexural phonons at
zero frequency, derived in Ref. [31], started from an action
in which the nonlinear contribution to the strain tensor was
neglected but the kinetic energy of in-plane phonons was
retained. An explicit calculation using a full rotationally in-
variant action [26] showed instead that self-energy corrections
proportional to k2 vanish in absence of external stress, con-
sistently with the Ward identities [49]. The emergence of the
linearized symmetry (7) ensures that the cancellation of terms
proportional to k2 is consistently captured by the effective
model (3), as we verify below (see Sec. VI A).

D. Analogy with a model of lamellar phases

After identification of the imaginary time τ with an addi-
tional space dimension z, the quantum action S turns out to be
almost identical to the effective Hamiltonian

H =
∫

dz
∫

d2x

{
B0

2
(∂zuz )2 + K0

2
(∂2

⊥uz )2

+ μ⊥⊥
0

4
(∂αuβ + ∂βuα + ∂αuz∂βuz )2

+ λ⊥⊥
0

8
(2∂αuα + ∂αuz∂αuz )2

+ 1

2
λ⊥z

0 (∂zuz )(2∂αuα + ∂αuz∂αuz )

}
, (8)

which was analyzed by Guitter [37] as a model for a
three-dimensional shearless stack of classical crystalline
membranes. The identity between the two theories only
emerges after irrelevant interactions are neglected in both
models and under the assumption λ⊥z

0 = 0.
The theory of shearless stacks of membranes has been a

subject of debate and some authors [53,54] have proposed
models which differ from Eq. (8) and thus contrast with
the results of Ref. [37]. Establishing a detailed relation be-
tween lamellar phases and quantum membranes is beyond
the scope of our work. We will verify, however, that the
RG equations for the quantum membrane action recovers
long-wavelength singularities identical to those predicted in
Ref. [37].

III. INTEGRATION OVER IN-PLANE MODES

Since S is quadratic in uα , the in-plane modes can be
integrated out explicitly. To integrate out uα it is essential to
separate the strain tensor uαβ into uniform modes (with zero
spacial momentum k = 0) and nonuniform components (with
spacial Fourier components k 	= 0). Integration over in-plane
phonon modes uk 	=0

α (x, τ ) with k 	= 0 gives rise to an effective
four-point vertex [29]

Sk 	=0
int = Y

8

∫ 1/T

0
dτ

∑
k 	=0

PT
αβ (k)PT

γ δ (k) fαβ (k, τ ) fγ δ (−k, τ ),

(9)
where fαβ (k, τ ) is the spacial Fourier transform of the com-
posite field fαβ (x, τ ) = (∂αh(x, τ ) · ∂βh(x, τ )), PT

αβ (k) =
δαβ − kαkβ/k2 is the projector transversal to the momentum
transfer k, and Y = 4μ(λ + μ)/(λ + 2μ) is the (dimen-
sionless) Young modulus. The interaction (9) represents
physically an instantaneous long-range coupling between lo-
cal Gaussian curvatures in the membrane, and is a direct
quantum generalization of the usual effective interaction
which emerges in classical theories [1,2,4,13,17,49].

The analysis of zero modes differs depending on the en-
semble considered (see Ref. [17] for an analysis of isometric
and isotensional ensemble in the theory of classical mem-
branes). Here, we find it convenient to use a fixed-stress, or
“isotensional” ensemble [17], in which the external in-plane
stress σ is kept fixed and the projected area is allowed to
fluctuate. In this setting, we parametrize uα (x, τ ) = vαβxβ +
uk 	=0

α (x, τ ) and integrate over all values of both uk 	=0
α (x, τ ) and

vαβ . After integration, we are lead to a contribution to the
effective action

∫ 1/T

0
dτ

∫
d2x

[
σ

2
(∂αh · ∂αh) − σ 2

2(λ + μ)

]
+ Sk=0

int , (10)
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where

Sk=0
int = A

∫ 1/T

0
dτ

[
λ

8

(
f 0
αα (τ ) − f̄ 0

αα

)2

+ μ

4

(
f 0
αβ (τ ) − f̄ 0

αβ

)(
f 0
αβ (τ ) − f̄ 0

αβ

)]
, (11)

f 0
αβ (τ ) = A−1

∫
d2x(∂αh(x, τ ) · ∂βh(x, τ )), and f̄ 0

αβ =
T

∫ 1/T
0 dτ f 0

αβ (τ ). The average strain of the membrane in
this ensemble is 〈vαβ〉 = vδαβ , with v = σ/(2(λ + μ)) −
〈∂αh · ∂αh〉/4 [11,17,49]. It is the sum of a Hookean
contribution σ/(2(λ + μ)), controlled by the bulk modulus
B = λ + μ, and a negative fluctuation term, proportional
to 〈∂αh · ∂αh〉, which is nonvanishing also for σ = 0, and
which represents the tendency of the projected in-plane area
to contract due to statistical fluctuations of the layer in the
out-of-plane direction.

The infinite-range interaction Sk=0
int is scaled by an over-

all factor A−1 and, by its definition, it vanishes when the
Matsubara-frequency transfer between the composite opera-
tors f 0

αβ (τ ) is zero. These two facts together imply that, in
the thermodynamic limit A → ∞, Sk=0

int only contributes via
diagrams of the type

(12)

which (a) become disconnected when any zero-mode inter-
action line (represented by dashed lines) is cut and (b) have
nonzero frequency transfer through all dashed lines. (The
interaction Sk 	=0

int , denoted by wiggly lines can enter, instead,
in arbitrary topology without suppressing the graphs). The
diagrams (12), however, are only relevant for zero-mode cor-
relation functions at finite frequency transfer and never enter
as subgraphs of other correlation functions. For subsequent
calculations in this work, we can thus safely neglect Sk=0

int .
As a result, we can thus consider an effective theory for h

fluctuations of the form:

Seff =
∫ 1/T

0
dτ

∫
d2x

{
ḣ2

2
+ 1

2
(∂2h)2

+ σ

2
(∂αh)2 − σ 2

2B

}
+ Sk 	=0

int . (13)

By a Hubbard-Stratonovich decoupling of the long-range in-
teraction [55], the model can be expressed equivalently via the
local action

Seff =
∫ 1/T

0
dτ

∫
d2x

{
ḣ2

2
+ 1

2
(∂2h)2 + σ

2
(∂αh)2

+ 1

2Y
(∂2χ )2 + iχK − σ 2

2B

}
, (14)

where χ (x, τ ) is a mediator field and K (x, τ ) = (∂2h · ∂2h −
∂α∂βh · ∂α∂βh)/2 is, for small fluctuations, the local Gaussian
curvature. The term −σ 2/(2B) is a constant independent of
the fluctuating fields h, χ , and does not contribute to statistical
averages. The only coupling constant in the model is thus the
Young modulus Y .

By construction, the interaction-mediating field χ must be
considered as a field with Fourier components only at nonzero
momentum k 	= 0. This implies that the tadpole graphs

(15)

must be removed from the perturbative expansion, as in the
theory of classical membranes [5].

IV. RENORMALIZATION AND RG EQUATIONS
AT ZERO TEMPERATURE

A. RG for correlation functions

At T = 0, the model is infinite in both spacial and temporal
dimensions, and its renormalization can proceed in anal-
ogy with other bulk theories with weighted power counting
[35–40]. In the representation (14), the basic elements defin-
ing diagrams in perturbation theory are the bare propagators
of h and χ ,

G
ω2 + k 4

k

Y
4

σk2+= = ,ij
δ ij(ω, k)( 0)

F (ω, k) = ,=(0)

(16)

and the vertex

ω2, k2

ω3, k3

ω1, k1

, k2

, k2, k3k( (k1 .  k2)2 (k2 . k3)2

(k3 . k1) .2

γ ) = =
=

1 k 1
2k 2

2

k 3
2k 1

2

k 2
2k 3

2

(k )iγ= 1 , k3

(17)

The behavior of Feynman integrals under the rescaling
k → λk, ω → λzω = λ2ω shows that the weighted power-
counting dimension [38] of a one-particle irreducible (1PI)
diagram with I internal lines, V vertices, and L loops is (2 +
z)L − 4I + 4V = 4(L − I + V ) = 4, independently of the or-
der of perturbation theory. This ensures that the model is
power-counting renormalizable. A potential danger for renor-
malizability [39] is that the propagator F (0)(ω, k), being
ω-independent, is not suppressed in the limit ω → ∞ at k
fixed. However, this does not create difficulties, because it can
be checked that in any diagram, all frequency integrals can be
performed first and are convergent [56].

To complete the proof of renormalizability, it would be
necessary to derive a generalization of the Weinberg theorem
[57,58], ensuring the equivalence between power-counting
convergence and true convergence in multiloop diagrams. We
will assume that this property remains valid in the model
considered in this work.

The ultraviolet divergences of correlation functions can be
removed by introducing an arbitrary subtraction scale M, a
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renormalized coupling YR, and a renormalized action

S (R)
eff =

∫
dτ

∫
d2x

{
ḣ2

2
+ Z

2
(∂2h)2 + σ

2
(∂αh)2

+ 1

2KY
(∂2χ )2 + iχK − σ 2

2B

}
, (18)

equipped with two logarithmically divergent counterterms
Z (YR,�/M ) and KY (YR,�/M ). This particularly simple form,
with only two independent divergences, follows from the fact
that the terms ḣ2/2, σ (∂αh)2/2, and the interaction iχK are
not renormalized. Indeed, due to the structure of the vertex
(17), it is possible to factorize, from any 1PI diagram, two
powers of the spacial momentum of each external leg. There-
fore, the perturbative corrections to the self-energy of flexural
fields cannot generate divergences proportional to ω2 or to k2,
but only proportional to k4, which contribute to the renormal-
ization of Z . The possibility to factorize two powers of each
external momentum also implies that loop corrections to the
three-field vertex are superficially convergent, and thus the
interaction iχK does not require an independent counterterm.
An identical mechanism occurs in the ε-expansion of classical
membranes in dimension D = 4 − ε [13,55]. In principle, the
one-point function 〈∂2χ〉 constitutes a further independent
divergence, but since χ is a field with components only at
nonzero momentum k 	= 0, this divergence is unphysical and
has no effect on correlation functions.

Equation (18) implies the following relations between bare
and renormalized quantities

Seff [h, χ,Y, σ ] = S (R)
eff [hR, χR,YR, σR] + constant,

h(x, τ ) = Z1/4hR(x, τR ), χ (x, τ ) = Z−1χR(x, τR ),

τ = Z1/2τR, σ = Z−1σR, Y = Z−3/2KY , (19)

and, according to standard techniques [35], the following RG
equations for 1PI correlation functions in momentum space

[
�

∂

∂�
+ β(Y )

∂

∂Y
− 1

2
(n − 4� + 2)η + η

n∑
i=1

ωi
∂

∂ωi

+ η

�∑
j=1

ω′
j

∂

∂ω′
j

+ 2ησ
∂

∂σ

]
�

(n,�)
i1..in

(ωi, ki; ω
′
j, k′

j ) = 0.

(20)

In Eq. (20), � is the microscopic ultraviolet momentum cutoff
and �(n,�) denotes the bare (unrenormalized) 1PI correlation
function with n external h legs and � external χ legs. The RG
flow function β = �∂Y/∂� and the anomalous dimension
η = − 1

2�∂ ln Z/∂� depend only on the bare dimensionless
coupling Y .

By an explicit computation of the one-loop divergences in
the self-energies of χ and of h for σ = 0, we find [24,26,29]

3Y
32π

128π

3dc

4Σ =ij δ k ln Λ ,

4k ln Λ ,

ij(ω, k)(h)

Σ =(0, k)(χ)

(21)

where dc = (d − 2) is the number of components of
the h field. Applying the RG equations to G−1

i j (ω, k) =
�

(2,0)
i j (ω, k) = ω2 + k4 + σk2 + �(h)(ω, k) and F−1(0, k) =

�(0,2)(0, k) = k4/Y + �(χ )(0, k) shows that, at leading order,

β(Y ) = 3η(Y )Y + 3dc

128π
Y 2, η(Y ) = 3

64π
Y. (22)

These RG functions imply that Y is marginally irrelevant: the
theory is attracted to weak coupling at large length scales.
Equations (22) are consistent, in a different scheme, with the
earlier perturbative results of Refs. [24,26] and also with the
weak-coupling limit of the nonperturbative RG equations de-
rived in Ref. [25].

B. Gibbs free energy

The Gibbs free energy per unit area at zero tempera-
ture, G0 = −A−1 limT →0(T lnZ ), requires the introduction of
additional counterterms to the field-independent part of the
action. Since σ has power-counting dimension [σ ] = 2, the
required counterterms in the Lagrangian are a polynomial
a0 + a1σ + a2σ

2/2, where a0 diverges as �4, a1 as �2, and
a2 diverges logarithmically. By working within a massless
scheme [35,38], a0, a1, and a2 can be chosen to be indepen-
dent of the tension σ .

Taking into account these additional renormalizations, the
renormalized action reads

S (R)
eff =

∫
dτ

∫
d2x

{
ḣ2

2
+ Z

2
(∂2h)2 + σ

2
(∂αh)2

+ 1

2KY
(∂2χ )2 + iχK + a0 + a1σ+1

2
(a2 − 1/B)σ 2

}
.

(23)

To discuss RG equations it is convenient to separate G0 =
Vel + �G0, where Vel = −σ 2/(2B) is the elastic Hookean con-
tribution and �G0 is the fluctuation part. The advantage of this
separation is that �G0 depends only on the Young modulus Y
and not on the bulk modulus B.

The fluctuation free energy �G (R)
0 , calculated using the

action (23), is finite for � → ∞ at fixed YR and M. The
physical free energy �G0, computed from the bare action (14)
is related to �G (R)

0 by

Z1/2�G0(Y, Z−1σ,�)

= �G (R)
0 (YR, σ, M ) − a′

0 − a1σ − a2

2
σ 2 (24)

(a′
0 differs from a0 because it receives contributions from the

path-integral measure during the change of variables h → hR,
χ → χR). The relation (24) and the finiteness of �G (R)

0 imply
an inhomogeneous RG equation for the physical Gibbs free
energy[

�
∂

∂�
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
− η

]
�G0(Y, σ,�)

= b0 + b1σ + b2

2
σ 2. (25)

The constants b0, b1, and b2 are independent of σ in
the massless scheme and cannot depend on the arbitrary
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subtraction scale M. Thus they have the form b0 = b̄0(Y )�4,
b1 = b̄1(Y )�2, and b2 = b̄2(Y ).

V. RG FOR LOW-TEMPERATURE
THERMODYNAMIC QUANTITIES

At finite temperatures, the continuum frequency ω is
replaced by discrete bosonic Matsubara frequencies ωn =
2πT n. As a result, even for an infinitesimal T , the perturbative
expansion at zero tension σ = 0 breaks down due to infrared
(IR) divergences. The IR problems arise from the ωn = 0
component of the flexural propagator G(0)

i j = δi j/(ω2
n + k4),

which induces singularities when integrated over the two-
dimensional spacial momenta. The physical origin of these
divergences is the following: in the limit k → 0, the sys-
tem behaves as a classical membrane [25]. For classical
thermal fluctuations, anharmonic effects do not induce log-
arithmic corrections but, rather, power-law renormalizations
[1,2,4–6,13,50]. The dramatic power-law singularities of the
classical theory cannot be captured by a simple perturbative
treatment, but require more detailed solutions, for example
within the framework of the self-consistent screening ap-
proximation [13], the nonperturbative RG [8,25], the large-d
expansion [3,50], or the ε expansion [4,15,18,19,55].

Similar difficulties emerge in finite-size scaling problems
and in other finite-temperature quantum field theories. A stan-
dard strategy to bypass the problem of IR singularities consists
in integrating out modes with n 	= 0 and in deriving an effec-
tive field theory for modes with n = 0, to be solved by more
exact methods [35].

The same strategy can be applied to the membrane action
(14), with, however, a difference compared to the standard
case: since the χ propagator F (0)(ω, k) = Y/k4 does not de-
pend on the frequency ω, it is singular at small k not only at
ωn = 0 but, in fact, for all Matsubara frequencies ωn 	= 0. As a
result, subtracting the modes ωn = 0 does not introduce an IR
cutoff to Feynman diagrams. This property is a consequence
of the neglection of the kinetic energy of in-plane phonons.
The singularity of F (0)(ω, k), however, is neutralized by the
factors k2 attached to the vertices (17) and, therefore, the IR
finiteness is still valid.

We can thus proceed as follows: we separate h(x, τ ) =
h′(x, τ ) + H(x), where H(x) = T

∫ 1/T
0 h(x, τ ) is the mode

with zero Matsubara frequency and h′(x, τ ) the sum of all
other modes with ωn 	= 0. We then integrate out h′(x, τ ) and
all degrees of freedom of χ (x, τ ) (including the ωn = 0 mode
of χ ). This integration can be performed perturbatively with-
out encountering IR divergences because in all h′ propagators
the finite frequency ωn 	= 0 provides an IR cutoff and in all χ

propagators the singularity Y/k4 of the propagator is compen-
sated by a power k4 coming from the vertex (17). Although
the singularity of F (0)(ω, k) does not introduce divergences,
it still manifests itself in the fact that the effective theory for
H(x) is highly nonlocal.

In order to disentangle modes which generate IR singulari-
ties from degrees of freedom which generate UV divergences,
it is also convenient to separate H(x) = H1(x) + H2(x) into a
slowly varying field H1(x), with momenta |k| < �1 and a fast
field H2(x) with momenta in the shell �1 < |k| < �, where
�1 is an arbitrary wave-vector scale much smaller than �.

Integrating out h′, χ , and H2 can be done perturbatively and
leaves us with an effective classical Hamiltonian

H[H1(x);Y, σ, T,�,�1]

= −T ln
∫

[dh′dH2dχ ]e−S[H1+H2+h′,χ]. (26)

involving only slowly varying long-wavelength modes.
A crucial observation in the theory of finite-size scaling

and other finite-temperature field theories is that the coun-
terterms which make the theory finite at T = 0 will also
formally remove all ultraviolet divergences from observables
at nonzero T [35,41]. It is natural to assume that the same
property remains valid for the membrane action. We can thus
conclude that if we started from the action

S (R)
eff =

∫ 1/T

0
dτ

∫
d2x

{
ḣ2

2
+ Z

2
(∂2h)2 + σ

2
(∂αh)2

+ 1

2KY
(∂2χ )2 + iχK+a0 + a1σ + 1

2
(a2 − 1/B)σ 2

}
,

(27)

equipped with the same zero-temperature counterterms Z , KY ,
a0, a1, and a2 which appear in Eq. (23), after a perturbative
integration over h′, χ , and H2, and a final nonperturbative
integration over H1, we would arrive at a renormalized Gibbs
free energy per unit area G (R) = −A−1T lnZ which remains
finite for � → ∞.

After separation of G = Vel + �G into the Hookean part
−σ 2/(2B) and the fluctuation part �G, the physical fluctua-
tion free energy �G, computed from the bare action (14) is
related to the renormalized �G (R) by the equation

�G (R)(YR, σ, T, M ) = Z1/2�G(Y, Z−1σ, Z−1/2T,�)

+ a′
0 + a1σ + a2

2
σ 2. (28)

From Eq. (28) follows an inhomogeneous RG equation for the
bare Gibbs free energy:[
�

∂

∂�
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ ηT

∂

∂T
− η

]
�G(Y, σ, T,�)

= b0 + b1σ + b2

2
σ 2. (29)

In Eq. (29), β(Y ), η(Y ), and the coefficients of the inhomo-
geneous part b0 = b̄0(Y )�4, b1 = b̄1(Y )�2, and b2 = b̄2(Y )
are the same RG coefficients which appear in the zero-
temperature equation (25) and, in particular, are temperature-
independent.

As a remark, we note that the RG equations discussed
above, as in any renormalizable theory [35], keep track of all
terms which either diverge or remain finite when � → ∞.
Terms which vanish for large cutoff (for example, a cor-
rection σ/�2) are instead neglected. As a result, relations
such as Eq. (29) are valid asymptotically when the cutoff �

is much larger than other scales in the problem: � � σ 1/2,
� � T 1/2. In standard units of measurement the condition
� � T 1/2 implies that the temperature T̃ must be much
smaller than the Debye temperature of flexural phonons T̃d =
h̄κ̃1/2�2/(ρ̃1/2kB).
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RG equation for the effective classical Hamiltonian

More generally, the effective classical Hamiltonian (26)
must, by itself, satisfy a renormalization group equation[

�
∂

∂�
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ ηT

∂

∂T

− η

2

∫
d2x H1(x) · δ

δH1(x)
+ η

]
�H

= A

(
b0 + b1σ + b2

2
σ 2

)
, (30)

where �H = H + Aσ 2/(2B) is the fluctuation energy, with
the Hookean contribution AVel = −Aσ 2/(2B) subtracted.
Eq (30) expresses that the cutoff dependence of H is
entirely carried by the zero-temperature counterterms Z ,
KY , a0, a1, a2.

For the direct validity of Eq. (30), it is essential that all
high-energy modes are integrated out, as in Eq. (26). If, for
example, we did not integrate out the large-momentum modes
H2(x) with zero Matsubara frequency, we would have moved
some of the UV infinities from the integrated modes to the
degrees of freedom yet to be integrated. In this case, H would
have included additional counterterms [41].

VI. RESULTS

In this section, we derive explicit consequences of the RG
relations for various statistical and thermodynamic quantities.

A. Two-point correlation functions at T = 0, σ = 0, and ω = 0

The interacting Green functions Gi j (ω, k) of the flexural
field is the inverse of the 1PI function �

(2,0)
i j (ω, k). For T = 0,

σ = 0, and ω = 0, Gi j (0, k) = [�(2,0)
i j (0, k)]−1 satisfies, as a

particular case of Eq. (20), the RG equation[
�

∂

∂�
+ β(Y )

∂

∂Y
− 2η

]
G−1

i j (0, k;Y,�) = 0. (31)

The renormalization group equations can be solved, in an
usual way [35], by introducing a running coupling y(�′) and
an amplitude renormalization z(�′) which, starting from the
initial values y(�) = Y , z(�) = 1, evolve with the floating
cutoff scale �′ according to the flow equations

�′ dy(�′)
d�′ = β(y(�′)),

�′ d ln z(�′)
d�′ = −2η(y(�′)). (32)

The one-loop RG flow gives

y(�′) = Y

1 + 3(dc+6)Y
128π

ln �
�′

,

z(�′) =
[

1 + 3(dc + 6)Y

128π
ln

�

�′

]θ

=
(

Y

y(�′)

)θ

, (33)

where θ = 4/(dc + 6) is the quantum exponent.
To calculate Gi j (0, k), we can integrate the RG flow

down to a scale �′ ≈ k. Since y(�′) flows to small val-
ues as �′ is reduced (it is marginally irrelevant), we can

use perturbation theory and take the zero-order approxi-
mation G−1

i j (0, k; y(�′),�′) = k4. The scaling relation (31)
then implies Gi j (0, k;Y,�) ≈ δi j/(z(k)k4). By similar ar-
guments, we find that the two point function F (0, k) =
〈χ (0, k)χ (0,−k)〉 of the auxiliary field χ scales as F (0, k) ≈
z3/2(k)y(k)/k4.

The scaling of Gi j (0, k) shows that z(k) plays the role of
a bending-rigidity renormalization and z3/2(k)y(k) the role of
an effective screened Young modulus. Returning to standard
units, these results can thus be interpreted as a renormalization
of the bending rigidity

κ̃ → κ̃r (k) =
[

1 + g0 ln
�

k

]θ

κ̃ (34)

and of the elastic Young modulus Ỹ = 4μ̃(λ̃ + μ̃)/(λ̃ + 2μ̃)

Ỹ → Ỹr (k) =
[

1 + g0 ln
�

k

]3θ/2−1

Ỹ , (35)

where

g0 = 3(dc + 6)Y

128π
= 3(dc + 6)h̄Ỹ

128π (ρ̃κ̃3)1/2
(36)

is the “quantum coupling constant” [26]. The bending rigid-
ity gets stiffened by interactions and scales for k → 0 as
[ln(�/k)]θ . The Young modulus Yr (k), instead, is softened
by fluctuations and behaves in the long-wavelength limit as
[ln(�/k)]3θ/2−1 = [ln(�/k)]−dc/(6+dc ).

The same behavior has been predicted for quantum mem-
branes in Refs. [25,26]. An identical logarithmic singularity
has also been found, for dc = 1, by Ref. [37] in the context of
lamellar stacks of membranes.

The logarithmic renormalizations induced by quantum
fluctuations are nonvanishing at all momenta and do not
exhibit any characteristic crossover scale, due to the sim-
ple structureless form of the beta function β(Y ) ∝ Y 2. This
contrasts with the anharmonic renormalizations in classical
membranes [1,5,13,17,49], which present a crossover between
harmonic behavior for |k| � qG and anomalous power-law
scaling for |k| � qG. Equations (34) and (35) are valid at all
momenta well below to the cutoff scale ( for |k| ≈ �, the
continuum approximation breaks down). Using the explicit
expression (35), we can estimate that the momentum scale
scale at which the running coupling has reached half of its bare
value is approximately |k| ≈ k1 = �e−1/g0 . The momentum
scale k1, however, does not mark a special point in the k
dependence of correlation functions.

Ultrasoft scaling of G−1(0, k)

From the result G−1
i j (0, k) ≈ k4[ln(�/k)]θ it follows, in

particular, that the ultrasoft behavior limk→0 G−1
i j (0, k)/k2 =

0 characteristic of unstressed membranes is preserved by an-
harmonic effects. This result is consistent with the general
Ward identity limk→0 G−1

i j (0, k)/k2 = σ , which is a conse-
quence of rotational invariance [49] and which, here, can be
traced to the linearized rotational symmetry (7) of the effective
model (2).

We note, instead, that this limiting behavior contrasts
with the derivations in Refs. [31,32], which proposed that,
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even in an unstressed membrane, flexural phonons exhibit a
finite acoustic sound velocity v and a linear dispersion rela-
tion ω = v|k| for k → 0. Within the local elasticity model
(without long-range interactions) the linear dispersion re-
lation can only emerge when an external source, such as
an in-plane stress, breaks the rotational symmetry explic-
itly. In the harmonic approximation, this follows from the
fact that in a rotationally invariant, unstressed membrane,
a Lagrangian term proportional to (∂αh)2/2 cannot appear
individually, but only together with in-plane terms in an over-
all coupling σAUαα to the strain tensor Uαα = (∂αr · ∂αr −
2)/2. The contribution σAUαα represents a coupling to the
change of the total area, rather than the in-plane area [59],
and thus it is allowed without breaking the symmetry. How-
ever, Uαα contains a term linear in ∂αuα and, thus, shifts
the equilibrium configuration at which the energy must be
expanded. After expansion at the true energy minimum, the
sound velocity term must disappear. Indeed, a term linear
in σAUαα can always be fully removed from the action by
a change of variables r → ζr [5], which is allowed for a
membrane with free boundaries. After ζ is chosen in such
way that terms linear in ∂αuα disappear, the entire operator
Uαα drops from the action, showing that the inverse Green
function behaves as G(0)−1

i j (0, k) ∝ k4. Beyond the harmonic
approximation, the perturbative corrections can be assem-
bled in the effective potential �, generating functional of
one-particle irreducible correlation functions, which, by Ward
identities, has the same symmetry of the action [35]. Be-
cause phonon excitations are gapless, the interacting Green
function G−1

i j (0, k) can vanish slower than k4 as a result of
singular diagrammatic contributions which generate a nonan-
alytic dependence on k. However, the rotational symmetry
forbids terms regular in k and proportional to k2. For ex-
ample, the first-order perturbative correction for classical
membranes in two dimensions [2,7] consists in a diagram
suppressed by an overall factor k4 but multiplied by a sin-
gular term 1/k2 arising from the loop integration. Although
formally the contribution vanishes as k2, its origin is dif-
ferent from a regular contribution directly proportional to
k2. Furthermore, the singular first-order term proportional
to k2 is, in fact, the first contribution to an infrared-
divergent series which requires a resummation for example
by the self-consistent screening approximation [13,60], or the
ε expansion [4,18,55]. After resummation, the interacting cor-
relation function for classical membranes can be shown to
behave as k4−η∗ , where η∗ is an universal exponent [4,13,60].
The value of η∗ has been computed by several complementary
techniques [4,8,13,15,18,19,25,50,55,60] (see also references
in Ref. [55]) and, despite some scatter between different meth-
ods, is usually found to be approximately η∗ � 0.8. As a
result, the full interacting Green function G−1 vanishes faster
than k2.

The same conclusions hold in presence of the linearized
rotational invariance (7), which forces the action to depend
on (∂αh)2 only via the linearized strain tensor uαβ . (See
Refs. [4,6,37] for a discussion of Ward identities). Terms
linear in uαα can be fully removed by a change of variables
uα → uα + εxα , a shift which is automatically performed
when integrating over zero modes in the fixed-stress ensemble
(see Sec. III).

The prediction of a self-energy correction �(k) ≈ k2�2,
derived in Ref. [31], resulted from a theory in which the
in-plane kinetic energy was kept but the strain tensor was
approximated. This approximation breaks explicitly both the
full and the linearized rotational symmetry, leading to a result
inconsistent with the Ward identities.

B. Average 〈ĥ(k)ĥ(−k)〉 at T = 0

The quantum-mechanical average 〈ĥ(k)ĥ(−k)〉 is given
by the integral

∫
dω/(2π )G(ω, k) over all frequencies. The

scaling relations (20) and the one-loop approximation imply
that 〈ĥ(k)ĥ(−k)〉 ≈ 1/(z1/2(k)k2).

C. Anomalous Hooke’s law at T = 0

The average strain of the membrane 〈∂αuβ〉 = vδαβ can be
computed from the thermodynamic relation v = − 1

2 (∂G/∂σ ).
Thus, it is the sum v = σ/(2B) + �v of the Hookean term
and the fluctuation part �v = − 1

2 (∂�G/∂σ ) = −〈(∂αh)2〉/4.
The RG equation (29) for the Gibbs free energy implies that,
at zero temperature[

�
∂

∂�
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ η

]
�v

= −1

2
(b̄1(Y )�2 + b̄2(Y )σ ). (37)

The inhomogeneous coefficients b̄1(Y ) and b̄2(Y ) are nonzero
already in the noninteracting model, because the Gibbs free
energy at T = 0 (equivalent to the zero-point ground state
energy) of free flexural phonons is

�G0 = dc

2

∫
d2k

(2π )2

√
k4 + σk2

= C0 + dc

16π
σ�2 − dc

32π
σ 2 ln � + finite, (38)

and already contains divergences for � → ∞. Matching
Eq. (38) with the RG equation (25), we deduce b̄1(Y ) =
dc/(8π ) + O(Y ) and b̄2(Y ) = −dc/(16π ) + O(Y ). Taking
into account that the expansion of β and η start, respectively,
at orders Y 2 and at order Y , it can be checked that the general
solution of the RG equation (37) order by order in Y has the
general structure

v = v0 + σ

2B
+

∞∑
k=0

k+1∑
�=0

ak�σY k (ln(�2/σ ))�. (39)

The first term v0 represents the average strain at zero imposed
stress, and the second two terms describe the response to
external tension.

By solving the RG equation (37) in the leading-logarithm
approximation [35] (keeping only the most singular terms,
with � = k + 1), we find

v − v0 = σ

2B
+ 4σ

3Y
[(z(σ

1
2 ))

dc
4 − 1], (40)

where z(σ 1/2) is the running amplitude defined in Eq. (33),
evaluated at scale �′ = σ 1/2.

Eq. (40) is consistent, at the leading logarithm level, with
results obtained by other methods in Refs. [26,37], and shows
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that, even at T = 0, the stress-strain relation is anomalous.
Due to quantum fluctuations of flexural degrees of freedom,
the macroscopic bulk modulus Beff = 1

2∂σ/∂v is not a con-
stant, but a slowly varying function of the applied tension:

1

Beff (σ )
≈ 1

B
+ 8

3Y

[(
1 + 3(dc + 6)Y

256π
ln

�2

σ

) dc
dc+6

− 1

]
.

(41)

[In Eq. (41) we neglected a contribution from the derivative of
z(σ 1/2), which does not contribute to the leading-logarithmic
singularities.] In the limit of zero tension σ → 0, the bulk
modulus vanishes as Beff (σ ) ≈ [ln(�2/σ )]−dc/(dc+6).

The physical origin of this singularity is the same which
gives rise to the anomalous Hooke response in classical ther-
mally fluctuating membranes [6,11,22,49]: for small σ the
dominant effect of the applied tension is not a stretching of
the interatomic distance, but rather a “flattening” of the distri-
bution of out-of-plane flexural fluctuations. The singularity,
in particular, is much weaker than the power-law-divergent
anomalous Hooke’s law characteristic of classical thermal
fluctuations, derived in Refs. [6,11,49].

Similarly to the momentum dependence of κ̃ (k) and Ỹ (k),
the stress-strain relation does not exhibit any characteristic
crossover, reflecting the simple form of the RG beta function
β ∝ Y 2. The strain response is thus given by a linear Hooke
law corrected by logarithmic factors, for all values of the
tension. Equations (40) and (41) break down, however, when
σ reaches the cutoff scale σ ≈ �2. In conventional units, this
corresponds to a value of the tension σ̃ = κ̃�2. The contribu-
tion of quantized out-of-plane fluctuations dominates over the
regular Hookean response only at exponentially suppressed
values of the tension σ � σ1 ≈ �2e−2/g0 , which for parame-
ters characteristic of graphene and two-dimensional materials
(see Sec. VII) corresponds to an unphysically small stress.
However, the logarithmic corrections induced by out-of-plane
motion are nonzero also at much larger values of the stress,
and do not present any qualitative change of behavior near
σ = σ1. A crossover is expected, instead, for membranes of
finite size, since the linear dimension of the system then
provides an independent scale. The infinite-size predictions
can be assumed to remain valid for σ � l−2, where l is the
characteristic linear size.

D. Consequences of renormalizability
on low-temperature thermodynamics

Differentiating Eq. (29) with respect to the temperature
T , annihilates the inhomogeneous terms b0 + b1σ + b2σ

2/2,
which are temperature-independent. As a result we find a
homogeneous renormalization group equation for the entropy
per unit area S = −∂G/∂T |σ :

[
�

∂

∂�
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ ηT

∂

∂T

]
S = 0, (42)

valid in the limit of small tension σ � �2 and small tempera-
ture T � �2. By further differentiation with respect to T and
to σ we find RG equations for the specific heat at constant ten-

sion C = T ∂S/∂T |σ and for the thermal expansion coefficient
α = 2∂v/∂T |σ = ∂S/∂σ |T :[

�
∂

∂�
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ ηT

∂

∂T

]
C = 0, (43)

[
�

∂

∂�
+ β(Y )

∂

∂Y
+ 2ησ

∂

∂σ
+ ηT

∂

∂T
+ 2η

]
α = 0. (44)

By using the standard method of characteristics [35], the so-
lutions can be written as

S(Y, σ, T,�) = S(y(�′), z−1σ, z−1/2T,�′),

C(Y, σ, T,�) = C(y(�′), z−1σ, z−1/2T,�′),

α(Y, σ, T,�) = z−1α(y(�′), z−1σ, z−1/2T,�′), (45)

where y(�′) and z = z(�′) are the zero-temperature running
couplings introduced in Sec. VI A.

Some general consequences of the RG equations, however,
become more manifest if the solutions are expressed in an-
other well-known form [61]. By rewriting the definitions (32)
of the flow of running coupligs in the integral form

ln
�′

�
= ϕ(y(�′)) − ϕ(Y ), z(�′) = e f (y(�′ ))

e f (Y )
, (46)

ϕ(x) =
∫ x du

β(u)
, f (x) = −2

∫ x

du
η(u)

β(u)
, (47)

it can be checked that the dimensionless quantities

x1 = ln
�2

T
− 1

2
f (Y ) − 2ϕ(Y ),

x2 = σ

T
e

1
2 f (Y ), (48)

are RG-invariant [they do not change under the replacements
� → �′, Y → y(�′), T → z−1/2(�′)T , σ → z−1(�′)σ ].

Taking into account that α is dimensionless, while S and
C have the dimension of an inverse area, the scaling relations
can then be written in the form, equivalent to Eq. (45),

S(Y, σ, T,�) = T e
1
2 f (Y )L(x1, x2),

C(Y, σ, T,�) = T e
1
2 f (Y )M(x1, x2),

α(Y, σ, T,�) = e f (Y )N (x1, x2), (49)

where L, M, and N are fixed functions of two parameters. The
thermodynamic relations between S, C, and α imply

M(x1, x2) =
[

1 − ∂

∂x1
− x2

∂

∂x2

]
L(x1, x2),

N (x1, x2) = ∂L(x1, x2)

∂x2
. (50)

The detailed form of the functions L, M, and N is not
fixed by the scaling relations, but requires a full solution of
the problem, including an analysis of the long-wavelength
degrees of freedom dominated by classical thermal fluctua-
tions. However Eq. (49), which are general consequences of
the renormalizability of the zero-temperature theory, already
have a predictive content, even without a full solution of the
problem. They imply that, in the region σ � �2, T � �2

thermodynamic quantities depend on the microscopic material
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parameters � and Y only via overall scale factors independent
of σ and T .

For example, the form of the thermal expansion coefficient
at zero tension

α = e f (Y )N (ln(�2/T ) − f (Y )/2 − 2ϕ(Y ), 0) (51)

implies that, in a logarithmic plot of ln α versus ln T , curves
corresponding to different materials must have the same shape
and differ only by rigid shifts along horizontal and vertical
Cartesian axes.

These universality properties express, in the ther-
modynamical behavior, a standard consequence of
renormalizability [61].

E. Finite-temperature thermodynamics of an unstressed
membrane: Thermal expansion coefficient

A more detailed prediction of the temperature dependence
of thermodynamic quantities requires a complete theory of all
degrees of freedom, from short-wavelength modes, frozen by
quantization, to long-wavelength modes, controlled by ther-
mal fluctuations.

To derive explicit expressions we use a combination of
the scaling relations (45) with approximations analog to those
described in Ref. [26].

The theories of Refs. [25,26] indicate that, for tem-
peratures much smaller than the Debye temperature T̃d ,
correlation functions exhibit a double crossover between dif-
ferent regimes. For large momenta |k| � qT flexural modes
have fluctuations of zero-point character. In an intermedi-
ate window of length scales qG � |k| � qT the system is
expected to exhibit weakly coupled harmonic fluctuations
and a classical statistical distribution. Finally in the long-
wavelength region |k| � qG, fluctuations become strongly
anharmonic and are controlled by the interacting fixed point
characteristic of classical membranes [1,4,5,8,13,17].

The crossover scale qT separating zero-point from ther-
mally activated regimes, can be estimated [26], as the
wavelength at which the zero-temperature inverse Green func-
tion G−1

i j (0, k) ≈ z(k)k4 becomes of the order of T 2:

z(qT )q4
T � T 2. (52)

For a fully classical membrane with bending rigidity κ̃1,
Young modulus Ỹ1, and temperature T̃1, the Ginzburg mo-
mentum qG at which harmonic fluctuations cross over to
strongly coupled nonlinear fluctuations is [1,5,13,17,49] qG �
(3kBT̃1Ỹ1/(16πκ̃2

1 ))1/2. In the quantum problem, it can be
assumed that the same crossover criterion remains valid,
with T̃1 = T̃ and that κ̃1 = κ̃r (qT ), Ỹ1 = Ỹr (qT ) are the renor-
malized parameters (34) and (35), corrected by zero-point
anharmonic effects, evaluated at the renormalization scale qT

[26]. In rescaled units, the corresponding crossover scale is

q2
G � 3Ty(qT )

16π (z(qT ))1/2
. (53)

With characteristic parameters of graphene (see Sec. VII), it
can be verified that (qG/qT )2 = 3y(qT )/16π is small, con-
firming the consistency of a region qG � |k| � qT .

By using Eq. (45), we can estimate the thermal expansion
of the quantum membrane as

α(Y, T,�) = (z(qT ))−1α(y(qT ), z(qT )−1/2T, qT ). (54)

In principle, the zero-temperature RG flow remains valid only
as far as �′ � z−1/2(�′)T , but, in a first approximation, it is
justified to set directly �′ = qT = z−1/2(qT )T .

After the cutoff has been reduced from the micro-
scopic scale to the thermal scale qT , we can estimate α

by neglecting quantum thermal effects and by identifying
α(y(qT ), z−1/2(qT )T, qT ) with the thermal expansion coeffi-
cient of a classical membrane with the standard Hamiltonian
[1,2,5,25,26]

Hcl[H1(x)] =
∫

d2x

[
κcl

2
(∂2H1)2

+ Ycl

8

(
PT

αβ (−∂2)(∂αH1 · ∂βH1)
)2

]
.

(55)

In terms of the discussion of Sec. V, this corresponds to
approximating H[H1], the Hamiltonian for modes with zero
Matsubara frequency, with Eq. (55), which is its tree-level
approximation (without loop corrections).

In particular, we must consider a classical membrane with
Young modulus Ycl = y(qT ), temperature Tcl = z−1/2(qT )T ,
bending rigidity κcl = 1, and a large-momentum cutoff
�cl = qT .

Thermal fluctuations in classical statistical mechanics
have been investigated extensively [1,2,5,13,15,17,49,50,55].
The momentum-dependent correlation function G(cl)

i j (k) =
〈hi(k)h j (−k)〉 is predicted to behave as

G(cl)
i j (k) = δi j

{ Tcl
κclk4 , for qG � |k| � �cl,

Tcl
κclk4−η∗ qη∗

G
for |k| � qG,

(56)

where η∗ is an universal exponent and qG =
(3TclYcl/(16πκ2

cl ))
1/2.

Calculating directly the extension factor via the relation

〈vcl〉 = −1

4
〈(∂αh)2〉 = −1

4

∫
d2k

(2π )2
Gii(k)

� − dcTcl

8πκcl

[ ∫ qG

0

dk

qη∗
G k1−η∗

+
∫ �cl

qG

dk

k

]

= − dcTcl

8πκcl

[
1

η∗
+ ln

�cl

qG

]
(57)

and differentiating with respect to Tcl at �cl, Ycl and κcl

fixed we find the expression for the thermal expansion
coefficient [62]

αcl = 2
∂〈vcl〉
∂Tcl

= − dc

4πκcl

[
1

η∗
− 1

2
+ ln

�cl

qG

]
. (58)

Identifying, in rescaled units, α = (z(qT ))−1αcl, and setting
the effective classical parameters to the renormalized values
we then find an expression for the thermal expansion coeffi-
cient of quantum membranes

α = − dc

4πz(qT )

[
1

η∗
− 1

2
+ 1

2
ln

(
16π

3y(qT )

)]
. (59)
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This expression, when z(qT ) and y(qT ) are replaced with the
one-loop running couplings

y(qT ) = Y

1 + 3(dc+6)Y
128π

ln �
qT

, z(qT ) =
(

Y

y(qT )

)θ

, (60)

coincides with the result derived in Ref. [26], up to a numeri-
cal factor.

The temperature dependence of α is entirely driven by
the renormalization factors y(qT ) and z(qT ). As a result, the
thermal expansion coefficient is a slow, logarithmic function
of T . In the limit T → 0, α tends to zero as

αT ≈ − dc

8π

ln(ln(�2/T ))

[(g0/2) ln(�2/T )]θ
. (61)

As a remark, we note that, despite being approximate, the
solution (59) is automatically consistent with the general
form (51), as it is true for any expression of the type α =
(z(qT ))−1F (y(qT )), constructed via running couplings.

The approximations which lead to Eq. (59) are very nat-
ural. We expect that the prediction of a nearly constant α at
low temperature is exact and that Eq. (61) captures, up to a
numerical factor, the correct behavior in the limit T → 0.

F. Renormalization and third law of thermodynamics

The fact that α vanishes in the zero-temperature limit is
formally consistent with the requirement limT →0 α(T ) = 0,
which is expected in view of the Maxwell relation

α =
(

∂V

∂T

)
p

= −
(

∂S

∂ p

)
T

, (62)

and the third law of thermodynamics limT →0 S(T, p) = 0
[31,34,63]. The logarithmic way in which the low temperature
limit is realized at zero tension is, however, very unconven-
tional [26]. In fact, the existence of an anomalous behavior can
be already anticipated by dimensional analysis. The rescalings
described in Sec. II A show that, for σ = 0, the only dimen-
sionful parameters in the theory (3) are the temperature T
and the UV cutoff �. If there were no ultraviolet divergences,
the fact that α is dimensionless would have implied that α =
φ(Y ), a temperature-independent result which is manifestly
inconsistent with the limit limT →0 α(T ) = 0. It is only the
logarithmic correction due to UV divergences which intro-
duces an explicit dependence on the UV cutoff scale � and
allows for a variation of α at low temperatures. In presence
of a nonzero tension σ , Ref. [26] predicted that the thermal
expansion coefficient vanishes in a faster way for T → 0.

VII. APPLICATION TO GRAPHENE

To illustrate results, we consider the case of a monolayer
graphene, using parameters ρ̃ � 7.6 kg m−2, λ̃ � 3.4 eV Å−2,
μ̃ � 9.3 eV Å−2, B̃ � 12.7 eV Å−2, Ỹ � 21.4 eV Å−2 [10],
and κ � 1.4 eV [64]. Setting the codimension dc to the phys-
ical value dc = 1, we find that the bare value of the quantum
coupling constant is small: g0 � 0.02. As a consequence, the
one-loop approximations to the RG functions β and η are
justified at all length scales of physical interest. The smallness
of g0 is related physically to the fact that the mass of nuclei

FIG. 1. Effective wave-vector-dependent bending rigidity (red
solid line) and Young modulus (blue dashed line) as a function of
wavelength l = 2π/k for a graphene membrane at T = 0, as de-
scribed by Eqs. (34) and (35). In the infinite-wavelength limit, κ̃r (l )
slowly diverges as (ln l )4/7 and Ỹr (l ) slowly vanishes as (ln l )−1/7.

is much larger than the mass of electrons [24], and, thus,
we expect it to be a general feature of most two-dimensional
materials.

The ultraviolet cutoff � is of the order of the inverse
interatomic distance a � 1.42 Å. We choose to identify �

with the “Debye radius” � = (4π2/3)1/4a−1, defined by the
condition that the phase space area π�2 contains the same
number of degrees of freedom of the hexagonal Brillouin zone
of graphene. With this estimate, the Debye temperature is
approximately T̃d = h̄(κ̃/ρ̃ )1/2�2/kB � 750 K.

The predictions discussed in Sec. VI are illustrated in
Figs. 1–3. In all cases, the renormalizations induced by
quantum-mechanical fluctuations induce a slow, logarithmic
behavior of statistical and thermodynamic quantities.

FIG. 2. Anomalous Hooke’s law for a graphene membrane at
T = 0. The red solid line represents the macroscopic bulk modulus
B̃eff = 1

2 ∂σ̃ /∂ ṽ as a function of the applied tension σ̃ , as described by
Eq. (41). The red dotted line is constant as a function of the applied
stress and identifies the microscopic bulk modulus B̃ � 12.7 eV Å−2

controlling the normal Hooke’s law for a membrane constrained in
two dimension (without quantum-mechanical out-of-plane fluctua-
tions). The strain induced by tension is represented by blue dashed
lines. The effective bulk modulus vanishes in the limit σ → 0 as
B̃eff (σ ) ≈ (ln(1/σ ))−1/7. The singularity, however, is very slow. The
prediction for the stress-strain relation breaks down when the tension
is so large that the stress dominates over bending rigidity at all
momentum scales up to the cutoff �. Equation (41) is thus valid for
σ̃ � κ̃�2 � 40 N/m.
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FIG. 3. Negative thermal expansion coefficient for an unstressed
graphene membrane as a function of temperature (red solid line). In
the limit T → 0, α̃ → 0 as expected from the third law of thermody-
namics, but the approach to zero is only logarithmic with T̃ .

In particular, we find that the thermal expansion coeffi-
cient α̃ at low temperatures is nearly constant over broad
ranges of low temperature, with an order of magnitude α̃ ≈
−kB/(4πκ̃ ) ≈ −5×10−6 K−1 up to a numerical factor of
order unity, in agreement with a simple classical estimate [62].
The limit limT →0 α = 0 is only approached logarithmically.

Let us estimate the characteristic crossover scales for flex-
ural fluctuations. At T̃ = 300 K, the crossover momentum
qT between zero-point and classical fluctuations is approx-
imately qT � 0.9 Å−1, corresponding to a wavelength lT �
7.4 Å−1. The Ginzburg length separating harmonic and an-
harmonic classical regimes is, for T � 300 K, approximately
lG = 2π/qG � 50 Å. At different temperatures, the charac-
teristic lengths lT and lG are both proportional to T̃ −1/2, up
to logarithmic factors. This is a manifestation of the scale-
invariance of the action, which is only weakly broken by
logarithmic renormalization effects.

The prediction of a nearly constant α̃ depends essentially
on the fact that flexural phonon modes fluctuate in absence of

an imposed stress and without binding forces (see Ref. [26]
for an analysis on the role of tension and Refs. [47,62] for
discussions on the effects of a supporting substrate).

To conclude, we note that a more complete understanding
of the thermodynamics of graphene samples requires a further
analysis of the coupling between membrane fluctuations and
Dirac electrons, which have been proposed to be at the origin
of mechanical instabilities such as a spontaneous rippling
[29,60]. The role of electron fluctuations, however, is sup-
pressed in insulating 2D materials such as hexagonal boron
nitride.

VIII. SUMMARY AND CONCLUSIONS

To summarize, we have analyzed the theory of a fluctuat-
ing quantum mechanical membrane within the framework of
perturbative renormalization group techniques. At zero tem-
perature, the perturbative RG provides a systematic derivation
of logarithmic singularities analyzed in earlier investigations
by momentum-shell and by nonperturbative renormalization
group techniques. In the limit of a weakly applied external
tension σ̃ , we recover the result that the stress-strain rela-
tion at T = 0 is singular: for σ̃ → 0, the strain behaves as
σ̃ [ln(1/σ̃ )]−1/7.

In the case of a small, but nonzero temperature, techniques
of finite-size quantum field theory provide general scaling
relations for thermodynamic quantities such as the entropy
S, the specific heat C, and the thermal expansion coefficient
α at vanishing or small external tension. By an approximate
solution of the theory, we derive that the negative thermal
expansion coefficient of an unstressed crystalline mem-
brane vanishes for T → 0 as a logarithmic function of the
temperature.
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