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Abstract—The paper presents an experimental study on
human-robot co-manipulation in the presence of kinematic re-
dundancy. The objective of the work is to enhance the perfor-
mance during human-robot physical interaction by combining
Cartesian impedance modulation and redundancy resolution.
Cartesian impedance control is employed to achieve a compliant
behaviour of the robot’s end effector in response to forces
exerted by the human operator. Different impedance modulation
strategies, which take into account the human’s behaviour during
the interaction, are selected with the support of a simulation
study and then experimentally tested on a 7-DOF KUKA
LWR4. A comparative study to establish the most effective
redundancy resolution strategy has been made by evaluating
different solutions compatible with the considered task. The
experiments have shown that the redundancy, when used to
ensure a decoupled apparent inertia at the end effector, allows
enlarging the stability region in the impedance parameters space
and improving the performance. On the other hand, the variable
impedance with a suitable modulation strategy for parameters’
tuning outperforms the constant impedance, in the sense that
it enhances the comfort perceived by humans during manual
guidance and allows reaching a favourable compromise between
accuracy and execution time.

I. INTRODUCTION

In the face of the unpredictability of human behaviours, the

adoption of suitable impedance strategies [1], [2] to control

robots in the presence of humans is an essential paradigm to

ensure reliability and safety. For advanced robots, which oper-

ate in anthropic environments by cooperating with humans and

substituting them in some tasks, the quality of performance

is not just about accuracy and repeatability. Indeed, it rather

depends on the ability of the robots to adapt their behaviours

dynamically and according to the task and human intentions.

In the case of redundant robots, also the redundant degrees of

freedom may play an important role both in the stability of

the coupled system and in the quality of performance.

This paper presents an experimental study on a variable

impedance control of a redundant manipulator not specifically

designed for human-robot cooperation, used for the execution

of a task under human guidance. In particular, a cooperative

writing task is used as case study and a Cartesian impedance

control law is adopted to achieve a compliant behaviour of the
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end effector with respect to the forces exerted by the human

operator.

The main idea of the paper is that of using in a synergic way

the robot’s redundancy and the modulation of the Cartesian

impedance parameters to enhance the performance during

human-robot physical interaction. In particular, an experimen-

tal evaluation of different impedance modulation laws within a

stability region is carried out, while it is shown that the overall

performance can be improved when the redundancy is used

to enlarge the stability region in the space of the impedance

parameters.

Considering that instability is likely to occur during inter-

action when the controller attempts to impose to the robot an

impedance behaviour which is significantly different from the

intrinsic hardware dynamics, in a recent paper [3] we have

proposed to exploit redundancy to make the robot equivalent

inertia at the end effector as close as possible to the desired

inertia. In particular, since co-manipulation tasks typically

require a decoupled impedance along the Cartesian directions,

the redundant degrees of freedom are used to reduce as much

as possible the dynamic coupling of the end effector equivalent

inertia.

The preliminary results presented in [3] are extended here

through an extensive experimental study to establish the most

advantageous solution for the use of redundancy. In detail,

it is shown that robot’s redundancy, when used to ensure a

decoupled apparent inertia at the end effector, allows enlarging

the stability region in the impedance parameters space and

improves the performance.

On the other side, different modulation strategies for the

impedance parameters are proposed and tested. The parameters

are modulated online during the interaction according to the

human’s behaviour, which is inferred through the measure-

ments of the end effector velocities. The solution adopted

for our robotic platform consists on linking the parameters

variation directly to the Cartesian velocity. This approach has

been validated by means of a preliminary simulation study and

tested experimentally.

The experimental results show that the variable impedance

control performs better than the impedance control with con-

stant parameters, in the sense that it preserves accuracy while

reducing the execution time, in comparison to high constant

impedance, and it guarantees a good execution speed with

increased accuracy, in comparison to low constant impedance.

Finally, the use of the variable impedance strategy together

with Cartesian inertia decoupling through redundancy resolu-
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tion is the combination that allows the best performance and

effectively enhances the comfort level perceived by the human

operators during manual guidance. In our knowledge, this

is the first paper where variable impedance and redundancy

resolution are used in a combined way to improve stability

and performance during human guidance.

The paper is organised as follows. Section II describes

research work related to impedance modulation strategies and

stability issues in human-robot interaction. In Section III the

Cartesian impedance control of redundant robots is briefly

summarised, while the possible criteria for redundancy res-

olution are presented in Section IV. Section V presents the

experimental study that has been performed to estimate the

stability region in the impedance parameter space. In Sec-

tion VI the rules for the selection of the impedance parameters

are discussed. The experimental evaluation of the different

options for redundancy resolution as well as for the selection

of the impedance modulation laws is presented in Section VII.

Finally, discussion of the results and conclusions are drawn in

Section VIII and IX.

II. RELATED WORKS

In recent years, the research effort on finding appropriate

impedance control strategies for human-robot physical inter-

action is going toward learning and imitation of impedance

modulation strategies of living beings.

A possible solution is represented by Variable Impedance

Actuators (VIAs) using different technologies to create a

new generation of robots that can regulate their impedance

behaviour in a controlled way [4].

For robot manipulators not using VIAs, a number of adap-

tive impedance/admittance strategies have been proposed for

human-robot collaborative tasks, where the control gains are

tuned on the basis of the inferred human intentions. Several

studies propose modulation strategies based on the estimation

of the human impedance computed using the forces and the

positions measured during the task execution. In [5] and [6]

the variation of the impedance parameters is determined on

the basis of the data collected from experiments where a

robot and a human execute the cooperative task. In [5],

a simple switching strategy between preselected values is

implemented, while in [6] an optimal value for the damping,

which minimises a suitable cost function, is computed online.

The estimation of the human operator’s arm impedance is

not easy and some simplifications may occur. For example,

at low velocities, the stiffness is usually computed assuming

that it is the dominant impedance feature [7], [8]. More

accurate measurements methods of human impedance have

been adopted by neuroscientists to analyse human movement

control [9] and, in particular, the strategy used by the human

central nervous system to deal with instability [10]. Inspired to

these studies, a learning control technique is proposed in [11]

to optimally adapt robot’s impedance during the interaction

with dynamic environments and humans. Learning techniques

have been adopted also to extract and transfer impedance

modulation strategies from humans to variable impedance

robots [12] or, complementary, to teach variable stiffness

tasks to robots through physical interaction with a human

operator [13].

A further method to transfer human skills in impedance

regulation to robots interacting with uncertain environments is

based on the concept of tele-impedance [14]. In this case, a

suitable human-machine interface allows to provide the slave

robot with a position reference and an end-point stiffness ref-

erence; this latter is estimated in real-time from the measured

electromyogram (EMG) signals of eight muscles of the arm

of the human master.

In the applications where the robot must be free to move

under the forces applied by humans, the desired stiffness is

usually set to zero, as well as the desired position, while the

damping and mass parameters can be tuned, for example,

depending on the velocity and acceleration of the human

operator [15]. On the other hand, in surgical and rehabilitation

scenarios, stiffness regulation plays an important role to ensure

accuracy and safety in the presence of both preplanned target

and interaction with unpredictable dynamic environments. An

interesting method that allows to reproduce a specific time-

varying stiffness profile during needle insertion by preserving

passivity is proposed in [16], while the implementation of safe

constraints along a specific task or to limit the user to stay

within a safe region is considered in [17]. These topics are

also of interest in the applications where collaborative robots

(Cobots) are employed [18].

For variable impedance control, a crucial issue is that

stability must be guaranteed for all the possible range of

variation of the parameters. The stability depends on how

impedance control is implemented (e.g., with or without force

measurements, or whether an impedance or an admittance

law is used), but also on the robot’s hardware; namely, the

robot kinematics and dynamics, the kind of transmission, the

presence of friction and of structural compliance, the kind of

sensors and actuators [15], [19]. Moreover, the overall coupled

dynamics of the robot and human must be considered [20].

Stability of impedance control has been investigated in

the seminal works of Hogan [1] and later on in [21], using

the concept of passivity, and in [22], where the natural

admittance control is introduced. Admittance and impedance

are defined in a reciprocal way: impedance control produces

forces/torques in response to velocities, while admittance

control produces velocities in response to forces and torques.

When the robot is driven by the human, a low robot

impedance is typically required. In particular, the stiffness

should be low and often null, while damping should be de-

creased when fast movements without particular accuracy are

required and increased to perform fine motions. On the other

hand, the apparent inertia of the robot cannot be arbitrarily

decreased because the stability can be lost.

Often the structural impedance of common robots, including

lightweight robots like the KUKA LWR4 arm considered in

this paper, is higher than the ideal impedance required for an

effective cooperation with humans. In particular, the equivalent

inertia of the robot at the contact point (which hereafter is

assumed to be the end effector) may be too high and must be

reduced. This can be done by using feedback of the exchanged

force.



In this respect, using a simple 1-DOF model, it has been

theoretically proven that, by reducing the inertia more than

a given threshold below its physical value, the system loses

passivity [21], due to the presence of unavoidable structural

compliance between the actuators and the interaction force.

The passivity property is a sufficient condition that guarantees

coupled stability in the presence of interaction with a generic

passive environment. This threshold holds also for natural

admittance control [22] which, with respect to impedance

control, allows reducing the effects of friction and unmodeled

disturbances, independently of inertia. On the other hand,

theoretical and experimental studies have shown that passivity

may be too conservative and can be relaxed to improve

performance [20], [23], [24].

III. CARTESIAN IMPEDANCE CONTROL

The KUKA LWR4 arm is a 7-DOF robot that can be torque

or velocity controlled, so both impedance and admittance

control can be used. The two control approaches have com-

plementary pros and cons, that have been well documented in

the literature (see, e.g., [25]). In this work, impedance control

is considered.

The dynamic model of the robot has the form:

M(q)q̈ +C(q, q̇)q̇ + g(q) + τ f = τ c + JT (q)F ext (1)

where q ∈ IRn, with n = 7, is the vector of joint vari-

ables, M(q) is the inertia matrix, C(q, q̇)q̇ is the vector of

Coriolis/centrifugal torques, g(q) is the vector of gravitational

torques, τ f is the vector of the friction torques, τ c is the con-

trol torque, J(q) is the robot Jacobian, and τ ext = JTF ext is

the joint torque resulting from external force and torque F ext

applied to the end effector.

The control strategy is designed to perform tasks in coop-

eration with humans. The operator interacts with the robot

by moving the end effector along arbitrary trajectories. It

is assumed that only forces can be applied. Hence, in (1),

F ext is the (3× 1) vector of external forces and J(q) is the

(3×7) Jacobian relating the joint velocities to the end effector

translational velocity.

To design the impedance control, it is useful to derive

the end effector dynamics in the operational space [26],

considering only the translational motion:

Λ(q)ẍ+ µ(q, q̇)ẋ+ F g(q) + F f (q) = F c + F ext (2)

where x ∈ IR3 is the Cartesian position vector of the end

effector, Λ = (JM−1JT )−1 is the (3 × 3) end effector

inertia matrix, hereafter denoted as apparent inertia, while

µẋ = Λ(JM−1C − J̇)q̇, F g = J†T g, F f = J†T τ f and

F c = J†T τ c are the forces, reflected at the end effector,

corresponding to the non-inertial joint torques in (1).

Equation (2) describes only the end effector dynamics and

does not include the so-called null space dynamics. Matrix J†

is the dynamically consistent generalised inverse of matrix J ,

defined as [26]:

J† = M−1JT [JM−1JT ]−1. (3)

It can be proven that, only with this choice of generalised

inverse, the null-space dynamics does not affect the end

effector behaviour. Moreover, when the Jacobian is close to

a singularity, the generalised inverse can be robustly approxi-

mated using the damped least squares pseudo-inverse [27].

In order to make the end effector able to follow and adapt

to the force exerted by the operator at the tip, the end effector

dynamics can be set as a mass-damper system of equation

Λdẍ+Ddẋ = F ext, (4)

where Λd and Dd are suitable inertia and damping matrices,

that are positive definite and are usually set as constant

diagonal matrices.

The above dynamics can be imposed to the closed loop

controlled system by choosing F c in (2) as follows:

F c = η(q, q̇)−Λ(q)Λ−1

d Ddẋ+ (Λ(q)Λ−1

d − I)F ext, (5)

with η(q, q̇) = µ(q, q̇)ẋ+ F g(q) + F f (q).
This equation is a Cartesian impedance control law with

null stiffness and null virtual position. If the apparent inertia

of the end effector is left unchanged, i.e., Λd = Λ(q), the

control law (5) does not depend on the external force F ext.

Conversely, force feedback is required if inertia reshaping

is desired. This is the price to pay to achieve the ideal

behaviour described by Eq. (4), which is linear, decoupled and

independent of the robot configuration. On the other hand,

if the natural inertia is preserved, a configuration-dependent

damping matrix should be adopted to guarantee stability (see,

e.g. [28]) leading to a nonlinear, coupled and configuration-

dependent dynamics which would make more difficult for the

user to lead the end effector.

The external force can be measured by using a force/torque

sensor mounted at the end effector. Alternatively, force es-

timation techniques can be adopted. An effective method,

introduced in [29] is based on the generalised momentum

p(t) = M(q)q̇ and the n-dimensional residual vector r

defined as

r(t) = KI

[∫ t

0

(τ c − g(q) + r(σ))dσ − p(t)

]
, (6)

with r(0) = 0, KI a diagonal positive matrix. These quan-

tities can be computed using measured signals q, q̇ and the

control torque τ c. It can be shown that

r ≈ τ ext − τ δ, (7)

with τ δ = C(q, q̇)q̇+ τ f . Hence, left multiplying both sides

of the above equation by J†T yields

J†T r ≈ J†Tτ ext − J†T τ δ ≈ F ext,

where the contribution of friction torques and Coriolis and

centrifugal effects reflected at the end effector has been con-

sidered negligible with respect to the external force. Therefore,

vector

F̂ ext = J†T r, (8)

is an estimate of the external force.

In view of the above approximations, the control law that

imposes the impedance dynamics (4) can be implemented in

the joint space in the form:

τ imp = −JTΛ[J̇ q̇ +Λ−1

d (Ddẋ− F̂ ext)] + g(q)− r. (9)



IV. REDUNDANCY RESOLUTION

In the presence of redundant degrees of freedom, which is

the case considered here, it is possible to assign a secondary

task in the null space of the end effector task, by using the

control law [26]:

τ c = τ imp + (I − JTJ†T )(u− kDq̇), (10)

where −kDq̇, with kD > 0, is a suitable damping torque and

u is a torque control input to be designed, corresponding to

a secondary task, which is projected in the null space of the

main task through the matrix I − JTJ†T .

As observed in [30], control law (10) is able to ensure

stability in practice both for the end effector task and in

the null space. A rigorous stability proof would require a

more complex formulation of the null space terms, as those

presented in [31], [32] and generalised in [33] to the case of

an arbitrary hierarchy of null space tasks.

In our application, the human guidance of the end effector

involves only the position, which is made compliant by the

Cartesian impedance control under the action of the external

forces. Thus there are 4 of the 7 degrees of freedom of the

robot at disposal for the secondary task.

Moreover, in the task considered in this paper, i.e., writing

on a planar surface, the pen should point always toward

the surface. For this reason, among the possible redundancy

resolution criteria, we have selected those that are less influ-

enced by the end effector orientation, at least in region of

the workspace where the main task is executed. This feature

was also verified experimentally. Another possibility would

have been that of controlling also the orientation to a desired

value, or to make the end effector compliant under the action

of the external torques. In this case, however, a robot with a

large number of degrees of freedom (larger than 7) would be

required to usefully exploit the redundancy.

Different criteria can be pursued in order to choose the

secondary task.

One simple criterion can be that of keeping the robot

as far as possible from kinematic singularities. This can be

achieved, e.g., by maximising the kinematic manipulability

index, defined as:

m(q) =

√
det(JJT ), (11)

i.e., by choosing u in (10) as

u = km

(
∂m(q)

∂q

)T

(12)

where the elements of the gradient of the manipulability index

can be computed as [34]:

∂m(q)

∂qi
= m(q)trace

[
∂J

∂qi
J†

]
. (13)

Notice that the manipulability index is proportional to the

area of the velocity manipulability ellipsoid, which represents

the capability of the robot to move the end effector along

the Cartesian directions, with a given set of unit norm joints

velocities. Hence, in a joint configuration where this index

is (locally) maximised, it is possible to produce end effector

velocities in all possible directions with (locally) minimal joint

velocities.

In theory, instead of trying to make the ellipsoid as similar

as possible to a sphere, it could be useful to shape it so that

the principal axis are always suitably aligned to the significant

directions of the task. However, the continuous changes of

direction imposed by the human to the end effector may

produce continuous internal motions of the robot that can have

undesired effects (e.g., collisions or fast reconfigurations that

are unsafe for the human operator). Therefore, this solution,

after some tests, was discarded.

Another possibility of exploiting redundancy is that of trying

to optimise in some way the mapping between the forces

applied to the end effector and the corresponding velocities

or accelerations. As a matter of fact, in ideal conditions, the

Cartesian impedance control law (5) allows cancelling out the

robot dynamics as well as making the end effector dynamics

completely independent of the joint configuration. On the other

hand, it has been proven both theoretically and experimentally

that, during interaction, instability is likely to occur when the

controller attempts to impose to the robot a dynamic behaviour

that differs significantly from the intrinsic hardware dynamics

(in particular, lower than the natural robot impedance). Hence,

the idea pursued here is that of using redundancy to make the

robot apparent dynamics at the end effector, described by (2),

as close as possible to the desired dynamics (4).

The most critical element in (2) is the equivalent inertia,

which is configuration dependent. This means that, at any

given end effector position, the internal motion allowed by

redundancy could be exploited to achieve robot’s configu-

rations with desired inertial properties. Of course, this can

be done only within certain limits, depending on the robot

kinematic structure and on the mass distribution. What it

is reasonable, for example, is to choose joint configurations

with maximally decoupled inertia. As in [3], this is achieved

by using a secondary task function inspired to the dynamic

conditioning index (DCI) introduced in [35] to measure the

dynamic isotropy of robot manipulators in joint space.

In the Cartesian space, the DC index can be defined as the

least-squares difference between the generalised inertia matrix

and a diagonal matrix as:

ω(q) =
1

2
ET (q)WE(q) (14)

where W is a diagonal weighting matrix and the error vector

E(q) is defined as follows

E(q) =




λ11(q)− σ(q)
λ22(q)− σ(q)
λ33(q)− σ(q)

λ12(q)
λ13(q)
λ23(q)



, (15)

being λij the generic element of the inertia matrix Λ and σ
defined as

σ(q) =
1

3
trace(Λ(q)). (16)

The minimisation of ω(q) results in a minimisation of the el-

ements’ norm of E, which corresponds to (a local) maximally



diagonal inertia.

The weighting matrix W has been chosen in order to give

priority to the minimisation of the norm of the off-diagonal

elements of Λ(q), e.g.:

W = diag{I3, µI3}, (17)

with µ > 1 and I3 denoting the (3× 3) identity matrix.

Finally, the control input u in (14) is chosen as

u = −kc

(
∂ω(q)

∂q

)T

, (18)

with kc > 0.

Fig. 1. Robot KUKA LWR4 in the configuration chosen for stability
evaluation.

V. STABILITY REGION

A suitable procedure has been set up to find the allowed

range of variation of the impedance parameters of (4) so that

stability is preserved.

The stability region in the impedance parameters space

could be estimated analytically (see, e.g., [24]). However,

many authors have observed that the actual bounds of the

stability region are dependent on the robot’s hardware and,

in the case of interaction with a human operator, also on

the impedance of the human arm, which cannot be accurately

modelled and evaluated [19], [20]. A further complication here

is represented by the null-space stability for the presence of

redundant degrees of freedom [30]. Therefore, in this work

the stability region has been found experimentally.

In the scalar case, Eq. (4) can be rewritten in the Laplace

domain as:

V (s) =
1

D

1

1 + sT
F (s), (19)

where V and F are the Laplace transforms of the velocity

and force, respectively and T = λ/D is the time constant of

the system, where λ and D represent the inertia and damping

along a generic Cartesian direction, respectively. Hence, it can

be argued that the lower the damping, the higher the steady-

state velocity for a given constant input force; moreover, for a

given damping, the lower the inertia, the higher the bandwidth

of the system or, equivalently, the lower the time constant T .

For the stability test, the joint vector

q0 = [0 0 0 −90 0 −45 0]T ,

corresponding to the robot configuration represented in Fig. 1,

has been selected. One reason for this choice is that, in

this configuration, the end effector inertia matrix is almost

diagonal. Another reason is that, in this configuration, one of

the eigenvalues of the inertia matrix (that corresponding to the

vertical axis) assumes a value λ̄ close to the maximum one, in

the portion of the robot workspace where the task is executed.

Hence, q
0

is a worst-case configuration for scaling (reducing)

the end effector inertia.

Indeed, if a desired isotropic Cartesian inertia is imposed,

the dynamics along the vertical direction is the most critical

for stability, being the direction where the ratio between the

desired and actual mass is the lowest, also in a neighbourhood

of the joint configuration q0. This means that the stability

bounds for the parameters along the vertical direction are the

most conservative and ensure stability also along the other

directions, as well as in the surrounding configurations.

The value of the inertia matrix in q0 and the corresponding

vector of eigenvalues are:

Λ(q0) =



0.1187 0.0006 0.0226
0.0006 0.3069 −0.1395
0.0226 −0.1395 4.2405


 ,

λ(q0) = [0.1186 0.3020 4.2456]T .

To reduce the number of parameters, the same damping

and the same mass has been set along all the directions of

the Cartesian space, i.e., Dd = DI and Λd = λI , with

λ = αλ̄, being λ̄ = 4.2456 kg the maximum eigenvalue and

0 < α ≤ 1 a scaling factor. In this way, the desired impedance

behaviour will be made isotropic by decreasing the mass along

the vertical direction and increasing those along the other

two Cartesian directions which, therefore, are not critical for

stability.

The stability region has been evaluated experimentally by

setting a value of damping D in the interval [5, 60]Ns/m and

reducing the value of α, starting from α = 1, until vibrations

can be felt by an operator shaking the end effector in a

neighbourhood of the initial configuration. In order to have

results independent of the stiffness of the specific subject,

the end effector is shaken so as to produce large variations

of the stiffness of the human arm. The amplitude of the

interval for the damping coefficient has been set on the basis of

experiments where the natural robot’s inertia was not modified.

The results of the experimental procedure are reported in

Fig. 2, where the stability region for the parameters D and α is

that included between the continuous and the dotted line. It can

be observed that any value of damping in the interval [5, 60]
can be chosen provided that α > 0.25 while, for α < 0.25
the lower and upper bounds of the allowed damping come

closer. For α < 0.1 the robot starts vibrating for any value of

damping.

An alternative representation is reported in Fig. 3, where

the stability region is parameterised with respect to the time

constant T of the impedance equation (19) and to the damping
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Fig. 3. Stability region: time constant T versus damping D.

D. In this figure, also the geometric locus with minimum

constant mass (λ = 0.764 kg) contained in the stability region

is represented. This curve can be taken as a rough analytic

expression of the frontier of the stability region, i.e., stability

is preserved for any choice of the impedance parameters in

the region on the right of this curve.

It is worth observing that, since the end effector dynamics is

not homogenous along the three Cartesian directions, it would

be significant to choose different impedance parameters along

these directions. Therefore, a different stability region in the

parameters space could be defined for each Cartesian direction.

Actually, the three stability regions have been found exper-

imentally (see Fig. 9), using the same procedure described

above, and will be used in Section VII.

VI. VARIABLE IMPEDANCE

The goal of a variable impedance strategy for a co-

manipulation task is to vary the damping and mass properties

of the robot in order to accommodate the human movement

during physical interaction. According to the related results

available in literature [6], [15], [19], high impedance param-

eters are desired when the operator performs fine movements

at low velocity while lower values of the parameters should

be used for large movements at high velocity. The human

perception is mainly influenced by the damping parameter,

while, for a given damping, the desired (virtual) mass is crucial

for stability.

Therefore, our idea is that of varying the damping according

to the absolute value of the end effector Cartesian velocity in

order to improve the performance in terms of execution time

and accuracy. Namely, when the velocity is high, the damping

force is reduced, so that the operator can move the end effector

with minimum effort and the execution time can be reduced;

vice versa, at low velocity, the damping force is increased to

improve accuracy. On the other hand, the virtual mass is set so

as the parameters of the system remain in the stability region.

To this purpose, the stability region in the parameter space has

been evaluated experimentally (see Sec. V) for any damping

in the interval [5, 60]Ns/m.

The relationships used to vary the damping for each of the

Cartesian principal directions is

D(ẋ) = min{a e−b|ẋ|, 5}. (20)

with a = 60 and b = 4. These parameters have been

chosen in order to have a variation of the damping within

the interval [5, 60]Ns/m for the possible range of velocities

in the considered task. A saturation to the minimum value of

5Ns/m is introduced in case of high velocity.
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Fig. 4. Representation of the four variation laws of time constant T with
respect to damping D.

For the mass (or, equivalently, for the time constant T ),

different choices have been considered and tested, namely:

L1: constant mass, with low value (close to the minimum

value within the stability region), i.e. λ = 1.1 kg

L2: constant mass, with high value, i.e. λ = 5.6 kg

L3: constant T , set as the minimum value within the stability

region for any damping D
L4: minimum (variable) T within the stability region for any

damping D.

In the latter case, the time constant T is computed as:

T =
λf

Df

(a+ b arctan(c(D − d))),

where the default damping value Df = 30Ns/m has been cho-

sen as an intermediate value between the minimum (5Ns/m)

and the maximum (60Ns/m) values used in the experiments.

The default mass value λf = 3 kg and the constant values

a = 1.1820, b = 0.60, c = 0.4, d = 20 have been set in order

to have the minimum allowed T preserving stability.

The geometric loci in the parameters space corresponding

to the above choices are represented in Fig. 4. Notice that

the dot-dashed line (minimum T curve) can be also taken

as the frontier of the stability region in the parameter space,

which, for values of the damping D lower than 10Ns/m, is

less conservative than the geometric locus of Fig. 3 (minimum

constant mass curve).

A rigorous theoretical justification of the above choices

is not easy but some hints can be derived by considering
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Fig. 5. Block diagram representing the human-robot physical interaction.
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Fig. 6. Time history of the force (top) and velocity (bottom) in the case of
low mass (λ = 1.1 kg) and variable damping, compared to the case of low
(D = 5Ns/m) and high (D = 60Ns/m) constant damping.

the position control scheme of Fig. 5 modelling the physical

interaction between the human arm and the robot’s tip along

a single Cartesian direction. In that scheme the human arm

driving the end effector through the force f is modelled as a

pure stiffness k, considering that the stiffness is the dominant

effect of the impedance of the human arm (see, e.g., [7], [8]),

namely:

f = k(xd − x).

The value k = 200N/m, corresponding to an intermediate

value of the arm stiffness during a writing task, has been

considered in the simulations.

In view of equation (4) the dynamics of the end effector,

in case of variable damping and mass, is represented by the

nonlinear equation:

λ(ẋ)ẍ+D(ẋ)ẋ = f

where the damping D is defined in (20) and the mass λ is set

constant in the cases L1 and L2 or as

λ(ẋ) = D(ẋ)T

in the cases L3 and L4.
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Fig. 7. Time history of the force (top) and velocity (bottom) in the case of
high mass (λ = 5.6 kg) and variable damping, compared to the case of low
(D = 5Ns/m) and high (D = 60Ns/m) constant damping.

The position reference xd(t) is chosen according to a raised

cosine time law with a duration of 4 s and a total displacement

of 0.2m.

A comparison of the performance obtained with the different

choices of the parameters can be made by comparing the forces

f applied by the human to the robot’s tip and the resulting

velocities.

In Fig. 6 the scheme with variable damping is compared

to the case of constant damping set to the minimum (D =
5Ns/m) and maximum (D = 60Ns/m) values respectively.

It can be observed that the force required to move the end

effector in the case of variable damping reaches intermediate

values with respect to those required in the case of minimum

and maximum constant damping. On the other hand, when the

velocity is higher, the velocity profile in the case of variable

damping is quite close to that obtained in the case of minimum

damping. For low velocity, the profile is closer to that in the

case of maximum damping.

It is worth noticing that, when constant minimum damping

is used, the velocity almost matches the desired one (not

reported in the figure); however, when the velocity decreases

to zero, both the force and the velocity are oscillating and

change sign. This undesirable behaviour is emphasised when

the mass is set to the maximum value, as shown in Fig. 7, but

is not present in the other cases where, although the force is

higher than in the case of minimum damping, both force and

velocity go to zero smoothly and without oscillations.

In can be argued that, with respect to the velocity and force

profiles, the use of variable damping allows to reach a good



compromise with respect to the cases of constant low and high

damping.

On the other hand, when variable mass is used in addition

to variable damping, the simulation results show that the

performance do not change significantly with respect to the

case of constant mass. Slightly better results are obtained when

the virtual mass is lower, i.e. in the case L4 better than in the

case L3.

The suggestions deriving from the above analysis are based

on simplified assumptions, one for all, the hypothesis that the

stiffness of the human arm remains constant during the task

execution. For this reason, the experimental validation reported

in the next section is of crucial importance.

Fig. 8. Snapshot of the co-manipulation task.

VII. EXPERIMENTS

In the experiments, two fundamental aspects have been

considered, namely, the use of redundancy and the choice of

the variable impedance strategy.

A case study has been selected, consisting in the execution

of a writing task on a horizontal plane operated by a human:

the operator guides a paint marker mounted on the robot’s tip

along a path drawn on a paper sheet.

The orientation was not considered in our case study,

otherwise we will not have significant redundant degrees of

freedom that can be used for the secondary task. Moreover,

the aim of our work is to check the value of the proposed

approach for a generic task of co-manipulation requiring only

Cartesian position control.

The path has been designed with the aim of inducing

trajectories with variable velocity and is composed of long

straight-line segments, sharp corners and smooth circular arcs

(see Fig. 10, dot-dashed lines).

The initial configuration of the robot has been chosen to

facilitate the execution of the writing task planned on the

horizontal plane, namely:

qi = [2.35 22.8 −1.54 −53.2 −3.1 101.15 0]T ,

with inertia matrix:

Λ(qi) =




0.1265 −0.0042 0.1470
−0.0042 0.2002 −0.0661
0.1470 −0.0661 2.9396
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Fig. 9. Stability regions and constant mass curves for the three Cartesian
directions.

and eigenvalues:

λ(qi) = (0.1188 0.1986 2.9489)T ,

where the joint angles are in degrees.

A. Redundancy vs. stability

Two different secondary tasks have been tested for redun-

dancy resolution: the maximisation of the kinematic manipu-

lability index (11) and the minimisation of the DC index (14).

Here, the comparison is carried out by checking the sta-

bility of the Cartesian impedance control law, i.e., verifying

that the system remains stable during task execution, when

variable impedance control is applied. A snapshot of the co-

manipulation task is reported in Fig. 8; the complete video

sequence can be found in the accompany video.

In Section V, a conservative stability region in the parameter

space has been found, assuming that the same damping and

mass parameters are set along all the Cartesian directions.

A more accurate estimation of the stability region can be

found, by using the same experimental procedure described

in Section V, but allowing the choice of different values of

the parameters along the three Cartesian directions.

The stability regions for the three Cartesian directions

of the end effector, referred to the base frame, are shown

in Fig. 9. In the same figure, two sets of curves are rep-

resented, corresponding to constant mass (or inertia) loci.

The continuous curves, with constant virtual inertia Λd =
diag{0.0328, 0.0548, 0.8138}kg, are close to the instability

frontiers, and can be assumed as minimal inertia curves. The



dashed curves, with Λd = diag{0.0492, 0.0822, 1.2207}kg,

are safely within the stability regions. The experiments have

been performed using a variable damping impedance control

law, with parameters varying on the above curves, namely,

constant inertia and damping set according to Eq. (20).
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Fig. 10. Reference and actual paths for the writing task in the case of low
(top) and high (bottom) virtual inertia.

When the DC index (DCI) is used for redundancy resolu-

tion, the task has been completed in both cases, as it is shown

in Fig. 10, where the paths of the paint marker are represented,

together with the reference path, when low and high values of

virtual inertia are used, respectively. On the other hand, in the

case of low inertia (Fig. 10, top), the task cannot be completed

when the manipulability index (Man) is used for redundancy

resolution, because the system tends to become unstable. The

accuracy of the path and the time to complete the task have

not been evaluated at this stage.

The corresponding time histories of the DC index during the

execution of the experiment are reported in Fig. 11. Notice

that the values of the DC index are always lower when the

minimisation of the DC index is used as secondary task, as

expected, with some exceptions in correspondence of abrupt

changes of directions. Moreover, in the case of low inertia,

the system tends to become unstable when the value of the

DC index is too high, i.e., when the inertia of the robot at the

end effector deviates significantly from the desired diagonal

inertia imposed by the control.
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Fig. 11. Time histories of the values of DC index in the case of low (top)
and high (bottom) virtual inertia. The continuous lines represent the DC
index when redundancy is used to increase manipulability. The dashed lines
represent the DC index when redundancy is used to minimise the DC index.

B. Redundancy vs. performance

To evaluate the performance related to redundancy reso-

lution, the methods have been compared using two different

impedance laws, one with constant parameters (set as λ =
1.1 kg, D = 60Ns/m) and one with variable damping (low

constant mass, λ = 1.1 kg, of Fig. 4).

Since the objective is to compare the redundancy resolution

strategies, a generic choice for the impedance parameters

is made by setting them uniformly in all the directions.

Moreover, as described in the previous Subsection VII (A),

when redundancy is used to optimise the manipulability,

a more conservative choice for the impedance parameters

is needed, since the stability limits in the three Cartesian

directions found experimentally in the neighbourhood of the

initial configuration (Fig. 6) are not satisfied throughout the

drawn path.

Since the assigned task consists in pursuing a given path,

a significant measure of performance is the error between the

reference and the actual path, that can be defined in different

ways. A very simple measure is the absolute value of the

difference between the length of the path drawn in cooperation

with the robot, le, and the ideal path length, ld, namely the

length error:

e = |ld − le|. (21)

We have also tested more accurate measures, as the area of the

region between the ideal and the actual path, or the difference

between the centroid of the reference and actual figure. For

the purpose of our experiments, however, the measure (21)

provided satisfactory results.

Another performance parameter is the execution time H of

the trajectory, defined as the difference between the time when

the entire path is completed and the time when the drawing

tool touches the paper on the desk to start writing.

In order to obtain quantities that overcome the skills of the

singular operator, the above parameters are evaluated as the



average on the performance of more subjects.

The tests have been carried out on five different subjects

that move the robot using their dominant hand. We found that

the number of subjects used in the experiments is sufficient

on the basis of the analysis of the results. Indeed, the results

of the comparison between the variable and constant (low and

high) impedance are statistically significant as shown in Table I

reported at the end of this Section.

Each subject has been trained in advance, by executing

the task with the different strategies to be tested, in order

to become familiar with the task and the robot. At the end

of the training phase, all the subjects were able to complete

the task in a reasonable time (under 30 seconds) with all the

control strategies. In addition, during the training phase, each

subject was asked to look for the configuration which resulted

the most comfortable, as well as for the best fitting starting

point of the path, without any kind of conditioning.

The subjects were told to perform the path taking into

account the accuracy as a primary objective and the execution

time as a secondary objective. In addition, during both the

training phase and the actual testing phase, the subjects have

not been informed on the features of each control law, nor

even which one of the four strategies they were performing.

The results of the tests are reported in Fig. 12, where the

error on the length of the path e versus the execution time H
is reported for all the subjects, as well as their mean values.
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Fig. 12. Values of the length error e and execution time H in the experiments
on five subjects using variable and low constant impedance; both manipula-
bility index and DCI optimisation are used as secondary tasks. The bigger
markers are the mean values on the five different subjects.

It can be observed that, for the impedance control with

constant parameters, the use of DC index (DCI) ensures better

performance than the use of manipulability index (Man) both

in terms of execution time and error on the path. This is true

also for variable impedance control even though the use of

variable parameters reduces the error on the path in spite of

the strategy used to solve the redundancy.

Last but not least, all the subjects involved in the ex-

periments have confirmed that the “feeling” of the manual

guidance (in terms of intuitiveness and response of the robot)

improves when the DC index is adopted, i.e., when redundancy

is used to decouple the natural end effector dynamics along

the principal directions of the task.

C. Evaluation of variable impedance laws

In this set of experiments, the DC index is adopted for

redundancy resolution and the performance of the different

variable impedance laws, presented in Sec. VI, is evaluated.

The same task described in the previous subsections has been

executed by three different subjects.

The results, reported in Fig. 13, show that the lower error

along the path with the smaller execution time is achieved

when the virtual mass of the end effector is kept constant, to

the minimum value compatible with stability, namely, the law

L1 (see also Fig. 4).
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Fig. 13. Values of length error e and execution time H in the experiments
on three subjects using DCI optimisation and the four variable impedance
laws of Fig. 4. The bigger markers are the mean values on the three different
subjects.

D. Variable vs. constant impedance

The variable impedance control L1 has been compared with

two different sets of constant impedance gains (chosen along

the curve), namely: high damping (λ = 1.1 kg, D = 60Ns/m)

and low damping (λ = 1.1 kg, D = 20Ns/m). These values

correspond to the average maximum and minimum damping

recorded in the previous set of experiments with constant mass

and variable damping.

The time history of the damping variation along the three

Cartesian directions for a single test is reported in Fig. 14. The

aim of this test is that of evaluating what is resulted as the

best variable impedance control law for the considered task,

with two different choices of constant damping values: high

damping (to privilege accuracy) and low damping (to privilege

execution speed).
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Fig. 14. Time history of the variable damping D during the execution of the
task with the variable impedance control L1 for one subject.

The results, carried out on five different subjects, are shown

in Fig. 15, where the execution time H and the error on the

length of the path are reported. In order to assess whether

the difference between the mean values on the set of data

reported in Fig. 15 is statistically significant, a t-test has

been performed [36]. The results, reported in Table I, can

be interpreted as follows. If the variable h is 1 (0), than

the two compared means are (not) significantly different with
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Fig. 15. Values of length error e and execution time H in the experiments
on five subjects using DCI optimisation, with the variable impedance control
L1 and two different sets of constant parameters. The bigger markers are the
mean values on the five different subjects.

TABLE I
t-TEST RESULTS ON THE DATA OF FIG. 15

var vr hconst var vr lconst hconst vr lconst

h=1 h=0 h=0
time var<hconst − −

(p= 0.0062) (p= 0.8888) (p= 0.4503)

h=0 h=1 h=1
length − var<lconst hconst<lconst

(p=0.9739) (p=0.0094) (p=0.0313)

confidence p ∈ [0, 1]; the lower the value of p, the more

statistically significant the difference between the mean values

of the two sets of data. Moreover, Fig. 16 represents the norm

of the linear forces exerted at the tip, for one subject, in the

case of high, low and variable impedance. The horizontal

dashed lines are the corresponding mean values computed

during the execution of the task.

Looking at Table I, the constant impedance with high

damping (hconst) ensures higher accuracy with respect to the

constant impedance with low damping (lconst), as expected.

This result, however, comes at the expenses of the execution

time and of the operator effort requested for the manual

guidance. Indeed, from Fig. 16 it can be verified that higher

damping requires higher forces to be exerted to the end

effector. On the contrary, impedance with low damping allows

the task to be performed more easily, with less effort and time,

but with less accuracy.

The most relevant result of Table I is that the variable

impedance (var) guarantees the best performance for accuracy,

execution time and effort of the operator (see also Fig. 15

and Fig. 16). Indeed, it can be seen that the improvement

of variable impedance (var) with respect to high constant

damping (hconst) in terms of execution time is statistically

significant; on the contrary it is not possible to detect an

edge over the accuracy. From the comparison between the low

constant damping (lconst) and variable impedance parameters

(var) it emerges that the advantage of the variable strategy is

relevant and statistically significant in terms of accuracy, while

the difference in terms of execution time is irrelevant.

For the sake of completeness, the results of the comparison

between high and low constant damping parameters have also

been reported. By observing Fig. 15 and Table I, the advantage

of using high damping parameters for accuracy appears clear

and statistically significant. The execution time improves when

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

t [s]

F
or

ce
 [N

]

 

 

high damping
variable damping
low damping

Fig. 16. Norm and mean value of the contact forces for high, variable and
low damping, for one subject.

low damping is adopted since the robot become lighter and

easier to move (see Fig. 16). However, the result on the

execution time is not statistically significant: this is probably

because the subjects were instructed to prefer accuracy over

speed during the execution of the task, which has led to a

higher dispersion of the data related to execution time.

VIII. DISCUSSION

During physical human-robot interaction, the most natural

way to control the robot is through an impedance strategy

tuned to the task requirements. Redundancy can be exploited

as well to improve stability and performance. The research

presented in this work branches off along these two comple-

mentary lines, both pointing toward the improvement of the

physical human-robot interaction in terms of intuitiveness and

stability during the execution of co-manipulation tasks.

In the first instance, different strategies to solve redundancy

are evaluated among the solutions that are compatible with the

main task. The comparison has been made in terms of stability

and performance (i.e., length error e and execution time H).

The experiments showed that the best way to solve redundancy

in co-manipulation tasks is that of keeping the end effector

apparent inertia as close as possible to that imposed by the

impedance control, i.e., at least diagonal. This allows a wider

range of selection of the impedance parameters which preserve

stability and improves the performance (see Subsections VII-A

and VII-B).

In parallel, the experimental evaluation of different modu-

lation strategies of the impedance parameters has been carried

out. The best solution for a lightweight robot consists on

linking the damping variation directly to the Cartesian velocity,

as previously discussed. The performance is improved when

the virtual equivalent mass at the end effector is kept as low

as possible, compatibly with the stability (see Fig. 13).

In Fig. 17 a graphical representation of the conceptual path

followed in our investigation is reported. It can be seen that

the best solution in term of stability and performance is that

achieved using variable damping and constant virtual mass,

set to the minimum value compatible with the stability. The

comparison between variable and constant impedance using

different redundancy resolution strategies is summarised in

Fig. 18. It can be seen that the performance improves from

left to right.

A number of issues remain open. First of all, we have

adopted a damping variation law (20) that is the result of



Fig. 17. Conceptual path followed for the experimental investigations. The
solutions with the best results in terms of performance (i.e., length error e

and execution time H) and stability are highlighted using different colours.

Fig. 18. The results obtained with different combination of redundancy
resolution and impedance strategies presented on the basis of the performance
level in increasing order from left to right.

an extensive experimental campaign. In the experiments, we

have also tested the adaptation law presented in [15], where

the damping is varied according to the acceleration, with

worse results, because the system was too responsive. The

modulation of the damping based on acceleration can be

interpreted as a nonlinear lead compensation based on the

intention of the user to increase or decrease the velocity,

which enhances the reactivity of the system, resulting in a

higher equivalent bandwidth. This may explain why this kind

of modulation is effective on the robotic platform used in [15],

based on a heavy industrial robot with moving masses ranging

from 100 kg to 500 kg and low equivalent bandwidth, and

not helpful in our platform, based on a lightweight KUKA

robot with a larger equivalent bandwidth, where it causes an

overreaction. In any case, a theoretical analysis supporting the

choice of the modulation laws of the impedance parameters,

which takes into account the nonlinear and coupled dynamics

of robot and human arm, is still missing.

Another important issue is that our study does not include a

rigorous stability proof, for both fixed and variable impedance

parameters. As a matter of fact, although the experimental

results provide significant and useful guidelines, these cannot

be easily generalised to any kind of robot and task.

IX. CONCLUSIONS

In this paper, the problem of Cartesian impedance control

of a redundant robot arm executing a cooperative task with

a human has been addressed. In particular, redundancy has

been used to keep robot’s natural behaviour as close as

possible to the desired impedance behaviour, by decoupling

the end effector equivalent inertia. This allows easily finding

a region in the impedance parameter space where stability

is preserved. Extensive experimental tests confirmed that this

solution leads to improving performance in the execution of

a cooperative writing task with respect to the use of other

options for redundancy resolution, e.g., the maximisation of

the manipulability index.

Moreover, different variable impedance strategies, where the

parameters are modified on the basis of the interpretation of

human intentions, have been evaluated in a simulation study

and tested on the experimental set-up. The variable impedance

strategy ensuring the best performance has been selected and

compared with two different sets of constant impedance gains,

i.e., high damping (to privilege accuracy) and low damping (to

privilege execution speed).

The experimental results show that the combination of

variable impedance and redundancy resolution with inertia

decoupling ensures the best trade off between accuracy and

execution time.
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