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Abstract— In this paper, we investigate a new approach based
on WISARD Neural Network for the tracking of non-rigid
deformable object. The proposed approach allows deploying an
on–line training on the texture and shape features of the object,
to adapt in real–time to changes, and to partially cope with
occlusions. Moreover, the use of parallel classificators trained
on the same set of images allows tracking the movements of the
objects. We evaluate our tracking abilities in the scenario of
pizza making that represents a very challenging benchmark to
test the approach since in this context the shape of the object
to track completely changes during the manipulation.

I. INTRODUCTION

The object tracking problem consists in reconstructing
the trajectory of objects along the sequence of images. It
is considered as a basic problem in many computer vision
applications and it is inherently difficult, especially when
applied to real world conditions, where unstructured forms
are considered for tracking, real time responses are required
for adapting the robot movements in time, computational
capabilities are limited to on-board units and where problems
of brightness and non-stationary background can affect the
performance of the elaboration system. Moreover, in case of
non-rigid objects, the task of dynamic tracking becomes even
more challenging. The state of the art of tracking deformable
objects is still rather far from the real applicability within
robotic applications. Recent projects have been proposed, in
the last few years, trying to cope with this kind of problem.
The recent RODYMAN project proposes, for example, the
development of a unified framework for dynamic dexterous
manipulation control, considering mobile platforms able to
manipulate non-prehensile non-rigid objects, trying to fill the
gap in the current state of the art. In order to achieve dexter-
ous manipulation abilities, a fundamental step is to provide
robots with the ability to efficiently track the objects to be
manipulated. Both dynamic object tracking and manipulation
become, in fact, the most complex categories of robotic tasks,
which, if solved, could increase the opportunities for a wide
adoption of robots within human co-habited environments.

Here, our aim is to address the problem of making
a robot able to track any deformable object without an
apriori physical model of the object that can dynamically

change its shape during the tracking. In this preliminary
work, we propose a particular neural network approach, a
WiSARD–based system [1], used as feature detector for
tracking deformable objects during manipulation. This partic-
ular weightless neural system has the property of being noise
tolerance and is capable of learning step–by–step the new
appearance of the moving object on a dynamic background
without needing a model of the object to track. The WiSARD
can be adopted to deploy virtual sensors that, with a limited
use of computational resources, can be used on-board for
object tracking and dynamical selection of the desired targets
to track. In this paper we will introduce our approach and
will evaluate robustness of the proposed tracking method in
the task of pizza making.

II. RELATED WORKS

A wide class of approaches in object tracking explic-
itly assumes a model of the tracked objects. In tracking
deformable objects, some attempts have been proposed in
order to have a flexible model to track the objects [2] and to
represent the elasticity and deformation characteristics during
the physical interaction. In some of these cases, authors
consider a pre-defined initial shape to be manipulated into
a deformable contour model. In [3] authors use physical,
although very general, models and a set of contraints on
the model to estimate the state of objects. A probabilistic
approach is used to associate and track such points with
respect to the points obtained from point clouds of a RGB-D
camera. Our proposed solution is more in line with features
or appearance–based approaches, as the method of [4], where
non-rigid objects are tracked based on visual features such
as color and/or texture, object contours, regions of interest.
In [4], for example, a statistical distributions is used to
characterize the object of interest. The approach is based
on mean shift iterations to find the target candidate that is
the most similar to a given target model. In [5] authors
presented a feature method for tracking both rigid and
deformable objects (like human beings) in video sequences.
The proposed tracking algorithm segments object regions
based on motion and extracts some feature points to track



Fig. 1. RAM-neuron and a WiSARD discriminator.

by using optical flow with online training. Conversely, in our
work we track the complete appearance of the object. [6]
uses a train of discriminative classifiers in an online manner
to separate the object from the background with a model,
which evolves during the tracking process as the appearance
of the object changes. Finally, in [7] the estimation of non–
rigid object is obtained by means of energy minimization
and graph cuts.

III. WISARD NETWORKS

Weightless neural networks (WNNs) are based on net-
works of Random Access Memory (RAM) nodes. As il-
lustrated by Figure 1, a RAM-based neuron is capable of
recognizing n bits (n-tuple) inputs coming from a target
pattern. WiSARD systems are a particular type of WNN.
The WiSARDs can be developed directly on reprogrammable
hardware. This characteristic finds a concrete applicability in
embedded robotic systems.

On a WiSARD, RAM input lines (retina) are connected to
the input pattern by means of a biunivocal pseudo-random
mapping as a set of uncorrelated n-tuples (see right part of
Figure 1). Each n-tuple is used as a specific address of a
RAM–based neuron, in such a way that the input field is
completely covered. A WiSARD discriminator is composed
by a set of RAM–based neurons, and it is, in general, trained
with representative data of a specific class/category. In our
case the discrimintaor are trained on the current pattern. All
RAM neurons are initialized with 0s in all of its contents;
upon presentation of a (often binary) pattern, the contents
of the specific RAM location addressed by the n-tuple are
set to 1. The information stored by RAM nodes during
the training phase is used to deal with previous unseen
patterns. When one of these is given as input, RAM memory
contents addressed by the input pattern are read and summed
by Σ. The number r thus obtained, which is called the
discriminator response, is equal to the number of RAMs
that output ‘1’. The summing device enables this network
of RAM nodes to exhibit generalization and noise tolerance
[8].

A. WiSARD for Movements Tracking

The WiSARD system we propose, is formed by a certain
number of RAM–discriminators each one looking at different
parts of the image (see Figure 2). When a pattern is given
as input, each discriminator gives a response to that input.
The various responses are evaluated by an algorithm which
compares them and computes the relative confidence c of
the highest response. We can distinguish left, right, up and

Fig. 2. Prediction window and discriminator retinas.

down discriminators, respectively to track left, right, up
and down displacements of the tracked object. Doing so,
each discriminator is identified by its relative coordinates.
The displacement of all the retinas forms what it is called
prediction window. In particular, since we consider predic-
tion window precision of 10 pixels, we will use 21× 21 =
441 discriminators (included the central one). The generic
discriminator di, j is going to be responsible for detecting the
object in case its new position is identified by (i, j) in the
prediction window. The discriminators accept as input binary
patterns.

B. DRASiW for Shape Tracking

DRASiW is an extension to the WiSARD model provided
with the ability of producing pattern examples, or prototypes,
derived from learned categories. RAM–discriminators are
modified in what their memory locations may hold and,
correspondingly, in their training algorithm. These changes
allow one to store q-bit words in memory locations; this
information, in turn, can be exploited in the generation of
“mental” images (MIs) of learned pattern categories. The
training algorithm of RAM–discriminators is changed mainly
in one aspect only: instead of storing ‘1’s, it just increments
(+1) memory location contents that are addressed by input
patterns. The various memory content values can now be
associated to subpattern frequency in the training set. In order
to avoid RAM memory location saturation, we introduce a
forgetting mechanism (bleaching [9]) that allows DRASiW
to store in its MI an updated shape of the tracked object. The
system always trains itself with the image on the retina of
the discriminator that outputs the best response. In particular,
all the sub-patterns of the new image on the retina are
combined with those of the MI (this means increasing their
frequencies in the RAM contents). On the other hand, those
subpatterns which were not addressed by the image on the
retina are decremented (−1). So doing, DRASiW system will
get always an updated MI of the object shape it is tracking.
Furthermore, with the MI stored during time, we can produce
a sort of object shape history. This history can represent
a fundamental facility in the case we need to extract from
the tracking a cinematic/dynamic model of the object to be
manipulated.

IV. OUR FRAMEWORK

The tracking activity done by the overall system is per-
formed as follows. In order to transform the input video



frame image in a suitable format for WiSARD discrimi-
nators, i.e. a black and white image, we developed a filter
that binarizes the image of interest by identifying the more
frequent colors in a given region (focus area) included in the
target object. The main filter steps are depicted in Figure 3.

Before the tracking starts, the object to be tracked is
selected by the user by drawing a bounding box (the blue
rectangle in Figure 3). The filter identifies a focus area. More
precisely, the focus ares is represented by a box (the red
rectangle in Figure 3) centered in the bounding box and
whose size is equal to the α% of the bounding box. The filter
uses the focus area to compute the histogram representing the
pixel color (HSV) frequencies in the focus. The histogram is
then ordered and cut to leave the more frequent pixel colors
representing the β percentage of the focus area. The selected
colors are used to find and mark (i.e. black) the pixels in the
bounding box as belonging to the object to be tracked, while
all the other pixels are set as background (i.e. white).

At the beginning, the system is fed with such binary image
representing the object (with its initial shape and position) to
be followed. This image is used to train all discriminators.
Note that the filtering process is repeated for each input
frame in order to adapt to the dynamism of the environment
conditions. When the object starts moving, the WiSARD
system tries to localize the object through the discriminator
responses. The higher is the response the more probable the
object is in that part of the prediction window. Once the
system localizes the object in the new (i, j) position (that
is, discriminator di, j has the highest response), the mental
model of the object is trained adding the image on the di, j
discriminator to take into account the new possible shape.
The position of the central retina will be set to di, j. Finally,
the system will evaluate the mass center of the MI that, in our
case study, will be used to evaluate the tracking performance.

V. EXPERIMENTAL RESULTS IN PIZZA MAKING

As a benchmark to test our approach for tracking de-
formable object, we adopt the Pizza Making case study.
Despite its apparent simplicity, this task represents a very
challenging test bed, both for object tracking and for robotic
manipulation. Figure 4 shows a simulation of the RODY-
MAN robot in manipulating a pizza. Pizza is a non-rigid
deformable object that can assume whatever shape we want.
Hence, it is not possible to define a model for the tracking.

Fig. 3. The color histogram filter.

Fig. 4. Sketches of the RODYMAN robot manipulating a pizza.

Fig. 5. Snapshots from the original video with the center of mass and
relative WiSARD MIs during tracking

We individuated five different sub-tasks (see Figure 5) as
follows: 1)Translation (T): the pizza is in the hands of the
user who makes horizontal, vertical and circular movements;
2) Manipulation (M): the user manipulates the pizza; 3)
Extension (E): the user modifies the appearance of the pizza
dough in order to reach its final shape; 4) Occlusions (O):
during some phases, such as manipulation or seasoning, the
user may occlude the pizza on the table; 5) Seasoning and
Baking (S): also seasoning ingredients may occlude the pizza
dough that is now ready to be baked.

We evaluated the performance of the WiSARD considering
both its ability to track the shape of the pizza and to follow
the position of the object in time. As shown in Figure 5,
the Mental Image (MI) of the network keeps track of the
shape of the pizza during the interaction. Darkener points on
the MI represents points (n-tuple of points) more frequently
seen. In particular, in the third represented mental model
one can see that, as soon as the user starts to enlarge the
shape of the pizza dough, the MI consequently adapts its
values. In order to evaluate the tracking abilities, the system
evaluates the center of mass on the MI (i.e. the red cross
in Figure 5). Finally, we keep track of the position of the
central retina classifier (i.e the green cross in Figure 5) that
is updated according to the classifiers with the best response
at the previous frame.

In Table I we reported the data for 10 runs for each of
the five subtasks. For each task we collected the average
error of the tracking process computed as the difference
of positioning of the MI center of mass, as generated by
the WiSARD network, and the center of the real object
from a Ground Truth (GT) evaluation. Specifically, the GT
is computed by visually evaluating, frame by frame, the
center of mass and selecting the correspondent points over
the videos. For the experimentation, silicon pizza doughs of
different colors were used. Finally, last column of Table I
reports evaluation of performances of the overall task for
the 10 executions. The average frame rate of the process



was about 5 f ps.

T M E O S Overall
error (px) 5.09 2.83 3.92 3.83 4.59 4.41

TABLE I
ERRORS MEASURES ON SUB-TASKS AND THE OVERALL TASK.

We can note that, in general, the tracking process per-
forms well its task. In particular, during translations (T), the
WiSARD system is able to track the target object in all the
directions with a very low positioning error. The average
error in this case is 5.09px, as showed in Table I. However,
since this task is the only one involving big movements
of the mass center, the positioning error is slightly bigger
than in the other tasks. More similar to this task, in term
of positioning error, it is the Seasoning (S) (4.59px error),
where the error is not due to the movements (in fact, during
this phase the position of pizza is fixed) but to the occlusions
that can occur during the task. Furthermore, while in the
occlusion phase we evaluated quick occlusions of the pizza
made by the user hand, in seasoning there are permanent
occlusions (for example tomatoes and basil) that may cause
a little modification in the mass center. Considering the
manipulation (M), we note that when the pizza is fixed the
system reaches a low tracking error of about 2.83px, while
in the case of extension (E), some occlusions occur (e.g.
the human hands occlude the pizza during manipulation),
and the tracking error increases a little bit (3.92px). Such
result is comparable with the results we have with intended
occlusions (O) (3.83px error).

Fig. 6. Plot showing an example of the GT and MI centroid coordinates
with respect to horizontal and vertical directions, and tracking error evalu-
ated as the distance between these coordinates in the overall task.

In Figure 6 we show an example of execution of our
visual servoing system in tracking the target object during the
complete pizza making task. In the first two plots we present
the trend of the GT and MI centroid coordinates respectively
in the horizontal and vertical directions; while, the third plot
shows the tracking error evaluated as the distance between
these coordinates during the overall task.

VI. CONCLUSIONS AND FUTURE WORKS

The main contribution of this paper is to propose a
methodology for object tracking in order to achieve both
flexibility and robustness in tracking non-rigid deformable
objects without prior-model of them. The on–line training
characteristic of the proposed WiSARD network allows the
robot to adapt in real–time to any new situations, such as, a
new shape of the object and color and luminosity changes,
and so on. The use of parallel classificators trained on the
same image allows tracking the movements of the object
in the space with an acceptable average error. Moreover,
the reinforcing behavior of the DRASiW mechanism enables
to partially cope with occlusions. The obtained results can,
however, be drastically improved by parallelizing the code
where possible and by optimizing the distribution of classi-
ficators in the space (e.g. a dense network near the central
retina and a more sparse disposition on the neighborhood).
Moreover, the adoption of more accurate filtering techniques
can be investigated.

As many methods that deal with online learning of the
object shape, also our approach cannot completely solve
the problems of occlusion in the case the tracked object is
completely occluded for a long period of time. Hence, as
future work, we plan to investigate the adoption of a dead
reckoning strategy to anticipate the object current/next po-
sition by using its previously determined positions. We also
intend to extent the proposed method from this preliminary
2D approach to 3D and to introduce some inferences about
some characteristics of the object in order to fill the gap
in manipulation issues, which are not yet considered in this
preliminary work.
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