The Detour Domination and Connected Detour Domination values of a graph

R. V. Revathi ${ }^{1}$
M. Antony ${ }^{2}$

Abstract

The number of $\boldsymbol{\gamma d n}$-sets that \boldsymbol{v} belongs to in G is defined as the detour domination value of \boldsymbol{v}, indicated by $\boldsymbol{\gamma} \boldsymbol{D}_{\boldsymbol{V}}(\boldsymbol{v})$, for each vertex $\boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{G})$. In this article, we examined at the concept of a graph's detour domination value. The connected detour domination values of a vertex $\boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{G})$, represented as $\boldsymbol{C} \boldsymbol{D}_{\boldsymbol{V}}(\boldsymbol{G})$, are defined as the number of $\boldsymbol{C d} \boldsymbol{n}$-sets to which a vertex belongs \boldsymbol{v} to G . Some of the related detour dominating values in graphs' general characteristics are examined. This concept's satisfaction of some general properties is investigated. Some common graphs are established.

Keywords: domination number; detour number; detour domination value; connected detour domination value; etc.

2010 AMS subject classification: $05 \mathrm{C} 15,05 \mathrm{C} 69^{3}$

[^0]R.V. Revathi, and M. Antony

1. Introduction

Graph having the type $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a finite, undirected connected graph without loops or numerous edges. The order and size of the letter G are represented by the characters n and m , respectively. We refer to [3] for the fundamental terms used in graph theory. If $u v$ is an edge of G, then two vertices u and v are said to be adjacent. If two edges of G connect a vertex, they are said to be adjacent. The distance $d(u, v)$ between two vertices u and v in a connected graph G is thelength of a shortest u-vpath in G. A u-v geodesic is a u-v path of length $d(u, v)$.

The longest $u-v$ path in G is also referred to as detour distance $D(u, v)$ between two vertices u and v in a linked graph G from u to v . A $u-v$ detour is a $u-v$ path of length $D(u, v)$. If x is a vertex of P that also contains the vertices u and v , then x is said to lie on a $u-v$ detour. Every vertex of G is contained in a detour connecting some pair of vertices in S , which is the definition of a detour set of G . Any detour set of orderdn (G) is referred to as a minimum detour set of G or a $d n$-set of G . The detour number dn (G) of G is the minimum order of a detour set. These ideas have been researched in [4, 5, 6]. If for every $v \in V \backslash D$ is adjacent to a vertex in D, then the set $D \subseteq V$ is a dominant set of G. If no subset of a dominating set D is a dominating set of G 's, then D is said to be minimal. The symbol $\gamma(G)$ denotes the domination number of G , which is the least cardinality of a minimal set of G dominating sets. In [4], the graph's domination number was studied. If a set S is both a detour and a dominating set of G's, then it is referred to as a detour dominating set of G. Any detour dominating set of order $\gamma_{d}(G)$ is referred to as a $\gamma_{d^{-}}$set of G . The detour domination number $\gamma_{d}(G)$ of G is the minimal order of its detour dominating set. In [8], the detour domination number of a graph $\gamma_{d}(G)$ studied. If a set S is a detour dominating set of G and its induction by S is connected, the set $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$ is referred to as a connected detour dominating set of G. Any connected detour dominating set with order $\gamma_{c d}(G)$ is referred to as a $\gamma_{c d}$ - set of G. The connected detour domination number of $\gamma_{c d}(G)$ of G is the maximum order of its connected detour dominating sets. In [8,9], the connected detour domination number of a graph was investigated. The subsequent theorem is applied thereafter.

Theorem 1.1[3] Every detour set of a connected graph G contains each end vertex.
Theorem 1.2[3] Let G be a connected graph $n \geq 2$. Then $d n(G)=n$ if and only if $G=K_{2}$.

Theorem 1.3[3] Let G be a connected graph of order $n \geq 4$. Then $d n(G)=n-1$ if and only if $G=K_{1, n-1}$.

2.The Detour Domination Value of a Graph

Definition 2.1. For each vertex $v \in V(G)$, we define the detour domination value of v, denoted by $\gamma D_{V}(v)$, to be the number of $\gamma d n$-sets to which v belongs to G.

Example 2.2. In relation to the graph G in Figure 2.1, $S_{1}=\left\{v_{1}, v_{3}\right\}, S_{2}=\left\{v_{1}, v_{2}\right\}, S_{3}=$ $\left\{v_{1}, v_{4}\right\}, S_{4}=\left\{v_{2}, v_{3}\right\}, S_{5}=\left\{v_{2}, v_{4}\right\}, S_{6}=\left\{v_{3}, v_{4}\right\}$ are the onlysix minimum $\gamma d n$-sets of G such that $\gamma D_{V}\left(v_{1}\right)=3, \gamma D_{V}\left(v_{2}\right)=3, \gamma D_{V}\left(v_{3}\right)=3, \gamma D_{V}\left(v_{4}\right)=3, \gamma \tau(G)=6$.

G
Figure 2.1
Theorem 2.3. For the complete $\operatorname{graph} G=\kappa_{n}(n \geq 2) \gamma D_{V}(v)=n-1, \gamma \tau(G)=$ $n C_{2}$ for each $v \in V(G)$.
Proof. Since any two sets of G's vertices is the $\gamma d n$-set of G, thus $\gamma \tau(G)=n C_{2}$. Since each vertex of G belongs to exactly $n-1 \gamma d n$-sets, it follows that $\gamma D_{V}(v)=$ $n-1$ for each $v \in V(G)$.

Theorem 2.4. For a $\operatorname{star} G=K_{1, n-1}(n \geq 3) \gamma D_{V}(v)=1, \gamma \tau(G)=1$ for each $v \in$ $V(G)$.
Proof. We have $G=K_{1, n-1}$. Let S represent the set of all of the end vertices in G. Then S is the unique $\gamma d n$-set of G. Thus $\gamma \tau(G)=1$. Therefore $\gamma D_{V}(v)=1$ for each $v \in V(G)$.

Theorem 2.5. For the complete bipartite graph $G=K_{m, n}$ with bipartite sets X and Y.
and $\gamma \tau(G)=\left\{\begin{array}{l}m n \quad \text { if } m, n \geq 2 \\ 1 \text { if } m=n=1 \\ 1 \quad \text { if }\{m, n\}=\{1, x\} \text { where } x>1\end{array}\right.$
If $m, n \geq 2$ then $\gamma D_{V}(v)= \begin{cases}n, & \text { if } v \in X \\ m, & \text { if } v \in Y\end{cases}$
If $m=n=1=\gamma D_{V}(v)=1$ for any v in $K_{1,1}$.

If $\{m, n\}=\{1, x\}$ with $x>1$ then $G=K_{1, x} \cdot \gamma D_{V}(v)=\left\{\begin{array}{cc}1, & \text { if } v \in X \\ 0, & \text { if } v \in Y\end{array}\right.$
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be the two bipartite sets of G. Since any two adjacent vertices of G is a $\gamma d n$-sets of G, it follows that $\gamma \tau(G)=m n$ if $m, n \geq 2$.
If $m, n=1$ then it has only one a $\gamma d n$ set of G such that $\gamma \tau(G)=1$.
If $\{m, n\}=\{1, x\}$ then it only one $\gamma d n$-set of G such that $\gamma \tau(G)=1$.
If $v \in X$ then any vertex in Y belongs to a $\gamma d n$-set of G hence $\gamma D_{V}(v)=n$. Also if $v \in Y$,then any vertex in X belongs to a $\gamma d n$-set thus $\gamma D_{V}(v)=m$ for $m, n \geq 2$. If $m=n=1$, then $G=K_{2}, \gamma D_{V}(v)=1$ for any v in $K_{1,1}$. If $\{m, n\}=\{1, x\}$ with $x>1$, then $G=K_{1, x}, \gamma D_{V}(v)= \begin{cases}1, & \text { if } v \in X \\ 0, & \text { if } v \in Y .\end{cases}$

Theorem 2.6.For the wheel graph $G=K_{1}+C_{n-1}(n \geq 5), \gamma \tau(G)=\left\{\begin{array}{l}10, \quad n=5 \\ 2 n-2, \quad n \geq 6\end{array}\right.$ and $\gamma D_{V}(v)=\left\{\begin{array}{cc}4, & \text { if } n=5 \\ 3, & \text { if } n \geq 6 \text { and } v \in V\left(C_{n-1}\right) \\ n-1, & \text { if } n \geq 5, v \in V\left(K_{1}\right)\end{array}\right.$
Proof. Let $V\left(K_{1}\right)=x$ and $V\left(C_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. Let $n=5$. Then $S_{1}=\left\{v_{1}, v_{2}\right\}$, $S_{2}=\left\{v_{2}, v_{3}\right\}, S_{3}=\left\{v_{3}, v_{4}\right\}, S_{4}=\left\{v_{4}, v_{1}\right\}, S_{5}=\left\{v_{1}, x\right\}, S_{6}=\left\{v_{2}, x\right\}, S_{7}=\left\{v_{3}, x\right\}, S_{8}=$ $\left\{v_{4}, x\right\}, S_{9}=\left\{v_{2}, v_{4}\right\}, S_{10}=\left\{v_{1}, v_{3}\right\}$ are $\gamma d n$-sets of G such that $\gamma D_{V}\left(v_{1}\right)=$ $4, \gamma D_{V}\left(v_{2}\right)=4, \gamma D_{V}\left(v_{3}\right)=4, \gamma D_{V}\left(v_{4}\right)=4, \gamma D_{V}(x)=4$.
Let $n \geq 6$. Then any two adjacent vertices of G is a $\gamma d n$-set of G so that $\gamma \tau(G)=$ $(n-1)+(n-1)=2 n-2$ for $v \in V\left(C_{n-1}\right)$, hence v lies in exactly three $\gamma d n$-set of G so that $\gamma D_{V}(v)=3$ for all $v \in V\left(C_{n-1}\right)$. Since x is adjacent to $n-1$ vertices of $G, \gamma D_{V}(x)=n-1$.

Theorem 2.7. For the cycle graph $G=C_{n}(n \geq 3)$, $\gamma \tau\left(C_{n}\right)=\left\{\begin{array}{c}3 \text { if } n \equiv 0(\bmod 3) \\ n\left(1+\frac{1}{2}\left\lfloor\frac{n}{3}\right]\right) \text { if } n \equiv 1(\bmod 3) \\ n \quad \text { if } n \equiv 2(\bmod 3)\end{array}\right.$
Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $n=3 k$, where $k \geq 1$, Here $\gamma d n\left(C_{n}\right)=k$, a $\gamma d n$-set \mathcal{F} comprises $k K_{1}$'s and \mathcal{F} is fixed by the choice of the first K_{1}. There exists exactly one $\gamma d n\left(C_{n}\right)$-set containing the vertex v_{1}, and there are two $\gamma d n\left(C_{n}\right)$-sets omitting the vertex v_{1} such as \mathcal{F} containing the vertex v_{2} and \mathcal{F} containing the vertex v_{n}. Thus $\gamma \tau\left(C_{n}\right)=3$.
Let $n=3 k+1$, where $k \geq 1$. Here $\gamma d n\left(C_{n}\right)=k+1$, a $\gamma d n$-set \mathcal{F} is constituted in exactly one of the following two ways.
i) \mathcal{F} comprises $(k-1) K_{1}$'s and one K_{2}.
ii) \mathcal{F} comprises $(k+1) K_{1}$'s.
$\operatorname{Case}(\mathbf{i})\langle\mathcal{F}\rangle \cong(k-1) K_{1} \cup K_{2}$: Note that \mathcal{F} is fixed by the choice of the single K_{2} choosing a K_{2} in the same as choosing its initial vertex in the counter clockwise order. Hence $\tau=3 k+1$.
Case $(\mathbf{i i})\langle\mathcal{F}\rangle \cong(k+1) K_{1}$:It is clear that each K_{1} dominates three vertices, exactly there are two vertices, say x and y, each of whom is adjacent to two distinct K_{1} 's in \mathcal{F}. And \mathcal{F} is fixed by the placements of x and y.There are $n=3 k+1$ ways of choosing x. Consider the $P_{3 k-2}$ (a sequence of $3 k-2$ slots) obtained as a result of cutting from C_{n} the P_{3} centered about x vertex. y may be placed in the first slot of any of the $\left\lceil\frac{3 k-2}{3}\right\rceil=k$. As the order of selecting the two vertices x and y is immaterial $\tau=$ $\frac{(3 k+1)}{2} k$.
Summing over the two disjoint cases, we get $\gamma \tau\left(C_{n}\right)=(3 k+1)+\frac{(3 k+1)}{2} k=$ $(3 k+1)\left(1+\frac{k}{2}\right)=n\left(1+\frac{1}{2}\left\lfloor\frac{n}{3}\right\rfloor\right)$
Let $n=3 k+2$, where $k \geq 1$, Here $\gamma d n\left(C_{n}\right)=k+1$, a $\gamma d n\left(C_{n}\right)$-set \mathcal{F} comprises of only $K_{1}{ }^{\prime} s$ and is fixed by the placement of the only vertex which is adjacent to two distinct $K_{1}{ }^{\prime} \sin \mathcal{F}$. Hence $\gamma \tau\left(C_{n}\right)=n$.

3. The Connected Detour Domination Value of a Graph

Definition 3.1. For each vertex $v \in V(G)$,we define the connected detour domination values of v, denoted by $C D_{V}(G)$ to be the number of $C d n$-sets to which v belongs to G.

Example 3.2. For the graph G given in Figure 3.1, $S_{1}=\left\{v_{1}, v_{2}\right\}, S_{2}=\left\{v_{1}, v_{3}\right\}, S_{3}=$ $\left\{v_{1}, v_{4}\right\}, S_{4}=\left\{v_{2}, v_{4}\right\}, S_{5}=\left\{v_{2}, v_{3}\right\}, S_{6}=\left\{v_{2}, v_{5}\right\}, S_{7}=\left\{v_{3}, v_{5}\right\}, S_{8}=\left\{v_{4}, v_{5}\right\}$ are the only eight minimum $C d n$-sets of G such that $C D_{V}\left(v_{1}\right)=3, C D_{V}\left(v_{2}\right)=4, C D_{V}\left(v_{3}\right)=3$, $C D_{V}\left(v_{4}\right)=3, C D_{V}\left(v_{5}\right)=3$ and $\tau_{c}(G)=8$.

Figure 3.1

R.V. Revathi, and M. Antony

Proposition 3.3. Let G be a graph with n vertices without cut vertices and $\Delta=n-1$. Then $C d n(G)=2 \operatorname{andCD}(v) \leq n-1 \forall v \in V(G)$ and equality holds if and only if $\operatorname{deg}(v)=n-1$.
Proof. Let x be a universal vertex of G. Let $y \in N(x)$. Then $S=\{x, y\}$ is a $C d n$-set of G so that $C d n(G)=2$. Since x is a universal vertex of $G x$ belongs to every $C d n$-set of G. Since G contains at most $n-1 C d n$-sets, $C D_{V}(v) \leq n-1$. Let $C D_{V}(v)=n-1$. Hence it follows that v belongs to every $C d n$-set of G. Therefore $C D_{V}(v)=n-1$. The converse is clear.

Theorem3.4. For $n \geq 3, \tau_{c}\left(C_{n}\right)=n$ and $C D_{V}(v)=n-2 \forall v \in V(G)$.
Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then $S_{i}=V\left(C_{n}\right)-\left\{v_{i}, v_{i+1}\right\}(1 \leq i \leq n-1)$ and $S=V\left(C_{n}\right)-\left\{v_{1}, v_{n}\right\}$ are the $n, C d n$-sets of G, so that $\tau_{c}\left(C_{n}\right)=n$. As C_{n} is vertex transitive $C D_{V}(v)=C D_{V}\left(v_{1}\right)$ for all $v \in V\left(C_{n}\right)$. Since v_{1} belongs to $n-2 C d n$-sets of C_{n}, it follows that $C D_{V}(v)=n-2$ for all $v \in V\left(C_{n}\right)$.

Theorem3.5. For $n \geq 2, \tau_{c}\left(P_{n}\right)=1 \operatorname{and} C D_{V}(v)=1$ for each vertex $\forall v \in V\left(P_{n}\right)$. Proof. Since $S=V(G)$ is the unique $C d n$-sets of G the results follow theorem.

Theorem3.6. For the complete graph $G=K_{n}(n \geq 4), C D_{V}(v)=n-1, \tau_{c}(G)=n C_{2}$ for each vertex $v \in V(G)$.
Proof. Since any two set of vertices of G is the $\underline{C d n}$-set of G, it follows that $\tau_{c}(G)=$ $n C_{2}$. Since each vertex of G belongs to exatly $n-1 C d n$-sets, it follows that $C D_{V}(v)=$ $n-1$, for each vertex $v \in V(G)$.

Theorem3.7. For the wheel graph $G=K_{1}+C_{n-1}(n \geq 5), \tau_{c}(G)=\left\{\begin{array}{c}10, \quad n \geq 5 \\ 2 n-2, n \geq 6\end{array}\right.$ and $C D_{V}(v)=\left\{\begin{array}{c}4, \text { if } n=5 \\ 3, \text { if } n \geq 6 \text { and } v \in V\left(C_{n-1}\right) \text {. } \\ n-1, \text { if } n \geq 5, v \in V\left(K_{1}\right)\end{array}\right.$
Proof. Let $V\left(K_{1}\right)=x$ and $V\left(C_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. Let $n=5$. Then $S_{1}=V\left(v_{1}, v_{2}\right), S_{2}=V\left(v_{2}, v_{3}\right), S_{3}=V\left(v_{3}, v_{4}\right), S_{4}=V\left(v_{4}, v_{1}\right), S_{5}=V\left(v_{1}, x\right), S_{6}=$ $V\left(v_{2}, x\right), S_{7}=V\left(v_{3}, x\right), S_{8}=V\left(v_{4}, x\right), S_{9}=V\left(v_{2}, v_{4}\right), S_{10}=V\left(v_{1}, v_{3}\right)$ are the $C d n-$ sets of G, such that $C D_{V}\left(v_{1}\right)=4, C D_{V}\left(v_{2}\right)=4, C D_{V}\left(v_{3}\right)=4, C D_{V}\left(v_{4}\right)=4, C D_{V}(x)=$ 4 and $\tau_{c}(G)=10$. Let $n \geq 6$. Then any two adjacent vertices of G is a $C d n$-sets of G so that $\tau_{c}(G)=(n-1)+(n-1)=2 n-2$ for $v \in V\left(C_{n-1}\right), v$ lies in excatly three $C d n$ sets of G so that $C D_{V}(v)=3$ for all $v \in V\left(C_{n-1}\right)$. Since x is adjacent to $n-1$ vertices of $G, C D_{V}(x)=n-1$.

Theorem3.8. Let $G=K_{1}+P_{n-1}$ and $V\left(K_{1}\right)=x$ and $V\left(P_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.

Then for $n-1$ is odd $\tau_{c}(G)=3$ and $C D_{V}(v)=\left\{\begin{array}{c}2, \text { if } v=x, v_{1}, v_{n-1} \\ 0, \text { otherwise }\end{array}\right.$ and for $n-1$ is even $\tau_{c}(G)=4$ and $C D_{V}(v)\left\{\begin{array}{cl}3, & \text { if } v=x \\ 2, & \text { if } v=v_{1} \text { or } v_{n-1} \\ 1, & \text { if } v=v_{\frac{n-1}{2}}^{2} \\ 0, & \text { otherwise }\end{array}\right.$.
Proof. Let $V\left(K_{1}\right)=x$ and $V\left(P_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.
Case (i) $n-1$ is odd. $S_{1}=\left\{x, v_{1}\right\}, S_{2}=\left\{x, v_{n-1}\right\}, S_{3}=\left\{v_{1}, v_{n-1}\right\} \quad$ are the only three $C d n$-sets of G, such that $C D_{V}(x)=2, C D_{V}\left(v_{1}\right)=2, C D_{V}\left(v_{n-1}\right)=2$ so that $\tau_{c}(G)=3$.
Case (ii) $n-1$ is even. $M_{1}=\left\{x, v_{1}\right\}, M_{2}=\left\{x, v_{n-1}\right\}, M_{3}=\left\{x, v_{\frac{n-1}{2}}\right\}, M_{4}=\left\{v_{1}, v_{n-1}\right\}$ arethe only four $C d n$-sets of G, so that $C D_{V}(x)=3, C D_{V}\left(v_{1}\right)=2, C D_{V}\left(v_{n-1}\right)=2$, $C D_{V}\left(v_{\frac{n-1}{2}}\right)=1$ and $\tau_{c}(G)=4$.

Theorem3.9. $\tau_{c}\left(P_{2} \times P_{n}\right)=\left\{\begin{array}{r}4, \text { if } n=2 \\ 1, \text { if } n=3 \\ 8, \text { if } n \geq 4\end{array}\right.$
Proof. Let S be a $C d n$-sets of $P_{2} \times P_{n}$ of cardinality n where $n \geq 2$ if $n=2$, then $P_{2} \times P_{n} \cong C_{4}$ and any two adjacent vertices form a $C d n$-set i.e. $\left\{u_{1}, v_{1}\right\},\left\{u_{1}, u_{2}\right\},\left\{v_{1}, v_{2}\right\},\left\{u_{2}, v_{2}\right\}$ are all possible $C d n$-sets of $P_{2} \times P_{2}$. If $n=3$, there is a unique $C d n-\operatorname{set}\left\{u_{2}, v_{2}\right\}$. So let $n \geq 4$. By lemma 2.2 either $\left\{u_{3}, u_{4}, \ldots, u_{n-3}, u_{n-2}\right\} \subset$ S or $\left\{v_{3}, v_{4}, \ldots, v_{n-3}, v_{n-2}\right\} \subset S$ (and not both). Let $\left\{u_{3}, u_{4}, \ldots, u_{n-3}, u_{n-2}\right\} \subset S$. As $v_{3} \notin S$, to maintain connectedness of $\langle S\rangle$ and to dominate u_{1}, we have $u_{2} \in S$. In the same way, $u_{n-1} \in S$. Thus $\left\{u_{2}, u_{3}, \ldots, u_{n-2}, u_{n-1}\right\} \subset S$. Since S contains n elements, let the other 2 vertices in S be l, m. To dominate u_{1} and v_{1}, one of l and m (say l) must be either u_{1} or v_{2}. Similarly m is either u_{n} or v_{n-1}. Since there are two choices each for l and m such that S forms a $C d n$-set, the number of $C d n$-sets containing $u_{3}, u_{4}, \ldots, u_{n-3}, u_{n-2}$ is 4 . Similarlythe number of $C d n$-sets containing $v_{3}, v_{4}, \ldots, v_{n-3}, v_{n-2}$ is 4 . Hence by lemma 2.2, we get $\tau_{c}\left(P_{2} \times P_{n}\right)=8$ for $n \geq 4$.

Theorem3.10. $\operatorname{Let} P_{2} \times P_{n}$ be a rectangular grid with $n \geq 2$ and let $a_{i}=u_{i}$ or v_{i}. If $n=2$, then $C D_{V}(v)=2$ for all $v \in V\left(P_{2} \times P_{n}\right)$. If $n=3$, then $C D_{V}\left(a_{1}\right)=C D_{V}\left(a_{3}\right)=$ 0 and $C D_{V}\left(a_{2}\right)=1$, If $n \geq 4$ then $C D_{V}\left(a_{i}\right)=\left\{\begin{aligned} & 2, \text { if } i=1 \text { or } n \\ & 6, \text { if } i=2 \text { or } n-1 \\ & 4, \text { otherwise }\end{aligned}\right.$
Proof. The proof is clear for $n=2$ and theorem 2.10, so we assume that $n \geq 4$. Let v be a vertex in $P_{2} \times P_{n}$.
Case 1: $\left[v \in\left\{u_{1}, v_{1}, u_{n}, v_{n}\right\}\right]$. Let $v=u_{1}$, then using the line of proof of Theorem 3.10, the $C d n$-sets containing u_{1} are precisely those where $l=u_{1}$ and m is either u_{n} or v_{n-1} i.e, $C D_{V}(v)=2$. Same for the case when $v=V_{1}$ or $v=u_{n}$ or $v=v_{n}$.

R.V. Revathi, and M. Antony

Case 2: $\left[v \in\left\{u_{2}, v_{2}, u_{n-1}, v_{n-1}\right\}\right]$. Let $v=u_{2}$. Note that any connected dominating set contains either u_{2}, v_{2}. Also total number of minimum connected dominating sets is 8 , out of which only two does not contain u_{2}, namely $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n-1}, u_{n-1}\right\}$. Thus $C D_{V}\left(u_{2}\right)=8-2=6$. Now, as there exist isomorphisms which maps u_{2} to v_{2}, u_{n-1}, v_{n-1} respectively, by proposition 2.2, we have $C D_{V}\left(u_{2}\right)=$ $C D_{V}\left(v_{2}\right)=C D_{V}\left(u_{n-1}\right)=C D_{V}\left(v_{n-1}\right)=6$.
Case 3: $\left[v \notin\left\{u_{1}, v_{1}, u_{2}, v_{2}, u_{n-1}, v_{n-1}, u_{n}, v_{n}\right\}\right]$. In this case, from the proof of Theorem 2.10 we have $C D_{V}(v)=4$.

References

[1] Buckley and F.Harary, Distance in Graph, Addition-Wesly-wood city, CA, (1990).
[2] G. Chartrand, G. Johns and P. Zhang, On the detour number and geodetic number of a graph, Ars combinatoria, 72(2004), 3-15.
[3] G. Chartrand, G. Johns and P. Zhang, The detour number of a graph, Utilitas Mathematica, 64(2003), 97-113.
[4] T.W. Haynes, P.J. Slater and S.T. Hedetniemi, Fundamentals of Domination in graphs, Marcel Dekker, New York, (1998).
[5] J. John and N. Arianayagam, The detour domination number of a graph, Discrete Mathematics Algorithms and Applications, 09(01), 2017, 17500069.
[6] J. John and N. Arianayagam, The total Detour number of a graph, Journal of Discrete Mathematics Sciences and Cryptography, 17(4), 2014, 337-350.
[7] J. John and V. R. Sunil Kumar, The open detour number of a graph, Discrete Mathematics Algorithms and Applications, 13(01), 2021, 2050088.
[8] A. P. Santhakumaran and S. Athisayanathan, The connected detour number of graphs, J. combin. math. combin. compute;69, (2009), 205-218.
[9] J. Vijaya Xavier Parthian, and C. Caroline Selvaraj, Connected Detour Domination Number of Some Standard Graphs, Journal of Applied Science and Computations, 5(11), (2018), 486-489.

[^0]: ${ }^{1}$ Register Number 19133232092002, Research Scholar, Department of Mathematics, St. Jude's College, Thoothoor - 629 176, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India; revathi87gowri@gmail.com.
 ${ }^{2}$ Associate Professor, Department of Mathematics, St. Jude's College, Thoothoor - 629 176, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India; antony.michael@yahoo.com
 ${ }^{3}$ Received on June 9 th, 2022. Accepted on Aug $10^{\text {th }}$, 2022. Published on Nov 30th, 2022. doi: $10.23755 / \mathrm{rm} . \mathrm{v} 44 \mathrm{i} 0.908$. ISSN: 1592-7415. eISSN: 2282-8214. OThe Authors.This paper is published under the CC-BY licence agreement.

