The Detour Domination and Connected Detour Domination values of a graph

R. V. Revathi¹ M. Antony²

Abstract

The number of γdn -sets that v belongs to in G is defined as the detour domination value of v, indicated by $\gamma D_V(v)$, for each vertex $v \in V(G)$. In this article, we examined at the concept of a graph's detour domination value. The connected detour domination values of a vertex $v \in V(G)$, represented as $CD_V(G)$, are defined as the number of Cdn-sets to which a vertex belongs v to G. Some of the related detour dominating values in graphs' general characteristics are examined. This concept's satisfaction of some general properties is investigated. Some common graphs are established.

Keywords: domination number; detour number; detour domination value; connected detour domination value; etc.

2010 AMS subject classification: 05C15, 05C69³

¹ Register Number 19133232092002, Research Scholar, Department of Mathematics, St. Jude's College, Thoothoor - 629 176, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India; revathi87gowri@gmail.com.

²Associate Professor, Department of Mathematics, St. Jude's College, Thoothoor - 629 176, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India; antony.michael@yahoo.com

³ Received on June 9 th, 2022. Accepted on Aug 10th, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.908. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY licence agreement.

1. Introduction

Graph having the type G = (V, E) is a finite, undirected connected graph without loops or numerous edges. The order and size of the letter G are represented by the characters n and m, respectively. We refer to [3] for the fundamental terms used in graph theory. If uv is an edge of G, then two vertices u and v are said to be adjacent. If two edges of G connect a vertex, they are said to be adjacent. The *distance* d(u, v)between two vertices u and v in a connected graph G is thelength of a shortest u-vpath in G. A u-v geodesic is a u-v path of length d(u, v).

The longest $u \cdot v$ path in G is also referred to as *detour distance* D(u, v) between two vertices u and v in a linked graph G from u to v. A u-v detour is a u-v path of length D(u, v). If x is a vertex of P that also contains the vertices u and v, then x is said to lie on a u-v detour. Every vertex of G is contained in a detour connecting some pair of vertices in S, which is the definition of a detour set of G. Any detour set of order dn (G) is referred to as a minimum detour set of G or a dn -set of G. The detour number dn (G) of G is the minimum order of a detour set. These ideas have been researched in [4, 5, 6]. If for every $v \in V \setminus D$ is adjacent to a vertex in D, then the set $D \subseteq V$ is a dominant set of G. If no subset of a dominating set D is a dominating set of G's, then D is said to be minimal. The symbol $\gamma(G)$ denotes the domination number of G, which is the least cardinality of a minimal set of G dominating sets. In [4], the graph's domination number was studied. If a set S is both a detour and a dominating set of G's, then it is referred to as a detour dominating set of G. Any detour dominating set of order $\gamma_d(G)$ is referred to as a γ_d -set of G. The *detour domination number* $\gamma_d(G)$ of G is the minimal order of its detour dominating set. In [8], the detour domination number of a graph $\gamma_d(G)$ studied. If a set S is a detour dominating set of G and its induction by S is connected, the set $S \subseteq V(G)$ is referred to as a *connected detour dominating set* of G. Any connected detour dominating set with order $\gamma_{cd}(G)$ is referred to as $a\gamma_{cd}$ - set of G. The connected detour domination number of $\gamma_{cd}(G)$ of G is the maximum order of its connected detour dominating sets. In [8,9], the connected detour domination number of a graph was investigated. The subsequent theorem is applied thereafter.

Theorem 1.1[3] Every detour set of a connected graph G contains each end vertex.

Theorem 1.2[3] Let G be a connected graph $n \ge 2$. Then dn(G) = n if and only if $G = K_2$.

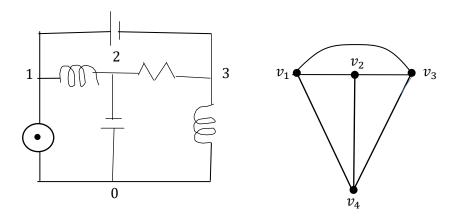
Theorem 1.3[3] Let *G* be a connected graph of order $n \ge 4$. Then dn(G) = n - 1 if and only if $G = K_{1,n-1}$.

The detour domination and connected domination values of a graph

2. The Detour Domination Value of a Graph

Definition 2.1. For each vertex $v \in V(G)$, we define the detour domination value of v, denoted by $\gamma D_V(v)$, to be the number of γdn -sets to which v belongs to G.

Example 2.2. In relation to the graph G in Figure 2.1, $S_1 = \{v_1, v_3\}, S_2 = \{v_1, v_2\}, S_3 = \{v_1, v_4\}, S_4 = \{v_2, v_3\}, S_5 = \{v_2, v_4\}, S_6 = \{v_3, v_4\}$ are the onlysix minimum γdn -sets of G such that $\gamma D_V(v_1) = 3, \gamma D_V(v_2) = 3, \gamma D_V(v_3) = 3, \gamma D_V(v_4) = 3, \gamma \tau(G) = 6$.



G

Theorem 2.3. For the complete graph $G = \kappa_n (n \ge 2)\gamma D_V(v) = n - 1$, $\gamma \tau(G) = nC_2$ for each $v \in V(G)$.

Proof. Since any two sets of G's vertices is the γdn -set of G, thus $\gamma \tau(G) = nC_2$. Since each vertex of G belongs to exactly $n - 1\gamma dn$ -sets, it follows that $\gamma D_V(v) = n - 1$ for each $v \in V(G)$.

Theorem 2.4. For a star $G = K_{1,n-1}(n \ge 3) \gamma D_V(v) = 1, \gamma \tau(G) = 1$ for each $v \in V(G)$.

Proof. We have $G = K_{1,n-1}$. Let S represent the set of all of the end vertices in G. Then S is the unique γdn -set of G. Thus $\gamma \tau(G) = 1$. Therefore $\gamma D_V(v) = 1$ for each $v \in V(G)$.

Theorem 2.5. For the complete bipartite graph $G = K_{m,n}$ with bipartite sets X and Y. and $\gamma\tau(G) = \begin{cases} mn & if \ m, n \ge 2\\ 1 & if \ m = n = 1\\ 1 & if \ \{m, n\} = \{1, x\} where \ x > 1 \end{cases}$ If $m, n \ge 2$ then $\gamma D_V(v) = \begin{cases} n, & if \ v \in X\\ m, & if \ v \in Y \end{cases}$ If $m = n = 1 = \gamma D_V(v) = 1$ for any v in $K_{1,1}$.

R.V. Revathi, and M. Antony

If $\{m, n\} = \{1, x\}$ with x > 1 then $G = K_{1,x}$. $\gamma D_V(v) = \begin{cases} 1, & \text{if } v \in X \\ 0, & \text{if } v \in Y \end{cases}$

Proof. Let $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_n\}$ be the two bipartite sets of *G*. Since any two adjacent vertices of *G* is a γdn -sets of *G*, it follows that $\gamma \tau(G) = mn$ if $m, n \ge 2$.

If m, n = 1 then it has only one a γdn set of G such that $\gamma \tau(G) = 1$.

If $\{m, n\} = \{1, x\}$ then it only one γdn -set of G such that $\gamma \tau(G) = 1$.

If $v \in X$ then any vertex in Y belongs to $a\gamma dn$ -set of G hence $\gamma D_V(v) = n$. Also if $v \in Y$, then any vertex in X belongs to a γdn -set thus $\gamma D_V(v) = m$ for $m, n \ge 2$. If m = n = 1, then $G = K_2, \gamma D_V(v) = 1$ for any v in $K_{1,1}$. If $\{m, n\} = \{1, x\}$ with x > 1, then $G = K_{1,x}, \gamma D_V(v) = \begin{cases} 1, & \text{if } v \in X \\ 0, & \text{if } v \in Y \end{cases}$.

Theorem 2.6.For the wheel graph $G = K_1 + C_{n-1}$ $(n \ge 5)$, $\gamma \tau(G) = \begin{cases} 10, & n = 5\\ 2n-2, & n \ge 6 \end{cases}$ and $\gamma D_V(v) = \begin{cases} 4, & \text{if } n = 5\\ 3, & \text{if } n \ge 6 \text{ and } v \in V(C_{n-1})\\ n-1, & \text{if } n \ge 5, v \in V(K_1) \end{cases}$

Proof. Let $V(K_1) = x$ and $V(C_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$. Let n = 5. Then $S_1 = \{v_1, v_2\}$, $S_2 = \{v_2, v_3\}$, $S_3 = \{v_3, v_4\}$, $S_4 = \{v_4, v_1\}$, $S_5 = \{v_1, x\}$, $S_6 = \{v_2, x\}$, $S_7 = \{v_3, x\}$, $S_8 = \{v_4, x\}$, $S_9 = \{v_2, v_4\}$, $S_{10} = \{v_1, v_3\}$ are γdn -sets of G such that $\gamma D_V(v_1) = 4$, $\gamma D_V(v_2) = 4$, $\gamma D_V(v_3) = 4$, $\gamma D_V(v_4) = 4$, $\gamma D_V(x) = 4$.

Let $n \ge 6$. Then any two adjacent vertices of *G* is a γdn -set of *G* so that $\gamma \tau(G) = (n-1) + (n-1) = 2n-2$ for $v \in V(C_{n-1})$, hence *v* lies in exactly three γdn -set of *G* so that $\gamma D_V(v) = 3$ for all $v \in V(C_{n-1})$. Since *x* is adjacent to n-1 vertices of $G, \gamma D_V(x) = n-1$.

Theorem 2.7. For the cycle graph
$$G = C_n (n \ge 3)$$
,
 $\gamma \tau(C_n) = \begin{cases} 3 & \text{if } n \equiv 0 \pmod{3} \\ n \left(1 + \frac{1}{2} \left\lfloor \frac{n}{3} \right\rfloor\right) & \text{if } n \equiv 1 \pmod{3} \\ n & \text{if } n \equiv 2 \pmod{3} \end{cases}$

Proof. Let $V(C_n) = \{v_1, v_2, ..., v_n\}$. Let n = 3k, where $k \ge 1$, Here $\gamma dn(C_n) = k$, a γdn -set \mathcal{F} comprises $k K_1$'s and \mathcal{F} is fixed by the choice of the first K_1 . There exists exactly one $\gamma dn(C_n)$ -set containing the vertex v_1 , and there are two $\gamma dn(C_n)$ -sets omitting the vertex v_1 such as \mathcal{F} containing the vertex v_2 and \mathcal{F} containing the vertex v_n . Thus $\gamma \tau(C_n) = 3$.

Let n = 3k + 1, where $k \ge 1$. Here $\gamma dn(C_n) = k + 1$, $a\gamma dn$ -set \mathcal{F} is constituted in exactly one of the following two ways.

i) \mathcal{F} comprises $(k - 1)K_1$'s and one K_2 .

ii) \mathcal{F} comprises $(k + 1)K_1$'s.

Case(i) $\langle \mathcal{F} \rangle \cong (k-1)K_1 \cup K_2$: Note that \mathcal{F} is fixed by the choice of the single K_2 choosing a K_2 in the same as choosing its initial vertex in the counter clockwise order. Hence $\tau = 3k + 1$.

Case(ii) $\langle \mathcal{F} \rangle \cong (k+1)K_1$: It is clear that each K_1 dominates three vertices, exactly there are two vertices, say x and y, each of whom is adjacent to two distinct K_1 's in \mathcal{F} . And \mathcal{F} is fixed by the placements of x and y. There are n = 3k + 1 ways of choosing x. Consider the P_{3k-2} (a sequence of 3k - 2 slots) obtained as a result of cutting from C_n the P_3 centered about x vertex. y may be placed in the first slot of any of the $\left[\frac{3k-2}{3}\right] = k$. As the order of selecting the two vertices x and y is immaterial $\tau = \frac{(3k+1)}{2}k$.

Summing over the two disjoint cases, we get $\gamma \tau(C_n) = (3k+1) + \frac{(3k+1)}{2}k = (3k+1)\left(1+\frac{k}{2}\right) = n\left(1+\frac{1}{2}\left|\frac{n}{3}\right|\right)$

Let n = 3k + 2, where $k \ge 1$, Here $\gamma dn(C_n) = k + 1$, a $\gamma dn(C_n)$ -set \mathcal{F} comprises of only K_1 's and is fixed by the placement of the only vertex which is adjacent to two distinct K_1 'sin \mathcal{F} . Hence $\gamma \tau(C_n) = n$.

3. The Connected Detour Domination Value of a Graph

Definition 3.1. For each vertex $v \in V(G)$, we define the connected detour domination values of v, denoted by $CD_V(G)$ to be the number of Cdn-sets to which v belongs to G.

Example 3.2. For the graph *G* given in Figure 3.1, $S_1 = \{v_1, v_2\}, S_2 = \{v_1, v_3\}, S_3 = \{v_1, v_4\}, S_4 = \{v_2, v_4\}, S_5 = \{v_2, v_3\}, S_6 = \{v_2, v_5\}, S_7 = \{v_3, v_5\}, S_8 = \{v_4, v_5\}$ are the only eight minimum *Cdn*-sets of *G* such that $CD_V(v_1) = 3, CD_V(v_2) = 4, CD_V(v_3) = 3, CD_V(v_4) = 3, CD_V(v_5) = 3$ and $\tau_c(G) = 8$.

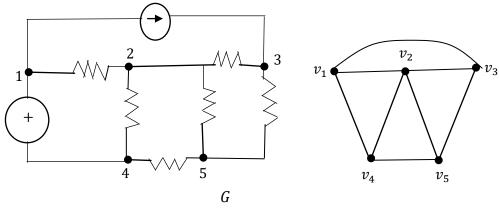


Figure 3.1

Proposition 3.3. Let *G* be a graph with *n* vertices without cut vertices and $\Delta = n - 1$. Then Cdn(G) = 2 and $CD_V(v) \le n - 1 \forall v \in V(G)$ and equality holds if and only if deg (v) = n - 1.

Proof. Let *x* be a universal vertex of *G*. Let $y \in N(x)$. Then $S = \{x, y\}$ is a *Cdn*-set of *G* so that Cdn(G) = 2. Since *x* is a universal vertex of *G x* belongs to every *Cdn*-set of *G*. Since *G* contains at most n - 1 *Cdn*-sets, $CD_V(v) \le n - 1$. Let $CD_V(v) = n - 1$. Hence it follows that *v* belongs to every *Cdn*-set of *G*. Therefore $CD_V(v) = n - 1$. The converse is clear.

Theorem3.4. For $n \ge 3$, $\tau_c(C_n) = n$ and $CD_V(v) = n - 2 \forall v \in V(G)$. **Proof.** Let $V(C_n) = \{v_1, v_2, ..., v_n\}$. Then $S_i = V(C_n) - \{v_i, v_{i+1}\} (1 \le i \le n - 1)$ and $S = V(C_n) - \{v_1, v_n\}$ are the *n*, *Cdn*-sets of *G*, so that $\tau_c(C_n) = n$. As C_n is vertex transitive $CD_V(v) = CD_V(v_1)$ for all $v \in V(C_n)$. Since v_1 belongs to n - 2 *Cdn*-sets of C_n , it follows that $CD_V(v) = n - 2$ for all $v \in V(C_n)$.

Theorem3.5. For $n \ge 2$, $\tau_c(P_n) = 1$ and $CD_V(v) = 1$ for each vertex $\forall v \in V(P_n)$. **Proof.** Since S = V(G) is the unique *Cdn*-sets of *G* the results follow theorem.

Theorem3.6. For the complete graph $G = K_n (n \ge 4)$, $CD_V(v) = n - 1$, $\tau_c(G) = nC_2$ for each vertex $v \in V(G)$.

Proof. Since any two set of vertices of *G* is the <u>*Cdn*</u>-set of *G*, it follows that $\tau_c(G) = nC_2$. Since each vertex of *G* belongs to exatly n - 1 *Cdn*-sets, it follows that $CD_V(v) = n - 1$, for each vertex $v \in V(G)$.

Theorem3.7. For the wheel graph $G = K_1 + C_{n-1} (n \ge 5), \tau_c(G) = \begin{cases} 10, & n \ge 5\\ 2n-2, n \ge 6 \end{cases}$ and $CD_V(v) = \begin{cases} 4, & \text{if } n = 5\\ 3, & \text{if } n \ge 6 \text{ and } v \in V(C_{n-1}).\\ n-1, & \text{if } n \ge 5, v \in V(K_1) \end{cases}$

Proof. Let $V(K_1) = x$ and $V(C_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$. Let n = 5. Then $S_1 = V(v_1, v_2), S_2 = V(v_2, v_3), S_3 = V(v_3, v_4), S_4 = V(v_4, v_1), S_5 = V(v_1, x), S_6 = V(v_2, x), S_7 = V(v_3, x), S_8 = V(v_4, x), S_9 = V(v_2, v_4), S_{10} = V(v_1, v_3)$ are the *Cdn*sets of *G*, such that $CD_V(v_1) = 4$, $CD_V(v_2) = 4$, $CD_V(v_3) = 4$, $CD_V(v_4) = 4$, $CD_V(x) = 4$ and $\tau_c(G) = 10$. Let $n \ge 6$. Then any two adjacent vertices of *G* is a *Cdn*-sets of *G* so that $\tau_c(G) = (n - 1) + (n - 1) = 2n - 2$ for $v \in V(C_{n-1}), v$ lies in excatly three *Cdn*sets of *G* so that $CD_V(v) = 3$ for all $v \in V(C_{n-1})$. Since *x* is adjacent to n - 1 vertices of *G*, $CD_V(x) = n - 1$.

Theorem3.8. Let $G = K_1 + P_{n-1}$ and $V(K_1) = x$ and $V(P_{n-1}) = \{v_1, v_2, \dots, v_{n-1}\}$.

Then for n - 1 is odd $\tau_c(G) = 3$ and $CD_V(v) = \begin{cases} 2, & \text{if } v = x, v_1, v_{n-1} \\ 0, & \text{otherwise} \end{cases}$ and for n - 1 is even $\tau_c(G) = 4$ and $CD_V(v) \begin{cases} 3, & \text{if } v = x \\ 2, & \text{if } v = v_1 \text{ or } v_{n-1} \\ 1, & \text{if } v = v_{\frac{n-1}{2}} \end{cases}$. **Proof.** Let $V(K_1) = x$ and $V(P_{n-1}) = \{v_1, v_2, \dots, v_{n-1}\}$.

Case (i) n - 1 is odd. $S_1 = \{x, v_1\}, S_2 = \{x, v_{n-1}\}, S_3 = \{v_1, v_{n-1}\}$ are the only three *Cdn*-sets of *G*, such that $CD_V(x) = 2, CD_V(v_1) = 2, CD_V(v_{n-1}) = 2$ so that $\tau_c(G) = 3$. **Case (ii)** n - 1 is even. $M_1 = \{x, v_1\}, M_2 = \{x, v_{n-1}\}, M_3 = \{x, v_{\frac{n-1}{2}}\}, M_4 = \{v_1, v_{n-1}\}$ are the only four *Cdn*-sets of *G*, so that $CD_V(x) = 3, CD_V(v_1) = 2, CD_V(v_{n-1}) = 2$, $CD_V(v_{n-1}) = 2$, $CD_V(v_{n-1}) = 2$, $CD_V(v_{n-1}) = 2$.

Theorem3.9.
$$\tau_c(P_2 \times P_n) = \begin{cases} 4, & \text{if } n = 2 \\ 1, & \text{if } n = 3 \\ 8, & \text{if } n \ge 4 \end{cases}$$

Proof. Let S be a Cdn-sets of $P_2 \times P_n$ of cardinality n where $n \ge 2$ if n = 2, then and any two adjacent vertices form a Cdn-set $P_2 \times P_n \cong C_4$ i.e.{ u_1, v_1 },{ u_1, u_2 },{ v_1, v_2 },{ u_2, v_2 }are all possible<u>*Cdn*</u>-sets of $P_2 \times P_2$. If n = 3, there is a unique <u>*Cdn*</u>-set{ u_2, v_2 }. So let $n \ge 4$. By lemma 2.2 either { $u_3, u_4, \dots, u_{n-3}, u_{n-2}$ } \subset S or $\{v_3, v_4, \dots, v_{n-3}, v_{n-2}\} \subset S$ (and not both). Let $\{u_3, u_4, \dots, u_{n-3}, u_{n-2}\} \subset S$. As $v_3 \notin S$, to maintain connectedness of $\langle S \rangle$ and to dominate u_1 , we have $u_2 \in S$. In the same way, $u_{n-1} \in S$. Thus $\{u_2, u_3, \dots, u_{n-2}, u_{n-1}\} \subset S$. Since S contains n elements, let the other 2 vertices in S be l, m. To dominate u_1 and v_1 , one of l and m (say l) must be either u_1 or v_2 . Similarly *m* is either u_n or v_{n-1} . Since there are two choices each for *l* such that *S* forms a *Cdn*-set, number and т the of Cdn-sets Similarlythe number of Cdn-sets containing u_3 , u_4 , ..., u_{n-3} , u_{n-2} is 4. containing $v_3, v_4, \dots, v_{n-3}, v_{n-2}$ is 4. Hence by lemma 2.2, we get $\tau_c(P_2 \times P_n) = 8$ for $n \geq 4.\blacksquare$

Theorem3.10. Let $P_2 \times P_n$ be a rectangular grid with $n \ge 2$ and let $a_i = u_i$ or v_i . If n = 2, then $CD_V(v) = 2$ for all $v \in V(P_2 \times P_n)$. If n = 3, then $CD_V(a_1) = CD_V(a_3) = 0$ and $CD_V(a_2) = 1$, If $n \ge 4$ then $CD_V(a_i) = \begin{cases} 2, & \text{if } i = 1 \text{ or } n \\ 6, & \text{if } i = 2 \text{ or } n - 1 \\ 4, & \text{otherwise} \end{cases}$

Proof. The proof is clear for n = 2 and theorem 2.10, so we assume that $n \ge 4$. Let v be a vertex in $P_2 \times P_n$.

Case 1: $[v \in \{u_1, v_1, u_n, v_n\}]$. Let $v = u_1$, then using the line of proof of Theorem 3.10, the *Cdn*-sets containing u_1 are precisely those where $l = u_1$ and m is either u_n or v_{n-1} i.e, $CD_V(v) = 2$. Same for the case when $v = V_1$ or $v = u_n$ or $v = v_n$.

Case 2: $[v \in \{u_2, v_2, u_{n-1}, v_{n-1}\}]$. Let $v = u_2$. Note that any connected dominating set contains either u_2, v_2 . Also total number of minimum connected dominating sets is 8, out of which only two does not contain u_2 , namely $\{v_1, v_2, ..., v_n\}$ and $\{v_1, v_2, ..., v_{n-1}, u_{n-1}\}$. Thus $CD_V(u_2) = 8 - 2 = 6$. Now, as there exist isomorphisms which maps u_2 to v_2, u_{n-1}, v_{n-1} respectively, by proposition 2.2, we have $CD_V(u_2) = CD_V(v_2) = CD_V(v_{n-1}) = CD_V(v_{n-1}) = 6$.

Case 3: $[v \notin \{u_1, v_1, u_2, v_2, u_{n-1}, v_{n-1}, u_n, v_n\}]$. In this case, from the proof of Theorem 2.10 we have $CD_V(v) = 4$.

References

[1] Buckley and F.Harary, Distance in Graph, Addition-Wesly-wood city, CA, (1990).

[2] G. Chartrand, G. Johns and P. Zhang, On the detour number and geodetic number of a graph, Ars combinatoria, 72(2004), 3-15.

[3] G. Chartrand, G. Johns and P. Zhang, The detour number of a graph, Utilitas Mathematica, 64(2003), 97-113.

[4] T.W. Haynes, P.J. Slater and S.T. Hedetniemi, Fundamentals of Domination in graphs, Marcel Dekker, New York, (1998).

[5] J. John and N. Arianayagam, The detour domination number of a graph, Discrete Mathematics Algorithms and Applications, 09(01), 2017, 17500069.

[6] J. John and N. Arianayagam, The total Detour number of a graph, Journal of Discrete Mathematics Sciences and Cryptography, 17(4), 2014, 337-350.

[7] J. John and V. R. Sunil Kumar, The open detour number of a graph, Discrete Mathematics Algorithms and Applications, 13(01), 2021, 2050088.

[8] A. P. Santhakumaran and S. Athisayanathan, The connected detour number of graphs, J. combin. math. combin. compute;69, (2009), 205-218.

[9] J. Vijaya Xavier Parthian, and C. Caroline Selvaraj, Connected Detour Domination Number of Some Standard Graphs, Journal of Applied Science and Computations, 5(11), (2018), 486-489.