Co-even Geodetic Number of a Graph

T. Jebaraj ^{*} Ayarlin Kirupa.M [†]

Abstract

Let G = (V, E) be a graph with vertex set V and edge set E. If S is a set of vertices of G, then I[S] is the union of all sets I[u, v] for $u, v \in S$. If I[S] = V(G), then S is a geodetic set for G. The geodetic number g(G) is the minimum cardinality of a geodetic set. A geodetic set S is called co- even geodetic set if the degree of vertex v is even number for all $v \in V - S$. The cardinality of a smallest co- even geodetic set of G, denoted by $g_{coe}(G)$ is the co- even geodetic number of G. In this paper, we find the co- even geodetic number of certain graphs and complement graphs.

Keywords: geodetic set, co-even geodetic set, co-even geodetic number

2010 AMS subject classification: 05C12.*

^{*}Assistant professor, Research Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliakkavilai, India; jebaraj.math@gmail.com

[†]Research Scholar, Reg. No.20113082092003, Research Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliakkavilai, India; ayarlin.kirupa19@gmail.com.

[‡]Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India; Received on June 6 th, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.922. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY licence agreement.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. As usual n = |V| and m = |E| denote the number of vertices and edges of a graph G respectively. The minimum and maximum degree $\delta(G)$ and $\Delta(G)$, respectively. In case where $\Delta(G) = \delta(G)$, G is called a regular graph. The distance d(x, y) is the length of a shortest x - y path in G. It is known that the distance is a metric on the vertex set of G. An x - y path of length d(x, y) is called an x - ygeodesic. For any vertex u of G, the eccentricity of u is $e(u) = max\{d(u, v) : v \in u\}$ A vertex v is an eccentric vertex of u if e(u) = d(u, v). The neighborhood of a V. vertex v is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced by its neighbors is complete. The closed interval I[x, y] consists of all vertices lying on some x - y geodesic of G, while for $S \subseteq V$, $[S] = \bigcup_{x,y \in S} I[x, y]$. A set S of vertices is a geodetic set if I[S] =V and the minimum cardinality of a geodetic set is the geodetic number g(G). In this paper, we study the co-even geodetic number and is denoted by $g_{coe}(G)$ also we discuss the co-even geodetic number of some standard graphs.

2. Co-even geodetic number of a graph

Definition 2.1 A geodetic set *S* is called co-even geodetic set if the degree of vertex v is even number for all $v \in V - S$. The cardinality of a smallest co-even geodetic set of *G*, denoted by $g_{coe}(G)$ is the co-even geodetic number of *G*.

Example 2.2

In figure 2.1, $S = \{v_1, v_3, v_4, v_5\}$ is a co-even geodetic set. Here, the vertices v_1 and v_4 has odd degree. These two vertices do not make a geodetic set and no 3- element subset of G is a co-even geodetic set. Then it is clear that $g_{coe}(G) = 4$.

Remark In figure 2.1, $S = \{v_1, v_3, v_5\}$ is the minimum geodetic set of G. ie) g(G) = 3. Thus, the geodetic number and co-even geodetic number of a graph G can be different.

Proposition 2.3 Let *G* be a graph and *S* is a co-even geodetic set. Then, i) All vertices of odd degrees belong to every co-even geodetic set. ii) $deg(v) \ge 2$ for all $v \in V - S$.

Proposition 2.4 If G is p-regular graph, then $g_{coe}(G) = \begin{cases} n & if \ p & is \ odd \\ g(G) & if \ p & is \ even \end{cases}$

Theorem 2.5 If *G* be a graph of order *n*, then $2 \le g(G) \le g_{coe}(G) \le n$. **Proof:** A geodetic set needs atleast two vertices. Therefore, $g(G) \ge 2$. Clearly, every co-even geodetic set is a geodetic set of *G*, $g(G) \le g_{coe}(G)$. Also, all the vertices of *G* is the co-even geodetic set of *G*.ie) $g_{coe}(G) \le n$.

Remark 2.6 The bounds of the theorem 2.5 are sharp. The co-even geodetic number of paths P_n with *n* vertices is 2. In this case, the smallest bounds is obtained. Also, K_n with *n* vertices have the co-even geodetic number is *n*. Then the upper bound is obtained.

Theorem 2.7 If G is a non trivial connected graph with $n \ge 2$. If $g_{coe}(G) = 2$ then g(G) = 2. **Proof.** It is follows from theorem 2.5.

Remark 2.8 The converse part of above theorem is need not be true for all graphs. In Figure 2.2, The minimum geodetic number is 2 and the minimum co-even geodetic number is 3.

Figure 2.2

Corollary 2.9 Let *G* be the non-trivial connected graph, g(G) = 2 then $g_{coe}(G) = 2$. **Proof. Case (i)** If $G = K_2$

It is easy to see $g(K_2) = 2$ then $g_{coe}(K_2) = 2$.

Case (ii) All the vertices of *G* should be even degree.

Consider the even Cycle C_{2n} . All vertices have even degree for C_{2n} . We know that $g(C_{2n}) = 2$. Further more, $g_{coe}(C_{2n}) = 2$.

T. Jebaraj, Ayarlin Kirupa.M

Case (iii) A graph with exactly two odd degree vertices which only belongs to the minimum geodetic set.

For example, In Figure 2.3, the vertices v_3 and v_5 have odd degree and v_1 , v_2 , v_4 have even degree. The minimum geodetic number of G is 2. Also, it is easily seen that $g_{coe}(G) = 2$.

Remark All the graphs are not satisfied for the corollary 2.9 except the above three type graphs.

Observation. 2.10 $g_{coe}(C_n) = g(C_n)$, where C_n is a cycle of order n. **Proof.** Every cycle is the 2- regular graph .by the proposition 2.4, we get $g_{coe}(C_n) = g(C_n)$.

Theorem 2.11 For the Wheel graph W_n $(n \ge 4)$, then $g_{coe}(W_n) = \begin{cases} n-1 & if \ n \ is \ odd \\ n & if \ n \ is \ even \end{cases}$

Proof. Case (i) n is odd

Let $W_n = K_1 + C_{n-1}$ and u be the vertex of K_1 . It is easy to see that the n-1 vertices has odd degree except the vertex u. By the proposition 2.3, n-1 vertices belong to the co-even geodetic set S. Also, the vertex $u \in V - S$, which has even degree. Hence |S| = n - 1.

Case (ii) *n* is even.

Every vertex of W_n has odd degree. By the proposition 2.3, All the vertices of W_n belongs to the co-even geodetic set. Therefore, $g_{coe}(W_n) = n$.

Corollary 2.12 For the wheel graph with $n \ge 4$ then $g_{coe}(W_n) = 2\alpha_0(W_n) - 2$.

Proof. We prove this theorem by two cases.

Co-even geodetic Number of a graph

Case (i) n is even We have $g_{coe}(W_n) = n$ if n is even and $\alpha_0(W_n) = \frac{n+2}{2}$. We have $g_{coe}(W_n) = n$ $g_{coe}(W_n) + 2 = n + 2$. Then $\frac{g_{coe}(W_n) + 2}{2} = \frac{n+2}{2}$ $\frac{g_{coe}(W_n)}{2} + 1 = \alpha_0(W_n)$ $g_{coe}(W_n) = 2\alpha_0(W_n) - 2$

Case (ii) *n* is odd

Since $g_{coe}(W_n) = n - 1$ if n is odd and $\alpha_0(W_n) = \frac{n+1}{2}$ We have $g_{coe}(W_n) = n - 1$

$$\frac{g_{coe}(W_n) + 1}{2} = \frac{n - 1 + 1}{2}$$
$$\frac{g_{coe}(W_n)}{2} = \frac{n + 1}{2} - 1$$
$$g_{coe}(W_n) = 2\alpha_0(W_n) - 2.$$

Theorem 2.13 If G is the double fan graph $F = P_n + \overline{K_2}$ with $n \ge 5$, then $g_{coe}(G) = 4$.

Proof

Let $p_1, p_2, ..., p_n$ be the vertices of path P_n and let x and y be the two vertices of $\overline{K_2}$. All the vertices of path P_n is adjacent to x and y. Now, the double fan graph $F = P_n + \overline{K_2}$ have the n + 2 vertices. We prove this theorem by two cases. **Case (i)** n is odd

If *n* is odd then the end vertices of P_n and the vertices of $\overline{K_2}$ have the odd degree. By the proposition 2.3, these four vertices p_1, p_n, x, y belongs to co-even geodetic set. Also all the vertices of *F* lies on any geodesic of the co-even geodetic set. Thus $g_{coe}(P_n + \overline{K_2}) = 4$.

T. Jebaraj, Ayarlin Kirupa.M

Case (ii) n is even

If *n* is even then all the vertices of *F* is even degree except the vertices p_1 and p_n belongs to co-even geodetic set. All the vertices of *F* does not lies the $p_1 - p_n$ geodesic. So we chosen the vertices *x* and *y* in the co-even geodetic set. Now the set $S = \{p_1, p_n, x, y\}$ is the co-even geodetic set as well as all the vertices of V - S has even degree. Therefore, $g_{coe}(P_n + \overline{K_2}) = 4$.

Corollary 2.14 For the double fan graph $F = P_n + \overline{K_2}$ with $n \ge 5$ then, $g_{coe}(P_n + \overline{K_2}) = \begin{cases} 2\alpha_0(P_n + \overline{K_2}) - n + 1 & \text{if } n \text{ is odd} \\ 2\alpha_0(P_n + \overline{K_2}) - n & \text{if } n \text{ is even} \end{cases}$

Theorem 2.15 For the ladder graph L_n then, $g_{coe}(L_n) = 2n - 2$.

Proof

The ladder graph L_n with 2n vertices. The geodetic number of L_n is 2. $S = \{v_1, v_{2n}\}$ or $\{v_n, v_{n+1}\}$ is the minimum geodetic set of L_n , which is not a co-even geodetic set. Because some vertices of V - S has odd degree. Therefore, the odd degree vertices $\{v_2, v_3, ..., v_{n-1}, v_{n+2}, ..., v_{2n+1}\}$ is belong to the co-even geodetic set of L_n . Therefore, all the vertices of L_n except two vertices make the co-even geodetic set. Hence $g_{coe}(L_n) = 2n - 2$.

Theorem2.16 For the Cone graph $C_m + \overline{K}_n$ then $g_{coe}(C_m + \overline{K}_n) = \begin{cases} n \text{ if } n \text{ is even,} & m \ge 5 \\ m \text{ if } m \text{ is even,} & n \text{ is odd} \\ m + n \text{ if } m \text{ is odd,} & n \text{ is odd} \end{cases}$

Proof. The Cone graph $C_m + \overline{K}_n$ is adding with cyclic graph C_m and empty graph \overline{K}_n . The cone graph has m + n vertices. We prove this theorem by three cases. **Case (i)** If n is even

In this case, we prove with two subcases.

Sub Case (i) If n is even, m is odd

For the Cone graph $C_m + \overline{K}_n$, only *n* vertices have odd degree. By the proposition 2.3, *n*- vertices belongs to the co-even geodetic set. Now, every vertex belongs to any geodesic of the co-even geodetic set. Hence $g_{coe}(C_m + \overline{K}_n) = n$. **Sub Case (ii)** If *n* is even, *m* is even Co-even geodetic Number of a graph

Both the vertices of $C_m + \overline{K}_n$ has even degree. Now, *n*- vertices forms a co-even geodetic set of $C_m + \overline{K}_n$. Hence $g_{coe}(C_m + \overline{K}_n) = n$.

Case (ii) If m is even and n is odd

Let *m* is even number of vertices and *n* is odd number of vertices. Here, $C_m + \overline{K}_n$ has *m*- even vertices have odd degree and *n*-odd vertices have even degree. Then it follows from the sub case (i) we get $g_{coe}(C_m + \overline{K}_n) = m$. **Case (iii)** If both *m* and *n* are odd

For all the vertices of $C_m + \overline{K}_n$ have odd degree. Then it follows from the subcase (i). Thus, we get, $g_{coe}(C_m + \overline{K}_n) = m + n$. Hence proved.

3.Co-even geodetic number of Complement of a graph

Theorem 3.1 If P_n is a path graph with $n \ge 5$, then $g_{coe}(\overline{P_n}) = \begin{cases} 4 & \text{if } n \text{ is odd} \\ n-2 & \text{if } n \text{ is even} \end{cases}$ **Proof.** Let u and v be the end vertices of P_n . The vertices u and v are adjacent to n-2 vertices in $\overline{P_n}$. The remaining vertices are adjacent to n-3 vertices in $\overline{P_n}$. **Case (i)** If n is odd

Since u and v are adjacent to n-2 vertices in $\overline{P_n}$. Clearly, u and v are odd vertices. Therefore $\{u, v\} \in S$. Also, $\{u, v\}$ is not a geodetic set. Consider a vertex x, which is adjacent to v and non adjacent to u. Obviously, n-3 vertices lie on the x-u geodesic. Choose a vertex y there exist $y \in V(\overline{P_n})$ such that $y \notin I[x, u]$. Also no 3-element subset contains the co-even geodetic set. Hence, $S = \{u, v, x, y\}$ is the minimum co-even geodetic set.

Case (ii) If *n* is even

For *n* is even, clearly, *u* and *v* are even degree vertices. Remaining n - 2 vertices are adjacent to n - 3 vertices. Obviously, n - 2 vertices is odd vertices. Also, every vertex lies on the any geodesic of n - 2 vertices. Therefore, the minimum co-even geodetic number is n - 2. ie) $g_{coe}(\overline{P_n}) = n - 2$.

Theorem 3.2 For any Gear graph G_n with $n \ge 3$ then $g_{coe}(\overline{G_n}) = n + 1$.

Proof. For the Gear graph G_n , if n is odd, then $\overline{G_n}$ has n + 1 odd vertices. By the proposition 2.3, n + 1 vertices belong to co-even geodetic set. Moreover, if n is even, then the graph $\overline{G_n}$ has n vertices have odd degree. These n vertices containing the co-even geodetic set. It is easy to see that all vertices do not lies any geodesic of co-even geodetic set. So we add one more vertex in co-even geodetic set. Obviously, $g_{coe}(\overline{G_n}) = n + 1$.

Theorem 3.3 For the complement of the cycle $\overline{C_n}$ with $n \ge 5$, then $g_{coe}(\overline{C_n}) = \begin{cases} 3 & if n is odd \\ n & if n is even \end{cases}$ **Proof.** This theorem follows from the Theorem 3.1 T. Jebaraj, Ayarlin Kirupa.M

4. Conclusions

In this paper, we obtained co-even geodetic number of some kind of graphs and complement of some graphs. Also, we see the relation between vertex covering and co-even geodetic number of some graphs.

References

[1] F. Buckley and F. Harary, Distance in graphs, Addison- Wesley, Reading, MA (1990)

[2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(2002), 1-6.

[3] Manar M. Shalaan and Ahmed A. Omran, Co Even Domination In Graphs, International Journal of Control and Automation Vol. 13. No. 3. (2020). Pp. 330-334.

[4] Manar M. Shalaan and Ahmed A. Omran, Co Even Domination in Some Graphs, IOP Conf. Series: Materials Science and Engineering 928 (2020) 042015.

[5] Nima Ghanbari, More on co even domination number, arXiv:2111.11817v2 [math.CO] 19 Jan 2022.