Co-even Geodetic Number of a Graph

T. Jebaraj *
Ayarlin Kirupa. \mathbf{M}^{\dagger}

Abstract

Let $G=(V, E)$ be a graph with vertex set V and edge set E. If S is a set of vertices of G, then $I[S]$ is the union of all sets $I[u, v]$ for $u, v \in S$. If $I[S]=V(G)$, then S is a geodetic set for G. The geodetic number $g(G)$ is the minimum cardinality of a geodetic set. A geodetic set S is called co- even geodetic set if the degree of vertex v is even number for all $v \in V-S$. The cardinality of a smallest co- even geodetic set of G, denoted by $g_{c o e}(G)$ is the co- even geodetic number of G. In this paper, we find the coeven geodetic number of certain graphs and complement graphs.

Keywords: geodetic set, co-even geodetic set, co-even geodetic number

2010 AMS subject classification: 05C12. \ddagger

[^0]
T. Jebaraj, Ayarlin Kirupa.M

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. As usual $n=|V|$ and $m=|E|$ denote the number of vertices and edges of a graph G respectively. The minimum and maximum degree $\delta(G)$ and $\Delta(G)$, respectively. In case where $\Delta(G)=\delta(G), G$ is called a regular graph. The distance $d(x, y)$ is the length of a shortest $x-y$ path in G. It is known that the distance is a metric on the vertex set of G. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. For any vertex u of G, the eccentricity of u is $e(u)=\max \{d(u, v): v \in$ $V\}$. A vertex v is an eccentric vertex of u if $e(u)=d(u, v)$. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced by its neighbors is complete. The closed interval $I[x, y]$ consists of all vertices lying on some $x-y$ geodesic of G, while for $S \subseteq V, \quad[S]=\bigcup_{x, y \in S} I[x, y]$. A set S of vertices is a geodetic set if $I[S]=$ V and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. In this paper, we study the co-even geodetic number and is denoted by $g_{c o e}(G)$ also we discuss the co-even geodetic number of some standard graphs.

2. Co-even geodetic number of a graph

Definition 2.1 A geodetic set \boldsymbol{S} is called co-even geodetic set if the degree of vertex \boldsymbol{v} is even number for all $\boldsymbol{v} \in \boldsymbol{V}-\boldsymbol{S}$. The cardinality of a smallest co-even geodetic set of \boldsymbol{G}, denoted by $\boldsymbol{g}_{\boldsymbol{c o e}}(\boldsymbol{G})$ is the co-even geodetic number of \boldsymbol{G}.

Example 2.2

Figure 2.1
In figure 2.1, $S=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ is a co-even geodetic set. Here, the vertices v_{1} and v_{4} has odd degree. These two vertices do not make a geodetic set and no 3- element subset of G is a co-even geodetic set. Then it is clear that $g_{c o e}(G)=4$.

Remark In figure 2.1, $S=\left\{v_{1}, v_{3}, v_{5}\right\}$ is the minimum geodetic set of G. ie) $g(G)=3$. Thus, the geodetic number and co-even geodetic number of a graph G can be different.

Proposition 2.3 Let G be a graph and S is a co-even geodetic set . Then, i) All vertices of odd degrees belong to every co-even geodetic set.
ii) $\operatorname{deg}(v) \geq 2$ for all $v \in V-S$.

Proposition 2.4 If G is p-regular graph, then $g_{c o e}(G)=\left\{\begin{array}{c}n \text { if } p \text { is odd } \\ g(G) \text { if } p \text { is even }\end{array}\right.$
Theorem 2.5 If G be a graph of order n, then $2 \leq g(G) \leq g_{c o e}(G) \leq n$.
Proof: A geodetic set needs atleast two vertices. Therefore, $g(G) \geq 2$. Clearly, every co-even geodetic set is a geodetic set of $G, g(G) \leq g_{c o e}(G)$. Also, all the vertices of G is the co-even geodetic set of G.ie) $g_{c o e}(G) \leq n$.

Remark 2.6 The bounds of the theorem 2.5 are sharp. The co-even geodetic number of paths P_{n} with n vertices is 2 . In this case, the smallest bounds is obtained. Also, K_{n} with n vertices have the co-even geodetic number is n. Then the upper bound is obtained.

Theorem 2.7 If G is a non trivial connected graph with $n \geq 2$.If $g_{\text {coe }}(G)=2$ then $g(G)=2$.
Proof. It is follows from theorem 2.5.
Remark 2.8 The converse part of above theorem is need not be true for all graphs. In Figure 2.2, The minimum geodetic number is 2 and the minimum co-even geodetic number is 3 .

Figure 2.2
Corollary 2.9 Let G be the non-trivial connected graph, $g(G)=2$ then $g_{c o e}(G)=2$.
Proof. Case (i) If $G=K_{2}$
It is easy to see $g\left(K_{2}\right)=2$ then $g_{c o e}\left(K_{2}\right)=2$.
Case (ii) All the vertices of G should be even degree.
Consider the even Cycle $C_{2 n}$. All vertices have even degree for $C_{2 n}$. We know that $g\left(C_{2 n}\right)=2$. Further more, $g_{c o e}\left(C_{2 n}\right)=2$.

T. Jebaraj, Ayarlin Kirupa.M

Case (iii) A graph with exactly two odd degree vertices which only belongs to the minimum geodetic set.

G
Figure 2.3
For example, In Figure 2.3, the vertices v_{3} and v_{5} have odd degree and v_{1}, v_{2}, v_{4} have even degree. The minimum geodetic number of G is 2 . Also, it is easily seen that $g_{c o e}(G)=2$.

Remark All the graphs are not satisfied for the corollary 2.9 except the above three type graphs.

Observation. 2.10 $g_{\text {coe }}\left(C_{n}\right)=g\left(C_{n}\right)$, where C_{n} is a cycle of order n.
Proof. Every cycle is the 2- regular graph .by the proposition 2.4, we get $g_{c o e}\left(C_{n}\right)=g\left(C_{n}\right)$.

Theorem 2.11 For the Wheel graph $W_{n}(n \geq 4)$, then

$$
g_{c o e}\left(W_{n}\right)=\left\{\begin{array}{lll}
n-1 & \text { if } n \text { is odd } \\
n & \text { if } & n
\end{array}\right. \text { is even }
$$

Proof. Case (i) n is odd
Let $W_{n}=K_{1}+C_{n-1}$ and u be the vertex of K_{1}. It is easy to see that the $n-1$ vertices has odd degree except the vertex u. By the proposition $2.3, n-1$ vertices belong to the co-even geodetic set S. Also, the vertex $u \in V-S$, which has even degree. Hence $|S|=n-1$.
Case (ii) n is even.
Every vertex of W_{n} has odd degree. By the proposition 2.3, All the vertices of W_{n} belongs to the co-even geodetic set. Therefore, $g_{c o e}\left(W_{n}\right)=n$.

Corollary 2.12 For the wheel graph with $n \geq 4$ then $g_{c o e}\left(W_{n}\right)=2 \alpha_{0}\left(W_{n}\right)-2$.
Proof. We prove this theorem by two cases.

Case (i) n is even
We have $g_{c o e}\left(W_{n}\right)=n$ if n is even and $\alpha_{0}\left(W_{n}\right)=\frac{n+2}{2}$.
We
have $\quad g_{\text {coe }}\left(W_{n}\right)=n$
$g_{c o e}\left(W_{n}\right)+2=n+2$. Then $\frac{g_{c o e}\left(W_{n}\right)+2}{2}=\frac{\left.\begin{array}{l}\mathrm{n}+2 \\ 2\end{array}\right)\left(W_{n}\right)}{}$

$$
\begin{aligned}
& \frac{g_{c o e}\left(W_{n}\right)}{2}+1=\alpha_{0}\left(W_{n}\right) \\
& g_{c o e}\left(W_{n}\right)=2 \alpha_{0}\left(W_{n}\right)-2
\end{aligned}
$$

Case (ii) n is odd
Since $g_{\text {coe }}\left(W_{n}\right)=n-1$ if n is odd and $\alpha_{0}\left(W_{n}\right)=\frac{n+1}{2}$
We have $g_{c o e}\left(W_{n}\right)=n-1$

$$
\begin{gathered}
\frac{g_{c o e}\left(W_{n}\right)+1}{2}=\frac{\mathrm{n}-1+1}{2} \\
\frac{g_{c o e}\left(W_{n}\right)}{2}=\frac{n+1}{2}-1 \\
g_{c o e}\left(W_{n}\right)=2 \alpha_{0}\left(W_{n}\right)-2 .
\end{gathered}
$$

Theorem 2.13 If G is the double fan graph $F=P_{n}+\overline{K_{2}}$ with $n \geq 5$, then $g_{\text {coe }}(G)=$ 4.

Proof

Figure 2.4
Let $p_{1}, p_{2}, \ldots, p_{n}$ be the vertices of path P_{n} and let x and y be the two vertices of $\overline{K_{2}}$. All the vertices of path P_{n} is adjacent to x and y. Now, the double fan graph $F=$ $P_{n}+\overline{K_{2}}$ have the $n+2$ vertices. We prove this theorem by two cases.
Case (i) n is odd
If n is odd then the end vertices of P_{n} and the vertices of $\overline{K_{2}}$ have the odd degree. By the proposition 2.3, these four vertices p_{1}, p_{n}, x, y belongs to co-even geodetic set. Also all the vertices of F lies on any geodesic of the co-even geodetic set. Thus $g_{c o e}\left(P_{n}+\overline{K_{2}}\right)=4$.

T. Jebaraj, Ayarlin Kirupa.M

Case (ii) n is even
If n is even then all the vertices of F is even degree except the vertices p_{1} and p_{n} belongs to co-even geodetic set. All the vertices of F does not lies the $p_{1}-p_{n}$ geodesic. So we chosen the vertices x and y in the co-even geodetic set. Now the set $S=$ $\left\{p_{1}, p_{n}, x, y\right\}$ is the co-even geodetic set as well as all the vertices of $V-S$ has even degree. Therefore, $g_{c o e}\left(P_{n}+\overline{K_{2}}\right)=4$.

Corollary 2.14 For the double fan graph $F=P_{n}+\overline{K_{2}}$ with $n \geq 5$ then,

$$
g_{c o e}\left(P_{n}+\overline{K_{2}}\right)=\left\{\begin{array}{l}
2 \alpha_{0}\left(P_{n}+\overline{K_{2}}\right)-n+1 \text { if } n \text { is odd } \\
2 \alpha_{0}\left(P_{n}+\overline{K_{2}}\right)-n \quad \text { if } n \text { is even }
\end{array}\right.
$$

Theorem 2.15 For the ladder graph L_{n} then, $g_{c o e}\left(L_{n}\right)=2 n-2$.

Proof

Figure 2.5
The ladder graph L_{n} with $2 n$ vertices. The geodetic number of L_{n} is $2 . \quad S=$ $\left\{v_{1}, v_{2 n}\right\}$ or $\left\{v_{n}, v_{n+1}\right\}$ is the minimum geodetic set of L_{n}, which is not a co-even geodetic set. Because some vertices of $V-S$ has odd degree. Therefore, the odd degree vertices $\left\{v_{2}, v_{3}, \ldots, v_{n-1}, v_{n+2}, \ldots, v_{2 n+1}\right\}$ is belong to the co-even geodetic set of L_{n}. Therefore, all the vertices of L_{n} except two vertices make the co-even geodetic set. Hence $g_{c o e}\left(L_{n}\right)=2 n-2$.

Theorem2.16 For the Cone graph $C_{m}+\bar{K}_{n}$ then $g_{c o e}\left(C_{m}+\right.$ $\left.\bar{K}_{n}\right)=\left\{\begin{array}{l}n \text { if } n \text { is even, } \quad m \geq 5 \\ m \text { if } m \text { is even, } n \text { is odd } \\ m+n \text { if } m \text { is odd, } n \text { is odd }\end{array}\right.$
Proof. The Cone graph $C_{m}+\bar{K}_{n}$ is adding with cyclic graph C_{m} and empty graph \bar{K}_{n}. The cone graph has $m+n$ vertices. We prove this theorem by three cases.
Case (i) If n is even
In this case, we prove with two subcases.
Sub Case (i) If n is even, m is odd
For the Cone graph $C_{m}+\bar{K}_{n}$, only n vertices have odd degree. By the proposition $2.3, n$ - vertices belongs to the co-even geodetic set. Now, every vertex belongs to any geodesic of the co-even geodetic set. Hence $g_{c o e}\left(C_{m}+\bar{K}_{n}\right)=n$.
Sub Case (ii) If n is even, m is even

Both the vertices of $C_{m}+\bar{K}_{n}$ has even degree. Now, n - vertices forms a co-even geodetic set of $C_{m}+\bar{K}_{n}$. Hence $g_{c o e}\left(C_{m}+\bar{K}_{n}\right)=n$.
Case (ii) If m is even and n is odd
Let m is even number of vertices and n is odd number of vertices. Here, $C_{m}+\bar{K}_{n}$ has m - even vertices have odd degree and n-odd vertices have even degree. Then it follows from the sub case (i) we get $g_{c o e}\left(C_{m}+\bar{K}_{n}\right)=m$.
Case (iii) If both m and n are odd
For all the vertices of $C_{m}+\bar{K}_{n}$ have odd degree. Then it follows from the subcase (i). Thus, we get, $g_{c o e}\left(C_{m}+\bar{K}_{n}\right)=m+n$. Hence proved.

3.Co-even geodetic number of Complement of a graph

Theorem 3.1 If P_{n} is a path graph with $n \geq 5$, then $g_{\text {coe }}\left(\bar{P}_{n}\right)=\left\{\begin{array}{cc}4 & \text { if } n \text { is odd } \\ n-2 \text { if } n \text { is even }\end{array}\right.$ Proof. Let u and v be the end vertices of P_{n}. The vertices u and v are adjacent to $n-$ 2 vertices in $\overline{P_{n}}$. The remaining vertices are adjacent to $n-3$ vertices in \bar{P}_{n}.
Case (i) If n is odd
Since u and v are adjacent to $n-2$ vertices in \bar{P}_{n}. Clearly, u and v are odd vertices. Therefore $\{u, v\} \in S$. Also, $\{u, v\}$ is not a geodetic set. Consider a vertex x, which is adjacent to v and non adjacent to u. Obviously, $n-3$ vertices lie on the $x-u$ geodesic. Choose a vertex y there exist $y \in V\left(\overline{P_{n}}\right)$ such that $y \notin I[x, u]$. Also no 3element subset contains the co-even geodetic set. Hence, $S=\{u, v, x, y\}$ is the minimum co-even geodetic set.
Case (ii) If n is even
For n is even, clearly, u and v are even degree vertices. Remaining $n-2$ vertices are adjacent to $n-3$ vertices. Obviously, $n-2$ vertices is odd vertices. Also, every vertex lies on the any geodesic of $n-2$ vertices. Therefore, the minimum co-even geodetic number is $n-2$. ie) $g_{c o e}\left(\overline{P_{n}}\right)=n-2$.

Theorem 3.2 For any Gear graph G_{n} with $n \geq 3$ then $g_{c o e}\left(\overline{G_{n}}\right)=n+1$.
Proof. For the Gear graph G_{n}, if n is odd, then $\overline{G_{n}}$ has $n+1$ odd vertices. By the proposition 2.3, $n+1$ vertices belong to co-even geodetic set. Moreover, if n is even, then the graph $\overline{G_{n}}$ has n vertices have odd degree. These n vertices containing the co-even geodetic set. It is easy to see that all vertices do not lies any geodesic of coeven geodetic set. So we add one more vertex in co-even geodetic set. Obviously, $g_{c o e}\left(\overline{G_{n}}\right)=n+1$.

Theorem 3.3 For the complement of the cycle $\overline{C_{n}}$ with $n \geq 5$, then $g_{c o e}\left(\overline{C_{n}}\right)=$ $\left\{\begin{array}{c}3 \text { if } n \text { is odd } \\ n \text { if } n \text { is even }\end{array}\right.$
Proof. This theorem follows from the Theorem 3.1

T. Jebaraj, Ayarlin Kirupa.M

4. Conclusions

In this paper, we obtained co-even geodetic number of some kind of graphs and complement of some graphs. Also, we see the relation between vertex covering and co-even geodetic number of some graphs.

References

[1] F. Buckley and F. Harary, Distance in graphs, Addison- Wesley, Reading, MA (1990)
[2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(2002), 1-6.
[3] Manar M. Shalaan and Ahmed A. Omran, Co Even Domination In Graphs, International Journal of Control and Automation Vol. 13. No. 3. (2020). Pp. 330-334.
[4] Manar M. Shalaan and Ahmed A. Omran, Co Even Domination in Some Graphs, IOP Conf. Series: Materials Science and Engineering 928 (2020) 042015.
[5] Nima Ghanbari, More on co even domination number, arXiv:2111.11817v2 [math.CO] 19 Jan 2022.

[^0]: *Assistant professor, Research Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliakkavilai, India; jebaraj.math @gmail.com
 ${ }^{\dagger}$ Research Scholar, Reg. No. 20113082092003 , Research Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliakkavilai, India; ayarlin.kirupa19@gmail.com.
 ${ }^{\text {* Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, }}$ India; Received on June 6 th, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: $10.23755 / \mathrm{rm} . \mathrm{v} 44 \mathrm{i} 0.922$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY licence agreement.

