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MATHEMATICAL ANALYSIS OF AN SIR DISEASE MODEL WITH NON-CONSTANT TRANSMISSION RATE

Emma Bollinger, Tayler Valdez, Dr. Sunil Giri, and Dr. Swarup Ghosh

Southwestern Oklahoma State University

Introduction

« Epidemiology: A branch of medicine that studies causes, transmission, and
control methods of diseases at the population level.

« Mathematical epidemiology deals with creating a model for a disease through
the study of incidence and distribution of the disease throughout a population.

* Here, we have examined the behavior of a measles-like disease[2] that is
characterized by a non-constant transmission rate.

State Variables

« S(t): Number of susceptible individuals at time t

* I(t): Number of infectious individuals at time t

* R(t): Number of recovered individuals at time t
Parameters:

« 5: Transmission Rate constant

* o: Recovery Rate

« A\: Birth Rate

12 Natural Death Rate

 v: Proportionality constant
Other Useful Definitions

* Incidence: The number of individuals who become infected per unit time.

* Reproduction Number (Rq): A useful threshold quantity that can be inter-
preted as the number of secondary infections generated by a single infec-
tious individual in an entirely susceptible population during their infectious
period. [3]

The model we worked with comes from the Chapter 3 Problems found in "An
Introduction to Mathematical Epidemiology" by Maia Martcheva [3]. This model is
similar to the basic SIR Model proposed by Kermack and McKendrick [1], however
this model features a non-constant transmission rate, (1 + vI), which varies
linearly with the size of the Infected class, I.
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Fig. 1: Flowchart depicting movement between classes

The flowchart above can be represented mathematically by a system of nonlinear
ordinary differential equations.

(S'(t) =A—BA+vI)IS—puS
CI'(t) =80 +vDIS — (a+u)l (1)
R(t) =oal —pR

Because S’ and I’ have no dependence on R we can simplify the above model:

S't)=AN—-B1+vDIS — uS (2)
I'(t) =1 +vDIS — (a+p)l (3)

Reproduction Number and Equilibria

The Reproduction number can be found in multiple ways, but the simplest way to show its
derivation is by using the physical interpretation of R

BA
pla+ p)

We then find our disease-free and endemic equilibrium points by setting S’ = 0, I’ = 0, then
solving our equilibrium equations for I*:

r* [@(1 +uIMS* — (a+ u)}
A
m

For our model, Ry =

» Disease-Free Equilibrium (DFE): I* =0 — SV =2 10—

- Endemic Equilibrium (EE) *see next section*: I* £ 0 = |B(a+vI*)S*—(a+p)| = 0.

Stability Analysis

We examined the stability of the DFE using a process called linearization. Linearization
allows us to analyze behavior near the equilibrium by using perturbations, or small distur-
bances from the equilibrium. The linearized system is shown here in terms of the perturba-
tions u(t) = S(t) — S*andv(t) = I(t) — I".

05’ 05’
= ?Mt) + aa—{v(t)
V' (t) = —Iu(t) + —Iv(t)

u'(t)

which can be solved for

For A < 0, any disturbance in the system results in the system returning to equilibrium, and
the system is said to be stable.

(as’ as’\
| 05 dI | (—wpI?—pBI—pn  —2uvBSI—BS
orar | vBI2+ BI  2wBIS+ 8BS —a—p
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When we examine the Jacobian at the DFE we get:

We now look at the instability of the DFE when Ry > 1. Using the Characteristic Equation
Approach, we set the determinant of J” — \I equal to 0:

A
|JO—)\]\:O — )\2+(2u+&—%)>\+u(u+&)—ﬁ/\—0

...applying the quadratic formula to solve for ...

—(2p+ o — %A) + \/(ZM +o— %A)Q—W(u +a) — BA)

\ —
2

Since Ry = % > 1,

BA> p(p+a) = plp+a)—BA<0 = —Au(p+a)— BA)>0

Now we can see clearly that there exists at least one positive real eigenvalue .
This shows that the DFE is unstable when Ry > 1.

Theorem 1. For this model, DFE is stable whenever Ry < 1 and unstable when
Ry > 1.

Uniqueness of Endemic Equilibrium

Now we shall examine the uniqueness of the Endemic Equilibrium.
Starting with our equilibrium equations:
0=A—pB01+vI")*S" — us*
0=p01+vII*S* — (a+ u)I* (

as

We can solve (5) for S* to arrive at

Q —+ [
B(1+vi*)
Plug S™ into (4) and rearrange to arrive at a equation that is quadratic in I*.

S* =

Bu(a+ m)I* + B((a+ 1) — Av)I* + (ulp + ) — AB) = 0

Then, using the Quadratic Formula to solve for I*, and, I* being a positive real
number, only considering the positive sign

—Bla+p—Av)+/B2a+p— M) —4Bv(p+ a))(u(p + a) — AB)

I* =
20v(pn + «)
Because those in blue are all positive constants, we can see that when Ry > 1
BA
Ro = >1 = (ulp+a)—A3) <0 = dac<0
pulp + a)
and

\/5%‘ + = Av)? = 4Br(p+ @) (ulp + o) = AB) > Bla+ pu— Av)

Thus, 1™ is both positive and unique.

Theorem 2. When Ry > 1, we have a unique endemic equilibrium

Future Work

 Continuing stability analysis on EE
« Forming our own model for COVID-19 dynamics in Oklahoma

* Finding numerical values for given parameters by fitting to data
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