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Abstract

Introduction: COVID-19 virus has undergone mutations, and the

introduction of vaccines and effective treatments have changed its clinical

severity. We hypothesized that models that evolve may better predict invasive

mechanical ventilation or death than do static models.

Methods: This retrospective study of adult patients with COVID-19 from six

Michigan hospitals analysed 20 demographic, comorbid, vital sign and

laboratory factors, one derived factor and nine factors representing changes in

vital signs or laboratory values with time for their ability to predict death or

invasive mechanical ventilation within the next 4, 8 or 24 h. Static logistic

regression was constructed on the initial 300 patients and tested on the

remaining 6741 patients. Rolling logistic regression was similarly constructed

on the initial 300 patients, but then new patients were added, and older

patients removed. Each new construction model was subsequently tested on

the next patient. Static and rolling models were compared with receiver opera-

tor characteristic and precision-recall curves.

Results: Of the 7041 patients, 534 (7.6%) required invasive mechanical ventila-

tion or died within 14 days of arrival. Rolling models improved discrimination

(0.865 � 0.010, 0.856 � 0.007 and 0.843 � 0.005 for the 4, 8 and 24-h models,

respectively; all p < 0.001 compared with the static logistic regressions with

0.827 � 0.011, 0.794 � 0.012 and 0.735 � 0.012, respectively). Similarly, the

areas under the precision-recall curves improved from 0.006, 0.010 and 0.021

with the static models to 0.030, 0.045 and 0.076 for the 4-, 8- and 24-h rolling

models, respectively, all p < 0.001.

Conclusion: Rolling models with contemporaneous data maintained better

metrics of performance than static models, which used older data.

Abbreviations: COVID-19, Severe Coronavirus disease 2019; IMV, invasive mechanical ventilation.
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1 | INTRODUCTION

Severe Coronavirus disease 2019 (COVID-19) can lead to
progressive respiratory failure invasive mechanical
ventilation (IMV), which ultimately may progress to
death. Since its description in Wuhan, China, where
treatment was mostly supportive, therapeutic and pre-
ventive measures have evolved, including vaccination,
corticosteroids (dexamethasone and hydrocortisone),
remdesivir and other antiviral agents, and monoclonal
antibodies targeting viral proteins.1–3 After initial con-
cerns that high-flow nasal oxygen and noninvasive venti-
lation might cause aerosolization of viruses and COVID
infections in healthcare workers proved unfounded,
their use has become frequent and may have decreased
the need for IMV but, as some studies suggest, may have
increased mortality.4 Additionally, the virus has under-
gone frequent mutations affecting the severity of the
infection and the ability of anti-COVID therapies to pre-
vent severe disease.5 Case fatality rates and the need for
IMV have varied greatly over time and between different
strains.6–9

Predicting IMV or mortality can allow improved
resource utilization, such as transferring patients to a
more intensive level of care, patient and family discus-
sions regarding goals of care, and identifying potential
subjects for prospective studies. However, model useful-
ness, among other factors, depends on predictive abil-
ity. Although models may have been externally
validated, they may still lose predictive ability as the
disease presentation or severity changes or new thera-
pies mitigate its severity. If the predictive ability of the
model changes with time, the models may need to be
recalibrated or redeveloped to maintain predictive util-
ity. A variety of models have attempted to predict
which patients are at risk for clinical decompensa-
tion10,11; however, these techniques may be limited by
rapid evolution in the clinical course of COVID-19.
Models and analytical techniques equipped to dynami-
cally change with the course of COVID-19 are currently
lacking.

The primary purpose of this study is to determine if
the predictive ability of a statistical model can be
improved through using rolling logistic regression rather
than a static logistic regression model and secondarily to
determine if the strength of individual predictors changes
over time.

2 | METHODS

This study was approved by the Institutional Review
Board approval (University of Michigan HUM00181493),
which waived informed consent. All items from the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) checklist were followed.
Patients were included if they were admitted to any of
the five Henry Ford Medical Centers (Main, Macomb,
West Bloomfield, Wyandotte and Allegiance) between
22 March 2020 and 18 May 2021 or University of
Michigan Medical Center between 4 March 2020 and
17 July 2021 and were at least 18 years old on admission.
Patients were excluded if they were intubated or died
within 4 h of arrival hospital. Both centres serve as
primary hospitals for their local populations and as
tertiary referral centres. Data from the Henry Ford
system were extracted from the electronic health records
by a programmer. The individual hospital of each Henry
Ford patient was not identified. University of Michigan
data were extracted using DataDirect (Ann Arbor, MI).
All data were then combined into one dataset for all
analyses. We obtained demographics (age, sex and race),
vital signs (heart rate, blood pressure, respiratory rate,
temperature and pulse oximetry) on admission and
throughout their hospital stay, laboratory values
(white cell count, triglyceride, LDH, D-dimer, C-reactive
protein, ferritin, high-sensitivity troponin and urea
nitrogen), Elixhauser comorbidities (diabetes mellitus,
COPD, hypertension and heart failure), oxygen use and
amount and the outcomes of IMV and mortality.

As previously published,11 if the FiO2 was provided,
we included those values in our analysis. If the O2 flow
rate was provided, we converted it to FiO2 by adding
0.038 for each L/min of supplemental oxygen. Venturi
masks and high-flow nasal cannula were recorded in the
chart as FiO2. Non-rebreather masks were considered to
supply FiO2 = 0.70. Even though the actual FiO2 for face
masks and nasal cannula will vary from person-to-person
depending on factors such as tidal volume and respira-
tory rate, we used these conversion factors to be consis-
tent across all patients.11,12 We created one calculated
variable, S/F = SpO2/FiO2.

12

Data were analysed at 4-h intervals, starting 4 h after
arrival. All variables were entered in the models along
with the change in the vital sign, oxygenation and labora-
tory variables across the 4-h interval. If no new
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laboratory or vital signs were recorded in the 4-h interval,
the previous values were carried forward, and the 4-h
change in those variables was set equal to zero. If a labo-
ratory value had not been obtained prior to that interval,
the value was imputed as the midpoint of the reference
range (triglyceride 100 md/dL, LDH 210 U/l, D-dimer
0.25 mcg/mL, C-reactive protein 9 mg/dl, ferritin
180 ug/L, high-sensitivity troponin T 10 ng/l and urea
nitrogen 10 mg/dl). In three separate models, the data at
each 4-h point were used to predict IMV or death within
(1) the next 4 h, (2) the next 8 h and (3) the next 24 h.

2.1 | Statistics

Variables are presented as mean � standard deviation,
median and interquartile range or frequency and percent-
age, discrimination as c-statistic � standard error. We
first constructed and tested the ability of a model created
on an initial cohort of patients with COVID (construction
population) to remain accurate by using logistic regres-
sion with forward selection to generate a model on the
first 300 patients with COVID, then tested that logistic
regression model on the subsequent patients (static logis-
tic regression model). We assessed the discrimination of
the model as the area under the receiver operator charac-
teristic curve (c-statistic). As we expected the patient pop-
ulation to be imbalanced (few patients died or received
IMV compared to the many who did not), we further
assessed the models using precision-recall curves as these
are more informative when the population is imbal-
anced.13 Comparison of c-statistics was assessed with the
method of Hanley and McNeil, 95% confidence intervals
of the area under the precision-recall curves were calcu-
lated with the method of Boyd et al. and the statistical
significance determined by bootstrapping. p < 0.05
denoted statistical significance.14,15

Next, we created a rolling model by using a sliding
window of patients to create a logistic regression model,
then testing that model on the next patient.16 The win-
dow then slid one patient over to the right (newer
patient) and a variable number on the left to keep the
number of patients with adverse outcomes constant,
equal to the number of adverse outcomes in the initial
300 patients.(Appendix) This sliding process was repeated
until all patients had been tested. This allowed the model
to continuously evolve as factors associated with IMV or
death may have changed. Similar to above, the models
were assessed using area under the receiver operator
characteristic and precision-recall curves. Receiver opera-
tor characteristic curves plot the true-positive rate (sensi-
tivity) versus the true-negative rate (1-specifity).
Precision-recall curves plot positive predictive value

versus sensitivity. They differ from receiver operator
characteristic curves by excluding the true-negative out-
comes, which are frequently the most common outcome.
All logistic regressions were done using forward stepwise
selection with likelihood ratio to reduce the model.
p = 0.05 for entry and p = 0.10 for removal. All statistics
were done in SPSS 27 (IBM, Chicago, IL) with p-values
<0.05 and 95% confidence intervals that excluded one
denoting significance. No adjustments were made for
multiple comparisons.

No formal power calculation was done as it would
vary based on the number of patients in the window, but
a logistic regression of 300 patients with a 20% adverse
outcome rate would expect to support six factors for 4-h
prediction.17

3 | RESULTS

There were 9352 patients admitted with COVID-19
infection—7484 from the Henry Ford Health System and
1868 from University of Michigan Medical Center. After
excluding 2312 patients who received IMV or died on or
within 4 h of arrival (many of the patients who received
IMV on arrival had been intubated at other hospitals
before transfer), the remaining 7041 patients were 51%
White, 38% Black and 50% male. They were
62 � 17 years old. Hypertension was the most common
comorbidity. The FiO2 values were 0.27 � 0.15. (Table 1)
Of the 7041 patients, 534 (7.6%) received IMV or died
within 14 days of arrival. The rate in the initial
300 patients was 20%, then using rolling 300 patient sam-
ples, the rate decreased to 3%, before a spike to 11% and
then a return to a low rate. (Figure 1) The spike occurred
just after the peak of the second statewide surge. How-
ever, there was no spike with the third statewide surge.
(Figure 2) The models on the initial 300 patients had
good discrimination (0.832 � 0.025 for the 4-h prediction,
0.806 � 0.020 for the 8 h and 0.749 � 0.013 for the 24-h
model) and fair precision-recall (0.027, 0.045 and 0.073,
respectively). However, when these three models
(Table 2) were tested on the subsequent 6741 patients,
both the discrimination and the area under the precision-
recall curve fell (Table 3).

Using the rolling logistic regressions to continuously
update the models, we found improved discrimination:
0.865 � 0.010, 0.856 � 0.007 and 0.843 � 0.005 for the 4-,
8- and 24-h models, respectively; all p < 0.001 compared
to the static logistic regressions. (Table 3) Similarly, the
areas under the precision-recall curves improved from
0.006, 0.010 and 0.021 with the static models to 0.030,
0.046 and 0.076 for the 4-, 8- and 24-h rolling models,
respectively, all p < 0.001 (Figure 3).

ENGOREN ET AL. 3
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FiO2, present in 94% of the rolling regression models,
and respiratory rate (88%) were the most common fac-
tors in the rolling regressions associated with mechani-
cal ventilation or death within 4 and 8 h (FiO2 92% and
respiratory rate 83%). For the 24-h model, whereas FiO2

remained the most common factor (76%), the frequency
of respiratory rate in the models had fallen to 24% and
temperature (57%) became the second most common
factor. (Table 4) C-reactive protein and D-dimer were
the most common laboratory values in the models.
Changes in vital signs or in laboratory values were infre-
quent factors in the rolling models. (Table 4) Comorbid-
ities were factors in a moderate number of models,

whereas age and sex were rare, and race presents only
in the construction model, not in any of the subsequent
rolling models. The presence of even common factors
was not consistent but varied with time. Figure 4 shows
how the three most common factors varied with time. In
particular, FiO2 was not in the 4-h model when the
spike in mechanical ventilation or death occurred but
was otherwise present.

TAB L E 1 Admission vital signs, oxygenation, characteristics,

laboratory values and comorbidities

Factor N Mean SD

Age (yr) 7041 62 17

Heart rate (min�1) 7041 85 17

Mean arterial pressure (mmHg) 7041 91 16

Respiratory rate (min�1) 7041 19 6

SpO2 (%) 7041 96 3

Temp (�C) 7041 37.0 0.6

FiO2 (0.01) 7041 0.27 0.15

S/F (%) 7041 409 110

Median IQR

C-reactive protein (mg/dL) 5229 5 4, 11

D-dimer (mg/dL) 4853 0.3 0.2, 0.5

Ferritin (ng/mL) 5310 258 170, 752

Lactate dehydrogenase (U/L) 4729 258 210, 389

Triglycerides (mg/dL) 3158 65 50, 137

Troponin (pg/mL) 6758 15 0.1, 20

Urea nitrogen (mg/dL) 6860 18 13, 29

White cell count (K/μL) 6836 7.0 5.1, 9.5

n %

Male 7041 3540 50

Race 7041

Black 2659 38

Other/refused/unknown 772 11

White 3610 51

COPD 7041 1267 18

Diabetes mellitus 7041 1285 18

Heart failure 7041 1751 25

Hypertension 7041 5349 76

Abbreviations: IQR, interquartile range; n, number of patients with that

characteristic; N, number of patients that had that factor assessed; SD,
standard deviation.

F I GURE 1 Rolling trends shows the rate of invasive

mechanical ventilation or death within 14 days of admission using

a rolling rate of 300 consecutive patients. The longest streak

without any invasive mechanical ventilation or death was

127 consecutive patients. The longest streak of consecutive patients

receiving invasive mechanical ventilation or death was four.

F I GURE 2 Frequencies of COVID rates and outcomes. Blue

line is the number (left axis) of daily COVID-19 cases in Michigan

on a rolling 7 day average as the state did not collect complete data

every day. Purple line is the number of COVID-19 patients in

Michigan present in hospital that day (left axis). Red line is the

daily number of deaths from COVID in Michigan (right axis).

Green line is the number of patients receiving invasive mechanical

ventilation in Michigan on that day (right axis). Gold line is the

percentage of COVID-19 patients at the study sites who died or

received invasive mechanical ventilation within 14 days of

admission. Percentages are calculated over the prior 30 days.

Michigan hospitalization and mechanical ventilation numbers are

available only from 9 April 2020 to 7 March 2021.

4 ENGOREN ET AL.
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TAB L E 2 (top) Logistic regression associated with need for invasive mechanical ventilation or death within 4 h based on the first 300

patients who were studied for 13, 254 time intervals. Intubation with mechanical ventilation or death occurred in 61 patients (20%) and 61

intervals (0.5%). (middle) Logistic regression associated with need for invasive mechanical ventilation or death within 8 h based on the first

300 patients who were studied for 13 254 time intervals. Intubation with mechanical ventilation or death occurred in 61 patients (20%) and

109 intervals (0.8%). (bottom) Logistic regression associated with need for invasive mechanical ventilation or death within 24 h based on the

first 300 patients who were studied for 13,254 time intervals. Intubation with mechanical ventilation or death occurred in 61 patients (20%)

and 285 intervals (2.2%).

4-h model

Factor p-Value Odds ratio 95% LCI 95% UCI

Mean arterial pressure (mmHg) 0.028 1.019 1.002 1.036

Respiratory rate <0.001 1.063 1.029 1.098

Triglycerides (mg/dL) 0.002 0.994 0.989 0.998

D-dimer (mg/L) 0.014 1.667 1.108 2.509

Ferritin (100 ng/ml) 0.009 1.011 1.003 1.019

SpO2 (%) 0.011 0.959 0.929 0.990

FiO2 (0.10) <0.001 1.456 1.327 1.597

Constant 0.001 0.003

8-h model

Factor p-value Odds ratio 95% LCI 95% UCI

Mean arterial pressure (mmHg) 0.009 1.017 1.004 1.030

Respiratory rate <0.001 1.068 1.042 1.095

Triglycerides (mg/dL) <0.001 0.994 0.991 0.997

D-dimer (mg/L) 0.004 1.590 1.164 2.172

Ferritin (100 ng/ml) <0.001 1.013 1.006 1.019

SpO2 (%) 0.009 0.964 0.938 0.991

FiO2 (0.10) <0.001 1.399 1.304 1.501

Constant <0.001 0.004

24-h model

Factor p-Value Odds ratio 95% LCI 95% UCI

Mean arterial pressure (mmHg) 0.020 1.010 1.002 1.018

Respiratory rate <0.001 1.050 1.031 1.069

Triglycerides (mg/dL) <0.001 0.994 0.992 0.996

D-dimer (mg/L) <0.001 1.645 1.340 2.019

Ferritin (100 ng/ml) <0.001 1.014 1.007 1.021

White cell count (K/μL) <0.001 0.918 0.885 0.952

Urea nitrogen (mg/dL) 0.045 0.993 0.987 1.000

SpO2 (%) <0.001 0.965 0.947 0.984

FiO2 (0.10) 0.043 1.128 1.004 1.268

S/F (%) <0.001 0.995 0.993 0.998

Race—Black (ref) 0.017 1

Other/unknown/refused 0.961 0.987 0.594 1.642

White 0.005 0.641 0.471 0.872

Constant 0.703 0.665

Abbreviations: LCI, lower confidence interval; UCI, upper confidence interval.

ENGOREN ET AL. 5
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4 | DISCUSSION

We found that use of the rolling regression models by
continuously updating the data included in the models
(excluding older and adding the most recent patient)
improved the models during a time when the disease,
treatment and outcome were rapidly changing. Unlike
the static regression models, the rolling logistic regression
models maintained their discrimination and precision-
recall values close to the values in the construction popu-
lation. Our finding that after a period of improved out-
comes, the rate of IMV and death spiked up before
decreasing again is similar to a study from the
United Kingdom that showed a similar decrease followed
by an increase in mortality, which the authors attributed
to the impact of the B117 variant.18 As we do not have
genetic sequencing data, we are limited in not knowing if
our sudden spike in adverse outcomes is related to a
COVID variant or to other reasons.

Logistic regression models are frequently judged by
their ability to discriminate between the two outcomes.
However, the c-statistic (area under the receiver operator
characteristic curve) may not be a good metric when one
of the two outcomes is uncommon. Precision-recall
curves, which exclude true negatives from the calcula-
tion, may be a better metric of the models’ utility.13

Precision-recall curves also make it easy to calculate the
number needed to identify. (Figure 3) Identifying patients
at high risk for IMV or death may improve outcomes by
earlier and more intensive treatment. It also identifies a
group of patients for enrollment in prospective studies
by, given their higher likelihood of IMV or death,
improving power and decreasing the number of patients
needed for the study.

We found that most factors were at least occasionally
associated with IMV and death. However, a few factors
were frequently included in the models. In particular,
FiO2 appeared in most models. Study is needed to deter-
mine why FiO2 lost its predictive utility during the spike
to 11% rate of IMV or death, whether it relates to changes
in disease phenotype, treatment or is merely a result of
random fluctuation. FiO2 was initially replaced by
D-dimer in the models, coincident to the December 2020
surge with its higher rate of IMV or death.

SpO2, a measure of oxygenation, and S/F, appeared
infrequently in the models, which differs from previous
studies that found S/F to be highly associated with the
need for IMV or death; however, these studies did not
separately analyse FiO2.

11,19–21 A rising FiO2 should be
taken as one of the warning signs for impending death or
need for IMV. Vital signs, particularly, respiratory rate
and temperature, were also commonly present in the
models. Abnormal vital signs are components of Systemic

TAB L E 3 Areas under the receiver operator characteristic

(discrimination, c-statistic) and precision-recall curve

Models created and tested on construction population

Model c-Statistic SE PR curve 95% CI

4 h 0.832 0.025 0.027 0.024, 0.030

8 h 0.806 0.020 0.045 0.043, 0.050

24 h 0.749 0.013 0.073 0.069, 0.076

Static models tested on subsequent population

Model c-Statistic SE PR curve 95% CI

4 h 0.827* 0.011 0.006**** 0.005, 0.007

8 h 0.794** 0.012 0.010***** 0.008, 0.012

24 h 0.735*** 0.012 0.021****** 0.019, 0.024

Rolling models tested on subsequent population

Incremental c-statistic SE PR curve 95% CI

4 h 0.865* 0.010 .030**** 0.027, 0.033

8 h 0.856** 0.007 .046***** 0.043, 0.050

24 h 0.843*** 0.005 .076****** 0.071, 0.080

Abbreviations: 95% CI, 95% confidence interval; PR curve, area
under the precision-recall curves; SE, standard error of the c-
statistic.
*p < 0.001.
**p < 0.001.
***p < 0.001.
****p < 0.001.
*****p < 0.001.
******p < 0.001.

F I GURE 3 Precision-recall curves for the rolling (roll) and

static (Trad) logistic regression models. The number needed to

identify is calculated as 1/precision at any recall value. For

example, the number needed to identify one patient who will

receive mechanical ventilation or die at recall = 0.2 is 5.6, 7.9 and

15 for the rolling 24-, 8- and 4-h models and 27, 56 and 83 for the

static 24-, 8- and 4-h models, respectively. At a recall = 0.8, the

numbers needed to identify are 29, 57 and 100 for the rolling 24-,

8- and 4-h models and 100, 250 and 333 for the static 24-, 8- and 4-h

models, respectively.
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 1752699x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/crj.13560 by H

enry Ford H
ealth System

, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Inflammatory Response Syndrome, Modified Early
Warning and quick Sequential Organ Failure Assessment
screens for impending deterioration.22–25 The 24-h
models had temperature as a frequent predictor, but in
the 8- and 4-h models, it had become less common, and
respiratory rate had become much more common. This
suggests that temperature may be an earlier warning sign
(occurring at 24 h), whereas respiratory rate becomes a
predictor of more imminent deterioration (8 h).

Although some previous studies have found age, sex
and race to be factors associated with worse outcomes in

COVID infection,26–28 we found these factors to be rarely
associated with IMV and death. Our study differs from
these by the inclusion of different factors. Ho et al. in a
population-based study found older age to be markedly
associated with increased mortality.26 Our study differs
by only including hospital patients. Many older persons
with comorbidities infected with COVID were not hospi-
talized but instead died in nursing homes and extended
care facilities.29 Notably, Nguyen et al., who found an
excess of males receiving IMV or dying in the Vizient
database of >300 000 patients at >650 academic medical

TAB L E 4 Count of number of times each factor is in a rolling regression model. Δ—Change in factor value from the previous 4-h value.

S/F -SpO2/FiO2

4 h 8 h 24 h

Factor N % N % N %

Age 52 1% 191 3% 71 1%

COPD 1732 26% 1577 23% 1240 18%

C-reactive protein 3288 49% 3321 49% 2402 36%

D-dimer 2663 40% 2477 37% 1047 16%

Diabetes mellitus 1587 24% 1503 22% 1205 18%

Ferritin 338 5% 409 6% 314 5%

FiO2 6361 94% 6184 92% 5119 76%

Heart failure 972 14% 1086 16% 849 13%

Heart rate 3652 54% 1558 23% 930 14%

Hypertension 960 14% 934 14% 643 10%

Lactate dehydrogenase 1134 17% 1046 16% 1492 22%

Mean arterial pressure 1286 19% 948 14% 854 13%

Respiratory rate 5903 88% 5593 83% 1614 24%

S/F 662 10% 166 2%

Sex 17 0.3% 215 3% 305 5%

SpO2 2570 38% 2029 30% 1493 22%

Temperature 3223 48% 4414 65% 3873 57%

Triglycerides 564 8% 682 10% 452 7%

Troponin 1102 16% 1088 16% 1103 16%

Urea nitrogen 1156 17% 1091 16% 508 8%

White cell count 368 5% 363 5% 382 6%

ΔCRP 1550 23%

Δheart rate 695 10% 131 2%

Δmean arterial pressure 714 11% 63 1% 874 13%

Δrespiratory rate 891 13% 937 14% 399 6%

ΔS/F 683 10% 1077 16%

ΔSpO2 958 14% 318 5% 128 2%

Δtemperature 246 4%

Δtriglycerides 134 2% 23 0.3%

Δtroponin 389 6%
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centres, included only administrative data and not vital
signs and laboratory data.27 Males and females may pre-
sent with different vital signs and laboratory values,
which may be more closely associated with outcomes.
Our study found that after adjusting for confounders, age
and sex had little effect on IMV or death, perhaps related
to studying only hospitalized patients and by including
vital signs and laboratory values, which may have acted
as mediators between age and sex and the adverse out-
comes. Although initial population-based studies found
higher death rates among Black than White American,
CDC data had suggested that by October 2020, the rates
had reversed, with White Americans now having a
higher rate.28 Our study is similar to this in finding an
initially higher adjusted mortality in Black than White
patients, which then quickly disappeared. However, we
did not find a higher mortality in White patients.

Rolling regressions can easily be integrated with the
electronic health record to continuously update and pro-
vide clinicians with the best, most current prediction
models. As vulnerable populations, disease characteris-
tics and treatments all change, the models will evolve to
stay concurrent; however, further study is needed in dif-
ferent populations including ones where the disease is
relatively invariant.

There are several limitations to this study. First, this
is only a six-hospital study from the same geographic area
(southeastern Michigan). Studies from other geographic
areas or with different healthcare systems may not only
find different factors associated with IMV or death but
find different discrimination and precision-recall values
of their models. We were also limited in being provided

only a few comorbidity and laboratory values for analysis.
Inclusion of more comorbidities and more laboratory
values might have improved the models. Despite this, our
limited data collection produced good discrimination and
fair precision-recall values. Third, patients had missing
laboratory values and vital signs—laboratory tests were
not ordered and vital signs may not have been obtained
every 4 h. Tests and vital signs tend to be ordered and
obtained based on clinical course and need. Rather than
imputing missing values, we carried forward the most
recent value or if a laboratory test had not been obtained,
we assigned it a normal value, similarly to APACHE
III.30 The utility of models developed by institutions is
partially dependent on how frequently vital signs and
laboratory tests are obtained, but how often data need to
be collected to maximize utility of rolling logistic regres-
sion models remains to be understood. We did not
include the patient’s hospital in the analyses. This might
bias the analysis in unknown ways. Finally, we are lim-
ited by not knowing vaccination status and treatments.
Use of steroids, monoclonal antibodies, antiviral agents
and varying modalities of respiratory therapy, such as
prone position, heated high-flow nasal cannula and non-
invasive mechanical ventilation, were not available to
us. Including these potential therapies in the models
would allow us to assess their efficacy, and inclusion with
interaction terms would allow us to determine if their
efficacy was related to other conditions, such as with
FiO2.

One of the strengths of this study is the use of
precision-recall curves to display utility. Although
receiver operator characteristic curves and discrimination
are frequently used, by ‘fattening up’ on easy to identify
true-negative patients, despite the high c-statistic value,
they may not be useful when the adverse event rate is
low.13 Precision-recall curves better characterize the util-
ity of the model and allow for easy determination of the
number needed to identify to find one patient who will
develop the adverse outcome (Figure 3).

In conclusion, we found that rolling logistic regres-
sions to maintain a more contemporaneous model per-
formed better than did the static logistic regression using
older data when tested on subsequent patients. We also
found that increasing FiO2 and abnormal vital signs were
the factors most commonly associated with IMV and
mortality.
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F I GURE 4 Plot showing the percent of times FiO2, heart rate

and D-dimer are statistically significant factors in 300 consecutive

rolling regressions associated with invasive mechanical ventilation

or death within the next 4 h. Plot shows that FiO2 was in all the

models until model #4515. Close to simultaneously, D-dimer

percentage in the models has increased to 100% but falls before

FiO2 starts to increase back to 100%. It’s place in the models is

taken by several other less frequently statistically significant factors

(not shown for clarity).
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APPENDIX A

N1, N2, N3, …N299, N300f g, N301,N302,…whereN1 ¼ 0,N2

¼ 1,N3 ¼ 0,…

where 1 indicates received mechanical ventilation or died
in the next time interval and 0 indicates the opposite for
each patient Ni.

The logistic regression is first constructed on patients
N1–N300 and tested on N301. The window then slides one
patient to the right (N301) and patients N1 and N2 are
dropped to keep the number of patients with the outcome
of mechanical ventilation or death fixed at a constant
number (n = 60). A new logistic regression model is then
constructed using patients N3–N301 and tested on N302.
The process is repeated until Nlast is tested. The total
numbers of correct and incorrect predictions are counted
and used to calculate discrimination and the area under
precision-recall curves.
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