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ABSTRACT 

A recent line of research has focused on Ubiquitination, a pervasive and proteasome-mediated 

protein degradation that controls apoptosis and is crucial in the breakdown of proteins and the 

development of cell disorders, is a major factor.  The turnover of proteins and ubiquitination are 

two related processes. We predict ubiquitination sites; these attributes are lastly fed into the 

extreme gradient boosting (XGBoost) classifier. We develop reliable predictors computational 

tool using experimental identification of protein ubiquitination sites is typically labor- and 

time-intensive. First, we encoded protein sequence features into matrix data using Dipeptide 

Deviation from Expected Mean (DDE) features encoding techniques. We also proposed 2nd 

features extraction model named dipeptide composition (DPC) model. It is vital to develop 

reliable predictors since experimental identification of protein ubiquitination sites is typically 

labor- and time-intensive. In this paper, we proposed computational method as named 

Ubipro-XGBoost, a multi-view feature-based technique for predicting ubiquitination sites. Recent 

developments in proteomic technology have sparked renewed interest in the identification of 

ubiquitination sites in a number of human disorders, which have been studied experimentally 

and clinically.  When more experimentally verified ubiquitination sites appear, we developed a 

predictive algorithm that can locate lysine ubiquitination sites in large-scale proteome data. This 

paper introduces Ubipro-XGBoost, a machine learning method. Ubipro-XGBoost had an AUC 

(area under the Receiver Operating Characteristic curve) of 0.914% accuracy, 0.836% Sensitivity, 

0.992% Specificity, and 0.839% MCC on a 5-fold cross validation based on DPC model, and 2nd 

0.909% accuracy, 0.839% Sensitivity, 0.979% Specificity, and 0. 0.829% MCC on a 5-fold cross 

validation based on DDE model. The findings demonstrate that the suggested technique, 

Ubipro-XGBoost, outperforms conventional ubiquitination prediction methods and offers fresh 

advice for ubiquitination site identification. 
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1. INTRODUCTION 

This study used a combination of qualitative 

and quantitative analysis computational tool, 

and discovery of Ubiquitin [1] that ubiquitin is 

a tiny, 76-amino acid protein [2].  Protein 

ubiquitination is a common post-translational 

modification. It is a process that attaches 

ubiquitin, a protein, to the substrate. An 

increase in ubiquitin-protein levels can have a 

variety of effects on how a protein behaves. It 

can, for example, instruct the proteasome to 

digest proteins [3, 4]. Additionally, this process 

is connected to inflammation, cell change, 
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and the immune response. [5]. A frequent 

post-translational modification is protein 

ubiquitination. It is a procedure that assigns 

the protein ubiquitin to the substrate. 

Numerous factors can change how a protein 

functions as a result of an increase in 

ubiquitin-protein levels. [6, 7]. Ubiquitination 

has been linked to cell change, 

immunological response, and inflammatory 

response [8]. A tiny regulatory protein called 

ubiquitin-protein is involved in the 

ubiquitination modification process and is 

present in practically all eukaryotic tissues. 

The three processes of ubiquitination are 

activation, binding, and connection [9]. 

Ubiquitination is critical to understanding 

protein regulation and molecular 

mechanisms and identifying potential 

ubiquitination sites is essential. It is critically 

needed to develop computational methods 

that can detect protein ubiquitination sites 

more quickly and precisely than traditional 

methods such as CHIP-CHIP analysis and mass 

spectrometry. The identification of protein 

ubiquitination sites can be done using 

computational approaches. A considerable 

amount [10] of research has focused on 

comprehending the mechanism of 

ubiquitination is the identification of 

ubiquitination sites. Ubiquitination is quick and 

reversible, though high-throughput mass 

spectrometry (MS) technology ubiquitin 

antibodies, and ubiquitin-binding proteins [11, 

12], in combination with liquid 

chromatography and mass spectrometry [13], 

are examples of conventional experimental 

techniques. UbiProber was developed by 

Chen to combine sequencing information 

with physico-chemical parameters and 

amino acid composition in order to build 

generic models for eukaryotic proteomes and 

species-specific models for proteomes from a 

variety of different species. Physico-chemical 

features were added into SVM by ESA-UbiSite 

[14]. ESA was performed to choose the most 

effective negative dataset from the entire 

dataset, however. 

The large-scale protein ubiquitination site 

prediction, these existing machine learning 

algorithms perform well on small-scale data, 

but there are still significant obstacles. First, 

the artificially designed features have a 

weakness. There are currently no methods 

that do not rely on expert knowledge for 

feature extraction, which results in incomplete 

and biased feature vectors [15, 16]. Second, 

there is a variety in the features. To boost 

accuracy, most existing prediction methods 

converged on a single feature and ignored 

the inherent heterogeneity among them. 

Third, there is a disparity in the number of 

positive and negative samples. There are only 

a limited number of lysine residues that can 

be ubiquitinated in the entire proteome, 

making protein ubiquitination site prediction 

an extremely imbalanced problem [17]. Such 

an imbalanced situation does not lend itself 

well to existing approaches for discovering 

probable ubiquitination sites. It's thought that 

deep learning, a recent trend in machine 

learning for massive datasets, could be the 

answer to these issues. To successfully 

analyses genomic and proteomic data, a 

number of deep learning networks have been 

used It is yet to be used in the prediction of 

protein ubiquitination sites by deep learning 

techniques. To illustrate the roles of new 

molecules in huge signal networks, one can 

use this graphic to depict ubiquitin [18]. The 

distinctive patterns of molecules from a 

certain class can be shown by a large number 

of interconnected proteins. [19, 20].  
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XGBoost ubiquitin is based on the XGBoost 

algorithm for protein function. Machine 

learning approaches such as eXtreme 

Gradient Boosting have been used to predict 

protein structures in the literature (XGBoost) 

[21]. Networks that use low-level features as 

inputs produce high-level features at the next 

layer. Computer vision and natural language 

processing both use XGBoost -based 

techniques. Even in biomedical data analysis, 

XGBoost -based methods have been found to 

outperform standard predictive methods 

used in bioinformatics and chem informatics 

[22] because of recent advancements in 

processing power [23]. Ubiquitin prediction is 

an area where XGBoost ubiquitin performs 

exceptionally well. Other machine learning 

classifiers like deep neural network (DNN) 

AdaBoost (ABC) and Random Forest (RF) 

classifiers are also compared to this model's 

prediction performance. In order to find the 

optimum feature extraction approach, we 

also use feature extraction protocols that 

have been successful in tackling diverse 

biological challenges. We believe that DDE 

and DPC are the most effective approaches 

for extracting features from a dataset. 

 

Table 1. Collected Data as ubiquitin and 

non-ubiquitin sequences.  

An approach based on the previously 

mentioned machine learning classifiers is also 

on the table 1. 

2. MATERIALS AND METHODS 

2.1 Datasets 

Machine learning models can be simplified 

by employing a quantitative approach that 

includes the usage of a dataset. The 

UniPortKB and NCBI-databases are where we 

get our information. Eight hundred and 

twenty-five different protein sequences have 

been obtained, with the majority 375 being 

ubiquitin positive and the remainder 450 

non-ubiquitin positive. This is a class of proteins 

used to model subcellular distributions [24]. 

We've gotten the info from the database 

above. The obtained datasets are 

preprocessed based on the protein–pathway 

and protein–non-pathway interactions. Data 

was stored in CSV format and the parameters 

of our suggested model were established. The 

sequence of an ubiquitination-precise protein 

were proposed as a positive test sample. 

Training datasets were imbalanced by a 

random selection of positive and negative 

samples [25]. An online database containing 

proteins from a variety of organisms was used 

in this study but only human-related proteins 

that were specifically implicated in human 

pathways were investigated more than 450 

non-ubiquitin proteins were received as part 

of the CD-HIT [26], step for similarity measures. 

This preprocessing method resulted in the 

finalization of 775 proteins by removing 

redundant information. There was a reduction 

in redundancy, and 775 proteins were 

received, including 375 ubiquitin proteins and 

450 non-ubiquitin proteins. 

 

 

 

 Original 

data 

Similarity 

<30% 

Cross-validation 

Ubiquitin 

proteins 

550 375 375 

Non-Ubiquitin 

proteins 

650 450 450 

Total  1200 825 825 
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2.2 Features Extraction for Ubiquitin Protein 

Association 

The process of turning protein sequence 

information into numerical data, known as 

feature extraction, is crucial to the 

classification effort. In order to extract the 

information from protein sequences, 

sequence-based features, physicochemical 

property-based features, and 

evolutionary-derived features are chosen in 

this study.  First, we encoded protein 

sequence features into matrix data using 

Dipeptide Deviation from Expected Mean 

(DDE) features encoding techniques. Second, 

we encoded features extraction model 

named dipeptide composition (DPC) model. 

A two-dimensional sparse matrices of size 

20x20 was obtained and reduced to a 

one-dimensional vector. With this method of 

random projection, an effective 

measurement matrix was used to generate a 

small functionality set. Because of this, a new 

method of extracting compressive sensing 

functionality has been developed. The 

XGBoost, DDE, and DPC feature profiles were 

studied, and an essential approach for 

classifying pathway-specific proteins was 

devised. Data gathering, feature extraction, 

CNN development, and model evaluation 

are all part of the system. Figure 1 depicts our 

system's flowchart and provides the following 

explanation of its specifics. In order to detect 

and classify proteins that are peculiar to 

human pathways, a new technique was 

created. 

2.3 Features Encoded By DDE 

We distinguish between a cell's ubiquitination 

and non- ubiquitination, feature extraction 

based on amino-acid combination is studied 

in relation to the (DDE). The primary formula 

used to determine a protein sequence's 

dipeptide combination (DC). We encoded 

physicochemical, evolutionary functions from 

the Ubiquitin datasets. It was shown that the 

DDE features profiles vector were more 

effective than other characteristic 

representations in boosting the specific linear 

proteins linked with pathogen protection. 

According to earlier studies, dipeptide 

frequency variations were measured using 

dipeptide composition features in this study. 

The theoretical mean (Tm), theoretical 

variance (Tv), and dipeptide composition 

(DDE) were used to build the DDE feature 

vector (Cc). It is determined as follows: the 

three parameters and DDE, and DC an 

indicator for (Cc) is supplied by DC (i). 

 

(i)

niD Nc
              (1) 

It was possible to extract 400 dipeptide 

attributes (20 ordinary amino acids 20×20 

dipeptide properties), although not all of 

them followed one another in any particular 

order. Dipeptide I and N are also not found in 

L-1 (i.e., potential quantity in P). The theoretical 

mean (TM (i)). 

1 1
(i)

C C
i iT C CM N N

          (2) 

Ci1 is the number of codons for the first amino 

acid, and Ci2 is the number of codons for the 

second amino acid, both for the dipeptide.
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Figure 1. The XGBoost ubiquitin protein framework model has been proposed. 

 

Except for the three codons, the total number 

of codons is CN. In order to avoid having to 

recalculate the features of TM(i), only features 

with a length of 400 dipeptides were used. 

The theoretical variance of TV(i) is provided by 

dipeptide i. 

 

(1 )
(i) (i)

v(i)

T T
M M

T N


    (3) 

This equation gives the theoretical 

average of the number j, or TM(j) (2). Again, 

and peptide P has the same number of 

L-1-dipeptides as before. Finally, DDE(i) is 

identified as 

(i) T
(i)

(t)
(i)

D
c

m
DDE

T
V


        (4) 

We calculate the 400-dimensional features 

vector was used to calculate DDE for each of 

the 400 dipeptide features. 

 

𝐷𝐷𝐸𝑝 = (𝐷𝐷𝐸(𝑖) … . 𝐷𝐷𝐸𝑝), where 𝑖 = 1,2, … .4)  (5) 

 

2.4 Features encoded with DPC 

The dipeptide composition is present in the 

first two successive residues (DPC).  

 

Sequences are limited to 400 characters. For 

the most part, this sequence representation 

provides information on the amino acid 

composition and local order. The DPC feature 

extraction procedure was performed on this 

model in order to extract the best 

foundational features. When an amino acid 

occurs twice in a row in a protein sequence, it 

is referred to as a double-prefix codon (DPC). 

To give an example, in the series there are 

dipeptide frequencies for MALMAC (two), 

ALLM (one), AC (one), as well as CC (one). 

The total number of feature elements was 400 

dipeptides. In order to standardize the DPC 

features, we divided the frequencies by (N-1) 

[27]. The frequency of two adjacent amino 

acids in a dipeptide captures new 

information about the amino acid makeup. 

Because of this, the dipeptide composition is 

ideal in situations requiring localized 

information, such as homologic information. 

#  diseptide
× 1001

of j
f j N 

     (6) 

2.5 Proposed model 

We build a novel machine learning model for 

protein association prediction by using the 
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XGBoost Ubiquitin Protein Sequence. A two 

features extractions technique is 

implemented in order to remove the 

unnecessary functionalities from the model 

before the model is constructed. 

Ubipro-XGBoost ubiquitin is then compared to 

two features encoding models, and the 

results are used as inputs to three machine 

learning classifiers. We can also develop 

hybrid features by combining various feature 

space combinations. For this purpose, 10-fold 

cross-validation tests are also carried out. As 

shown Figure 1 illustrates our proposed 

method framework. 

This section proposed a unique machine 

learning technique and feature extraction 

model for predicting ubiquitination sites. As 

shown in Figure 1 shows the suggested 

method Ubipro-XGBoost framework model.  

First step in the green box we collected from 

the mentioned databases, and then removed 

similarity redundancy, finalized the ubiquitin 

positive proteins datasets and ubiquitin 

negative proteins datasets. Second step in 

the blue box we extracted features by DDE 

and DPC model and then feature 

normalization. Third step in the brown box we 

proposed XGBoost algorithm for the 

classification on the basis of 10-fold 

cross-validation. To evaluate the classification 

model's ability to predict outcomes, by using 

10-fold class validation technique. We than 

our proposed XGBoost algorithm 

performance with other three machine 

learning classifiers. According to simulation 

results, the proposed strategy performs 

reasonably well when compared to some 

cutting-edge techniques [28, 29]. An 

ensemble algorithm known as extreme 

gradient boosting (XGBoost) has recently 

been shown to produce more accurate 

energy models than artificial neural networks 

and degree-day ordinary least square 

regression by Chakraborty and Elzarka [30] 

[31].  

 

3. PERFORMANCE EVALUATION METHODS 

The training dataset is used to tune the 

parameters of the models using a tenfold 

cross-validation approach, and the 

independent set is used to test the model [32]. 

The underlying models have been evaluated 

using efficiency metrics such as sensitivity (sn), 

specificity (Sp), accuracy (ACC), and 

Mathew's correlation coefficient (MCC). In 

this study, true positive (TP), false positive (FP), 

false negative (FN), and true negative (TN) 

are the four units in the confusion matrix 

derived following prediction (TN). Sensitivity, 

specificity, precision, accuracy, F-score, and 

Matthew's correlation coefficient (MCC) were 

some of the metrics used to evaluate the 

overall prediction performance of different 

categorization models. Previous research 

have utilized them, with a greater value 

suggesting better performance (Jing and 

Dong, 2017). The following are some examples 

of performance metrics. 

TP
Sensitivity = 

TP FN
       (7) 

TN
Specificity = 

TN FP
       (8) 

 

TP TN
Accuracy = 

TP FP TN FN



  
    (9) 

 

TP* TN FP* FN
MCC = 

(TP FP )(TP FN )(TN FP )(TN FN )



   

  (10) 

 

4. RESULTS AND DISCUSSION  

We used positive samples (375 sequences) 

and negative samples (375 sequences) 
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benchmark dataset. In the first phase, we had 

to compare various matrices in order to get 

the best DDE and DPC matrix for our model. In 

the end, we found that the DPC matrix 

(20x20) was the best one for solving the 

imbalance data. Next, we set into the 

XGBoost algorithm with all 400 retrieved 

feature sets. There are many ways in which 

experimentation might be developed. 

According to our two DPC models, we then 

employed the DDE model. 

4.1 Ubiquitin and Non- Ubiquitin Sequence 

for the AAC  

The number of amino acids in ubiquitin and 

non-ubiquitin sequences was calculated in 

order to determine their composition. The 20 

amino acids that contribute significantly to 

two datasets. There are few notable 

exceptions to the general rule that there are 

no significant differences between the two 

categories of data. The highest 

concentrations of C and P amino acids can 

be found throughout proteins. So, the finding 

of ubiquitin proteins in these amino acids is 

crucial. In light of the various properties of 

these amino acids, our model is able to 

Accurately predict ubiquitin proteins as 

shown Table 2. 

Table 2. Metric Performance obtain by XGBoost. 

 

4.2 Ubiquitin between XGBoost and Shallow 

Machine Learning with a Comparable 

Efficiency  

According to this finding, multiple machine 

learning algorithms were tested in order to 

identify proteins derived from Ubiquitin. We 

employee four machine learning classifiers 

were used in our study (e.g., AdaBoost [33], 

Random-Forest, and DNN). Our XGBoost[34] 

was compared to the DNN Deep Neural 

Network's implementation of perceptions, 

and the results were compared to our 

XGBoost. Table 3 and Figure 2 shows that we 

used the optimum parameters in all of our 

trials so that we could compare each 

classifier to the others. We found that our 

XGBoost performed better than other 

standard machine learning approaches in the 

same experiment framework. Our 

Ubipro-XGBoost, in particular, created 

algorithms based on a distinct dataset. 

 

Table 3. Performance Comparison ML classifiers by 

DDE model 

 

 

ML-Classifier  ACC Precision Sensitivity Specificity MCC F1 

RF -DPC 0.779% 0.769% 0.783% 0.775% 0.570% 0.758% 

DNN -DPC 0.841% 0.838% 0.831% 0.852% 0.705% 0.798% 

AdaBoost -DPC 0.901% 0.941% 0.852% 0.950% 0.821% 0.861% 

 ACC Prc Sens Spec Mcc F1 

RF-DDE 0.752 0.759 0.767 0.738 0.519 0.742 

DNN-DDE   0.827 0.870 0.805 0.849 0.688 0.779 

AdaBoost- 

DDE 

0.878 0.874 0.844 0.912 0.767 0.832 
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Figure. 2. Proposed model compare with other classifiers 

Table 4. Performance Comparison other three ML classifiers by DPC model 

 

Table.4 shows how the XGBoost hybrid 

features can be used to demonstrate the 

classifier's predictive power. The Random 

Forest classification, on the other hand, 

performed very well in this mixed-feature 

comparison. This model classification was 

more accurate than XGBoost, which 

predicted Random Forest model 

classifications with 93.53% accuracy using 

XGBoost data. Table 4 and Figure 3 shows the 

results of a comparison with three MLCs. 

 

4.3 ROC (Auc) Comparative Performance 

by DDE and DPC 

The results analysis consists of prior 

investigations into the binary classification 

issue that we used in our study. Our results 

were discovered to be accurate and 

consistent with the majority of machine 

learning classification algorithms. Researchers 

also employ other metrics in the ROC curve 

plot and the ROC (AUC), such as the 

algorithm's accuracy or the confusion matrix.  

 

 

Machine Learning 

Classifier  

ACC Precision Sensitivity Specificity MCC F1 

RF -DPC  0.779% 0.769% 0.783% 0.775% 0.570% 0.758% 

DNN -DPC 0.841% 0.838% 0.831% 0.852% 0.705% 0.798% 

AdaBoost -DPC      0.901% 0.941% 0.852% 0.950% 0.821% 0.861% 
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Figure. 3. Proposed model compare with other classifiers

 

Figures 4 show the results of classifying the 

Ubipro-XGBoost output using the ROC AUC 

curve. The Ubipro-XGBoost Ubiquitin multilink 

ROC auc curve is shown. It appears that our 

Ubipro-XGBoost model perform well even with 

multi-classification, however more data were 

needed to investigate this discovery in more 

depth. There were no over fitting issues with 

our suggested cross-validation 

Ubipro-XGBoost model, which had an 

accuracy rate of 0.914% percent.  

 

 

Figure 4. ROC (AUC) with DDE and ROC-Auc with 

DPC Model  

 

 

 

ROC and ACU scores of DPC model cross 

validation datasets were found to be 0.94% 

percent, while RCO-AUC scores of with DDE 

model datasets were found to be 0.94% 

percent.  

4.4 ROC (Auc) Score Comparison with other 

3 three Classifiers by Using DDE and DPC 

As can be seen, Ubipro-XGBoost performs 

better than the alternatives. We calculated 

ROC (AUC) score comparison for several 

machine learning approaches as shown in 

figure 5. As can be observed each methods 

prediction rate is considerably higher than 

random prediction. Additionally, the XGBoost 

classifier performs better than the others. 

Ubipro-XGBoost ubiquitin identification as 

shown Figure 5 distinct ubiquitin datasets are 

represented by different ROC–AUC curves 

score. DDE model achieved performance 

such as AdaBoost ROC (AUC) generate 

0.92%, RF ROC (AUC) generate 0.86%, DNN 

ROC (AUC) generate 0.85%, and our 



 

 
 

Sikander et al., J. mt. area res. 08 (2023) 14-26 

23 
J. mt. area res., Vol. 8, 2023 

 

proposed model XGBoost ROC (AUC) 

generate 0.94%, which is better than other 

classifiers.  DPC model achieved 

performance such as AdaBoost ROC (AUC) 

generate 0.93%, RF ROC (AUC) generate 

0.88%, DNN ROC (AUC) generate 0.89%, and 

our proposed model XGBoost ROC (AUC) 

generate 0.94%, which is better than other 

classifiers.  

 

 

 

Figure. 5. ROC curves of the comparison 

performance with DDE and DPC methods. 

 

5. DISCUSSION 

The Ubipro-XGBoost predictor is trained on the 

most comprehensive database of protein 

Ubiquitin modifications. Using a machine 

learning classification model, an XGBoost is 

used to predict ubiquitination. First, 

ubiquitination is predicted using the machine 

learning classification models. The best result 

for the XGBoost classification model 

accuracy, 0.836%. Then a DPC precision score 

0.892% was achieved in the XGBoost model 

and DDE precision score 0.881% was 

achieved in the XGBoost model, and the 

accuracy score was achieved with the 

XGBoost model, which indicates that our test 

overall XGBoost classification is initially and 

then secondly the AdaBoost classification 

model according to our experimental tests. 

DNN Analysis, the third-best classifier with ROC 

(AUC) on the DPC [35] and DDE model [36] 

was achieved in addition to the highest 

analyses as shown in Figure 5. Ubiquitin 

proteins [37]. Ubipro-XGBoost had an AUC 

(area under the Receiver Operating 

Characteristic curve) of 0.914% accuracy, 

0.836% Sensitivity, 0.992% Specificity, and 

0.839% MCC on a 5-fold cross validation 

based on DPC model, and 2nd 0.909% 

accuracy, 0.839% Sensitivity, 0.979% 

Specificity, and 0. 0.829% MCC on a 5-fold 

cross validation based on DDE model.  

 

CONCLUSION 

The XGBoost algorithm was used to produce 

Ubipro-XGBoost, a predictor for the correct 

identification of Ubiquitin proteins. As 

compared to earlier predictors, we have 

attained state-of-the-art performance on the 

benchmark dataset. It is possible to infer three 

main conclusions. To begin, the XGBoost 

algorithm consistently and accurately 

predicts Ubiquitin levels when compared to 

other algorithms. To further enhance model 

performance, the DDE and DPC feature 

selection method was used to optimize 

feature vectors, which extracted the most 

significant features from a huge number of 

candidates features and increased the 

model's accuracy. This is a significant 

advantage over other sequence-based 

Ubiquitin predictors, which are limited in their 

ability to provide relevant explanations for 

samples provided using the SHAP technique. 

DPC features contributed to the final 

prediction direction, which is explained here. 

Also explained is the importance of paying 

attention to some specific identities, as well as 

a range of other traits. 

The end results demonstrated that 

Ubipro-XGBoost obtained a satisfactory and 

promising performance, which is steady and 

credible. There are still unknowns about 
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Ubiquitin, such as how many of them there 

are and what they do. This limits the accuracy 

of the model. In addition, it is necessary to 

investigate some possible connections 

among the features. Ubiquitin and 

non-Ubiquitin will be separated in the future 

by finding and extracting as many features as 

possible from a vast amount of data. 

 

DECLARATIONS 

Funding: No funding was received for this study. 

Conflicts of interest/Competing interests: 

The authors declare no any conflict of 

interest/competing interests.  

Data availability: Not applicable. 

Code availability: Not applicable. 

Authors’ contributions: Rahu Sikander, Ali 

Ghulam and Farman Ali jointly contributed to 

the design of the study. Rahu Sikander 

conceptualized the review and finalized the 

manuscript. Ali Ghulam and Dhani Bux Talpur 

wrote the initial manuscript. Farman Ali 

helped to draft the manuscript. Ashfaq 

Ahmed revised the manuscript and Rahu 

Sikander polished the expression of English. All 

of the authors have read and approved the 

final manuscript. 

REFERENCES 

[1] Goldstein G, Scheid M, Hammerling U, 

Schlesinger DH, Niall HD, Boyse EA. Isolation of 

a polypeptide that has 

lymphocyte-differentiating properties and is 

probably represented universally in living cells. 

Proc Natl Acad Sci U S A.72(1)(1975)11–5 

[2] Wilkinson KD. The discovery of 

ubiquitin-dependent proteolysis. Proc Natl 

Acad Sci U S A. 2005; 102(43):15280–2. 

[3] Pickart CM, Eddins MJ. Ubiquitin: structures, 

functions, mechanisms. Biochim Biophys Acta. 

2004; 1695(1–3):55–72. 

[4] Welchman RL, Gordon C, Mayer RJ. Ubiquitin 

and ubiquitin-like proteins as multifunctional 

signals. Nat Rev Mol Cell Biol.6 (8)(2005)599–

609. 

[5] Peng JM, Schwartz D, Elias JE, Thoreen CC, 

Cheng DM, Marsischky G, et al. A proteomics 

approach to understanding protein 

ubiquitination. Nat Biotechnol.21(8) (2003)921–

6 

[6] Herrmann J, Lerman LO, Lerman A. Ubiquitin 

and ubiquitin-like proteins in protein regulation. 

Circ Res.;100(9)(2007)1276–91. 

[7] Welchman R, Gordon C, Mayer RJ. Ubiquitin 

and ubiquitin-like proteins as multifunctional 

signals. Nat Rev Mol Cell Biol.6 (8)(2005)599–

609. 

[8] Schwartz AL, Ciechanover A. The 

ubiquitin-proteasome pathway and 

pathogenesis of human diseases. Annu Rev 

Med.50 (1999) 57–74. 

[9] Zhong J, Shaik S, Wan L, Tron AE, Wang Z, Sun L, 

Anushka H, Wei W.SCF beta-TRCP targets 

MTSS1 for ubiquitination-mediated destruction 

to regulate cancer cell proliferation and 

migration. Oncotarget. 4(12) ( 2013) 2339–53 

[10] B. Yu, Z. Yu, C. Chen, A. Ma, B. Liu, B. Tian, Q. 

Ma, DNNAce: prediction of prokaryote lysine 

acetylation sites through deep neural networks 

with multi-information fusion, Chemomet. Intell. 

Lab. 200 (2020) 103999. 

[11] G. Xu, J.S. Paige, S. R Jaffrey, Global analysis of 

lysine ubiquitination by ubiquitin remnant 

immunoaffinity profiling, Nat. Biotechnol. 28 

(2010) 868–873.  

[12] W. Kim, E.J. Bennett, E.L. Huttlin, A. Guo, J. Li, A. 

Possemato, M.E. Sowa, R. Rad, J. Rush, M.J. 

Comb, J.W. Harper, S.P. Gygi, Systematic and 

quantitative assessment of the 

ubiquitin-modified proteome, Mol. Cell. 44 

(2011) 325–340. 



 

 
 

Sikander et al., J. mt. area res. 08 (2023) 14-26 

25 
J. mt. area res., Vol. 8, 2023 

 

[13] P. Radivojac, V. Vacic, C. Haynes, R.R. Cocklin, 

A. Mohan, J.W. Heyen, M. G. Goebl, L.M. 

Iakoucheva, Identification, analysis, and 

prediction of protein ubiquitination sites, 

Proteins 78 (2010) 365–380. 

[14] Huang CH, Su MG, Kao HJ, Jhong JH, Weng SL, 

Lee TY. UbiSite:incorporating two-layered 

machine learning method with substrate 

motifsto predict ubiquitin-conjugation site on 

lysines. BMC Syst Biol.10 (Suppl 1)(2016)6. 

[15] Nguyen VN, Huang KY, Huang CH, Lai KR, Lee 

TY. A new scheme tocharacterize and identify 

protein ubiquitination sites. IEEE/ACM Trans 

Comput Biol Bioinform.14 (2) (2017)393–403. 

[16] Qiu WR, Xiao X, Lin WZ, Chou KC. iUbiq-Lys: 

prediction of lysine ubiquitination sites in 

proteins by extracting sequence evolution 

information via a gray system model. J Biomol 

Struct Dyn.33(8) (2015)1731–42. 

[17] Chen X, Qiu JD, Shi SP, Suo SB, Huang SY, Liang 

RP. Incorporating key position and amino acid 

residue features to identify general and 

speciesspecific ubiquitin conjugation sites. 

Bioinformatics.29(13) (2013)1614–22. 

[18] Wang JR, Huang WL, Tsai MJ, Hsu KT, Huang HL, 

Ho SY. ESA-UbiSite: accurate prediction of 

human ubiquitination sites by identifying a set 

of effective negatives. Bioinformatics. 

33(5)(2017)661–8 

[19] Yuan Y, Xun G, Jia K, Zhang A, Acm: a 

multi-view deep learning method for epileptic 

seizure detection using short-time Fourier 

transform; 2017. 

[20] Yuan Y, Xun G, Jia K, Zhang A. A Novel 

Wavelet-based Model for EEG Epileptic Seizure 

Detection using Multi-context Learning. In: Hu 

XH, Shyu CR, Bromberg Y, Gao J, Gong Y, 

Korkin D, Yoo I, Zheng JH, editors. 2017 Ieee 

International Conference on Bioinformatics 

and Biomedicine; (2017).p. 694 –9. 

[21] SAnchez, R. O. B. E. R. T. O., & Sali, A. 

Large-scale protein structure modeling of the 

Saccharomyces cerevisiae 

genome. Proceedings of the National 

Academy of Sciences, 95(23), (1998) 

13597-13602. 

[22] Husnjak, K., & Dikic, I.Ubiquitin-binding proteins: 

decoders of ubiquitin-mediated cellular 

functions. Annual review of biochemistry, 81, 

(2012) 291-322. 

[23] Agrahari, A. K., Bose, P., Jaiswal, M. K., 

Rajkhowa, S., Singh, A. S., Hotha, S. ... & Tiwari, 

V. K. Cu (I)-catalyzed click chemistry in 

glycoscience and their diverse 

applications. Chemical 

Reviews, 121(13),(2021) 7638-7956. 

[24] Wang, M., Cui, X., Li, S., Yang, X., Ma, A., 

Zhang, Y., & Yu, B. DeepMal: Accurate 

prediction of protein malonylation sites by 

deep neural networks. Chemometrics and 

Intelligent Laboratory Systems, 207,(2020) 

104175. 

[25] Liu, Y., Jin, S., Song, L., Han, Y., & Yu, B. 

Prediction of protein ubiquitination sites via 

multi-view features based on eXtreme gradient 

boosting classifier. Journal of Molecular 

Graphics and Modelling, (2021) 107962. 

[26] Alsanousi WA, Ahmed NY, Hamid EM, Elbashir 

MK, Musa MEM, Wang J, et al.A novel deep 

learning-assisted hybrid network for 

plasmodium falciparum parasite mitochondrial 

proteins classification. PLoS ONE 17(10): 

e0275195. 

https://doi.org/10.1371/journal.pone.0275195.(

2022) 

[27] Min, S., Lee, B. & Yoon, S.Brief. Bioinform. 18, 

(2016) 851–869 . 

[28] Kandaswamy,K.K.,Pugalenthi,.,Kalies,K.U.,Hart

mann,E.,Martinetz,T.,2013 

[29] Saravanan, V. & Gautham, N. Harnessing 

computational biology for exact linear B-cell 



 

 
 

Sikander et al., J. mt. area res. 08 (2023) 14-26 

26 
J. mt. area res., Vol. 8, 2023 

 

epitope prediction: A novel amino acid 

composition-based feature descriptor. OMICS 

19, (2015) 648–658 . 

[30] V. Saravanan and N. Gautham, ‘‘Harnessing 

computational biology for exact linear B-Cell 

epitope prediction: A novel amino acid 

composition based feature descriptor,’’ 

OMICS, A J. Integrative Biol., vol. 19, no. 10, pp. 

(2015) 648–658,doi: 10.1089/omi.2015.0095. 

[31] V. Saravanan and N. Gautham, 

‘‘BCIgEPRED—A dual-layer approach for 

predicting linear IgE epitopes,’’ Mol. Biol., vol. 

52, no. 2, (2018) pp. 285–293,doi: 

10.1134/S0026893318020127. 

[32] L. Zou, C. Nan, and F. Hu, ‘‘Accurate 

prediction of bacterial type IV secreted 

effectors using amino acid composition and 

PSSM profiles,’’ Bioinformatics, vol. 29, no. 24, 

(2013) pp. 3135–3142,doi: 

10.1093/bioinformatics/btt554 

[33] Ghulam, A., Sikander, R., Ali, F., Swati, Z. N. K., 

Unar, A., & Talpur, D. B. (2022). Accurate 

prediction of immunoglobulin proteins using 

machine learning model. Informatics in 

Medicine Unlocked, 29, (2022) 100885. 

[34] Sikander, R., Ghulam, A. & Ali, F. XGB-DrugPred: 

computational prediction of druggable 

proteins using eXtreme gradient boosting and 

optimized features set. Sci Rep 12, 5505 (2022). 

[35] Ghualm, Ali, et al. "Identification of 

Pathway-Specific Protein Domain by 

Incorporating Hyperparameter Optimization 

Based on 2D Convolutional Neural Network." 

IEEE Access 8 (2020) 180140-180155. 

[36] Ghulam, A., M. Memon, M. Hyder, Z. A. Maher, 

A. Unar, Z. N. K. Swati, D. B. Talpur, R. Sikander, I. 

Ullah, and A. Farman. "Identification of Novel 

Protein Sequencing SARS CoV-2 Coronavirus 

Using Machine Learning." Bioscience Research 

(2021) 47-58. 

[37] Sikander, R., Arif, M., Ghulam, A., 

Worachartcheewan, A., Thafar, M. A., & Habib, 

S. Identification of the ubiquitin–proteasome 

pathway domain by hyperparameter 

optimization based on a 2D convolutional 

neural network. Frontiers in Genetics, 13(2022). 

 

 

 

 

 

 Received: 19 Sep. 2022. Revised/Accepted: 10 Nov. 2022. 

 This work is licensed under a Creative Commons Attribution 4.0 International License. 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

