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ABSTRACT
In this paper, the giant magnetoresistance broken rotor (GBR) method is used to diagnose
the induction motor (IM) rotor bar fault at an early stage from outward magnetic flux devel-
oped by IM.The outward magnetic field signal has anti-clockwise radiation due to broken rotor
bar current.In this paper, the outward magnetic signal is acquired using a giant magnetoresis-
tance (GMR) sensor. In the GBRmethod, IM rotor fault is analysed with a non-decimated wavelet
transform (NDWT)-based outward magnetic signal. Experimental result shows the difference
in statistical features and energy levels of sub-bands of NDWT for healthy and faulty IM. Least
square-support vector machine(LS-SVM)-based classification results are verified by confusion
matrix based on 150 outwardmagnetic signals fromahealthy anddamaged rotor (broken rotor).
The proposed method identifies IM rotor faults with 95% sensitivity, 90% specificity and 92.5%
classification accuracy. Furthermore, run-time IMconditionmonitoring is performed through the
ThinkSpeak internet of things (IoT) platform for collecting outer magnetic signal data. ThinkS-
peak streaming data of outward magnetic field help detect rotor fault at the initial stage and
understand the growth of rotor fault in the motor. The proposed GBR method overcomes
sensitivity, translation-invariance limitations of existing IM rotor fault diagnosis methods.
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1. Introduction

An induction motor (IM) is an electro-mechanical
device used in various industrial applications due to
its reliability and robustness. IM has the best robust
structure amongst all electrical motors. IM is suscepti-
ble to various types of faults, mainly when driven by AC
drives [1]. The different faults in IM are bearing fault,
stator winding fault, broken rotor bar fault and shaft
coupling [2]. According to the IEEE Industrial Appli-
cation Society (IAS) [3], bearing fault is the major one
in small IM, which is comparatively less in large-sized
IM. Bearing and stator fault in IM can be minimized
by regularmaintenance, winding quality, and enhanced
design techniques. Hence, a broken rotor bar fault in
IM is primarily concerned [4]. The rotor fault is caused
by overloading the machine, mechanical cracks and
manufacturing defects [5]. The broken rotor bar con-
sumes an excess amount of current flow in the stator
and causes an unbalanced magnetic field distribution.
This unbalancedmagnetic field damages statorwinding
and raises vibration in IM. Therefore, condition mon-
itoring and fault detection are essential for diagnosing
the rotor faults at an early stage in IM, avoidingmachine
failure and unnecessary shutdown.

IM fault diagnosis methods are classified as signal-
based techniques, model-based techniques [6],
and knowledge-based techniques. In signal-based

techniques, current, voltage, leakage flux signal param-
eters are used for fault detection [7]. The motor cur-
rent signature analysis (MCSA) is the signal-based
technique of rotor bar fault diagnosis. Many MCSA-
based methods had been implemented for rotor bar
fault diagnosis by spectral analysis techniques, such
as autoregressive-based spectrummethods [8], wavelet
transforms [8], Taylor–Kalman [9], low-frequency and
load torque oscillations [10], high-resolution parame-
ter estimation [11]. The above MCSA-based methods
can effectively monitor the stator current parameter
remotely and identify the faults through signal analy-
sis. However, false fault warning is themajor problem in
MCSA-basedmethods [12]. TheMultiple Signal Classi-
fication (MUSIC) algorithm-based approach is applied
widely for IMbroken rotor bar fault detection [13]. This
method leads over the single-phase signal waveform
analysis of rotor fault detection. However, the ampli-
tude of the single-phase current signal is inadequate for
detecting the broken rotor fault at an early stage.

Broken rotor bar faults can be diagnosed by vibra-
tion signal, temperature monitoring [14,15] and acous-
tic emission monitoring techniques [16]. The vibra-
tion monitoring-based technique requires expensive
sensors such as accelerometer, Hall effect sensor,
and piezoelectric sensor. The above sensors have
major problems in mounting the sensor on IM [17].
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Furthermore, the vibration analysis provides the geom-
etry of IM, and control features such as frequency
response function[18]. Acoustic emission and temper-
ature monitoring methods require specific Data Acqui-
sition (DQA) Devices for hardware implementation.
Acoustic and temperature signals of themotor are influ-
enced by ambient environmental conditions andmicro-
climatic conditions. Hardware complexity andmachine
geometry are related drawbacks of sensor-based meth-
ods and can be eliminated by non-contact methods
such as infrared thermography [19] and stray flux anal-
ysis [17]. Infrared thermography-based approach uses
an infrared camera for detecting the hot spots in IM.
However, this method detects little faults in the specific
parts of the IM, such as the magnetic circuit insula-
tion issues and deficient connections. Flux measure-
ment based non-contact method uses search coils and
probes for fault detection in IM. The search coils and
probes are inadequate to capture the total flux around
the machine. Therefore, the fault estimation and mon-
itoring are performed approximately.

Several model-based approaches [20–22] are
developed to minimalize the hardware complexity in
IM fault detection and estimation. Model-based meth-
ods depend on mathematical modelling for predicting
the faults in IM. They can warn and detect the faults
in IM; accuracy depends on mathematical concepts in
prediction. Hence, knowledge-based methods are pre-
ferred; they use artificial intelligence, soft computing
algorithms for IM fault detection. The artificial neural
network (ANN) is preferred in knowledge-based intel-
ligent methods [23,24] because of its precise pattern
recognition ability. Fuzzy logic [25,26] and support vec-
tor machines (SVM) [27–30] infer the different stages
of rotor faults. Several other soft computing-based
approaches, such as principal components analysis
(PCA) [31], nearest neighbour (NN) [32] and machine
learning [33], are used for rotor fault diagnosis in IM
with good sensitivity and specificity. Knowledge-based
methods have limitations, such as the requirement
of large training data, necessity of retraining, when-
ever machine specifications change. Hence, condition
monitoring and fault detection in IM need an accu-
rate and precise non-contact method with optimized
and proper sensor mounting on the motor. Until now,
Fourier analysis is the standard method used for diag-
nosing the rotor faults in IM.However, the performance
of Fourier’s techniques is constrained by the resolu-
tion in signals. To overcome resolution problem, motor
signals are analysed by discrete wavelet transform
(DWT). However, the classification outcome of DWT-
based approach is also inadequate due to the lack of
translation-invariance property of DWT. The finite ele-
ment method (FEM) provides a high-resolution signal.
However, FEM-based methods require a longer execu-
tion time because of computational complexity. Hence,
there is a need for a motor signal analysis method with

a better resolution and translation-invariance ability.
Moreover, inferences from the literature survey show
that the low sensitivity and inappropriate mounting of
the sensor affect the accuracy of IM fault detection.
Hence, optimum sensor selection and mounting are
prerequisites for accurate fault diagnosis in IM.

To overcome the above problem, we propose the
giant magnetoresistance broken rotor (GBR) method
for the early detection of rotor faults in IM. The
proposed GBR method uses giant magnetoresistance
(GMR – NV Electronics-AA002) sensor for measur-
ing outward magnetic field for rotor fault detection.
The GMR sensor has a good sensitivity and the opti-
mized location of the sensor on the motor is detected
and the maximum amount of outward magnetic sig-
nal is captured. The GBR method identifies the rotor
condition of IM using the features extracted from
the NDWT processed outward magnetic signal spec-
trum. The GBR method performs NDWT analysis
and overcomes the lack of translation-invariance issue
of conventional wavelet transform (WT)-based sig-
nal analysis. Moreover, the proposed GBR method
has an LS-SVM classification algorithm for rotor fault
detection. Futhermore, condition monitoring of IM
is performed through the internet of things (IoT)
using live data acquisition of outward magnetic sig-
nals. The major contributions are summarized as
below:

(1) The BR method analyses the outward anti-
clockwise magnetic flux signal based on the opti-
mium location of sensor and the distance between
the GMR sensor and motor for the maximun
acquisition of anti-clockwise outward magnetic
flux. The location of the GMR sensor in IM
changes according to the size and fabrication of
IM and rotor size. Location of IM is detected by
themaximumoutwardmagnetic flux signal ampli-
tude. The distance between the GMR sensor and
IM varies based on the size of IM. To identify, opti-
mized distance and location to acquire the maxi-
mum outward magnetic field signal spectra from
IM is about 10 and 20 cm distance.The above dis-
tance is between the rotor axis and the GMR sen-
sor.The 10 and 20 cm distance is for the acquisition
of minimum and maximummagnetic signals with
high intensity.

(2) To perform, NDWT, DWT, Dyadic, DWT-NDWT
andDyadic-NDWT signal analysis for energy level
and statistical features extraction from the out-
ward magnetic field signals, diagnose the rotor
fault in IM using a soft computing approach such
as LS-SVM and classify the outcome features of the
NDWT for rotor fault detection.

(3) To develop an IoT-based online condition mon-
itoring system for continuous monitoring of the
condition of the IM during run-time through live
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streaming data of transform processed outward
magnetic field signal.

The remainder of this paper is organized as follows:
Section 2 describes the latest literature review. The pro-
posed GBR approach of various processing steps such
as optimized sensor placement, hybrid wavelet anal-
ysis of the outward magnetic spectra, LS-SVM-based
IM fault detection, and condition monitoring using
IoT is explained in Section 3. The experimental results
obtained using the real motor data are given in Section
4 to verify the efficiency of the proposed GBR approach
for run-time IM fault detection and conditionmonitor-
ing. Finally, this paper is concluded in Section 5. This
paper focuses on the early detection of IM rotor faults
with high sensitivity and specificity. To determine the
limitations and requirements in IM rotor fault detec-
tion, and a literature review of recent IM rotor fault
detection conducted is analysed and summarized in
Table 1.

2. Literature survey on recent research in IM
rotor fault detection

3. Proposed framework for fault detection
andmonitoring

The sequential processing steps of the proposed GBR
method for IM broken rotor bar fault diagnosis are
illustrated in Figure 1. In the GBR method, an out-
ward magnetic field of IM is acquired by the GMR
sensor placed at the optimized location of the stator
outer region. Location varies according to rotor size
and winding of IM. Optimum location of GMR sensor
for acquisition of outward magnetic flux is identified
through co-efficient energy level and statistical fea-
tures of magnetic signal from wavelet transform. GMR
sensor signal is wirelessly transferred to a personal
computer through a wireless-fidelity DAQ card for
wavelet analysis. DWT, non-decimated wavelet trans-
form (NDWT), and dyadic wavelet transforms tech-
niques are used for the analysis of digitized magnetic

Table 1. Literature survey on recent research in IM rotor fault detection.

Reference/year Sensor/model parameter Method/algorithms

Advantages
and

disadvantages

[34]/2020 Current sensor (current clamp) Short-time Fourier transform
(STFT), Otsu’s algorithm

(1) Fixed-size window limitation in
STFT

(2) False fault indication in current
signal analysis

[35]/2020 Time-stepping analytical model A winding function-based
mathematical model

(1) Focused on the mathematical
model (simulation results)

[36]/2020 Wireless smart sensors (vibration and current sensors) Discrete Fourier transform (1) Resolution limitation in the
Fourier analysis

(2) Need expensive DAQ device
[37]/2020 Full-wave bridge rectifier (rectified current signal is

used for analysis)
Discrete Fourier transform Resolution limitation in the Fourier

analysis
[4]/2019 UWB radar Fast Fourier transform, discrete

Fourier transform
Translation–invariance limitation

in DWT
[38]/2019 Voltage, current synthetic waveforms Demodulation technique Focused only on inverter fed IM
[39]/2019 Coil sensor (magnetic signal analysis) Spectral subtraction analysis Less sensitivity of coil sensor
[40]/2019 Magnetic flux density-based mathematical model Time-stepping finite element

analysis (a) Longer execution time to execute
finite element analysis

(b) Round off error due to finite ele-
ment analysis

[41]/2019 Flux sensor (stray flux analysis) Finite element analysis, fast
Fourier transform

(1) Longer execution time
(2) Resolution limitation

[42]/2019 Helmholtz flux coil (stray flux analysis) Spectrum analysis (FFT) (1) Less sensitivity of flux coil
(2) Resolution limitation

[43]/2019 Dual search coil (rotational magnetic field analysis) FEM (1) Longer execution time due to
the FEM analysis

(2) Round off error due to the finite
element analysis

Proposed work GMR sensor identifies the rotor fault through outward
magneticflux due to broken rotor

The GBR method is proposed
which consists of hybrid
NDWT analysis and LS-SVM
method for rotor faults
detection at earlier stage
using outward magnetic
radiation signal

(a) Good sensitivity
(b) Translation–invariance limitation

resolved through hybrid wavelet
analysis

(c) Real environment IM condition
monitoring implemented through
IoT
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Figure 1. Methodology of the proposed GBR framework for rotor fault detection.

signatures of IM for rotor fault detection. The hybrid
wavelet analysis is executed to obtain the sensitiv-
ity and specificity for rotor fault detection. In the
GBR method, rotor faults are diagnosed through the
hybrid wavelet analysis and least square-support vector
machine (LS-SVM). The condition of IM in run-time
is remotely monitored continuously through ThingS-
peak IoT. Rotor bar fault condition is examined by the
remote observer by the outward anti-clockwise radia-
tion behaviour of IM based on load conditions signal
data from ThingSpeak – IOT.

3.1. Anti-clockwise outwardmagnetic field
measurement from broken rotor

The proposed GBR method identifies broken rotor bar
faults by the analysis of the outwardmagnetic field. The
balanced three-phase IM always generates a clockwise

rotating magnetic field under healthy operating con-
ditions. There is no anti-clockwise field for a healthy
electric motor [44]. An anti-clockwise magnetic field
generated by the motor during rotor faults is due to the
imbalance of rotor bar currents. Hence, analysis of the
anti-clockwise outward magnetic field can identify the
rotor bar faults detection. The anti-clockwise outward
magnetic is due to motor axial and transverse com-
ponents. Hence, the outward anti-clockwise magnetic
field is measured based on axial-radial decomposition
characteristics [45]. According to the axial-radial posi-
tion of themotor, the sensor is placed at the outer stator
position along the rotor axis and monitors the outward
magnetic field with minimum effect of the transverse
field.

In this paper, anti-clockwise outward magnetic field
analyses are performed with minimal components for
hardware such as GMR sensor and Wifi-DAQ. The
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Figure 2. Optimized location of the GMR sensor for outward magnetic field acquisition and measurement.

emitted outward magnetism of IM is absorbed by the
GMR sensor. The GMR sensor has high signal sensitiv-
ity and high-temperature stability. It is small in dimen-
sion compared with existing sensors such as search
coil, piezo electric, acceleration, and Hall effect sen-
sor. Therefore, the GMR sensor should be placed in
an optimized location for attaining good sensitivity.
The optimized placement of the GMR sensor in IM is
shown in Figure 2. The sensor is focussed on the sta-
tor outer region in D/2 cm distance and acquires an
outward magnetic field with good sensitivity and min-
imum transverse field radiation. The magnetic spec-
trum is acquired by the GMR sensor and wirelessly
transmitted to the personal computer through a Wi-Fi
DAQ card. The GMR sensor signal received through
the Wi-Fi DAQ card is recorded by the data acqui-
sition software (SIGVIEW) and saved as a Microsoft
Sound file (∗.wav). This dot wav format of the out-
ward magnetic signal of IM is analysed by non-hybrid
and hybrid wavelet transforms, and the rotor con-
dition is monitored through anti-clockwise magnetic
flux outward spectrum signals from wavelet transform
coefficients.

3.2. Outward anti-clockwisemagnetic field
spectra analysis (non-hybrid transform)

Fast Fourier transform (FFT) is mainly used for
frequency-based signal analysis for IM rotor fault
detection [46]. FFT-based power spectral analysis of
the IM error signal computes the peak value of the
asymmetric rotor harmonics [4]. However, rotor bar
failure harmonics are undifferentiated in FFT analy-
sis, according to the research findings and experimental
results [47]. The Fourier analysis method leads to inac-
curate rotor fault diagnosis due to drifts and abrupt
changes. To overcome the above limitations of Fourier-
based motor signal analysis, short-time Fourier trans-
form (STFT) is used as an alternative method for motor

signal analysis. STFT performs time and frequency
analysis simultaneously in a signal. It has a fixed-size
window during the analysis of a signal,whereas signal
analysis for broken rotor needs reliable and varying
window for accurate rotor fault diagnosis.Wavelet anal-
ysis is preferred for rotor fault detection in IM [48].
Wavelet transform has [49] variable window size and
time–frequency domain analysis. Wavelet transform
analysis provides time and frequency information of
a signal by expressing the signal as a series of oscilla-
tory functions. In wavelet transform, an input signal
is decomposed and information is localized in time-
scale plane, which is appropriate for the non-stationary
signal analysis for IM rotor fault detection. In this
paper, a unique hybrid wavelet analysis for outward
anti-clockwise magnetic spectra is implemented by the
hybridization of DWT, NDWT, and dyadic wavelet
transform.

3.2.1. DWT decomposition of signals from constant
speed of themotor with broken rotor condition
The outward anti-clockwise magnetic signal of the
GMR sensor is analysed by DWT and detect broken
rotor fault from signals at different harmonics. In this
paper, DWT is selected because of its localized sig-
nal analysis ability. Due to this ability, DWT analysis
differentiates the rotor fault signal from the sensor,
even at low, medium and high speed conditions of IM.
Moreover, DWT provides a better time resolution in
lower and higher frequencies. Hence, DWT is suit-
able for the detection of rotor faults in outward anti-
clockwise magnetic spectra. DWT analysis of GMR
signal at multiple bands frequencies and resolutions
are obtained after decomposing into a set of wavelet
approximates and detailed information. DWT decom-
position of outward anti-clockwise magnetic field spec-
trum is shown in Figure 3. The decomposition of
outward anti-clockwise magnetic signals identifies fre-
quency sub-bands through low-pass filter banks such
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Figure 3. DWT decomposition of the outward magnetic field signal coefficients acquired through the GMR sensor.

as g1(n), g2(n), g3(n) and high-pass filter banks h1(n),
h2(n), h3(n). High-frequency detailed component Dj
and low-frequency approximation Aj are the down-
sampled outcomes of the three-level DWT decompo-
sition process, represented by Equations (1) and (2).
The decomposed magnetic spectrum is analysed in the
time–frequency domain and detect rotor fault from
outward anti-clockwise magnetic signal.

Dk
j =

∑
n
hn−2k Ak

j−1 (1)

Ak
j =

∑
n
gn−2k Ak

j−1 (2)

3.2.2. NDWT decomposition to overcome
translation invariance
DWT has localized signal analysis ability, superior time
resolution in lower and higher frequencies. However,
due to lack of translation-invariance, DWT produces a
similar output during the variable speed of the motor
with broken rotor condition, irrespective of the rapid
shifting in GMR response signal. Due to this limita-
tion, DWT alone is inadequate to monitor the IM con-
ditions continuously for an extended period. In this

paper, NDWT is used to overcome the translation-
invariance limitation of DWT. The lack of translation-
invariance is restored in NDWT by eliminating down
samplers. The NDWT is implemented by dilating orig-
inal wavelet kernels (ψ ,φ) through interpolating 2j−1

zeros between original wavelet kernel terms. The kth
decomposition of kernels (ψ ,φ) is specified in Equa-
tions (3) and (4).

ψj[2j−1k] = ψ[k] (3)

φj[2j−1k] = φ[k] (4)

NDWT decomposition process is shown in Figure 4.
The decomposition of GMR outward anti-clockwise
magnetic signal into frequency sub-bands is performed
by low-pass filter banks such as g1(n), g2(n), g3(n) and
high-pass filter banks such as h1(n), h2(n), h3(n). In
NDWT, decomposed outward magnetic field signal is
never downsampled, as in DWT decomposition.

3.2.3. Dyadic wavelet decomposition for
medium-speed running broken rotormotor
Dyadic wavelet transform is scalable with half of the
input bandwidth. Due to scaling ability, dyadicWavelet

Figure 4. NDWT decomposition of the outward magnetic field signal without the downsampler.
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is suitable for analysing multiple harmonics of the out-
ward anti-clockwise magnetic signal spectrum with
minimum computational complexity. Dyadic transfor-
mation is computed by dilating the selected mother
wavelet with the power of two. In this paper, the quasi-
spline mother wavelet function is used. The dyadic
dilation at level j is as in the following equation:

ψ2j(x) =
[
1
2j

]
ψ

[ x
2j

]
(5)

where ψ is the quasi-spline mother wavelet with zero
mean value. The wavelet transform of a signal f (x) at
the dyadic scale 2j and the location x are specified by
the following equation:

W2j f (x) = f ∗ ψ2j(x) = ∫ f (t) · ψ2j(x − t)dt (6)

The dyadic wavelet transform (W2j f (x)) is formed
by the convolution of the quasi-spline mother wavelet
ψ2j(x) and its dyadic dilated function. The derived
resultant dyadic wavelet transform operator is as the
following equation:

D(f ) = (W2j f (x))j∈Z (7)

D(f ) denotes the dyadic wavelet transform operator.
For each dyadic scale 2j, the dyadic transform decom-
poses the GMR-acquired outward anti-clockwise mag-
netic signal into detailed coefficient (Wd

2j f ) and approx-
imation coefficient (sd2j f ). The low- and high-frequency
components of signal are expanded by the detailed, and
approximation coefficients. The respective peaks are
computed from the outcome of the dyadic decompo-
sition signal.

3.2.4. Hybrid wavelet for outward anti-clockwise
magnetic flux
The hybridization of wavelets is performed for local-
ized signal analysis and translation invariance. Addi-
tional scaling in hybrid transform analysis leads to

early detection of rotor fault from outward magnetic
spectrum signal. The localized signal analysis ability
is attained through the Daubechies wavelet. The fil-
ter coefficient (h) of Daubechies wavelet is given in
Equation (8). GMR-acquired outward anti-clockwise
magnetic signal decomposition using the filter coeffi-
cient (h) retains the time and frequency domain prop-
erties of the magnetic signal and obtains the localized
signal for analysis. Contrasting with DWT, NDWT is
implemented with a higher rank of filters at each level
for GMR-acquired outward anti-clockwise magnetic
signal through decomposition. Using a higher rank-
ing of filters at each decomposition level analyses the
shift in GMR outward anti-clockwise magnetic signal.
The filtering ranking is dependent and associated with
the GMR signal transition and satisfies the translation-
invariance property as in the following equation:

h =
[(

1 + √
3
)

4
√
2

(
3 + √

3
)

4
√
2

(
3 − √

3
)

4
√
2

(
1 − √

3
)

4
√
2

]
(8)

In the hybridization of the wavelet transform, dyadic
wavelet is considered for its additional scaling prop-
erty. The additional scaling property of dyadic wavelet
is represented by Equations (9) and (10).

φ1(t) = 21/2
M−1∑
k=0

gk φ1(2t − k) (9)

whereφ1(t) is the scaling function in terms ofM scaling
functions of φ1(2t − k) with a double resolution. Here
g is the coefficient of amplitude for k = 0, 1, . . . ,M −
1. The scaling function on the right-hand side of the
equation (9) is agreeable to the dilated second expan-
sion. Hence Equation (9) becomes as Equation(10).

φ(2t − k) = 21/2
M−1∑
k=0

gj φ1(2[2t − k] − j) (10)

when Equation (10) is substituted to the right-hand
side of Equation (9), the outcome is an expression of

Figure 5. Hybrid wavelet analysis of the outward magnetic spectrum signal acquired from the GMR sensor.
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ϕ(t), which containsM2 scaling functions. These addi-
tional scaling functions build the dyadic Wavelet as
an optimized wavelet and analyse the different har-
monics in outward magnetic spectra with minimum
computational complexity. The sequential implemen-
tation steps of the hybrid wavelet analysis are illus-
trated in Figure 5. The GMR-acquired outward anti-
clockwise magnetic signal is sequentially decomposed
by the dyadic Wavelet for extra scaling, NDWT for
translation-invariance, and DWT for localized signal
analysis. The approximation and detailed coefficients
are derived as the outcome of the hybrid wavelet
decomposition. The multiresolution outcomes of dif-
ferent frequency bands of decomposed GMR-acquired
outward anti-clockwise magnetic signal are used as
input for feature extraction for broken rotor fault
diagnosis and detection. The energy levels and sta-
tistical features such as mean (μ), standard deviation
(σ ), skewness (S), kurtosis (K) are extracted from the
decomposed frequency bands. The energy level com-
putation of each sub-band is performed through the
following equation:

Ej =
k=n∑
k=1

∣∣Djk(n)
∣∣2 (11)

where j is the hybrid wavelet decomposition level. The
energy level of decomposed GMR-acquired outward
anti-clockwise magnetic signal is related to the sever-
ity of the fault and identifies the broken rotor fault at
an early stage. The mean value of the wavelet sub-band
indicates the variations due to the rotor fault in IM.
The other statistical features such as standard deviation,
kurtosis and skewness are the amplitude shape descrip-
tors and differentiate the variation between the healthy
rotor and broken rotor of IM.

3.2.5. Fault detection andmonitoring through
LS-SVM classification
The least square-supported vector machine algorithm
classifies the IM conditions such as healthy or broken
rotor fault fromwavelet sub-band energy levels and sta-
tistical features. The classical SVM is used in several
real-time classification problems. However, additional
computational steps are required for the quadratic solu-
tion, which is the major constraint of classical SVM.
In LS-SVM, the quadratic solution limitation of the
SVM is modified by linear equations, which require
minimal computational steps [50]. LS-SVM achieves
good classification accuracy even for a small train-
ing database. In this paper, LS-SVM is used for IM
rotor fault diagnosis. LS-SVM is trained by the training
dataset, which contains the energy levels and statisti-
cal features of the IM outward magnetic signal from
healthy and faulty rotors. These features are extracted
through hybrid wavelet analysis such as DWT-NDWT
and Dyadic-NDWT of magnetic signals acquired from

the healthy and faulty broken rotor of IMs. LS-SVM
finds optimal hyper-plane (OHP) with the highest mar-
gin and separates the wavelet feature data points into
two categories as healthy or faulty. The representation
of OHP in feature space is as in the following equation:

y(f ) = ωT�(f )+ b (12)

y(f ) is the classification outcome for healthy or faulty
IM, which is obtained from the input wavelet feature
set f , ω is the normal vector of the OHP. The maxi-
mum margin of the OHP is achieved by minimizing
the squared average value of the normal vector (ω). The
broken rotor fault decision functions of the LS-SVM
depend on kernel functions. Hence, selecting an opti-
mumkernel function for the LS-SVMclassifier is essen-
tial for accurate IM fault diagnosis. Normally, local and
global kernels are used in the LS-SVM, for decision
making [51]. In this paper, the radial basis function
(RBF) kernel is used as the local kernel. The RBF ker-
nel is selected because of translation-invariance prop-
erty and differentiates the broken bar outward anti-
clockwise signal from a healthy motor signal. Due to
translation-invariance property, RBF kernel can build
an accurate decision function for translation-invariant
of wavelet features. The RBF kernel is given as in the
following equation:

KRBF = exp(−x − xi2/σ 2) (13)

σ is the RBF kernel’s width polynomial kernel, a global
kernel is selected for broken rotor classification The
polynomial kernel is as in the following equation:

K = (1 + xTi x)
d (14)

“d” is denoted as the kernel parameter. Utilizing the
RBF, polynomial kernel functions in LS-SVM lead to
binary classification of healthy or broken rotor fault
from IM magnetic signal. Furthermore, the condi-
tion of the IM is remotely monitored by the observer
through cloud ThingSpeak IoT. For continuous moni-
toring of IM, a channel-based online application is cre-
ated using ThingSpeak. The cloud ThingSpeak is linked
to the MATLAB software for constant monitoring of
outward magnetic spectrum’s wavelet parameters dur-
ing the run-time of IM. For any abnormal IM operation
condition, an instantwarningmessagewill be generated
through the ThingSpeak IOT application.

4. Results and discussions

4.1. Experimental set-up

The parameters of the IM used in our experiment are
presented in Table 2. The proposed GBR method has
been implemented and evaluated for the healthy and
faulty operating conditions of IM. In this experiment,
initially healthy motor outward magnetic signals are
collected following from the broken rotor of IM. The
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Figure 6. The hardware set-up of the proposed framework for IM rotor fault diagnosis.

rotor fault was artificially created by drilling holes
on the rotor bar of IM, which is known as the
super drilling technique. The hardware set-up of the
proposed framework for IM rotor fault diagnosis is
shown in Figure 6. Futhermore, the GMR sensor
acquires outward magnetic signal from IM at different
locations along the rotor axis, such as 10, 20 cmbetween
the rotor axis and the GMR sensor. The magnetic
spectrum acquired by the GMR sensor is transferred
through Wi-Fi DAQ to the personal computer (PC)
with a configuration of 2.40GHz frequency Intel Core
i3 processor and 4GB RAM. In PC, the magnetic spec-
trum is acquired by MATLAB acquisition toolbox at
the sampling rate of 22,050Hz and acquired signals are
saved as Microsoft dot wav files. These GMR-acquired
signals are inferred with hybrid wavelet analysis such
as DWT-NDWT and Dyadic-NDWT and extract the
rotor fault features through coefficient energy level and
LS-SVMclassifier for IM rotor fault diagnosis. The opti-
mized hybrid wavelet analysis and LS-SVM-based fault
detection are implemented using the MATLAB 2018a
software. The condition monitoring of rotor magnetic
signal parameters is implemented using the ThingS-
peak cloud.

4.2. Optimization of GMR sensor location for
acquiring outwardmagnetic signal from IM

The outward anti-clockwise magnetic spectra are
acquired by the GMR sensor at 10 and 20 cm distance
from the rotor axis of an IM and shown in Figures 7 and
8. Figure 7 shows the broken rotor IM signal and has

Table 2. Parameters of the IM used in the experiment for rotor
fault detection.

Power 1 HP (0.75 kW)

Current 2.5 A
Synchronous speed 1500 rpm
Speed 1440 rpm
Power supply details 415 V, 3-phase, 50 Hz
WIFI-DAQ Lab Jack-Model No T7-Pro
GMR sensor NV Electronics-AA002 Sensor

a normalized RMS value of about 0.3350 mv, which is
less than the healthy IM normalized RMS value 0.3530
mv, when the outwardmagnetic signal is acquired from
a 10 cm distance. The normalized RMS of the out-
ward magnetic spectrum is less for a broken rotor of
IM due to the imbalanced magnetic field produced by
the broken rotor bar current. The broken rotor bar in
IM, current causes unbalanced oscillations in outward
anti-clockwise magnetic signal, which is highlighted in
Figures 7(b) and 8(b). Figures 7(a) and 8(a) show the
harmonics of the outward anti–clockwise magnetic sig-
nal of the healthy IM and magnetic field distributed
evenly without any unbalanced oscillations. The reason
for the even distribution of the magnetic spectrum is
the absence of an anti-clockwise field. Figure 8 shows
the acquired outward magnetic flux signal at 20 cm
distance, and the broken rotor IM normalized RMS
value of the amplitude is 0.225897 mv, which is signifi-
cantly less than the healthy IM normalized RMS value
of 0.4600 mv. The difference in normalized RMS value
of healthy and broken rotor IM magnetic spectrum is
significantly observable at 20 cm distance, compared
with 10 cm distance. Moreover, Figures 7 and 8 show
normalized RMS of the magnetic signal acquired at
10 cm distance, which is less than the normalized RMS
of the magnetic signal acquired at 20 cm distance due
to axial-radial decomposition characteristic. When the
GMR sensor is placed closer to IM during the acqui-
sition of emitted magnetic spectrum, the normalized
RMSof amplitude is reduced due to the transversemag-
netic field, caused by the IM. Hence, 10 cm distance
is avoided and 20 cm distance along the rotor axis is
considered the optimum location for outwardmagnetic
spectrum acquisition.

4.3. Hybrid wavelet analysis and fault signature
extraction for low- to high-speedmotor running
with broken rotor

Hybrid wavelet analysis for the outward anti-clockwise
magnetic signal is acquired at 20 cmdistance andDWT,
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NDWT, and dyadic wavelet NDWT transform are
applied. The level of decomposition for hybrid wavelet
analysis is computed using the following equation:

n � int

⎛
⎝ log

(
fe
fs

)
log(2)

⎞
⎠ + 1 (15)

“n” is the number of hybrid wavelet decomposition
levels, fe(22.050 kHz) is the sampling frequency of the
acquired IM magnetic signal [52], fs(50Hz) is the fun-
damental frequency of the IMmagnetic spectrum. The
frequency component of the outward anti-clockwise
magnetic field signal ranges between 0 and 22,050Hz.
In this experiment, 22,050Hz outward magnetic spec-
tra of healthy and broken rotor IM signals are decom-
posed into ten frequency sub-bands through the hybrid
wavelet analysis. Among the hybrid wavelet analy-
ses, such as Dyadic-NDWT and DWT-NDWT, The
Dyadic-NDWT analysis shows better results and is
verified through RMS values. Table 3 provides the
association between the ten levels of Dyadic-NDWT
wavelet coefficients and their range of frequencies
of Dyadic-NDWT. In Table 3, 24.96Hz frequency is

associated with L10 decomposition. The IM with rotor
bar fault vibrates at 40–48Hz characteristic frequency
range at the level of 9th decomposition (L9) and higher-
order harmonics range 240–260Hz frequencies at the
level of 7th decomposition (L7).

In the Dyadic-NDWT hybrid wavelet signal analy-
sis, wavelet sub-bands are computed after the repeated
acquisition of outward magnetic spectra of IM with
healthy and broken rotor conditions with low, high
and medium-speed running of the motor. The rotor
vibration frequency, rotor fault frequency, and higher-
order harmonics exist in L7 to L10 sub-bands of anti-
clockwise outward signal magnetic signal. The wavelet
sub-bands L7 to L10 of the healthy and broken rotors
of IM are shown in Figures 9–12. In Figures 9–12, time
(ms) is denoted in the x-axis, and amplitude (mV) is
denoted in the y-axis. The healthy IM radiates a strong
outward anti-clockwise magnetic signal with higher
amplitude values such as (5mVmaximum peak) due to
the non-existence of the anti-clockwise magnetic field,
as shown in Figures 9(a) and 12(a). The broken rotor
IM shows less outward magnetic field radiation ampli-
tude due to anti-clockwise magnetic field, and shown

Figure 7. Outward magnetic spectrum of the IM acquired by the GMR sensor at 10 cm distance from the rotor axis: (a) IM with a
healthy rotor, (b) IM with a faulty rotor.
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Figure 8. Outward magnetic spectrum of the IM acquired by the GMR sensor at 20 cm distance from the rotor axis: with (a) healthy
rotor, (b) IM with a faulty.

in Figures 9(b) and 12(b). Figures 9(b) and 12(b) have
lesser amplitude values such as (2mVmaximum peak)
compared with the amplitude of healthy IM and shown
in Figures 9(a) and 12(a). Themaximummagnetic field
radiation is in sub-band 10 for healthy IM, shown in
Figure 12(a) and an amplitude value is about 5mV. The
amplitude variation is considerably observable in sub-
bands 7 and 10 compared with sub-bands of 8 and 9,
and shown in Figures 10 and 11. A high spectral reso-
lution in the full load range of the machine is obtained
in sub-bands.

The energy level distribution across the wavelet sub-
bands of outward anti-clockwise magnetic signal is
shown in Figure 13. As shown in Figure 13(a), healthy
IM energy level significantly increases at sub-bands

Table 3. Frequency sub-bands of the hybrid wavelet (Dyadic-
NDWT) analysis.

Decomposition
level

Approximation
frequency bands

(Hz)
Details frequency

bands (Hz)

L1 A1 0–11,025 D1 11,025–22,050
L2 A2 0–5512.5 D2 5512.5–11,025
L3 A3 0–2756.25 D3 2756.25–5512.5
L4 A4 0–1378.125 D4 1378.125–2756.25
L5 A5 0–689.0625 D5 689.0625–1378.125
L6 A6 0–344.5312 D6 344.5312–689.0625
L7 A7 0–172.2656 D7 172.2656–344.5312
L8 A8 0–86.1328 D8 86.1328–172.2656
L9 A9 0–43.0664 D9 43.0664–86.1328
L10 A10 0–21.5332 D10 21.5332–43.0664

such as D7 (62% of total energy) and D8 (27% of total
energy). Figure 13(b) shows the energy level of the bro-
ken rotor of IM magnetic signal, the energy level of
the sub-band D10 (84% of total energy) is increased
highly, and the energy levels of the sub-bands such as
D7 (8% of total energy) and D8 (7% of total energy) are
decreased compared with the healthy state of IM mag-
netic signal. Hence, the broken rotor fault condition of
IM is identified at an early stage from the energy level
distribution of the wavelet sub-bands from D7 to D10.
Along with these energy levels, statistical features are
extracted for wavelet sub-bands coefficients and classify
the healthy and broken rotor states of IM. The hybrid
wavelet statistical features of healthy and broken rotor
IMs are provided in Table 4. The statistical parameter
of the healthy IM varies with the statistical parameter
of the broken rotor IM. Hence, the extracted statisti-
cal features and energy levels are used in the LS-SVM
classifier for IM rotor fault detection. The Steady-state
operating conditions are analysed. The statistical study
based on the calculation of the correlation coefficient of
each signal is performed.

4.4. Broken rotor fault detection and evaluation

Statistical features and energy levels of the Dyadic-
NDWT hybrid wavelet frequency sub-bands are used
for fault signature identification of the broken rotor
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of IM. These features are extracted from the outward
anti-clockwisemagnetic signals fromhealthy and faulty
rotors of IMs running in different speed conditions.
Fifty magnetic signals are acquired through DAQ and
Matlab software at low, medium and high speed con-
ditions. The extracted features are fed to the LS-SVM
classifier along with the label (healthy or broken rotor)

to train the classifier for broken rotor detection in IM.
After training, the performance of the trained LS-SVM
classifier is assessed in MATLAB software through the
testing process using the testing data. For training, 60%
of data are used and 40% for testing data. The fault
detection accuracy of the proposed GBR method is
evaluated through the confusionmatrix. The confusion

Figure 9. Wavelet sub-band 7 of the outward magnetic spectrum: (a) healthy IM, (b) IM with rotor fault.

Figure 10. Wavelet sub-band 8 of the outward magnetic spectrum: (a) healthy IM, (b) IM with rotor fault.
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Figure 11. Wavelet sub-band 9 of the outward magnetic spectrum: (a) healthy IM, (b) IM with rotor fault.

Figure 12. Wavelet sub-band 10 of the outward magnetic spectrum: (a) healthy IM, (b) IM with broken rotor fault.

matrix has recognized the classification outcome of
the LS-SVM classifier in each state of fault detection,
and the following four metrics are computed from the
confusion matrix such as (i) True Positive (TP), (ii)
False Positive (FP), (iii) True Negative (TN) and, (iv)
False Negative (FN). For the broken rotor fault in IM,
the outcome is TP, where the classifier outcome is faulty,
and FN is the classifier outcome for the healthy rotor

of IM. For the healthy rotor in IM, the outcome is TN,
where the classifier outcome is healthy, and FP for clas-
sifier outcome is faulty. Table 5 shows broken rotormet-
rics. The confusion matrix of the LS-SVM classifier for
IM fault diagnosis using the test data is given in Table
5. The sensitivity, specificity, and classification accuracy
of LS-SVM classifier in IM broken rotor fault detec-
tion in IM are computed from Table 5 using equations
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Figure 13. Distribution of magnetic signal energy across the wavelet sub-bands: (a) healthy IM, (b) faulty IM.

(16) to (18).

Sensitivity(%) = TP
TP + FN

× 100% (16)

Specificity(%) = TN
TN + FP

× 100% (17)

Accuracy(%) = TP + TN
TP + TN + FP + FN

× 100% (18)

The proposed GBRmethod attained 95% sensitivity,
90% specificity, and 92.5% classification accuracy for
rotor fault detection in IM. The classification outcome
shows the diagnostic efficiency of the proposed GBR
method in IM rotor fault detection and is significantly
better than other existing methods. To monitor, the
rotor’s faulty condition continuously during run-time
and analyse outward anti-clockwise signal behaviour,
signal data are uploaded in ThingSpeak cloud, an IoT
analytics tool. Figure 14 shows the live run-time con-
dition monitoring of IM using ThingSpeak IoT. The

Table 4. Statistical features of the hybrid wavelet analysis.

Decomposition level Statistical features Healthy IM Faulty IM

L7 Mean (μ) 0.0088 0.0049
Standard deviation (σ ) 0.0081 0.0073
Skewness (S) 0.9594 1.6160
Kurtosis (K) 2.3954 4.3283

L8 Mean (μ) 0.0073 0.0044
Standard deviation (σ ) 0.0080 0.0071
Skewness (S) 1.1255 1.7635
Kurtosis (K) 2.8263 4.8716

L9 Mean (μ) 0.0063 0.0040
Standard deviation (σ ) 0.0078 0.0068
Skewness (S) 1.2953 1.9027
Kurtosis (K) 3.2790 5.4268

L10 Mean (μ) 0.0053 0.0036
Standard deviation (σ ) 0.0076 0.0066
Skewness (S) 1.4598 2.0345
Kurtosis (K) 3.8015 5.9905

Table 5. Confusionmatrix of LS-SVM classifier for IM fault diag-
nosis.

LS-SVM predicted classification

Actual classification Faulty rotor Healthy rotor

Faulty rotor 19 (True Positive) 01 (True Negative)
Healthy rotor 02 (False Positive) 18 (True Negative)

wavelet energy levels of sub-bands and statistical fea-
tures are updated in the ThingSpeak cloud storage. The
ThingSpeak platform is linked with the MATLAB soft-
ware for automated updates of wavelet features, and
live run-time condition monitoring of the IM is per-
formed. ThingSpeak generates warning messages for
rotor faulty conditions in IM.

5. Conclusion

The broken rotor fault in IM is focused and analysed
for earlier fault detection.The early stage IM rotor fault
detection is challenging due to the low sensitivity of
sensors and translation-invariance limitation in rotor
signal analysis techniques. The proposed GBR method
detects the rotor fault early from the outward anti-
clockwise magnetic signal after analysis with different
hybrid wavelet transform. The outward anti-clockwise
magnetic signal of IM is directly associated with the
broken rotor faults in IM. The magnetic signals are
acquired in the outward region of the IMalong the rotor
axis with the GMR sensor and validated for the effi-
ciency of acquired signals from the healthy and faulty
broken rotor motor. GMR sensor signals are acquired
from various positions and analysed for optimum loca-
tion of GMR sensor for rotor fault identification in
IM. The variances in the magnetic spectrum of the
healthy and broken rotor in IM are found from GMR
sensor positions such as 10 and 20 cm and observed
through the normalized RMS value and the unbalanced
harmonics appear in the magnetic spectra. The 20 cm
distance along the rotor axis is identified as the opti-
mum position for GMR sensor placement. Further-
more, Dyadic-NDWT hybrid wavelet analysis results
show a significant change in the energy levels and
statistical features of the outward anti-clockwise mag-
netic signal sub-bands for healthy and broken rotors of
IM. In the experimental evaluation, the performance
of the proposed GBR method is evaluated using 40
healthy and faulty magnetic signals of IM. The con-
fusion matrix is used as the performance indicator for
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Figure 14. Run-time IM condition monitoring using ThingSpeak IoT analytics.

LS-SVM-based classification of the IM condition such
as healthy or broken rotor. From evaluation results, the
proposed GBR method identifies IM rotor faults with
95% of sensitivity, 90% of specificity, and 92.5% clas-
sification accuracy. The experimental results confirm
that the proposed non-contactmethod detects the rotor
faults in IM at an early stage. Moreover, ThingSpeak
IoT platform-based IM condition monitoring is imple-
mented during run-time. Magnetic anti-clockwise out-
ward signals can be analysed with a deep learning
algorithm.
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