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Abstract

We show how one can give a clear formal account of Boole’s notorious “indefi-
nite” (or “auxiliary”) symbols by treating them as variables that range over functions
from classes to classes rather than just over classes while, at the same time, following
Hailperin’s proposal of binding them existentially.

1 Introduction

Boole’s system of logic, set out in his 1847 booklet The Mathematical Analysis of Logic, the
brief 1848 outline “The calculus of logic” and the extended 1854 volume An Investigation of
the Laws of Thought, presents the reader with many tangles. Two of the most perplexing are
the use of indefinite (also termed auxiliary) symbols to express certain kinds of proposition
as equations, and the application of division as an inference step when solving problems.1

Both were already noticed by De Morgan in a draft letter to Boole of 27 November
1847, written immediately after the simultaneous publication, and exchange of copies, of
The Mathematical Analysis of Logic and De Morgan’s Formal Logic. There, De Morgan
says (see Smith 1982 p. 26):

With regard to the syllogistic process, there are unexplained difficulties about
v and division by y. Here you have recourse to verbal monitions about the
meaning of v. The process of division is not per se allowable.

This remark, along with illustration of problems arising from division, was omitted from the
final letter dispatched the next day, presumably because, following friendly discussions on
various topics in mathematics, De Morgan did not want to initiate their logical exchanges
with a negative remark. But in the following decades, others did publish their reservations
and both tangles were gradually cut away as Boole’s insights were transformed into what
we now know as the theory of Boolean algebras.

Nevertheless, it remains of historical interest, and perhaps more, to try to unravel
them. The deepest discussion of “division by y” is perhaps that of Hailperin 1986 (see also
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Burris & Sankappanavar 2014, 2014a). Our concern in this note is with the “difficulties
about v” alone. Hailperin also makes a brief proposal about them, which goes some of the
way towards unpicking the knot but does not suffice to make sense of Boole’s notorious
representation of “Some Xs are Ys” as vx = vy. We combine Hailperin’s proposal with an
interpretation of indefinite symbols as ranging over functions from classes to classes, rather
than just over classes. This step, we suggest, is in accord with Boole’s rather obscure
“verbal monitions” as well as almost all of his symbolic practice and, with a suitable
constraint on the domain and range of such functions, handles the recalcitrant equality
as desired. There do remain occasional incoherencies in Boole’s manipulation of indefinite
symbols, arising when he commutes them with other variables as if application of a function
were the same thing as intersection of classes. However those glitches can be removed from
his text without damage, at least to his reconstruction of syllogistic.

The perspective of this article thus contrasts with a widespread attitude that was
expressed emphatically by Dummett 1959 (p. 205) when he said of Boole: “His method of
dealing with particular propositions, by means of his symbol ‘v’, is irretrievably confused”
and by Van Evra 1977 (p. 370) who wrote in the same vein: “While Boole’s intent [when
using auxiliary symbols] is clear enough ... the device itself suffers from a fatal flaw, namely,
the impossibility of a class whose only defining characteristic is that it have members”. Our
assessment is more nuanced: Boole’s treatment of indefinite symbols is confused and flawed,
yes, but neither fatally nor irretrievably so.

2 Ordinary variables

Before examining what Boole does with indefinite symbols, we need to look at his use of
ordinary variables. They share features with the indefinite ones and, even for them, there
are complications that can impede clear understanding.

One complication is that there is a significant difference between the formal level, that
is, what Boole does with ordinary variables in his equations, and the informal perspective
on them as revealed in his commentaries. In this section we focus on the formal level;
section 7 discusses the informal one.

Associated with this are some delicate matters of terminology. Boole never uses the now
standard term “variable” in LT, and hardly ever in MAL (Burris 2019 p. xxiii). The words
actually employed change over time. In MAL, x, y, ... are almost always called “elective
symbols”, for reasons connected with his informal perspective. In LT, on the other hand,
x, y, ... are referred to as “literal symbols”, “symbols” and occasionally “logical” or “class”
symbols. So our term “ordinary variables” is achronic but not, we believe, misleading.

Considering the formal level only, one sees that in each of MAL, CL and LT ordinary
variables x, y, ... range over classes, more precisely, over subclasses of a “universe”. But
within that framework there is a well-known twist. In the context of Boole’s analysis of
categorical propositions and traditional syllogisms (which looms large in the pages of MAL
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and CL), a certain constraint is imposed on the range of ordinary variables that is, however,
largely ignored in his general theory of development for complex expressions (which plays a
major role in LT). The constraint is that the values of x, y, ... are required to be non-empty
and non-universal. For brevity, we will refer to this as the nenu constraint.

Non-emptiness is required because Boole wishes to preserve the traditional principle of
subalternation, that “All Xs are Ys” implies “Some Xs are Ys” (see e.g. MAL pp. 26-30);
in other words, he wants to guarantee existential import for the universal. His preferred
ways of representing “All Xs are Ys” are x = xy and x(1 − y) = 0, where concatenation
is for meet (intersection), 1 is the “universe”, 1 − y is the complement of y with respect
to 1, and 0 is the empty class. But when there are no Xs, i.e. the set x is empty, both
these equalities are trivially true. Since Frege, modern logic has been happy to accept
that limiting case, but neither Aristotelian logic nor Boole were willing to do so. Non-
universality is also required because Boole wants the complement operation always to take
values in the range of the variables, and the complement of the universe would be the
empty class, already excluded.

Of course, the nenu constraint gives rise to a number of inconveniences. In particular,
the meet of two non-empty classes may be empty, and the join of two non-universal classes
may be universal (even when they are disjoint). For that reason, even within the confines of
syllogistic the constraint was gradually abandoned by logicians from Jevons 1864 onward.2

It is perhaps for the same reason that when he leaves the confined context of syllogistic
to articulate his general theory of development, Boole himself largely ignores the nenu
constraint and allows 0, 1 to be substituted freely for ordinary variables. Moreover, as
noted by Burris 2019 (pp. x, xvii-xviii), at one point Boole inadvertently counts as invalid
a certain syllogism with negative terms although it comes out as valid when those terms
in it are required to be non-empty (see MAL p. 35).

3 Indefinite Symbols

Boole’s indefinite symbols, which he writes as v, v′, ..., share several of the features of ordi-
nary variables. In particular, there is a gap between what is done with them in equations
and what is said about them in the verbal commentaries. There is also a shift in ter-
minology: whereas in MAL and CL Boole writes of “auxiliary” or “separate” symbols,
“indefinite” is the dominant term in LT. Again, just as for ordinary variables, the nenu
constraint is applied to the indefinite ones when representing traditional Aristotelian syl-
logisms, but not in the general theory – where, indeed, he explicitly allows the empty class
and the universe as values of v:

... the expression 0/0 here indicates that all, some, or none of the class to
whose expression it is affixed must be taken ... We may properly term 0/0 an
indefinite class symbol, and may, if convenience should require, replace it by
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an uncompounded symbol v (LT chapter VI section 10, p. 90; see also the
replacements of this kind made in LT pp. 90-92 and MAL pp. 74-76).

Despite these commonalities, indefinite symbols are not treated in the same way as or-
dinary ones. They are given a distinctive kind of verbal explanation and, on the formal
level, are handled differently. As far as the author is aware, in the resolution of deductive
problems they are introduced at only two moments – at the beginning of the analysis when
symbolizing premises, and at the end when eliminating uninterpretable numerical expres-
sions like 0/0 in favour of v, which is then “interpreted” in English as “some”. In between
those limits, indefinite symbols are manipulated but not introduced. Understanding what
is going on with them is the main purpose of this paper.

3.1 Implicit existential quantification

For Boole, indefinite symbols are sometimes optional, sometimes indispensable. They are
optional for representing traditional universal propositions “All Xs are Ys” and “No Xs are
Ys”, in the sense that while we may use them for that task, we can also do the job perfectly
well without them. But they are indispensable for representing equationally the particular
propositions “Some Xs are Ys” and “Some Xs are not Ys”. It is in this context that they
make their first appearance in MAL, where Boole represents the particular affirmative
“Some Xs are Ys” as v = xy (p. 21) and alternatively as vx = vy (p. 22).3

A näıve but fruitful question arises for both representations. If one writes “Some Xs
are Ys” as v = xy and likewise “Some Zs are Ys” as v = zy, then we may immediately infer
xy = zy, which is clearly not a valid consequence of the two verbally presented propositions.
Similarly, if the symbolizations are vx = vy and vz = vy we get vx = vz, which reads back
to the words “Some Xs are Zs”, again not a valid consequence of the given items.

Boole is fully aware of this, and provides a procedural safeguard: whenever we are
representing a proposition with the help of an indefinite symbol, then it must be distinct
from any indefinite symbol already used in the symbolization of any other proposition in
the same inferential context. But, today, one can go beyond the procedural to the declar-
ative level, and say that the problem arises because an existential quantifier is implicitly
associated with representations using indefinite symbols. Notoriously, Boole did not have
a clear conception of an existential quantifier as an operation binding a variable, even less
an adequate notation for it; they came later, with Frege, Peirce, and the latter’s student
Mitchell. But he did have a vague feeling for the situation, which he expressed informally
in his conditions of interpretation (the “monitions” of De Morgan’s draft letter), with the
clumsy Aristotelian terminology available to him. For example, in MAL he comments (p.
21):

If Some Xs are Ys, there are some terms common to the classes X and Y. Let
those terms constitute a separate class V , to which there shall correspond a
separate elective symbol v, then v = xy. And as v includes all terms common
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to the classes X and Y, we can indifferently interpret it, as Some Xs, or Some
Ys.

Accordingly, Hailperin 1986 proposed that when an equality v = xy symbolizes a premise or
the conclusion of an inference, we should write it as ∃v(v = xy), where ∃ is an existential
quantifier ranging over subclasses v of the universe which, in the context of syllogistic,
should be required to satisfy the nenu constraint mentioned in section 2. The formula
∃v(v = xy) belongs to predicate logic – of second or first degree according as we take our
domain to be Boole’s universe or its power-set. With the nenu constraint, it says that the
meet of x with y is a non-empty class, which is just what we need for a representation of
“Some Xs are Ys”.4

As Hailperin remarks, to make inferential use of a premise of the form ∃v(v = xy),
one would immediately apply ∃− (existential instantiation) to get unquantified v = xy or,
if instantiation to v has already been carried out from another premise, v′ = xy where
v′ is a fresh variable. One would continue from that point on as does Boole. If the
conclusion obtained contains a free occurrence of an indefinite symbol, one would use ∃+
to bind it existentially again. To be sure, the ∃− rule itself carries a “fresh variable”
constraint so, at first glance, one may not seem to have emerged from the procedural
woods. But the declarative justification of the ∃− rule in the context of twentieth-century
natural deduction, as a device for compressing longer indirect inferences into shorter direct
sequences, is well known.5

One can therefore say that Hailperin’s suggestion suffices to make good sense of Boole’s
representation of particular propositions as v = xy (likewise for their negative counter-
parts), and thus also of Venn’s limited use of indefinite symbols (described in note 2). But
that is not the end of the story, for Boole has another symbolization of “Some Xs are Ys”,
for which Hailperin’s proposal, as it stands, is not adequate.

3.2 Implicit Functionality

For an equational rendering of “Some Xs are Ys”, Boole offers not only v = xy but
also vx = vy. While it plays only a secondary role in MAL, the latter takes on more
importance in CL (in the variant form vx = v′y), while in LT it becomes the dominant
way of expressing the particular affirmative.

As has long been recognized, under a class reading of v, this equation departs markedly
from any natural understanding of “Some Xs are Ys” since it is true when x is disjoint from
y so long as the (non-empty) class v has an empty intersection with each of the (non-empty)
classes x, y. The same discrepancy arises for the variant representation vx = v′y that is
favoured in CL. It is preserved, even amplified, by Hailperin’s introduction of an existential
quantifier, since ∃v(vx = vy) is true whenever there is at least one element of the universe
that is in neither of x, y, for one can then choose v to be the singleton of such an element.
Thus, while Hailperin’s attempt to make declarative sense of indefinite symbols suffices for
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Boole’s initial representation of particular affirmatives, it does not suffice for another one
that became dominant in Boole’s later exposition.

To deal with this situation, it is helpful to return to Boole’s verbal explanations. For
example in CL (p. 3) he remarks:

The term Some Xs will be expressed by vx, in which v is an elective symbol
appropriate to a class V , some members of which are Xs, but which is in other
respects arbitrary.

Again, in LT chapter IV section 13 (p. 63) he tells us that v is:

... the symbol of a class indefinite in all respects but this, that it contains some
individuals of the class to whose expression it is prefixed ....

Lamentably vague, and reminiscent of the “arbitrary triangles” ridiculed more than a
century earlier by Berkeley, these explanations have given rise to scornful dismissals by
later logicians. But if we follow Boole’s line of thought with the resources currently at our
disposal, instead of simply dismissing it, we can give it a perfectly clear formal expression.
The thesis of this paper is that we may understand an indefinite symbol v as a variable
ranging over functions v(·) that take a non-empty proper subclass x of the universe as
argument and return a non-empty subclass v(x) of x as value.

These are, indeed, selection functions, which are widely used in current mathematics
and logical theory, notably in the study of non-monotonic reasoning and the logic of belief
change. They may be called proper selection functions, for the only difference is that
they do not take as argument the class serving as local universe. Selection functions, of
course, also generalize in another way choice functions, the difference being that for a choice
function, v(x) is an element, rather than a non-empty subset, of x.

It must be emphasized, however, that the above notion of a proper selection function
differs significantly from what Boole had in mind when, in the verbal commentaries of MAL
and CL (but not LT), he described ordinary variables as representing mental operations
that make selections (see e.g. CL p. 2). That terminology will be discussed in section 7.

4 Representing categoricals functionally

In this section we show how such a reading of indefinite symbols plays out neatly in
Boole’s representations of the four traditional forms of categorical proposition. In the
representations, we rewrite v as v(·) to make explicit its functional status and allowing us
to keep track, as a calculation progresses, of the argument to which v is applied. We retain
Hailperin’s existential quantifiers, but now ranging over functions rather than over classes.

The universal affirmative. Boole has several ways of representing “All Xs are Ys”
without v but also one with it, namely x = vy. We rewrite this equality as x = v(y)
and render the existential quantification visible by expanding that to ∃v(x = v(y)). This
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asserts that there is a function v (taking non-empty proper subclasses of the universe to
non-empty subclasses of themselves) such that x = v(y). It is a higher-order formula (of
third or second order, according to the choice of domain), but it is clearly equivalent to
one saying that x is a non-empty subset of y, thus expressing “All Xs are Ys” with the
traditional existential import desired by Boole.

The particular affirmative. We recall from section 3.1 that in MAL, Boole’s initial
representation of “Some Xs are Ys” is v = xy. When we treat v as a function rather than
a class, this becomes v(x) = xy or alternatively v(y) = xy, corresponding to Boole’s hint,
mentioned above, that here “v = Some Xs, or Some Ys”. With quantification brought in,
but this time over functions, the two equalities become respectively ∃v(v(x) = xy) and
∃v(v(y) = xy). Of course, for these formulations to have the intended meaning of “Some
Xs are Ys”, the function v must always return a non-empty subset of its argument, as we
have required it to do.6

As we saw in section 3.2, Boole’s alternative expression of “Some Xs are Ys” as vx = vy
faces a difficulty under a class reading of v, even when provided with Hailperin’s existential
quantifier. But when we treat v as ranging over functions, writing v(x) = v(y) and com-
pleting with quantifier to ∃v(v(x) = v(y)), the difficulty vanishes. The last formula tells us
that there is a function v returning non-empty subclasses v(x), v(y) of x, y respectively,
such that v(x) = v(y). That is the case just when there is an item that is in both x and y.
The same analysis carries over to the variant representation vx = v′y.7

Negative categoricals. Boole handles these by treating negativity as acting on the
predicate and reapplying to that context his symbolization of their positive counterparts.
In more detail, his representation v = x(1 − y) of the particular negative “Some Xs are
not Ys” may be written functionally, with quantifier also explicit, as ∃v(v(x) = x(1 − y))
or ∃v(v(1− y) = x(1− y), which says just what it should. For the universal negative “No
Xs are Ys”, he has several representations without an indefinite symbol, in parallel with
those for the universal affirmative, but one that does make such use is x = v(1 − y). For
Boole, the parentheses on the right are just for grouping to form the meet of v with (1−y).
We re-read the same equality with the parentheses expressing application of the function
v to the class 1 − y, and make the implicit existential quantification visible by expanding
to ∃v(x = v(1− y)). Again, this holds just if no Xs are Ys.

In summary, while Boole’s representation of “Some Xs are Ys” as vx = vy or ∃v(vx =
vy) is aberrant under a class reading of v, it behaves correctly under a functional reading,
as also do his representations of the other categoricals.

5 Commuting an indefinite symbol

Thus far, it has been straightforward to read indefinite symbols as variables ranging over
functions. But a residual difficulty arises when, in his calculations, Boole commutes a
function variable with another variable, in effect treating the non-commutative operation
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of application (of a function to a class) as if it were the commutative one of meet (of two
classes). We illustrate this with two examples from MAL. One commutes v with a class
variable, the other commutes it with another function variable.

5.1 First example: commuting zvx to vzx

On page 35 of MAL, Boole considers what conclusion may be drawn from the premises
“All Ys are Xs”, expressed as y = vx, and “No Zs are Ys”, expressed without an indefinite
symbol as 0 = zy. From those two equalities, Boole infers 0 = vzx, evidently in two
steps: substituting vx for y in the second equality to get 0 = zvx and then commuting
the indefinite symbol v with the ordinary variable z. He raises the question of how this
conclusion 0 = vzx should be interpreted – whether as “Some Zs are not Xs” or as “Some
Xs are not Zs”. Despite the ordering of the variables in vzx where v is contiguous with
z, but in accord with intuitive reasoning, he opts for the latter interpretation, with the
following clumsy but evocative explanation:

The reason why we cannot interpret vzx = 0 into Some Zs are not Xs, is that
by the very terms of the first equation [i.e. y = vx] the interpretation of vx
is fixed, as Some Xs; v is regarded as the representative of Some, only with
reference to the class X.

As we see it, Boole is struggling to say that v is really a function, not a class. Suppose
we rewrite the example in that way, at the same time making the existential quantifier
explicit. The first premise becomes ∃v(y = v(x)), where v is applied to x, not intersected
with it, while the second premise remains unchanged at 0 = zy. After applying ∃− to
the first premise, we can follow Boole’s calculation by substituting v(x) for y in 0 = zy
to get zv(x) = 0, which is understood as z ∩ (v(x)) = 0. But the functional reading
does not allow us to commute z with v to get vz(x) = 0 which is, moreover, meaningless
since z is a class, not a function. And while v(z)x = 0, understood as (v(z)) ∩ x = 0, is
meaningful, it does not follow from zv(x) = z∩(v(x)) = 0 because it gratuitously permutes
variables x and z. In brief, Boole’s confusion of application with intersection gets him into
a symbolic muddle, commuting unjustifiably, although the intuition expressed in his verbal
commentary is basically sound.

5.2 Second example: commuting v′vx to vv′x

This example appears in a footnote of MAL (p. 42) and is repeated in CL (p. 9). Boole
considers the Barbara syllogism from “All Ys are Xs” and “All Zs are Ys”, represented
by the respective equalities y = vx and z = v′y, to the conclusion “All Zs are Xs”, which
he writes as z = vv′y. Now, when indefinite symbols are read as variables ranging over
functions, one can indeed follow Boole from y = v(x) and z = v′(y) to z = v′(v(x)) by
substituting v(x) for y in v′(y). But Boole writes the indefinite symbols in reverse order
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vv′ (presumably out of a sense of notational tidiness), and one cannot pass by substitution
from y = v(x) and z = v′(y) to z = v(v′(x)).

However, this illegitimate commutation does no harm, because Boole uses the equality
z = v(v′(x)) only to infer, in effect, that z = w(x) where w is a composition of v with
v′, yielding ∃w(z = w(x)) symbolizing the desired conclusion “All Zs are Xs”. This is
legitimate since, although we cannot choose w as (v ◦ v′), we can put it to be (v′ ◦ v).

6 Sources of the function/class conflation

Why was Boole willing to treat functions taking classes to classes as if they themselves
were classes? Part of the answer seems to be that he and others had been doing something
similar for differential equations without running into serious difficulties. It was common
practice to play rather loosely between reals, functions taking reals to reals, and operations
taking such functions into others, as was signalled by Boole in chapter XVI, article 3 of his
Treatise on Differential Equations, a textbook bringing together much of a lifetime’s work
in the area.

If a convention, it is at least a very natural one that we should express an op-
eration performed on a subject by attaching, in some way, the symbol denoting
the operation to the symbol denoting the subject. The order of writing ... has
doubtless determined the mode of connection ... which is the same as if the
symbol of operation were a symbol of quantity employed as a co-efficient or
multiplier. It comes to pass, moreover, that the formal laws of combination, in
the direct cases investigated in Article 2, prove to be the same for the symbol
d/dx as for a co-efficient or multiplier.

If such play is successful in the one sphere, why not in the other? To be sure, classes are
not real numbers but meet is sufficiently analogous to multiplication to inspire confidence
in applying the same gambit to logic.

Another source of Boole’s assimilation of class-to-class functions to classes themselves
may lie in his non-extensional notion of a function. For him, as for others of his time, a
function was not a set of ordered pairs. The only available conceptualizations were as a
mental act or a syntactic expression. Boole vacillated between the two, but in his formal
work on logic opted for the latter, as is illustrated by the following definition from LT
chapter V section 8 (p. 71), with a similar passage in MAL (p. 16):

Any algebraic expression involving a symbol x is termed a function of x, and
may be represented under the abbreviated general form f(x).

With such an understanding, it can be difficult to make distinctions that are routine under
an extensional account of a function as a set of ordered pairs satisfying appropriate existence
and uniqueness conditions.
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We remark in passing that such factors may also have encouraged a related ambiguity
in expositions of probability in many texts of the nineteenth and early twentieth centuries.
Until Kolmogorov and others cleaned up the conceptual and notational landscape, it was
common practice to use the same variable to range indifferently over arbitrary probability
functions on a given domain, and the reals that may appear as values of a given such
function. The line between productive and confusing “abuse of notation” can be fuzzy.

7 The evolution of Boole’s intuitive perspective on ordinary
variables

The preceding sections have focussed on Boole’s formal treatment of variables, both ordi-
nary and indefinite, as well as his intuitive conception of the indefinite ones. In this section
we return to his intuitive outlook on ordinary variables.

As noticed in section 2, between MAL and LT there was a shift in terminology for
ordinary variables: the “elective symbols” x, y, ... of MAL and CL became “literal symbols”
or just “symbols” in LT. This modification of terminology reflected a significant conceptual
evolution. Its endpoint, in LT, can be described quite briefly: there, Boole speaks of x, y, ...
simply as ranging over classes, thus putting the shifting verbal perspective in line with an
unchanging formal treatment. But in MAL and CL, the vision offered for ordinary variables
is much more complex and deserves careful attention.

Roughly speaking, in the two early publications, Boole saw x, y, ... as representing
“mental operations” that effect some kind of “selection” from classes while the classes
themselves are signified informally by corresponding upper-case letters X,Y,... that do not
appear in the formal equations. In CL, this is put quite briefly:

Suppose that we have the conception of any group of objects consisting of Xs,
Ys, and others, and that x, which we shall call an elective symbol, represents
the mental operation of selecting from that group all the Xs which it contains
... (CL p. 2)

MAL explains his thought at greater length, from which we select the central parts:

The symbol x operating upon any subject comprehending individuals as classes,
shall be supposed to select from that subject all the Xs which it contains ....
When no subject is expressed, we shall suppose 1 (the Universe) to be the
subject understood, so that we shall have x = x(1), the meaning of either term
being the selection from the Universe of all the Xs which it contains ... From
these premises it will follow, that the product xy will represent, in succession,
the selection of the class Y, and the selection from the class Y of such individuals
of the class X as are contained in it, the result being the class whose members
are both Xs and Ys. (MAL p. 15)
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Close reading of these passages suggests that the mental operations in question are context-
dependent. When x is standing alone, a selection is made from the universe, but when x is
immediately followed by another variable y then it is effected on the result of the selection
for y. From this point of view, the selections might more accurately have been described
as restrictions. Concatenation of variables is not so much a convention for expressing
intersections as one for effecting such restrictions, and meet is seen not so much as an
independently given operation, as a by-product of restriction.

Boole does not attempt to express this understanding formally – it precedes all his
formal work. But if we were to take on the task with present-day resources and notation,
we could do so as follows. The variable x stands for any one-place function fa(·) that is
defined by putting fa(b) = a ∩ b for any subclass b of the universe (in syllogistic, these
classes being required to satisfy the nenu condition of section 2). In brief, an elective
symbol stands for any left projection of the two-place operation of intersection, and we will
write it more suggestively as ∩a(·) where a is any subclass of the universe.

Whether such projection functions ∩a(·) are described as effecting restrictions or se-
lections, they are quite different from selection functions as the latter are understood in
current mathematics and used in section 3.2 to make sense of Boole’s indefinite symbols.
The differences can be brought out in several ways.

On the one hand, not every projection function ∩a(·) is a selection function, since
∩a(b) = a ∩ b may be empty even when b is non-empty. Conversely, not every proper
selection function is such a projection function: there are proper selection functions v such
that there is no class a such that v(b) = ∩a(b) = a∩b for all classes b. For example, consider
a three-element universe {1, 2, 3} and a proper selection function v that puts, inter alia,
v({1}) = {1} and v({1, 2}) = {2}. Then for any a ⊆ {1, 2, 3}, if both a ∩ {1} = {1} and
a ∩ {1, 2} = {2} we have 1 ∈ a and 1 /∈ a.

Moreover, the two kinds of function behave quite differently. Functions ∩a(b) = a ∩ b
trivially satisfy the equalities ∩a(a) = a, ∩a(b ∩ c) = (∩a(b)) ∩ (∩a(c)) = (∩a(b)) ∩ c) =
b∩ (∩a(c)), ∩a(b+ c) = (∩a(b)) + (∩a(c)), where + may be read as either union, symmetric
difference or Boole’s partial operation defined only when its arguments are disjoint (over
which range union and symmetric difference coincide). None of the counterparts v(a) = a,
v(b ∩ c) = v(b) ∩ v(c) = v(b) ∩ c = b ∩ v(c), v(b + c) = v(b) + v(c) hold in general for
selection functions. There are also equalities for ∩a(·) that are difficult even to translate
into the language of selection functions because they involve more than one index, for
example ∩a(b) = ∩b(a) and ∩a(∩b(c)) = ∩a∩b(c) expressing commutation and association
respectively. One could entertain more or less analogous principles such as v(v′(a)) =
(v′(v(a)) and v(v′(a)) = (v′(v))(a) but, for selection functions, the first of these fails while
the second is meaningless.

As mentioned at the beginning of this section, in LT the verbal perspective of ordinary
variables is radically simplified by being brought in line with the unchanging formal treat-
ment. In the commentary there, Boole speaks of x, y, ... as ranging over classes, without
reference to mental operations of selection. For example, in chapter II section 5 (p. 28) he
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says simply: “Let us then agree to represent the class of individuals to which a particular
name or description is applicable, by a single letter x”. This was, indeed, a significant step
towards clarity that met with general acquiescence – and occasional regret, as in Bryant
1888.

On the other hand, Boole’s intuitive view of v, v′, ... as indicating “indefinite classes”
remained unchanged from MAL through LT. Accompanying this, however, was a secondary
conceptual evolution paralleling that for ordinary variables. In MAL the term “separate
elective symbol” (e.g. MAL p. 21) suggests that he also envisaged v, v′, ... as standing
for some kind of class-selection (or, as we have described it, class-restriction) operation;
while in LT, that term is replaced by ones like “indefinite class symbol” (e.g. chapter IV
section 14, p. 64). But the most salient feature of v, v′, ... did not change over time: the
class concerned, whether envisaged via a restriction or directly, was not a specific one, but
“indefinite”.

8 Conclusions

Table 1 displays in graphic form our account of Boole’s treatment of variables in MAL, CL
and LT. Its upper four rows record Boole’s conceptual evolution in the matter, decomposed
along three dimensions: his formal work vs his verbal explanations; his distinction between
ordinary variables x, y, ... and indefinite symbols v, v′, ...; his perspective in MAL and CL vs
that of LT. The bottom row recapitulates our formal reconstruction of Boole’s troublesome
verbal explanations of both kinds of symbol.

Table 1: Boole’s treatment of variables with our reconstructions

formal work verbal explanations

x, y, ..., v, v′, ... x, y, ... v, v′, ...

MAL, CT, LT MAL, CL LT MAL, CL LT

classes

mental operations
restricting a class
to a subclass classes

mental operations
restricting a class
to an “indefinite”
subclass

indefinite
classes

left projections
∩a(·) of the meet
operation

existentially quantified class-
to-class selection functions

The main thesis of the paper is signalled in the bottom right cell of the table. It suggests
that a functional reading of Boole’s indefinite symbols, combined with their existential
quantification as suggested by Hailperin, makes good declarative sense of his equational
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representations of categorical propositions, including his much maligned rendering of the
particular affirmative as vx = vy. The reconstructed equations can be expressed in the
notation of predicate logic of second or third order (depending on whether we take our basic
domain to be made up of classes or their elements). Some incoherencies do remain in Boole’s
analysis of syllogistic inference, arising when in the course of a calculation he commutes
a variable for functions with another variable in a way that conflates application with
intersection. Nevertheless, those muddles are marginal, and may be edited away manually
without harming the line of reasoning. In brief, Boole’s clumsily expressed intuitions on
what he is doing with indefinite symbols may be made precise.

On the other hand, this does not imply that other tangles in Boole’s logical work can
always be unpicked. And if, like Cayley 1871, one is happy to express propositions by
inequalities like xy 6= 0, then the need for indefinite symbols does not even arise.

Notes

1For brevity, we use the customary acronym MAL for The Mathematical Analysis of Logic, CL for “The
calculus of logic”, and LT for An Investigation of the Laws of Thought. Most of the comments on the two
kinds of symbol are located in pp. 15-47 of MAL, pp. 1-4 of CL, and chapters II, IV (sections 11-14) and
XV of LT. Page-calls for MAL follow the original 1847 edition as reproduced in the annotated version of
Burris 2019; this can differ by a page or two from that of other editions. Page-calls for CL follow the web
version mentioned in the bibliography while for LT we cite by the Dover edition, which is a facsimile of the
original with unaltered pagination. In quotations from Boole, we preserve his distribution of roman and
italic fonts and expressions such as “&c”. In the list of references, whenever easily accessible electronic and
print-on-demand versions are known to exist, they are added to the often hard-to-obtain originals.

2Jevons 1864 chapter XV criticised Boole’s system in several respects, notably its restriction of join
(union) to disjoint classes, its operation of division, and those applications of arithmetic multiplication, sum
and subtraction that produce uninterpretable expressions. On the other hand, he accepted several other
features that later became subject to criticism. As far as indefinite symbols are concerned, he preferred
to avoid them in the representation of universal propositions, but continued to use them to represent
particular ones, without further comment or clarification (see chapter XII paragraphs 144-145). Ladd 1883
(more widely known by her married name Ladd-Franklin) reports that while MacColl and Peirce dispensed
with Boole’s indefinite symbols, they continued to be used in one way or another, not only by Jevons but
also by Schröder and Grassmann. To that list we would add Venn 1881 where, following an extended and
rather tortuous discussion in chapter VII, he settles for representing “Some Xs are Ys” as xy = v, avoiding
Boole’s other symbolisation of it as vx = vy.

3Readers unfamiliar with Boole’s work will naturally ask why he didnt represent “Some Xs are Ys”
simply as xy 6= 0, thus eliminating any need for indefinite variables. Although he does not answer this
question, or even pose it, the answer is clearly that he very much wanted all his symbolic expressions to
be equalities, never inequalities, to facilitate his algebraic manipulations. The first to propose using the
inequality xy 6= 0 to represent the particular affirmative appears to have been Cayley 1871.

4Hailperin’s 1986 account of the role of ordinary variables x, y, ... in Boole’s system is given in his sections
1.4 and 1.5, while the indefinite symbols v, v′, ... are discussed in section 2.5. On the formal level, both
are treated as ranging over proper, non-empty subclasses of the universe U . In particular, in section 2.5
Hailperin does not suggest resolving the difficulty of understanding indefinite symbols by treating them
functionally; they are explicitly called “class variables” (p. 153) and range only over classes. The casual
reader should not be misled by the fact that, beginning with section 3.1, Hailperin goes on to reconstruct
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Boole’s system “in accordance with modern standards” with a quite different treatment of variables. Boole’s
v, v′, ... disappear from the apparatus, while ordinary variables are divided into two kinds. Those written
in plain italics range over classes while those written in bold italics range over functions (“operators”,
in Hailperin’s terminology) from classes to classes – but in contexts quite different from those in which
Boole would have used an indefinite symbol. For example, the distribution principle that Boole writes as
x(y + z) = xy + xz, is written as x(y + z) = xy + xz with x representing a function; evidently, this is quite
distinct from Boole’s use of indefinite symbols to get “Some Xs are Ys” into equational form.

5See e.g. Makinson 2020 section 10.4.3, where such compression is called “flattening”.
6It is tempting to allow the universe of discourse to be an argument of v and rewrite Boole’s v = xy

functionally as v(1) = xy to avoid the asymmetry of choosing arbitrarily between v(x) and v(y). But the
gain in symmetry is offset by a loss. In so far as, in his treatment of syllogistic, Boole’s ordinary variables
range only over non-empty non-universal (nenu) subsets of the universe, it would be awkward to allow the
universe to serve as argument for a class-to-to-class function. However, in the general theory of elimination
and development, where this constraint is not applied, the symmetric representation would be the most
elegant.

7Hailperin, who (as we saw in note 4 above) follows a class reading of indefinite variables, makes a quite
different proposal for handling vx = vy. He proposes that we conjoin it with a clause xy 6= 0 to obtain
the representation vx = vy ∧ xy 6= 0, becoming ∃v(vx = vy ∧ xy 6= 0) when the quantifier is made explicit
(Hailperin 1986, section 2.5, page 154). However, this is rather odd since Boole, from beginning to end,
seeks to represent everything as an equality. If we are going to introduce an inequality, then we might as
well represent “Some Xs are Ys” directly by the simplest one possible, namely xy 6= 0.
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