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Abstract

In this article, we explore the semantic characterization of the (right)

pure refined variable inclusion companion of all logics, which is a fur-

ther refinement of the nowadays well-studied pure right variable inclusion

logics. In particular, we will focus on giving a characterization of these

fragments via a single logical matrix, when possible, and via a class of ma-

trices, otherwise. In order to achieve this, we will rely on extending the

semantics of the logics whose companions we will be discussing with in-

fectious values in direct and in more subtle ways. This further establishes

the connection between infectious logics and variable inclusion logics.

1 Background and aim

In recent years, there has been a renewed interest in certain logics where en-

tailment can be understood in terms of analytic implication, content inclusion,

or similar properties. These logics—belonging to a family of relevance systems

that are sometimes referred to as Parry logics, in reference to the work of this

logician in, e.g., [16, 17, 18, 19]—have been shown to be applicable to a plethora

of different phenomena ranging from the aforementioned containment relations

between hyperintensional contents in [11] to the more database-related cases of

information retrieval from physically damaged processor memories in [9].

But perhaps their earliest application is to the logics of nonsense in [5, 13].

These are formal systems where reasoning is allowed to involve meaningless

sentences in which a specific treatment is demanded for the overall inferential

patterns that are deemed correct, as well as the semantic machinery that un-

derlies the resulting framework. In terms of their semantic aspect, logics of
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nonsense have ties with the logics of analytic entailment in a very specific sense

as shown by [8] and more recently by [15]. In fact, many systems of content

inclusion can be characterized in terms of semantics counting with a truth value

that behaves mathematically in an infectious or absorbent way—as the truth

values that are usually associated with meaningless sentences in the context of

the logics of nonsense do. This is why logics of nonsense belong in the more

general collection of infectious logics as discussed in [22].

Our aim here is to go beyond the recent results on the characterization of

these systems of analytic entailment, by broadening the class of logics that can

be scrutinized and receive a semantic characterization with the help of logical

matrices counting with infectious truth values. In doing so, we will actually

focus on a subfamily of the logics of content inclusion comprehended in the set

of Parry logics, discussing systems where refined inclusions or containments are

required—in a sense to be made clear shortly.

Logics included in the family of Parry logics are usually informally under-

stood as systems where the content of the conclusion is included somehow in the

content of the premises. When dealing with propositional logics, this is usually

formally represented by the fact that the set of propositional variables V ar(ϕ)

appearing in the conclusion ϕ is a subset of the set of propositional variables

V ar(Γ) appearing in the premises Γ. This naturally leads to consider, for any

given logic L, what is called in [15] its pure right companion Lpr. Before moving

on, let us mention that in what follows whenever we talk about a propositional

language L we will be considering extensions of the set {¬,∧,∨} with connec-

tives intended to represent negation, conjunction, and disjunction, respectively.

Also, if negation is singled out as ¬, it is assumed that the remaining connectives

are not capable of defining it in any way.

Definition 1. For a logic L = 〈FOR(L),`L〉, its pure right variable inclusion

companion Lpr is defined as follows:

Γ `Lpr ϕ ⇐⇒

Γ `L ϕ, and

V ar(ϕ) ⊆ V ar(Γ)

In this article, we are going to analyze a certain family of what we will call

refined subsystems of the right companions of a given logical system. As a mat-

ter of informal motivation to these systems, which are related to the work of

Angell in [1, 2], let us mention the following: logics of analytic entailment are

usually motivated by the fact that one wouldn’t like some content to appear
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vacuously in the conclusion if it didn’t previously appear in the premises. This

famously leads to the rejection of the rule of Disjunction Introduction or Addi-

tion (i.e., from ϕ infer ϕ ∨ ψ) as well as to the rejection of the rule of Ex Falso

Sequitur Quodlibet (i.e., from ϕ∧¬ϕ infer ψ), and similarly to the rejection of

(a rule form of) Tertium Non Datur (i.e., from ψ infer ϕ∨¬ϕ). However, if the

idea of content inclusion is only instantiated by the requirement that the propo-

sitional variables of the conclusion are a subset of the population of variables of

the premises, this still allows for some undesirable cases where the content of

the conclusion couldn’t be intuitively said to be included in the content of the

premises. To observe this, consider the following argument:

For example, ‘(Jo died and Jo did not die and Flo wept)’ does not

mean the same as ‘(Jo died and Flo did not weep and Flo wept)’; for

the first contains a false and inconsistent statement about Jo though

the second does not, while the second contains a false and inconsis-

tent statement about Flo though the first does not. How can two

sentences mean the same thing if one contains a false and inconsis-

tent statement about an individual while the other does not? A syn-

tactical condition which will rule out such cases can be formulated

using a distinction by Herbrand between ‘positive’ and ‘negative’

occurrences of a variable in a schema. [2, p. 121-122]

It could be said that the takeaway that Angell got from his reflection in the

previous quote, and in the work where it is included, was that mere variable

inclusion isn’t a sufficient criterion for content inclusion.1 That is why he de-

veloped his system of analytic containment, where this phenomenon is formally

represented by a refined form of variable inclusion between premises and con-

clusions. Here the idea is that we don’t only need to pay attention to the fact

that the topics of the conclusion are a subset of the topics mentioned in the

premises, but also that these are treated equally here and there—meaning by

that that there is no content that is negatively treated in the conclusion but

is not treated likewise in the premises, and similarly for contents being treated

positively. Obviously, this will formally lead to a more refined conception of

right variable inclusion companions, that can be defined for both the pure and

1Incidentally, one may take away from his position that under his understanding topics
(and, therefore, contents) do not enjoy what Franz Berto calls the principle of negation trans-
parency, i.e., that the topic of a sentence and its negation is the same—for more, see [4, p.
32]. Thanks to Thomas Ferguson for urging us to comment on this point.
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the regular fragments. In fact, as observed in [9] and [11], (the first-degree en-

tailment fragment of) Angell’s own system AC can be understood as the pure

refined right companion of Belnap and Dunn’s four-valued logic Efde from [3, 6].

Definition 2. Let V ar+(ϕ) be the set of all the positive atoms of ϕ and

V ar−(ϕ) the set of negative atoms of ϕ. These sets can be constructed re-

cursively as follows:

a. If ϕ is atomic, V ar+(ϕ) = {ϕ} and V ar−(ϕ) = ∅.

b. V ar+(¬ϕ) = V ar−(ϕ) and V ar−(¬ϕ) = V ar+(ϕ).

c. V ar+(ϕ ∗ ψ) = V ar+(ϕ) ∪ V ar+(ψ) and V ar−(ϕ ∗ ψ) = V ar−(ϕ) ∪
V ar−(ψ), for ∗ ∈ {∧,∨}.

With a slight abuse of notation, when Γ is a set of sentences and not a single

sentence, we will also refer with V ar(Γ) to the set ∪{var(γ) | γ ∈ Γ}.

Definition 3. For a logic L = 〈FOR(L),`L〉, its pure refined right variable

inclusion companion Lpr± is defined as follows:

Γ `Lpr± ϕ ⇐⇒


Γ `L ϕ, and

V ar+(ϕ) ⊆ V ar+(Γ), and

V ar−(ϕ) ⊆ V ar−(Γ)

Thus, to state more clearly and concretely our goals for this article: we

are going to explore the semantic characterizability of the right refined pure

variable inclusion companions of any given logic. We will ponder the question

of their characterizability in terms of a single matrix—trying to draw a parallel

with what was done in [15] for the regular right and left pure variable inclusion

companions of classical logic. For this investigation, we will draw inspiration on

the semantic characterization of Angell’s AC done by Ferguson in [9]. It’s our

hope, that we will be able to extract some consequences and observations that

will point towards alternative perspectives on the semantics of refined variable

inclusion logics, which we expect to explore in further work.

2 Pure companions

The aim of this section is to revisit the state of the art regarding how to charac-

terize these logical fragments and to further generalize some important results

for what will come later in handy.
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2.1 Characterizability

The question in which we will inquire in this section is whether a logic can be

characterized by a logical matrix or not. A logical matrix can be understood as

a set of truth values, a set of truth tables, and a subset of designated values.

The designated values will be those truth values that have to be preserved from

premises to conclusion. A logic will be characterizable via a (possibly infinite)

single logical matrix if and only if it has the cancellation property. Some infor-

mal although not necessarily intuitive readings can be given for this property.

One may say that this property refers to the fact that whenever we have a valid

inference where some of the premises do not share propositional variables with

the other premises and with the conclusion, and additionally do not entail any

formula whatsoever, then we can, as it were, cancel them out—and still have

the inference with the remaining premises and the conclusion be valid. Another

reading, a contrapositive one, pertains to the fact that whenever we have an

invalid inference it can’t be turned into a valid one by the addition of supple-

mentary premises, if these new premises are built with propositional variables

not appearing in the original premises and conclusion and if, furthermore, these

supplementary formulas do not entail every formula whatsoever.

In what follows we will present the cancellation property in a formal manner

and we will extract some important results for what will come next. Take L to

be a propositional language, then:

Definition 4. A logical L-matrixM is a pair 〈A, D〉 where A is an algebra of

the same similarity type as L, and D is a subset of A.

A logical L-matrix M induces a consequence relation �M in the following

way, where Γ ∪ {ϕ} ⊆ FOR(L):

Γ �M ϕ if and only if ∀v ∈ Hom(FOR(L),A) : if v(Γ) ⊆ D, then v(ϕ) ∈ D.

Going forward, for any logical matrixM = 〈A, D〉 we will refer to functions

v, v′, v′′, etc. in Hom(FOR(L),A) as M-valuations or valuations for short, as

usual, when the context is clear enough.

When we have a (possibly infinite) class M of logical matrices for a language

L, the substitution-invariant Tarskian consequence �M is understood as
⋂
{�M|

M ∈M}.

Definition 5. A logic L = 〈FOR(L),`L〉 has the cancellation property if and

only if:
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Γ ∪ {Γi|i ∈ I} `L ϕ implies Γ `L ϕ

for all ϕ ∈ FOR(L) and Γ,Γi ⊆ FOR(L), i ∈ I, such that:

a. V ar(Γ ∪ {ϕ}) ∩ V ar(
⋃
{Γi|i ∈ I}) = ∅,

b. V ar(Γi) ∩ V ar(Γj) = ∅, for all i 6= j,

c. for any i ∈ I there is a ψ ∈ FOR(L) such that Γi 0L ψ.

Theorem 1 ([14, 21, 23]). A logic L = 〈FOR(L),`L〉 has the cancellation

property if and only if there is a single L-matrix M such that `L = �M.

In what follows, we will interchangeably refer to a logic as having the can-

cellation property and a logic having a single (possibly infinite) characteristic

logical matrix. As it is shown in [15], CLpr doesn’t have the cancellation prop-

erty, and thus it cannot be characterized by a single logical matrix. Now, as a

matter of fact we can generalize this analysis for the pure right companion of

any logic.

Theorem 2. Let M = 〈A, D〉 be an L-matrix and let L be a logic such that

`L = �M. Lpr has the cancellation property if and only if L does not have

anti-theorems.

Proof. From left to right: by generalizing the proof of Lemma 3.1 in [15]. Take

a logic L with anti-theorems, and consider its pure right companion Lpr. Let

Γ = p, ϕ = ¬p, and let Γ1 be one of the original system’s anti-theorems such

that p /∈ V ar(Γ1). Notice that, on the one hand, a. is satisfied because V ar(Γ∪
{ϕ}) ∩ V ar(Γ1) = ∅, also b. is vacuously satisfied, and more importantly c. is

satisfied because Γ1 0Lpr ¬p since V ar(¬p) * V ar(Γ1) by assumption. Now,

observe that the cancellation property is not predicated of Lpr since the above

are satisfied and nevertheless we have p,Γ1 `Lpr ¬p, and yet p 0Lpr ¬p. Thus,

Lpr does not have the cancellation property.

From right to left: by applying the ideas of Observation 1 in [8]. Now, by

reductio assume that there are Γ, {Γi | i ∈ I}, and ϕ that satisfy items a.

through c. of Definition 5, such that Γ ∪ {Γi | i ∈ I} `Lpr ϕ though Γ 0Lpr ϕ.

Given this last bit, either Γ 0L ϕ, or V ar(ϕ) * V ar(Γ). If the latter, then since

Γ∪{Γi | i ∈ I} `Lpr ϕ we must conclude that V ar(ϕ)∩V ar(
⋃
{Γi | i ∈ I}) 6= ∅.

But this contradicts our assumption that Γ, {Γi | i ∈ I}, and ϕ satisfy items

a. through c. of Definition 5. If the former, then by assumption there is a
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M-valuation v such that v(Γ) ⊆ D while v(ϕ) /∈ D. We also know that there is

noM-valuation v such that v(Γ∪ {Γi | i ∈ I}) ⊆ D while v(ϕ) /∈ D. But, since

V ar(Γ ∪ {ϕ}) ∩ V ar(
⋃
{Γi | i ∈ I}) = ∅ by assumption, this guarantees that

there is no M-valuation v such that v(Γ ∪ {Γi | i ∈ I}) ⊆ D. Thus, {Γi | i ∈ I}
is an anti-theorem of L.

These results notwithstanding, we know given the work of Wojcicki in [23]

that whenever we have a Tarskian logic L, there is a (possibly infinite) class of

(possibly infinite) logical matrices M such that `Lpr = �M. However, even if the

previous results show that there is no single finite characteristic matrix for Lpr

under some circumstances, one still could ask what would the class of logical

matrices that characterize it look like. To answering this, whenever L itself is

characterizable through a single matrix, we devote ourselves next.

2.2 Infectious extensions

For the purpose we set ourselves to achieve, we first provide the semantics in

each case with the help of the notion of an infectious extension of an algebra

and of the corresponding logical matrix.

Definition 6. Let A be an algebra of type L with universe A, its infectious

extension is the algebra A[e] of type L with universe A∪{e} defined such that for

all n-ary operations ¶A[e]: ¶A[e](a1, . . . , an) = ¶A(a1, . . . , an) if {a1, . . . , an} ⊆
A, and ¶A[e](a1, . . . , an) = e otherwise.

Definition 7. Let M = 〈A, D〉 be an L-matrix, its truth-preserving infectious

extension is the matrixM[e] = 〈A[e], D〉, and its meaningfulness-preserving in-

fectious extension is the matrixM∗[e] = 〈A[e], A〉—where A[e] is the infectious

extension of A.

This nomenclature will be discussed afterward, but for now, and with these

tools at hand, we can describe the semantics for Lpr in case it has, or hasn’t a

single characteristic logical matrix.

Theorem 3. Let M = 〈A, D〉 be an L-matrix and let L be a logic such that

`L = �M. If Lpr has the cancellation property, then `Lpr = �M[e].

Proof. Suppose Lpr has the cancellation property. We show that `Lpr = �M[e]

by first proving the left-to-right inclusion of this equality, followed by the cor-

responding right-to-left inclusion.
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From right to left: suppose that Γ 0Lpr ϕ. Then, either, Γ 0L ϕ or V ar(ϕ) *
V ar(Γ). If Γ 0L ϕ, then there is a M-valuation v such that v(Γ) ⊆ D and

v(ϕ) /∈ D. By assumption, this is also a M[e]-valuation, whence Γ 2M[e] ϕ.

If V ar(ϕ) * V ar(Γ), then there is a propositional variable x ∈ V ar(ϕ) and

x /∈ V ar(Γ) and a M[e]-valuation v such that v(x) = e. We also know thanks

to Theorem 2, that L doesn’t have any anti-theorems. So, we can extend v to a

M[e]-valuation v′ such that v′(Γ) ⊆ D and v′(ϕ) = e. But then, Γ 2M[e] ϕ. So

if Γ 0Lpr ϕ then, Γ 2M[e] ϕ.

From left to right: suppose that Γ 2M[e] ϕ. Then, there is aM[e]-valuation

v such that, v(Γ) ⊆ D and v(ϕ) /∈ D. Given this, either v(ϕ) 6= e or v(ϕ) = e.

If v(ϕ) 6= e, then Γ 0L ϕ and, therefore, Γ 0Lpr ϕ. If v(ϕ) = e, then there is

a propositional variable x such that x ∈ V ar(ϕ) \ V ar(Γ)—for otherwise there

would be some γ ∈ Γ for which v(γ) = e, and this goes against our supposition.

Therefore, V ar(ϕ) * V ar(Γ), and this implies that Γ 0Lpr ϕ. So, if Γ 2M[e] ϕ,

then Γ 0Lpr ϕ.

Theorem 4. Let M = 〈A, D〉 be an L-matrix and let L be a logic such that

`L = �M. Then, regardless of Lpr having the cancellation property, we have

that `Lpr = �M[e], where M[e] = {M[e],M∗[e]}.

Proof. Suppose, for reductio, that `Lpr 6= �M[e]. Then there are Γ and ϕ such

that Γ `Lpr ϕ and Γ 2M[e] ϕ, or Γ 0Lpr ϕ and Γ �M[e] ϕ. If the former, then

either (a) Γ 2M[e] ϕ, or (b) Γ 2M∗[e] ϕ. In case (a), there is a M[e]-valuation

v, such that v(Γ) ⊆ D and v(ϕ) /∈ D. If v(ϕ) /∈ D, then either v(ϕ) 6= e or

v(ϕ) = e. If the former, then Γ 2M ϕ whence Γ 0Lpr ϕ. If the latter, then there

is a propositional variable x ∈ V ar(ϕ), such that there is a M∗[e]-valuation

v for which v(x) = e. By this, we know that x /∈ V ar(Γ), for otherwise then

there would be a γ such that v(γ) = e and that contradicts our assumption. So

V ar(ϕ) * V ar(Γ). Therefore, Γ 0Lpr ϕ. In case (b) there is a M∗[e]-valuation

v such that, v(Γ) ⊆ A and v(ϕ) = e. In which case, we know that there is a

propositional variable x ∈ V ar(ϕ) and x /∈ V ar(Γ), for otherwise there would

be a γ such that v(γ) = e and that contradicts our assumption. Then we know

that V ar(ϕ) * V ar(Γ). Therefore, Γ 0Lpr ϕ.

Now, if there are Γ and ϕ such that Γ 0Lpr ϕ and Γ �M[e] ϕ, then either

Γ 0L ϕ or V ar(ϕ) * V ar(Γ). If the former, then there is a M[e]-valuation

v, such that v(Γ) ⊆ D and v(ϕ) /∈ D, but then Γ 2M[e] ϕ and this implies

Γ 2M[e] ϕ. If the latter, then there is a propositional variable x ∈ V ar(ϕ) and
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x /∈ V ar(Γ) and, consequently, there is a M[e]-valuation v such that v(x) = e

and v(Γ) ⊆ A. This implies v(ϕ) = e, for we know that e behaves in an infectious

manner. But then, v(Γ) ⊆ A and v(ϕ) = e, which implies Γ 2M∗[e] ϕ and, thus,

Γ 2M[e] ϕ.

Still, these results do not necessarily illuminate what is going on and how

to understand these notions of logical consequences and how to philosophically

interpret these newly added truth values. To this task, we devote ourselves in

the next section.

2.3 Interpreting the semantics

A few significant things can be said about how to read logical consequences in the

case of infectious extensions for logical matrices. When Lpr can be characterized

in terms of a single logical matrix, then logical consequence for it amounts to the

preservation of the original designated values in the original logical matrix for

L, but now in the context ofM[e] where propositions are also able to receive the

truth-value e. This situation amounts to propositions being allowed to be con-

sidered nonsensical or meaningless—which behaves infectiously, as documented

in [5, 8, 12, 13] among others. In this respect, since we can reasonably consider

the designated values of the original matrix to represent a generalized notion

of truth, we can refer to M[e] as a truth-preserving infectious extension of the

original semantics. In other words, this extended matrix represents the idea of

truth-preservation when nonsensical propositions are allowed to be around.

In this vein, too, when Lpr cannot be characterized in terms of a single log-

ical matrix, then logical consequence for it amounts to conjugating two things,

as presented in the corresponding class of logical matrices M[e] of infectious

extensions. On the one hand, is preservation of the original designated val-

ues in the original logical matrix for L, but now in the context of M[e] where

propositions are also able to receive the truth-value e. We previously referred

to this as truth-preservation in the context of allowing for nonsensical, and

consequently neither true nor false propositions. On the other hand, preserva-

tion from premises to conclusions of the truth-values from the original matrix,

but now in the context of M∗[e]. This latter property can be understood as

the preservation of meaningfulness from premises to conclusions, inasmuch as e

represents meaninglessness or nonsense, and the values appearing in the origi-

nal semantics are all meant to represent different ways in which a proposition

can be meaningful. Therefore, logical consequence as dictated by M[e], where
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M[e] = {M[e],M∗[e]}, amounts to the joint preservation of truth and meaning-

fulness from premises to conclusions, when nonsensical propositions are allowed

to come into the picture.

3 Pure Refined companions

Below, we present finite characterizability results for refined pure right compan-

ions and, when unfruitful, characterizability of such companions in terms of sets

of matrices. In doing this, we link our results to and generalize those of [20],

and show how they subsume the semantics for Angell’s AC presented in [7].

3.1 Characterizability

We generalize the previous characterizability results for refined pure compan-

ions, as follows. To ease the understanding of the following material, we recall

what the definition of Lpr± is, below.

Γ `Lpr± ϕ ⇐⇒


Γ `L ϕ, and

V ar+(ϕ) ⊆ V ar+(Γ), and

V ar−(ϕ) ⊆ V ar−(Γ)

Theorem 5. Let M = 〈A, D〉 be an L-matrix and let L be a logic such that

`L = �M. Lpr± has the cancellation property if and only if L does not have

anti-theorems.

Proof. From left to right: take a logic L with anti-theorems, and consider its

pure refined right companion Lpr±. Let Γ = p ∨ ¬p, ϕ = p ∧ ¬p, and let Γ1

be one of the original system’s anti-theorems such that p /∈ V ar(Γ1). Notice

that, on the one hand, a. is satisfied because V ar(Γ∪ {ϕ})∩ V ar(Γ1) = ∅, also

b. is vacuously satisfied, and more importantly c. is satisfied because Γ1 0Lpr±

p∧¬p since V ar(p∧¬p) * V ar(Γ1) by assumption and, thus, V ar+(p∧¬p) *
V ar+(Γ1) and V ar−(p ∧ ¬p) * V ar−(Γ1). Now, observe that the cancellation

property is not predicated of Lpr± since the above are satisfied and nevertheless

we have p ∨ ¬p,Γ1 `Lpr± p ∧ ¬p, and yet p ∨ ¬p 0Lpr± p ∧ ¬p. Thus, Lpr± does

not have the cancellation property.

From right to left: similar to the proof of Theorem 2, replacing the case

where V ar(ϕ) * V ar(Γ) for the case where either V ar+(ϕ) * V ar+(Γ) or

V ar−(ϕ) * V ar−(Γ).
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However, notice that—just like before—these results are not informative by

themselves, in terms of what the corresponding semantics look like. In the un-

fruitful case, what would the semantics in terms of a class of matrices look like?

And in the fruitful case what would a single matrix semantics look like? We pro-

vide the answer to these questions together with the philosophical interpretation

of the implemented formal instruments next.

3.2 Refined infectious extensions

Definition 8. Given a set A such that e /∈ A, let A[+] be the set A∪ (A×{e}),
let A[−] be the set {e} × (A ∪ {e}) , and let A[±] be the set A[+] ∪A[−].

In what follows, we require that the algebras A we work with, are such that

for all a there is at least one b for which ¬Ab = a. This, admittedly, sets a

limitation on the generality of the logics and the semantics that we are capable

of encompassing with the results below—something we embrace, with the hope

of later generalizing this further in future work.

Definition 9. Let A be an algebra of type L with universe A, and let the set

A[±] be as described above. The operators π0 and π1 work as follows. For

a ∈ A, we have π0(a) = a and π1(a) = ¬Aa. For a = 〈x, y〉 ∈ A[±] \A, we have

π0(a) = x and π1(a) = y. Additionally, for a ∈ A we let π2 be the operator such

that π2(a) = b where ¬Ab = a. In case there are b1 6= b2 such that for some a,

¬Ab1 = ¬Ab2 = a, we allow π2(a) to choose indistinctly between them.

Definition 10. Let A be an algebra of type L with universe A, and let A[e]

be its infectious extension. Then, its refined infectious extension A[±] is the

algebra of type L with universe A[±] defined such that:

¬A[±]a =

〈π1(a), π0(a)〉 if a ∈ A[±] \A

¬Aa otherwise

and for all n-ary operations ¶A[±]:

¶A[±]
(a1, . . . , an) =

〈¶A[e](π0(a1), . . . , π0(an)),¬¶A[e](π1(a1), . . . , π1(an))〉 if some ai ∈ A[±] \ A

¶A(a1, . . . , an) otherwise

Definition 11. Let M = 〈A, D〉 be an L-matrix, its truth-preserving refined

infectious extension is the matrixM[±] = 〈A[±], D[+]〉, and its meaningfulness-

preserving refined infectious extension is the matrix M∗[±] = 〈A[±], A[+]〉.
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This nomenclature will be discussed afterward, but for now, and with these

tools at hand, we can describe the semantics for Lpr± in case it has, or hasn’t

a single characteristic logical matrix.

Lemma 6. Given a M[±]-valuation v, if we have that e /∈ π0(v(V ar+(ϕ)))

and also that e /∈ π1(v(V ar−(ϕ))), then for any M[±]-valuation v′ such that

π0(v(V ar+(ϕ))) = π0(v′(V ar+(ϕ))) and π1(v(V ar−(ϕ))) = π1(v′(V ar−(ϕ))),

we have that π0(v(ϕ)) = π0(v′(ϕ)).

Proof. By induction on the complexity of ϕ.

Theorem 7. Let M = 〈A, D〉 be an L-matrix and let L be a logic such that

`L = �M. If Lpr± has the cancellation property, then `Lpr± = �M[±].

Proof. Suppose Lpr± has the cancellation property. We show that `Lpr± =

�M[±] by first proving the left-to-right inclusion of this equality, followed by the

corresponding right-to-left inclusion.

From left to right: by contraposition, assume Γ 2M[±] ϕ. Then, there is

a M[±]-valuation v such that v(Γ) ⊆ D[+] but v(ϕ) /∈ D[+]. Now, either (i)

v(Γ) ⊆ D or (ii) v(γ) ∈ D[+] \ D for some γ ∈ Γ. In case (i), if v(ϕ) ∈ A,

then v is a M-valuation, whence Γ 0L ϕ and thus Γ 0Lpr± ϕ. If, on the other

hand, v(ϕ) /∈ A, we know that either π0(v(ϕ)) = e, or π1(v(ϕ)) = e. Be that

as it may, this witnesses the fact that V ar(ϕ) * V ar(Γ), whence Γ 0Lpr± ϕ.

Now, in case (ii), we know that π0(v(Γ)) ⊆ D, and that either π0(v(ϕ)) = e,

or π0(v(ϕ)) 6= e. If the former, then this witnesses the fact that V ar+(ϕ) *
V ar+(Γ) or V ar−(ϕ) * V ar−(Γ), whence Γ 0Lpr± ϕ. If the latter, then consider

a M[±]-valuation v′ such that:

v′(p) =


π0(v(p)) if v(p) ∈ A[±] \A and p ∈ V ar+(Γ) ∪ V ar+(ϕ)

π2(π1(v(p))) if v(p) ∈ A[±] \A and p ∈ V ar−(Γ) ∪ V ar−(ϕ)

v(p) otherwise

Appealing to Lemma 6, by induction on the complexity of the formula, it can

be shown that π0(v(γ)) = π0(v′(γ)) for all γ ∈ Γ and that π0(v(ϕ)) = π0(v′(ϕ)).

But v′ restricted to Γ and ϕ is aM-valuation witnessing Γ 2M ϕ, whence Γ 0L ϕ

and thus Γ 0Lpr± ϕ.

From right to left: by contraposition, assume that Γ 0Lpr± ϕ. Then, either

(i) Γ 0L ϕ, or (ii) V ar+(ϕ) * V ar+(Γ) or V ar−(ϕ) * V ar−(Γ). In case (i),
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we know there is a M-valuation v witnessing this fact such that v(Γ) ⊆ D

and v(ϕ) /∈ D. But this is also a M[±]-valuation, whence Γ 2M[±] ϕ. In

case (ii), then there is a propositional variable p ∈ V ar+(ϕ) \ V ar+(Γ), or

p ∈ V ar−(ϕ) \ V ar−(Γ). Now, since L has no anti-theorems, consider a M-

valuation v such that v(Γ) ⊆ D and then build the followingM[±]-valuation v′

based on it:

v′(p) =



〈e, e〉 if p ∈ V ar+(ϕ) \ V ar+(Γ) and p ∈ V ar−(ϕ) \ V ar−(Γ)

〈e, π1(v(p))〉 if p ∈ V ar+(ϕ) \ V ar+(Γ) and p /∈ V ar−(ϕ) \ V ar−(Γ)

〈π0(v(p)), e〉 if p /∈ V ar+(ϕ) \ V ar+(Γ) and p ∈ V ar−(ϕ) \ V ar−(Γ)

v(p) otherwise

Appealing to Lemma 6, by induction on the complexity of the formula, it

can be shown that π0(v(γ)) = π0(v′(γ)) for all γ ∈ Γ, whence v′(Γ) ⊆ D[+].

On the other hand, the above allows to show that π0(v′(ϕ)) = e, from which we

can infer that v′(ϕ) /∈ D[+]. Therefore, Γ 2M[±] ϕ.

Theorem 8. Let M = 〈A, D〉 be an L-matrix and let L be a logic such that

`L = �M. Then `Lpr± = �M[±], where M[±] = {M[±],M∗[±]}.

Proof. Suppose, for reductio, that `Lpr± 6= �M[±]. Then there are Γ and ϕ

such that Γ `Lpr± ϕ and Γ 2M[±] ϕ, or Γ 0Lpr± ϕ and Γ �M[±] ϕ. If the

former, then either (a) Γ 2M[±] ϕ, or (b) Γ 2M∗[±] ϕ. In case (a), there is a

M[±]-valuation v, such that v(Γ) ⊆ D[±] and v(ϕ) /∈ D[±]. If v is also a M-

valuation, then Γ 2L ϕ, whence Γ 0Lpr± ϕ. If v is not aM-valuation, then either

(i) π1(v(γ)) = e for some γ ∈ Γ, or (ii) π1(v(ϕ)) = e, or (iii) or π0(v(ϕ)) = e.

In case (iii), we can guarantee to show that either V ar+(ϕ) * V ar+(Γ) or

V ar−(ϕ) * V ar−(Γ), whence Γ 0Lpr± ϕ. In cases (i) and (ii), without loss of

generality, consider a M[±]-valuation v′ such that:

v′(p) =


π0(v(p)) if v(p) ∈ A[±] \A and p ∈ V ar+(Γ) ∪ V ar+(ϕ)

π2(π1(v(p))) if v(p) ∈ A[±] \A and p ∈ V ar−(Γ) ∪ V ar−(ϕ)

v(p) otherwise

Appealing to Lemma 6, by induction on the complexity of the formula, it can

be shown that π0(v(γ)) = π0(v′(γ)) for all γ ∈ Γ and that π0(v(ϕ)) = π0(v′(ϕ)).
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But v′ restricted to Γ and ϕ is aM-valuation witnessing Γ 2M ϕ, whence Γ 0L ϕ

and thus Γ 0Lpr± ϕ. Finally, in case (b) above, there is aM∗[±]-valuation v for

which v(Γ) ⊆ A[+] while v(ϕ) /∈ A[+]. By this, we know that either (i) there

is a propositional variable p ∈ V ar(ϕ) \ V ar(Γ) such that π0(v(p)) = e, or (ii)

there is a propositional variable p ∈ V ar(ϕ) \ V ar(Γ) such that π1(v(p)) = e.

Be that as it may, we arrive at the fact that Γ 0Lpr± ϕ.

Now, if there are Γ and ϕ such that Γ 0Lpr± ϕ and Γ �M[±] ϕ, then either

Γ 0L ϕ or either V ar+(ϕ) * V ar+(Γ) or V ar−(ϕ) * V ar−(Γ). If the former,

then there is a M-valuation v, such that v(Γ) ⊆ D and v(ϕ) /∈ D, and this

implies Γ 2M[±] ϕ. If the latter, then there is a propositional variable p ∈
V ar+(ϕ) \ V ar+(Γ), or p ∈ V ar−(ϕ) \ V ar−(Γ). Now, consider the following

M∗[±]-valuation v, where a ∈ A:

v(p) =



〈e, e〉 if p ∈ V ar+(ϕ) \ V ar+(Γ) and p ∈ V ar−(ϕ) \ V ar−(Γ)

〈e, a〉 if p ∈ V ar+(ϕ) \ V ar+(Γ) and p /∈ V ar−(ϕ) \ V ar−(Γ)

〈a, e〉 if p /∈ V ar+(ϕ) \ V ar+(Γ) and p ∈ V ar−(ϕ) \ V ar−(Γ)

a otherwise

By an easy induction on the logical complexity of the formulas, we can

guarantee that v(Γ) ⊆ A[+] while v(ϕ) /∈ A[+]. This implies Γ 2M∗[±] ϕ and,

thus, Γ 2M[±] ϕ.

Once again, these results do not necessarily illuminate what is going on and

how to understand these notions of logical consequences and how to philosophi-

cally interpret these newly added truth values. To this task, we devote ourselves

in the next section.

3.3 Interpreting the semantics

For the task at hand, we borrow inspiration from the nine-valued semantics for

the pure refined right companion of Efde presented by Ferguson in [10], that is

to say, the (first-degree fragment of the) logic AC by R. B. Angell. In this nine-

valued semantics, we have two entries for the semantic information regarding

a proposition: what the semantic status of this proposition is, and what the

semantic status of its negation is—both regarded as independent matters. In

this context, Ferguson allows for the semantic status of each item to be one of
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three between truth, false, and also meaningless or nonsensical. It’s worth not-

ing, then, that propositions can be either of these three semantic statuses and

their negations can independently be this way, too. In the aforementioned se-

mantics for AC, we, therefore, have nine combinations available, corresponding

to the nine semantic values referred to previously. Motivations for embracing a

semantic division of this kind can perhaps be borrowed from the fact that the

literature sometimes regards meaningless propositions as having nevertheless

meaningful negations—as in saying that “Colorless greens ideas sleep furiously”

is meaningless whereas “It is not the case that colorless greens ideas sleep furi-

ously” is a meaningful and true proposition. Although we do not push forward

this narrative to its full extent, maybe a modification of this motivation calls

to be implemented to grant the reasonableness of having the aforementioned

picture.

In the case of our proposed semantics, however, we will only loosely under-

stand them according to the model of Ferguson. If we look at the carrier set

of the refined infectious extension of a given algebra, we will see that we are

including all the original values alongside new values that have the form of pairs.

Of these, some have original values as their first coordinate and an infectious

value as their second coordinate, some have an infectious value as their first co-

ordinate and an original value as their second coordinate, and one of them is the

infectious value of the resulting algebra—represented by the pair counting with

the element e as both its first and second coordinate. We may, in light of the

reflections on Ferguson’s semantics from before, understand all these elements

as representing, on the one hand, propositions that have original values, and

therefore the negations would have the corresponding value assigned to them

in the original semantics, or on the other hand, as representing propositions

that have original values but their negations are nevertheless nonsensical—or,

alternatively, the other way around. Finally, we could also conceive the case of

a completely nonsensical proposition, referring with this to a proposition that

is nonsensical and also has a nonsensical negation.

In this context, if Lpr± has a single characteristic matrix, we can interpret

M[±] as representing the notion of truth preservation while also allowing for

nonsensical propositions to be around, although this time in a very different

manner than what we allowed for in the case of M[e]. Notably, since we allow

for propositions to receive all sorts of truth values while their negations are

nonsensical, and the other way around, we may also account for the preservation

of truth in this refined case. This is what is represented by the membership in
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the set D[+].

If, on the other hand, Lpr± does not have a single characteristic matrix, we

needed to understand its notion of logical consequence as the conjugation of

two different things, as dictated by the matrix class M[±]. First, the previously

discussed requirement of truth preservation while meaningless propositions are

around, with all the subtleties of the present case. Secondly, a new and refined

form of meaningfulness preservation from premises to conclusions. This new

phenomenon, represented by the logical consequence in the matrix M∗[±], ac-

counts for the fact that propositions can be meaningful in the context of refined

infectious extensions even though their negations may not be so. This situation

is depicted by membership in the set A[+].

4 Epilogue: signed infectious extensions

In order to close this article, let us point to one interesting connection to a recent

piece of literature. In his recent work [20], Randriamahazaka defines what he

calls signed infectious extensions of a given algebra, with the help of which he

shows it is possible to analyze certain variable inclusion systems related to pure

companions. Thus, let us first provide his definitions in order to later highlight

the connection to our previously discussed notion of refined infectious extension.

Definition 12. Let the signed infectious algebra be the structure counting with

elements {÷,+,−,×} and the following two operations:

ι
÷ ÷
+ −
− +
× ×

t ÷ + − ×
÷ ÷ + − ×
+ + + × ×
− − × − ×
× × × × ×

Furthermore, let
⊔
{a1, . . . , an} stand in for a1t· · ·tan and, when {a1, . . . , an} =

{a} let t{a} = a.

Definition 13. Let A be an algebra of type L with universe A, its signed infec-

tious extension is the algebra As of type L with universe A∪{+,−,×} defined

such that for all n-ary operations ¶As

except for negation: ¶As

(a1, . . . , an) =

¶A(a1, . . . , an) if {a1, . . . , an} ⊆ A, and ¶As

(a1, . . . , an) = (
⊔
{a1, . . . , an}) ∩

{+,−,×} otherwise, where
⊔

is the operation of the signed infectious algebra.

Negation, in turn, behaves as in A for elements in A and as ι for +,−,×.
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In this respect, it is fairly simple to observe that the elements of the signed

infectious algebra can be seen to represent certain collections of elements of the

refined infectious extension A[±] of a given algebra A. To wit, the element ÷
serves as a surrogate for the elements in the original carrier set A, the element

+ as a surrogate for the elements in the set A[±] that are not in A which have

an element of A as a first coordinate, whereas the element − stands in for the

elements in the set A[±] that are not in A which have an element of A as a

second coordinate and, finally, the element × represents the infectious value

〈e, e〉. All this can be verified by noting that there is a homomorphism from

A[±] to As respecting these mappings—something we leave to the reader as an

exercise.

These observations amount to establishing a different characterization of

the pure refined right variable inclusion companion of a logic, now in terms

of signed infectious extensions of logical matrices instead of refined infectious

extensions of logical matrices, like we did in the previous sections. In light

of the embedding mentioned in the paragraph before, it should come as no

surprise that we can prove the results below, as they state in a different fashion

that logical consequence for a pure refined companion can be equated to the

concurrent phenomena of truth preservation and meaningfulness preservation

from premises to conclusion.

Definition 14. LetM = 〈A, D〉 be an L-matrix, its signed infectious extension

is the matrix Ms = 〈As, A ∪ {+}〉.

Theorem 9. Let M = 〈A, D〉 be an L-matrix and let L be a logic without anti-

theorems such that `L = �M. Then, regardless of Lpr± having the cancellation

property, we have that `Lpr± = �Ms—where Ms = {M,Ms}.

Proof. Suppose, for reductio, that `Lpr± 6= �Ms . Then there are Γ and ϕ such

that Γ `Lpr± ϕ and Γ 2Ms ϕ, or Γ 0Lpr± ϕ and Γ �Ms ϕ. If the former, then

either (a) Γ 2M ϕ, or (b) Γ 2Ms ϕ. In case (a), there is a M-valuation v,

such that v(Γ) ⊆ D and v(ϕ) /∈ D. Then Γ 0L ϕ, whence Γ 0Lpr± ϕ. In

case (b), there is a Ms-valuation v for which v(Γ) ⊆ A ∪ {+} while v(ϕ) ∈
{−,×}. By this, we know that either (i) there is a propositional variable x ∈
V ar(ϕ) \ V ar(Γ) such that v(x) = ×, or (ii) there is a propositional variable

x ∈ V ar+(ϕ) \ V ar+(Γ) such that v(x) = −, or (iii) there is a propositional

variable x ∈ V ar−(ϕ) \ V ar−(Γ) such that v(x) = +. Be that as it may, we

arrive at the fact that Γ 0Lpr± ϕ.
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Now, if there are Γ and ϕ such that Γ 0Lpr± ϕ and Γ �Ms ϕ, then either

Γ 0L ϕ or either V ar+(ϕ) * V ar+(Γ) or V ar−(ϕ) * V ar−(Γ). If the former,

then there is a M-valuation v, such that v(Γ) ⊆ D and v(ϕ) /∈ D, and this

implies Γ 2Ms ϕ. If the latter, then there is a propositional variable x ∈ V ar+(ϕ)

and x /∈ V ar+(Γ), or x ∈ V ar−(ϕ) and x /∈ V ar−(Γ). Now, consider the

following Ms-valuation v:

v(x) =



− if x ∈ V ar+(ϕ) \ V ar+(Γ) and x /∈ V ar−(ϕ) \ V ar−(Γ)

+ if x /∈ V ar+(ϕ) \ V ar+(Γ) and x ∈ V ar−(ϕ) \ V ar−(Γ)

× if x ∈ V ar+(ϕ) \ V ar+(Γ) and x ∈ V ar−(ϕ) \ V ar−(Γ)

a ∈ A otherwise

By an easy induction on the logical complexity of the formulas, we can

guarantee that v(Γ) ⊆ A ∪ {+} while v(ϕ) /∈ A ∪ {+}. This implies Γ 2Ms ϕ

and, thus, Γ 2Ms ϕ.
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