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ABSTRACT 

ESTIMATING NATURAL BACKGROUND WATER QUALITY  

IN CALIFORNIA RIVERS 

by 

Emma A. Debasitis 

Master of Science in Environmental Science 

California State University Monterey Bay, 2022 
 

 

Water chemistry affects organisms at all levels of the food web in aquatic habitats. Water quality 

alteration from natural conditions can seriously degrade habitat quality, human health, and the survival 

rate of native species. Estimating background (i.e., historic or baseline) water quality of impaired streams 

can be difficult due to the effects of anthropogenic involvement in aquatic systems over decades to 

centuries. The ability to model natural background water quality levels would aid in overall stream 

management. The natural background predictions provided by a model would allow for increased 

understanding of stream condition and would allow us to determine the amount of divergence between 

current stream conditions and natural background.  

To better predict baseline water chemistry levels, we created random forest models for ionic 

concentrations and integrated water quality measures of ionic balance, including chloride, calcium, 

magnesium, sodium, sulfate, alkalinity, hardness, total dissolved solids, and specific conductivity. Water 

quality measurements from minimally disturbed reference sites across the United States were used as 

response variables for model training. We developed these models using both static (e.g., geology, soils, 

etc.) and dynamic (i.e., monthly evapotranspiration, precipitation, and temperature) EPA StreamCat and 

PRISM predictor variables. The models explained 66% to 98% of the variation in samples from 

California streams and 55% to 85% of the variation across the US. The top predictors across models 

include yearly temperature averages, yearly precipitation averages, percent lithological sulfur, and base 

flow index. The baseline water chemistry estimates produced by these models will help California 

establish site-specific water quality standards and manage habitat in various situations, including urban 

development projects, habitat restoration, and endangered species monitoring.  

 

Research impact statement:  

 

Natural background water chemistry is needed to understand the underlying processes of aquatic 

ecosystems. These predictions will aid in helping set water quality thresholds for aquatic species survival. 
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Introduction 

 

Water quality has significant potential to impact aquatic species. Fish, due to their position in the 

food chain and longer lifespans, are sensitive to changes in water quality (Amizi and Rocher 

2016). For example, an Egyptian study found that the occurrence of fish organ lesions and blood 

parameters were increased in populations present in the El-Rahway river due to increased 

agricultural, industrial, and domestic waste dumping in the region (Gaber et al. 2013). 

Invertebrates are also used as water quality indicators through community condition metrics such 

as the California Stream Condition Index, CSCI, that looks at how invertebrate community 

composition is affected by stream conditions (Rhen et al 2015).  

The Environmental Protection Agency's (EPA) water quality standards are generally determined 

by human health standards and aquatic species impacts. For example, California’s water quality 

standards include maintaining balanced ecological communities where the communities are 

diverse, self-sustaining, food for all chain components is present, and the area is not dominated 

by tolerant species (Santa Ana Water Quality Objectives 1995). In the Santa Ana region of 

California, there are several protected aquatic species which may be impacted by upstream 

urbanization and its effect on water quality. The effect of changes in water quality parameters 

and ionic concentrations on these species has not been well studied. The habitat needs of these 

native species, such as the Arroyo Chub, Santa Ana Sucker, and the California Newt, must be 

considered when regional habitat and water resource managers make decisions regarding crucial 

habitat in and around the Santa Ana Basin.  

Changes in physiological stressors may lead to species adaptation, migration, or decline. For 

example, increased salinity concentration led to a significant decrease in the western pond turtle 

body mass and increased energy output into osmoregulation (Agha et al. 2019). Similarly, the 



13 

Santa Ana Speckled Dace, considered at a significantly increased risk of extinction within the 

next 50 years, is often located in areas with increased fires, debris flows, urban populations, and 

invasive species (CA Dept. of Fish and Wildlife March 10, 2022). In many cases, researchers 

only focused on dissolved oxygen and the physical properties needed to make a habitat suitable 

for native species. They often neglected the effects other water chemistry components had on 

survivability and reproduction (Thompson et al. 2009). Thompson et al. (2009) did mention, 

however, that water chemistry had significant potential to influence the aquatic species.  

To gain a better understanding of how the alteration of water chemistry affects aquatic species, 

natural background levels need to be estimated to determine how far current stream conditions 

have shifted from natural levels. The variability of water chemistry suggests that watershed 

topographic, geological, and climatic variables need to be considered when predicting natural 

background water quality (Olson and Hawkins 2012). Once we can determine the amount of 

alteration in the current water chemistry, we can quantify the ecological effects caused by the 

alteration. Human impacts may also lead to ecosystem degradation both locally and downstream 

due to the connectivity of stream systems. The addition of dams and urban and industrial areas 

has changed the natural flow regime in downstream channels and has the potential to change 

water quality levels throughout the stream systems (Poff et al. 1997). Upstream influences such 

as agriculture, impervious surfaces, and population density influence how chemical processes 

occur in an aquatic system. 

Increases in temperature often lead to evaporation and increased concentrations of solutes in 

stream systems by altering the amount of freshwater. These altered distributions include changes 

to the amounts and timing of evaporation, precipitation and water vapor transport (Carpenter et 

al. 1992). The changes in the global climate are affecting the timing of snowmelt runoff as well 
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as the volume and distribution of snowpacks (Manning et al. 2013). While a precipitation 

increase generally leads to an overall dilution effect, increasing concentrations may be noted due 

to unique local factors, such as the lithological makeup of the surrounding area. Areas with large 

amounts of limestone, for example, may be expected to have greater natural calcium 

concentrations than an area surrounded by granite. Peters (1984) found that annual precipitation 

and rock type were the most important factors affecting the yield of ions in the basins studied.  

Static predictors (e.g., geology and soil composition) and dynamic predictors (e.g., 

evapotranspiration and precipitation) are important components when trying to analyze the main 

variables affecting water chemistry.  Olson and Cormier (2019) used both static and dynamic 

predictors in their previous study modeling specific conductivity. Their results have been used by 

various regional managers to analyze shifts in specific conductivity away from natural levels and 

they have provided data for these agencies to create restoration plans (J. Olson, personal 

communication, 21 July 2022).  

Estimates of natural background water quality are necessary in order to understand where human 

alterations of water quality parameters have occurred. Natural background water quality levels 

are not well known, and the variability of natural levels depends greatly on the specific geologic 

and climatic components of individual stream systems (Olson and Cormier 2019). For example, 

a natural background water quality model of specific conductivity was used by Vander Laan et 

al. (2013) to estimate first the divergence from natural background due to human activity and 

then estimate the impact of this divergence on biological conditions. These unknowns make it 

difficult for land managers to understand the impact human sources are having on stream 

systems, since there isn't a baseline value for comparison.  
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We modeled natural temporal and spatial variation to predict variation in major ion 

concentrations and integrated measures for streams throughout California, allowing management 

stakeholders to better understand California's natural water quality parameters and assist 

management agencies with their conservation and restoration efforts. We modeled five ionic 

parameters and four integrated parameters using natural environment factors that influence 

natural variation in water quality (Table 1). The modeled estimates of these parameters allow us 

to determine the amount of alteration from natural levels by comparing them to current measured 

concentrations throughout California. These comparisons and natural estimates can be used to 

establish water quality thresholds for aquatic life and to restore habitat health. Conservation 

agencies, such as California Department of Fish and Wildlife, may also use these models to 

determine habitats suitable for the expansion of endangered species and any potential water 

quality issues needing to be addressed within the expanded range. We then evaluated the 

predictive metrics to determine what environmental factors drive natural background levels. This 

research will improve management practices and aid in targeting areas in the greatest need of 

restoration efforts, allowing revenue resources, such as the California Department of Fish and 

Wildlife (CDFW) Service Based Budget (CDFW SSB 2021), to be used in the most cost-

effective ways, saving stakeholders and the taxpayers' financial resources.       
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Methods 

Data Acquisition 

We modeled how California's natural water quality varies among individual stream segments 

over time, using water quality data from the Contiguous United States obtained from 

bioassessment databases (Figures 1 & 2, Table 2). We used data from the contiguous United 

States to aid in the development of our water quality models for a better representation of the 

range of environments across spatially heterogeneous California. These databases included the 

California Environmental Data Exchange Network (CEDEN, ceden.waterboards.ca.gov/), the 

National Rivers and Streams Assessment (NRSA, https://www.epa.gov/national-aquatic-

resource-surveys/nrsa), the National Water-Quality Assessment Project (NAQWA, 

https://www.usgs.gov/mission-areas/water-resources/science/national-water-quality-assessment-

nawqa), and the Storm Monitoring Coalition (SMC, smc.sccwrp.org, Olson & Cormier 2019). From 

these five sources we extracted measurements of nine water quality parameters (Table 1). This 

provided data from 8598 potentially reference stream segments, 11% of which were in California 

(Table 2). We withheld 20% of sites at both the national and California scale for model 

validation following Olson & Cormier (2019).  

Table 1: Ionic Strength and Integrated measure parameter. All parameters were measured in mg/L, except Specific 
Conductivity which was measured in µS/cm.  
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Figure 1: Non-reference and reference calibration and validation site data at the national scale. 

 

Figure 2: Non-reference and reference calibration and validation site data at the California scale. 
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Table 2: Data sources and number of sites available for model development. *NWIS and Olson are 0 because they 
were duplicates of CEDEN datapoints 

Program Extent 

# of Unique Stream 

Segments 

# Reference sites in 

California 

# Reference sites 

Nationwide 

NAQWA/NWIS Nationwide 112 0 1378 

NRSA Nationwide 4166 23 457 

SWAMP/CEDEN California 2433 976 1517 

Olson & Cormier 

(2019) Nationwide 1877 0 6864 

 

Response and Predictor Data 

In order to associate sampling locations with geospatial data used as predictors in our water 

quality models, we matched each site to a catchment in the National Hydrography Dataset Plus 

(NHD+; (McKay et al. 2012). Sites were matched by overlaying our sample locations with 

NHD+ catchments to determine the catchment’s unique identifier (FEATUREID). Sites could 

then be matched with the corresponding unique identifier in the StreamCat dataset (COMID; 

(Hill et al. 2016)) to obtain additional geospatial data. Sites that were unable to be matched to a 

catchment were excluded from further analysis.  

Once matched to a catchment, we extracted geospatial data from the StreamCat dataset (Hill et 

al. 2016). We acquired two kinds of geospatial data from StreamCat: 1) metrics that characterize 

natural gradients that could influence ionic concentrations (predictors) and 2) metrics that 

characterize human disturbance (human activities). Natural gradient metrics were used as 

predictors in our models, and human disturbance metrics were used to identify minimally 

disturbed reference sites. All StreamCat variables evaluated in this study are presented in 

Appendix E. Additionally, we determined the Omernik Level 3 ecoregion (Omernik and Griffith 

2014) of each site based on its location (Appendix D). StreamCat defines a catchment as an area 
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that drains directly to an NHD stream segment and defines a watershed as a set of connected 

catchments that flow to a focal point (Hill et al 2016). 

Table 3:Selected StreamCat variables grouped by category - Abbreviations are listing in parentheses. For metric 
abbreviations, Ws indicates watershed-scale calculations, and Cat indicates catchment-scale calculations. A 
complete list is provided in Appendix E. 

Category Selected metrics 

Predictors  

Lithology 

Aluminum oxide content (Al203Ws), Sulfur content (SWs), Lithological ferric oxide 

(Fe2O3Ws), Silicic residual (PctSilicicWs; PctSilicicCat), Sodium oxide (Na2OWs), 

lithological hydraulic conductivity (HydrlCondWs) 

Groundwater Groundwater discharge into streams in catchment ratio (BFICat) 

Soil Soil erodibility, soil permeability 

Precipitation 3-month, 6-month, and 1 year mean precipitation (PrecipWs; PrecipCat) 

Temperature 

3-month, 6-month, and 1 year maximum temperature (TmaxWs; TmaxCat); 3 month, 6-

month, and 1 year mean temperature (TmeanWs; TmeanCat) 

Landcover 
*not an important metric 

in any models 

Evergreen forest landcover (PctConif2016Cat; PctConif2016Ws), Mixed deciduous/evergreen 

forest cover (PctMxFst2016Ws) 

Topography Composite topographic index (WetIndexWs), Catchment elevation (ElevCat) 

Human activity  

Land use 

Crop land use, Hay land use, Developed high, mid, and low intensity land use, Developed 

open-space land use, Density of road-stream intersections, Density of roads 

Reservoirs Natural and possible volume 

Dams Dam density 

Canals Canal density 

Mining Mine density 

 

Water quality varies over time depending on factors such as temperature, precipitation and 

evapotranspiration. In order to incorporate this variability in our models, we created a dynamic 

component, following Olson & Cormier (2019), in addition to the spatial analysis. The dynamic 

component involved matching the sample dates to the corresponding temporal values regarding: 

mean and maximum temperature, mean and maximum evapotranspiration, and minimum, mean, 

and maximum precipitation.  Values for these dynamic components were calculated for the 
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month the sample was collected, one month prior, the average over the 3 months prior, the 

average over the 6 months prior, and finally the average over the 12 months prior. This added 

dynamic component allowed for the analysis of temporal variables over time and spatial scales 

(Table 4). 

We took steps to eliminate sample bias and duplication. We removed duplicate site observations 

sampled during the same month and in the same stream catchment. The retained sample was 

selected at random to prevent a bias caused by over-representing sites that were repeatedly 

sampled. Sites with values below the method detection limit were replaced with a value of zero 

since minimum recording limits were not provided by all databases.  

Our final dataset contained static predictors, dynamic predictors, and human influence factors. 

Static predictors included factors such as geology, soils, and landcover, while the dynamic 

predictors included factors such as precipitation, evapotranspiration, and temperature at each 

segment over time. The human impact predictors were dam and canal presence, reservoir 

presence, land use, and mining.  

Table 4: PRISM and StreamCat variables used to create the spatial dynamic model. 

Dynamic parameter Months from sample date 

Evapotranspiration 0,1,2,3,6, and 12 

Temperature 0,1,2,3,6, and 12 

Precipitation 0,1,2,3,6, and 12 

 

Screening reference sites 

We used StreamCat data to identify reference sites minimally affected by human activity, 

following the procedure in Ode et al. (2016). Any site that failed one or more of the thresholds in 
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Table 5 was not considered reference. Once screened, sites with exceptionally high ionic 

parameter values were further evaluated in Google Earth. This screen often provided evidence of 

human impact or natural, but unusual, sources of ions (e.g., hot springs or evaporite deposits) not 

detected in the initial reference screening. Disturbances included tidal influence, cattle grazing, 

industrial complexes, and excessive erosion in an area. If evidence of a disturbance was found, 

the site was no longer considered reference and was removed. 

Table 5:Criteria used to identify reference sites based on Ode et al. (2016) 

 

Reference sites for the United States and California were identified for all parameters (Table 6). 

Large representative datasets were assembled for all analytes from multiple data sources (Table 

2). We used nationwide data to ensure we were encompassing the broad diversity of California’s 

geology and topography.  Given our large datasets, encompassing nationwide data for model 

training, we are more likely to represent a large proportion of the environmental characteristics 

found in streams in California.  
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Model training 

Once we established a reference dataset, we developed random forest models to predict ionic 

concentrations of reference sites based on natural landscape-level factors. Models were built 

using R software (R-Core-Team 2020) and the 'randomForest' (Liaw and Wiener 2002) and 

'caret' (Kuhn 2008) packages. 

To train our models, we used a subset of the reference sites to identify the most important 

predictors. We then validated the model using the withheld sites.  To create these reference 

datasets, we subset the reference dataset into calibration (80%) and validation (20%) datasets 

(Figures 1, 2, & Appendix C). The subsets were stratified by the eighty-five Level 3 Ecoregions, 

ensuring that major ecoregions were equally represented in the calibration and validation data 

sets. Next, we built random forest models for each parameter using the calibration data to train 

the model. Each model was initially run with all predictors present (Supplement 1). Multiple 

model selection techniques were attempted, including the Variable Selection Using Random 

Forest (VSURF) package, an RFE (recursive feature elimination) approach, and variable removal 

using variable importance. Due to the extensive processing power demands associated with the 

VSURF and RFE approaches, we performed a preliminary variable selection using variable 

removal by variable importance: The least-important variables were removed from the models, 

the new models were calibrated, determining if the overall variance explained improved. These 

models were created by first removing all but the top fifty predictor variables and then removing 

the five least important variables in each subsequent model until we obtained the greatest percent 

variable explained. An evaluation of the stability of variable selection using this method was 

completed by Fox et al. (2017) determining that the "out-of-bag" (OOB) performance remained 

steady until minimum variables remained. A sudden increase in variable importance explained 
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occurred when only the most important variables remained, then significantly decreased as too 

many variables were removed.  

Model performance 

We assessed model performance by looking at the accuracy and precision of our modeled results. 

To determine the accuracy and precision values, we used pseudo-R2, root mean squared error 

(RMSE), and out-of-bag predictions for each random-forest model. Predicted values from the 

random forest models were compared to observed values in the calibration and validation 

reference data sets. Out-of-bag predictions, generated when random forest created a subset of 

trees withholding the sites in question, were used to assess calibration performance. This 

validation approach allowed us to use the OOB predictions to measure model performance 

independent of the sample data used to train the model. Linear regressions comparing observed 

to expected values were calculated. Model precision was estimated with the regression's R2 

value; larger values indicated better precision. Model accuracy was assessed using the slope and 

intercept of the regression; intercepts close to zero indicated higher accuracy, and slopes close to 

1 indicated that model performance is consistently accurate across a range of conditions. These 

model performance parameters were summarized for the entire contiguous United States. Model 

performance was also assessed for California sites alone following this procedure.  

Model performance was also evaluated for spatial bias by plotting model residuals on a map, 

depicting any geographic patterns in the model errors. The residuals were calculated by 

subtracting the predicted values from the sites' observed values. If the areas with insufficient 

predictive power were all located in similar geographic regions, that indicates potential 
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geographic bias in our model. If the sites with insufficient predictive power were equally spread 

throughout geographic locations, our model had less likelihood of geographical bias. 

Partial Dependence Plot Analysis 

In order to understand why environmental characteristics of a stream’s surroundings cause 

different analytic concentrations in varying stream systems, we used partial dependence plots 

(PDP). These plots interpret correlation relationships between our response variables and 

predictor variables using the PDP package in R (Greenwell BM 2017). The graphical results from a 

PDP analysis show how the response variable responds to variation in a single predictor variable 

while holding all others constant. We used a PDP analysis to determine if the presence of the 

individual analytes were positively or negatively correlated with the individual predictor 

variables. 

Mapping Water Quality Natural Background and Alteration 

In order to obtain natural background estimates for California streams, we applied our models to 

all stream segments in California. The model application, and map generation of expected 

natural levels, were possible because StreamCat data is available for almost every NHD+ 

segment in California. The symbology was then adjusted to show graduated colors from low to 

high concentrations of each parameter's expected value.  In order to understand the divergence of 

current stream conditions from natural background estimates, we mapped estimated water quality 

alteration from natural conditions as the difference between observations at non-references sites 

and model-estimated natural background. These predictions are available in a GitHub repository 

maintained by the Southern California Coastal Water Research Project 

(https://github.com/SCCWRP/RB8_biointegrity_impacts).  
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Inter- and Intra-Annual Variability in California Predictions 

We mapped both the intra- and inter-annual variation of each analyte in California to examine 

how the spatial patterns in natural background levels vary temporally. We calculated averages 

for each analyte for each season in wet, dry, and normal years. We then compared the average 

values by subtracting dry years from wet years (i.e., inter-annual variation) and dry seasons from 

wet seasons (i.e., intra-annual variation).  

 

Results 

Reference Sites 

Our reference screening provided us enough sites to create the models at a nationwide scale and 

to validate at the California scale. Chloride, sulfate, and most of the integrated measures had 

>400 reference sample points whereas sodium, calcium, magnesium, and TDS all had <300 sites 

within California (Table 6). 
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Table 6: Summary of sample data assembled for modeling. N: number of sample segments 

 

 

Model Performance 

Over half of our models explained more than 80% of the variation in water chemistry (Figures 3 

and 4). In addition, the low RMSE values suggested that there was little error in our models. The 

nationwide sodium model had an r2 value below our 70% threshold. The model does, however, 

explain over half of the variation and is still likely a useful model. The models performed very 

well when validated at the California scale, with validation r2 values above 70% for all analytes 

(Figures 3, 4, & Table 7). The slope values close to 1 showed that the model predictions are 

precise. Since our slopes are close to one, our intercepts are close to zero, and our standard errors 

are low, there is a minimal chance of the models under or overpredicting natural background 

values. 

Partial Dependence Plot Analysis 

The partial dependence plot (PDP) analysis of each model showed that the % Sulfur in the 

watershed, and both the 12-month average max and mean temperatures were associated with an 

increase in analyte concentrations across all models (Appendix B). This PDP analysis also 
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indicated that the 3-, 6-, and 12-month precipitation averages, base flow index, and the % 

Sodium Oxide in the watershed were associated with a decrease in analyte concentrations across 

all models (Appendix B).  

Mapping Modeled Predictions 

 

As seen in Figure 5, alteration was most severe in the Central Valley and Southern California. 

Alkalinity was an exception with a large amount of alteration occurring in the Eastern Sierras. 

Some areas with a large percent change had little shifts in the absolute change, showing that the 

relationship of observed over expected reacts differently than the absolute change of observed 

minus expected, underscoring the value of analyzing changes in water chemistry both ways in 

order to grasp larger patterns in alteration. Overall, the integrated parameters had greater shifts in 

both the percent change and absolute change than the individual ionic parameters. Integrated 

parameters have multiple water chemistry and environmental variables associated with them that 

would likely lead to greater increases from natural background values.  
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Figure 3: Random forest r2 values for all models, the numbers at the end of the bars are the amount of reference 
sites for each model at the national scale. 

 
Figure 4: Random forest root mean squared error for all models. These values show the degree of error in our 
models. Specific Conductivity has greater variation in observed concentrations due to the units of measure being 
µS/cm, leading to a larger RMSE. 
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Table 7:Model performance across all analytes at the Nationwide and California scale. OE r2 values were calculated 
by the regression line created by plotting the data. These values are unique to the scale being analyzed (CA or 

Nationwide). 
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Figure 5: Alteration of water chemistry estimated as the difference in parameter values between model predictions 
(expected) and observations at non-reference sites. Percent change is the ratio of "Observed/Expected". Absolute 
change is "|Observed - Expected|". 

Intra- and Inter-annual Analysis 

This study's results show a difference in natural background water quality depending on 

seasonality and precipitation for most of the analytes modeled, shown by the intra- and inter-

annual maps (Figures 6 & 7). The intra-annual results depict that ionic and integrated 

concentrations will be greater in aquatic systems during the fall and winter months. This pattern 

is likely due to the dilutionary effect of increased water flow in the spring and summer months 
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due to snow melt in higher elevations. The inter-annual results show that dry years will have 

higher concentrations of ions throughout the year compared to wet years. These results follow 

the general pattern of ionic concentration and dilution with an increase or decrease in 

precipitation. In years with greater rainfall, there is more water flowing through the aquatic 

systems creating a dilutionary effect. While years with less rainfall have a greater evaporative 

effect and this leads to an increase in aquatic ionic concentrations.  

 

Figure 6: Intra-annual differences across all analytes, displayed by percent change. 
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Figure 7: Inter-annual differences across all analytes, displayed by percent change. 

 

Discussion 

Our models performed well, explaining more than 70 percent of the variation in each water 

quality parameter across California. Since we created multiple models, including almost all 

major ions and integrated measures, we could look at water quality in greater detail than previous 

studies. The Olson and Cormier (2019) paper provided a national view of how specific 

conductivity reacts with differing temporal and spatial scales, but its training dataset had fewer 
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California sites than ours did, and its performance within California was not assessed. The use of 

StreamCat allowed us to create predictions for each stream segment in California with associated 

StreamCat data. This provided us with a more detailed view of how analyte concentrations 

interact and vary over space and time. This study demonstrates that national data sets can be used 

to develop models with high levels of performance suitable for state or regional applications. 

Our models' spatial and temporal sensitivity will aid in adjusting aquatic life and water quality 

thresholds for current climate patterns and will allow future water quality responses to climatic 

shifts to be estimated. Our model predictions have the potential to help us understand the effects 

of future climates on California streams. For example, these models can be used to estimate the 

future shifts in natural background water quality in California streams due to climate change, 

similar to work done by Olson and Cormier (2019). In addition to estimating future climatic 

shifts, our model predictions may help researchers study the effects of aquatic stress, metabolic 

rates, and oxygen demand by providing natural background levels to calculate the amount of 

divergence and its impact on aquatic species. 

The seasonal prediction capabilities of our models provide land managers and researchers with a way of 

identifying streams suffering from freshwater salinization syndrome (FSS). Kaushal et al. (2018) state 

that freshwater salinization syndrome has many far-reaching effects regarding ground and surface water, 

the quality of drinking water, and ecosystem functions. Given the seasonal predictions our models 

can make, we suggest water quality monitoring should occur multiple times a year and consider 

the sampling year's precipitation levels. These patterns will help researchers and managers target 

areas that need the greatest conservation and restoration efforts to decrease the occurrence of 

freshwater salinization syndrome and the metabolic stress on native aquatic organisms.  
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Our model predictions have the potential to be a valuable tool for ensuring that water quality 

targets are both protective and achievable. To illustrate how natural background levels can 

inform the development of water quality objectives, we plotted current objective values and our 

predictions (Fig. 8). The plot suggests that the current Basin Plan may be under protecting many 

streams, such as the Santa Ana River Reach 3, while over protecting others similar to the San 

Jacinto Reach 6 (for SO4 and TDS, SWRCB Resolution No. R8-2004-0001). The predictions 

created by our models encompass all seasons and a wide range of precipitation levels, providing 

an in-depth analysis of what natural background analytic levels should be in California streams 

that managers can use to set thresholds appropriate for each stream and season.  
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Figure 8:Comparison of the Santa Ana Basin Plan objective values to our model estimations at 9 streams in the 
Santa Ana area. 

Natural background water quality predictions can provide much needed insight regarding 

alteration from natural levels. Alteration can be calculated by comparing observations to natural 

background predictions. These alteration calculations can then be modeled as response to human 

activities, allowing the relative impact of different activities to be assessed. The use of models      

allows for a broader understanding of potential drivers and the predictions also allows for 

individual stream comparisons.   
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APPENDIX A 

MODEL PERFORMANCE PLOTS 
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APPENDIX B 

PARTIAL DEPENDENCE PLOTS ANALYSIS 
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APPENDIX C 

CALIBRATION AND VALIDATION ANALYTE MAPS AT THE 

CALIFORNIA SCALE 
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APPENDIX D 

NUMBER OF REFERENCE SITES IN EACH ECOREGION BY ANALYTE 
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APPENDIX E 

STREAMCAT AND PRISM VARIABLES EVALUATED IN MODEL CREATION AND 

ANALYSIS 

 

Description Variable name Unit 

Mean soil erodibility of soils within catchment on 

agricultural land 
AgKffactCat Unitless 
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Mean soil erodibility of soils within watershed on 

agricultural land 
AgKffactWs Unitless 

Mean % aluminum oxide within catchment Al2O3Cat % 

Mean % aluminum oxide within watershed Al2O3Ws % 

Ground water discharge into streams in catchment 

ratio 
BFICat % 

Ground water discharge into streams in watershed 

ratio 
BFIWs % 

Density of canals, ditches, or pipelines within 

catchment 
CanalDensCat km/km2 

Density of canals, ditches, or pipelines within 

watershed 
CanalDensWs km/km2 

Mean percent Calcium Oxide within catchment CaOCat % 

Mean percent Calcium Oxide within watershed CaOWs % 

Mean percent clay content within catchment ClayCat % 

Mean percent clay content within watershed ClayWs % 

Mean lithological uniaxial compressive strength 

within catchment 
CompStrgthCat MPa 

Mean lithological uniaxial compressive strength 

within watershed 
CompStrgthWs Mpa 

Density of georeferenced dams within catchment DamDensCat #/km2 

Density of georeferenced dams within watershed DamDensWs #/km2 

Total possible volume of all reservoirs in 

catchment 
DamNIDStorCat m3/km2 

Total possible volume of all reservoirs in 

watershed 
DamNIDStorWs m3/km2 

Normal volume of all reservoirs in catchment DamNrmStorCat m3/km2 

Normal volume of all reservoirs in watershed DamNrmStorWs m3/km2 

Mean catchment elevation ElevCat m 

Mean watershed elevation ElevWs m 

Mean lithological ferri oxide in catchment Fe2O3Cat % 

Mean lithological ferric oxide in watershed Fe2O3Ws % 

Mean lithological hydraulic conductivity in 

catchment 
HydrlCondCat um/s 

Mean lithological hydraulic conductivity in 

watershed 
HydrlCondWs um/s 

Mean lithological potassium oxide in catchment K2OCat % 

Mean lithological potassium oxide in watershed K2OWs % 

Mean soil erodibility within catchment KffactCat Unitless 

Mean soil erodibility within watershed KffactWs Unitless 

Mean magnesium oxide in catchment MgOCat % 

Mean magnesium oxide in watershed MgOWs % 

Density of mines in catchment MineDensCat #/km2 

Density of mines in watershed MineDensWs #/km2 

Mean sodium oxide in catchment Na2OCat % 
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Mean sodium oxide in watershed Na2OWs % 

Mean nitrogen in catchment NCat % 

Mean nitrogen in watershed NWs % 

Mean organic matter in catchment OmCat %/weight 

Mean organic matter in watershed OmWs %/weight 

Mean phosphorous oxide in catchment P2O5Cat % 

Mean phosphorous oxide in watershed P2O5Ws % 

Alkaline intrusive volcanic rock in catchment PctAlkIntruVolCat % 

Alkaline intrusive volcanic rock in watershed PctAlkIntruVolWs % 

Alluvium and fine textured coastal sediment in 

catchment 
PctAlluvCoastCat % 

Alluvium and fine textured coastal sediment in 

watershed 
PctAlluvCoastWs % 

Barren land cover in catchment PctBl2016Cat % 

Barren land cover in watershed PctBl2016Ws % 

Carbonate residual material in catchment PctCarbResidCat % 

Carbonate residual material in watershed PctCarbResidWs % 

Coarse coastal zone sediment in catchment PctCoastCrsCat % 

Coarse coastal zone sediment in watershed PctCoastCrsWs % 

Colluvial sediment in catchment PctColluvSedCat % 

Colluvial sediment in watershed PctColluvSedWs % 

Evergreen forest landcover in catchment PctConif2016Cat % 

Evergreen forest landcover in watershed PctConif2016Ws % 

Crop land use in catchment PctCrop2016Cat % 

Crop land use in watershed PctCrop2016Ws % 

Deciduous forest land cover in catchment PctDecid2016Cat % 

Deciduous forest land cover in watershed PctDecid2016Ws % 

Coarse eolian sediment in catchment PctEolCrsCat % 

Coarse eolian sediment in watershed PctEolCrsWs % 

Fine eolian sediment in catchment  PctEolFineCat % 

Fine eolian sediment in waterhsed PctEolFineWs % 

extrusive volcanic rock in catchment PctExtruVolCat % 

extrusive volcanic rock in watershed PctExtruVolWs % 

Coarse textured glacial outwash and glacial lake 

sediment in catchment 
PctGlacLakeCrsCat % 

Coarse textured glacial outwash and glacial lake 

sediment in watershed 
PctGlacLakeCrsWs % 

Fine textured glacial lake sediment in catchment PctGlacLakeFineCat % 

Fine textured glacial lake sediment in watershed PctGlacLakeFineWs % 

Glacial till, clayey in catchment PctGlacTilClayCat % 

Glacial till, clayey in watershed  PctGlacTilClayWs % 

Coarse textured glacial till in catchment PctGlacTilCrsCat % 

Coarse textured glacial till in watershed PctGlacTilCrsWs % 

Loamy glacial till in catchment PctGlacTilLoamCat % 

Loamy glacial till in watershed PctGlacTilLoamWs % 
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Grassland/herbaceous landcover in catchment PctGrs2016Cat % 

Grassland/herbaceous landcover in watershed PctGrs2016Ws % 

Hay land use in catchment PctHay2016Cat % 

Hay land use in watershed PctHay2016Ws % 

Herbaceous wetland cover in catchment PctHbWet2016Cat % 

Herbaceous wetland cover in watershed PctHbWet2016Ws % 

Peat and much hydric soils in catchment PctHydricCat % 

Peat and much hydric soils in watershed PctHydricWs % 

Ice/snow land cover in catchment PctIce2016Cat % 

Ice/snow land cover in watershed PctIce2016Ws % 

Mean impervious surfaces in catchment PctImp2011Cat % 

Mean impervious surfaces in watershed PctImp2011Ws % 

Mixed deciduous/evergreen forest cover in 

catchment 
PctMxFst2016Cat % 

Mixed deciduous/evergreen forest cover in 

watershed 
PctMxFst2016Ws % 

non-carbonate residual material in catchment 
PctNonCarbResidCa

t 
% 

non-carbonate residual material in watershed 
PctNonCarbResidW

s 
% 

Open water land over in catchment PctOw2016Cat % 

Open water land over in watershed PctOw2016Ws % 

Saline like sediment in catchment PctSalLakeCat % 

Saline like sediment in watershed PctSalLakeWs % 

Shrub/scrub land cover in catchment PctShrb2016Cat % 

Shrub/scrub land cover in watershed PctShrb2016Ws % 

Silicic residual material in catchment PctSilicicCat % 

Silicic residual material in watershed PctSilicicWs % 

Developed, high-intensity land use in catchment PctUrbHi2016Cat % 

Developed, high-intensity land use in watershed PctUrbHi2016Ws % 

Developed, low-intensity land use in catchment PctUrbLo2016Cat % 

Developed, low-intensity land use in watershed PctUrbLo2016Ws % 

Developed, medium-intensity land use in 

catchment 
PctUrbMd2016Cat % 

Developed, medium-intensity land use in 

watershed 
PctUrbMd2016Ws % 

Developed, open space land use in catchment PctUrbOp2016Cat % 

Developed, open space land use in watershed PctUrbOp2016Ws % 

Catchment area that is water  PctWaterCat % 

Watershed area that is water PctWaterWs % 

Woody wetland land cover in catchment PctWdWet2016Cat % 

Woody wetland land cover in watershed PctWdWet2016Ws % 

Mean permeability of soils in catchment PermCat cm/hr 

Mean permeability of soils in watershed PermWs cm/hr 

30 year normal mean precipitation in catchment PrecipCat mm 

30 year normal mean precipitation in watershed PrecipWs mm 
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Mean depth to bedrock in catchment RckDepCat cm 

Mean depth to bedrock in watershed RckDepWs cm 

Density of road-stream intersections multiplied by 

the NHD+ slope in catchment 
RdCrsSlpWtdCat 

(Crossings*slope/km2

) 

Density of road-stream intersections multiplied by 

NHD+ slope in watershed 
RdCrsSlpWtdWs 

(Crossings*slope/km2

) 

Density of road-stream intersections in watershed RdCrsWs crossings/km2 

Density of roads in catchment RdDensCat km/km2 

Density of roads in watershed RdDensWs km/km2 

Sand content in catchment SandCat % 

Sand content in watershed SandWs % 

Sulfur content in catchment SCat % 

Silicon dioxide content in catchment SiO2Cat % 

Silicon dioxide content in watershed SiO2Ws % 

Sulfur content in watershed SWs % 

Evapotranspiration from PRISM 

1 and 2 month 

values, and 3-,6-, 

and 12- month 

averages 

֯C 

Preciptiation from PRISM 

1 and 2 month 

values, and 3-,6-, 

and 12- month 

averages 

֯C 

Mean Temperature from PRISM 

1 and 2 month 

values, and 3-,6-, 

and 12- month 

averages 

֯C 

Maximum Temperature from PRISM 

1 and 2 month 

values, and 3-,6-, 

and 12- month 

averages 

֯C 

Mean composite topographic index in catchment WetIndexCat Unitless 

Mean composite topographic index in watershed WetIndexWs Unitless 

Mean seasonal water table depth in catchment WtDepCat cm 

Mean seasonal water table depth in watershed WtDepWs cm 

All variable descriptions and units were obtained 

from EPA StreamCat website 

(https://www.epa.gov/national-aquatic-resource-

surveys/streamcat-metrics-and-definitions) and 

Oregon State University's PRISM database 

(https://www.prism.oregonstate.edu/) 
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