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ABSTRACT

ESTIMATING NATURAL BACKGROUND WATER QUALITY

IN CALIFORNIA RIVERS
by
Emma A. Debasitis
Master of Science in Environmental Science
California State University Monterey Bay, 2022

Water chemistry affects organisms at all levels of the food web in aquatic habitats. Water quality
alteration from natural conditions can seriously degrade habitat quality, human health, and the survival
rate of native species. Estimating background (i.e., historic or baseline) water quality of impaired streams
can be difficult due to the effects of anthropogenic involvement in aquatic systems over decades to
centuries. The ability to model natural background water quality levels would aid in overall stream
management. The natural background predictions provided by a model would allow for increased
understanding of stream condition and would allow us to determine the amount of divergence between
current stream conditions and natural background.

To better predict baseline water chemistry levels, we created random forest models for ionic
concentrations and integrated water quality measures of ionic balance, including chloride, calcium,
magnesium, sodium, sulfate, alkalinity, hardness, total dissolved solids, and specific conductivity. Water
guality measurements from minimally disturbed reference sites across the United States were used as
response variables for model training. We developed these models using both static (e.g., geology, soils,
etc.) and dynamic (i.e., monthly evapotranspiration, precipitation, and temperature) EPA StreamCat and
PRISM predictor variables. The models explained 66% to 98% of the variation in samples from
California streams and 55% to 85% of the variation across the US. The top predictors across models
include yearly temperature averages, yearly precipitation averages, percent lithological sulfur, and base
flow index. The baseline water chemistry estimates produced by these models will help California
establish site-specific water quality standards and manage habitat in various situations, including urban

development projects, habitat restoration, and endangered species monitoring.

Research impact statement:

Natural background water chemistry is needed to understand the underlying processes of aquatic
ecosystems. These predictions will aid in helping set water quality thresholds for aquatic species survival.
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Introduction

Water quality has significant potential to impact aquatic species. Fish, due to their position in the
food chain and longer lifespans, are sensitive to changes in water quality (Amizi and Rocher
2016). For example, an Egyptian study found that the occurrence of fish organ lesions and blood
parameters were increased in populations present in the EI-Rahway river due to increased
agricultural, industrial, and domestic waste dumping in the region (Gaber et al. 2013).
Invertebrates are also used as water quality indicators through community condition metrics such
as the California Stream Condition Index, CSCI, that looks at how invertebrate community
composition is affected by stream conditions (Rhen et al 2015).

The Environmental Protection Agency's (EPA) water quality standards are generally determined
by human health standards and aquatic species impacts. For example, California’s water quality
standards include maintaining balanced ecological communities where the communities are
diverse, self-sustaining, food for all chain components is present, and the area is not dominated
by tolerant species (Santa Ana Water Quality Objectives 1995). In the Santa Ana region of
California, there are several protected aquatic species which may be impacted by upstream
urbanization and its effect on water quality. The effect of changes in water quality parameters
and ionic concentrations on these species has not been well studied. The habitat needs of these
native species, such as the Arroyo Chub, Santa Ana Sucker, and the California Newt, must be
considered when regional habitat and water resource managers make decisions regarding crucial
habitat in and around the Santa Ana Basin.

Changes in physiological stressors may lead to species adaptation, migration, or decline. For
example, increased salinity concentration led to a significant decrease in the western pond turtle

body mass and increased energy output into osmoregulation (Agha et al. 2019). Similarly, the
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Santa Ana Speckled Dace, considered at a significantly increased risk of extinction within the
next 50 years, is often located in areas with increased fires, debris flows, urban populations, and
invasive species (CA Dept. of Fish and Wildlife March 10, 2022). In many cases, researchers
only focused on dissolved oxygen and the physical properties needed to make a habitat suitable
for native species. They often neglected the effects other water chemistry components had on
survivability and reproduction (Thompson et al. 2009). Thompson et al. (2009) did mention,
however, that water chemistry had significant potential to influence the aquatic species.

To gain a better understanding of how the alteration of water chemistry affects aquatic species,
natural background levels need to be estimated to determine how far current stream conditions
have shifted from natural levels. The variability of water chemistry suggests that watershed
topographic, geological, and climatic variables need to be considered when predicting natural
background water quality (Olson and Hawkins 2012). Once we can determine the amount of
alteration in the current water chemistry, we can quantify the ecological effects caused by the
alteration. Human impacts may also lead to ecosystem degradation both locally and downstream
due to the connectivity of stream systems. The addition of dams and urban and industrial areas
has changed the natural flow regime in downstream channels and has the potential to change
water quality levels throughout the stream systems (Poff et al. 1997). Upstream influences such
as agriculture, impervious surfaces, and population density influence how chemical processes
occur in an aquatic system.

Increases in temperature often lead to evaporation and increased concentrations of solutes in
stream systems by altering the amount of freshwater. These altered distributions include changes
to the amounts and timing of evaporation, precipitation and water vapor transport (Carpenter et

al. 1992). The changes in the global climate are affecting the timing of snowmelt runoff as well
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as the volume and distribution of snowpacks (Manning et al. 2013). While a precipitation
increase generally leads to an overall dilution effect, increasing concentrations may be noted due
to unique local factors, such as the lithological makeup of the surrounding area. Areas with large
amounts of limestone, for example, may be expected to have greater natural calcium
concentrations than an area surrounded by granite. Peters (1984) found that annual precipitation
and rock type were the most important factors affecting the yield of ions in the basins studied.
Static predictors (e.g., geology and soil composition) and dynamic predictors (e.g.,
evapotranspiration and precipitation) are important components when trying to analyze the main
variables affecting water chemistry. Olson and Cormier (2019) used both static and dynamic
predictors in their previous study modeling specific conductivity. Their results have been used by
various regional managers to analyze shifts in specific conductivity away from natural levels and
they have provided data for these agencies to create restoration plans (J. Olson, personal
communication, 21 July 2022).

Estimates of natural background water quality are necessary in order to understand where human
alterations of water quality parameters have occurred. Natural background water quality levels
are not well known, and the variability of natural levels depends greatly on the specific geologic
and climatic components of individual stream systems (Olson and Cormier 2019). For example,
a natural background water quality model of specific conductivity was used by Vander Laan et
al. (2013) to estimate first the divergence from natural background due to human activity and
then estimate the impact of this divergence on biological conditions. These unknowns make it
difficult for land managers to understand the impact human sources are having on stream

systems, since there isn't a baseline value for comparison.
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We modeled natural temporal and spatial variation to predict variation in major ion
concentrations and integrated measures for streams throughout California, allowing management
stakeholders to better understand California's natural water quality parameters and assist
management agencies with their conservation and restoration efforts. We modeled five ionic
parameters and four integrated parameters using natural environment factors that influence
natural variation in water quality (Table 1). The modeled estimates of these parameters allow us
to determine the amount of alteration from natural levels by comparing them to current measured
concentrations throughout California. These comparisons and natural estimates can be used to
establish water quality thresholds for aquatic life and to restore habitat health. Conservation
agencies, such as California Department of Fish and Wildlife, may also use these models to
determine habitats suitable for the expansion of endangered species and any potential water
quality issues needing to be addressed within the expanded range. We then evaluated the
predictive metrics to determine what environmental factors drive natural background levels. This
research will improve management practices and aid in targeting areas in the greatest need of
restoration efforts, allowing revenue resources, such as the California Department of Fish and
Wildlife (CDFW) Service Based Budget (CDFW SSB 2021), to be used in the most cost-

effective ways, saving stakeholders and the taxpayers' financial resources.
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Methods

Data Acquisition
We modeled how California's natural water quality varies among individual stream segments

over time, using water quality data from the Contiguous United States obtained from
bioassessment databases (Figures 1 & 2, Table 2). We used data from the contiguous United
States to aid in the development of our water quality models for a better representation of the
range of environments across spatially heterogeneous California. These databases included the
California Environmental Data Exchange Network (CEDEN, ceden.waterboards.ca.gov/), the
National Rivers and Streams Assessment (NRSA, https://www.epa.gov/national-aquatic-
resource-surveys/nrsa), the National Water-Quality Assessment Project (NAQWA,
https://www.usgs.gov/mission-areas/water-resources/science/national-water-quality-assessment-
nawga), and the Storm Monitoring Coalition (SMC, smc.sccwrp.org, Olson & Cormier 2019). From
these five sources we extracted measurements of nine water quality parameters (Table 1). This
provided data from 8598 potentially reference stream segments, 11% of which were in California
(Table 2). We withheld 20% of sites at both the national and California scale for model

validation following Olson & Cormier (2019).

Table 1: lonic Strength and Integrated measure parameter. All parameters were measured in mg/L, except Specific
Conductivity which was measured in uS/cm.

lonic concentration Integrated measures

Calcium Alkalinity
Chiloride Hardness as Ca03
Magnesium Total Dissolved Solids

Sulfate Specific Conductivity

Sodium )
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Figure 1: Non-reference and reference calibration and validation site data at the national scale.
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X Reference Validation /
+ Reference Calibration

Figure 2: Non-reference and reference calibration and validation site data at the California scale.
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Table 2: Data sources and number of sites available for model development. *NWIS and Olson are 0 because they

were duplicates of CEDEN datapoints

# of Unique Stream

# Reference sites in

# Reference sites

Program Extent Segments California Nationwide
NAQWA/NWIS  |Nationwide 112 0 1378
NRSA Nationwide 4166 23 457
SWAMP/CEDEN California 2433 976 1517
Olson & Cormier
(2019) Nationwide 1877 0 6864

Response and Predictor Data

In order to associate sampling locations with geospatial data used as predictors in our water

quality models, we matched each site to a catchment in the National Hydrography Dataset Plus

(NHD+; (McKay et al. 2012). Sites were matched by overlaying our sample locations with

NHD+ catchments to determine the catchment’s unique identifier (FEATUREID). Sites could

then be matched with the corresponding unique identifier in the StreamCat dataset (COMID;

(Hill et al. 2016)) to obtain additional geospatial data. Sites that were unable to be matched to a

catchment were excluded from further analysis.

Once matched to a catchment, we extracted geospatial data from the StreamCat dataset (Hill et

al. 2016). We acquired two kinds of geospatial data from StreamCat: 1) metrics that characterize

natural gradients that could influence ionic concentrations (predictors) and 2) metrics that

characterize human disturbance (human activities). Natural gradient metrics were used as

predictors in our models, and human disturbance metrics were used to identify minimally

disturbed reference sites. All StreamCat variables evaluated in this study are presented in

Appendix E. Additionally, we determined the Omernik Level 3 ecoregion (Omernik and Griffith

2014) of each site based on its location (Appendix D). StreamCat defines a catchment as an area
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that drains directly to an NHD stream segment and defines a watershed as a set of connected

catchments that flow to a focal point (Hill et al 2016).

Table 3:Selected StreamCat variables grouped by category - Abbreviations are listing in parentheses. For metric
abbreviations, Ws indicates watershed-scale calculations, and Cat indicates catchment-scale calculations. A
complete list is provided in Appendix E.

Category Selected metrics

Predictors

Aluminum oxide content (Al203Ws), Sulfur content (SWSs), Lithological ferric oxide
(Fe203Ws), Silicic residual (PctSilicicWs; PctSilicicCat), Sodium oxide (Na20OWs),

Lithology lithological hydraulic conductivity (HydrlICondWs)
Groundwater Groundwater discharge into streams in catchment ratio (BFICat)
Soil Soil erodibility, soil permeability
Precipitation 3-month, 6-month, and 1 year mean precipitation (PrecipWs; PrecipCat)
3-month, 6-month, and 1 year maximum temperature (TmaxWs; TmaxCat); 3 month, 6-
Temperature month, and 1 year mean temperature (TmeanWs; TmeanCat)
Landcover

*not an important metric | Evergreen forest landcover (PctConif2016Cat; PctConif2016Ws), Mixed deciduous/evergreen
in any models forest cover (PctMxFst2016Ws)

Topography Composite topographic index (WetlndexWs), Catchment elevation (ElevCat)

Human activity
Crop land use, Hay land use, Developed high, mid, and low intensity land use, Developed

Land use open-space land use, Density of road-stream intersections, Density of roads
Reservoirs Natural and possible volume

Dams Dam density

Canals Canal density

Mining Mine density

Water quality varies over time depending on factors such as temperature, precipitation and
evapotranspiration. In order to incorporate this variability in our models, we created a dynamic
component, following Olson & Cormier (2019), in addition to the spatial analysis. The dynamic
component involved matching the sample dates to the corresponding temporal values regarding:
mean and maximum temperature, mean and maximum evapotranspiration, and minimum, mean,

and maximum precipitation. Values for these dynamic components were calculated for the
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month the sample was collected, one month prior, the average over the 3 months prior, the
average over the 6 months prior, and finally the average over the 12 months prior. This added
dynamic component allowed for the analysis of temporal variables over time and spatial scales

(Table 4).

We took steps to eliminate sample bias and duplication. We removed duplicate site observations
sampled during the same month and in the same stream catchment. The retained sample was
selected at random to prevent a bias caused by over-representing sites that were repeatedly
sampled. Sites with values below the method detection limit were replaced with a value of zero

since minimum recording limits were not provided by all databases.

Our final dataset contained static predictors, dynamic predictors, and human influence factors.
Static predictors included factors such as geology, soils, and landcover, while the dynamic
predictors included factors such as precipitation, evapotranspiration, and temperature at each
segment over time. The human impact predictors were dam and canal presence, reservoir

presence, land use, and mining.

Table 4: PRISM and StreamCat variables used to create the spatial dynamic model.

Dynamic parameter Months from sample date
Evapotranspiration 0,1,2,3,6, and 12
Temperature 0,1,2,3,6, and 12
Precipitation 0,1,2,3,6, and 12

Screening reference sites

We used StreamCat data to identify reference sites minimally affected by human activity,

following the procedure in Ode et al. (2016). Any site that failed one or more of the thresholds in



Table 5 was not considered reference. Once screened, sites with exceptionally high ionic
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parameter values were further evaluated in Google Earth. This screen often provided evidence of

human impact or natural, but unusual, sources of ions (e.g., hot springs or evaporite deposits) not

detected in the initial reference screening. Disturbances included tidal influence, cattle grazing,

industrial complexes, and excessive erosion in an area. If evidence of a disturbance was found,

the site was no longer considered reference and was removed.

Table 5:Criteria used to identify reference sites based on Ode et al. (2016)

StreamCat Predictor

Threshold Unit

Agricultural Use in Catchment
Agricultural Use in Watershed
Dam Density in Watershed
Dam Density in Watershed
Mine Density in Watershed
Canal Density in Watershed
NLCD CODE 21
Low Urban Presence in Catchment
Med. Urban Presence in Catchment
High Urban Presence in Catchment
Low Urban Presence in Watershed
Med. Urban Presence in Watershed
High Urban Presence in Watershed
Road Crossings per Catchment
Road Crossings per Watershed
Road Density per Catchment
Road Density per Watershed

3
3
2
2

0.1

U W W Wwwwwaoug

.
N oS

2

%
%
#Hkn?
#knr
#Hkm?
#Hkm?
%
%
%
%
%
%
%
#km?
#km?
#knr
#kn?

Reference sites for the United States and California were identified for all parameters (Table 6).

Large representative datasets were assembled for all analytes from multiple data sources (Table

2). We used nationwide data to ensure we were encompassing the broad diversity of California’s

geology and topography. Given our large datasets, encompassing nationwide data for model

training, we are more likely to represent a large proportion of the environmental characteristics

found in streams in California.
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Model training

Once we established a reference dataset, we developed random forest models to predict ionic
concentrations of reference sites based on natural landscape-level factors. Models were built
using R software (R-Core-Team 2020) and the 'randomForest' (Liaw and Wiener 2002) and

‘caret’ (Kuhn 2008) packages.

To train our models, we used a subset of the reference sites to identify the most important
predictors. We then validated the model using the withheld sites. To create these reference
datasets, we subset the reference dataset into calibration (80%) and validation (20%) datasets
(Figures 1, 2, & Appendix C). The subsets were stratified by the eighty-five Level 3 Ecoregions,
ensuring that major ecoregions were equally represented in the calibration and validation data
sets. Next, we built random forest models for each parameter using the calibration data to train
the model. Each model was initially run with all predictors present (Supplement 1). Multiple
model selection techniques were attempted, including the Variable Selection Using Random
Forest (VSURF) package, an RFE (recursive feature elimination) approach, and variable removal
using variable importance. Due to the extensive processing power demands associated with the
VSURF and RFE approaches, we performed a preliminary variable selection using variable
removal by variable importance: The least-important variables were removed from the models,
the new models were calibrated, determining if the overall variance explained improved. These
models were created by first removing all but the top fifty predictor variables and then removing
the five least important variables in each subsequent model until we obtained the greatest percent
variable explained. An evaluation of the stability of variable selection using this method was
completed by Fox et al. (2017) determining that the "out-of-bag" (OOB) performance remained

steady until minimum variables remained. A sudden increase in variable importance explained
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occurred when only the most important variables remained, then significantly decreased as too

many variables were removed.

Model performance

We assessed model performance by looking at the accuracy and precision of our modeled results.
To determine the accuracy and precision values, we used pseudo-R?, root mean squared error
(RMSE), and out-of-bag predictions for each random-forest model. Predicted values from the
random forest models were compared to observed values in the calibration and validation
reference data sets. Out-of-bag predictions, generated when random forest created a subset of
trees withholding the sites in question, were used to assess calibration performance. This
validation approach allowed us to use the OOB predictions to measure model performance
independent of the sample data used to train the model. Linear regressions comparing observed
to expected values were calculated. Model precision was estimated with the regression's R?
value; larger values indicated better precision. Model accuracy was assessed using the slope and
intercept of the regression; intercepts close to zero indicated higher accuracy, and slopes close to
1 indicated that model performance is consistently accurate across a range of conditions. These
model performance parameters were summarized for the entire contiguous United States. Model

performance was also assessed for California sites alone following this procedure.

Model performance was also evaluated for spatial bias by plotting model residuals on a map,
depicting any geographic patterns in the model errors. The residuals were calculated by
subtracting the predicted values from the sites' observed values. If the areas with insufficient

predictive power were all located in similar geographic regions, that indicates potential
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geographic bias in our model. If the sites with insufficient predictive power were equally spread

throughout geographic locations, our model had less likelihood of geographical bias.

Partial Dependence Plot Analysis

In order to understand why environmental characteristics of a stream’s surroundings cause
different analytic concentrations in varying stream systems, we used partial dependence plots
(PDP). These plots interpret correlation relationships between our response variables and
predictor variables using the PDP package in R (Greenwell BM 2017). The graphical results from a
PDP analysis show how the response variable responds to variation in a single predictor variable
while holding all others constant. We used a PDP analysis to determine if the presence of the
individual analytes were positively or negatively correlated with the individual predictor

variables.

Mapping Water Quality Natural Background and Alteration

In order to obtain natural background estimates for California streams, we applied our models to
all stream segments in California. The model application, and map generation of expected

natural levels, were possible because StreamCat data is available for almost every NHD+
segment in California. The symbology was then adjusted to show graduated colors from low to
high concentrations of each parameter's expected value. In order to understand the divergence of
current stream conditions from natural background estimates, we mapped estimated water quality
alteration from natural conditions as the difference between observations at non-references sites
and model-estimated natural background. These predictions are available in a GitHub repository
maintained by the Southern California Coastal Water Research Project

(https://github.com/SCCWRP/RB8_biointegrity _impacts).
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Inter- and Intra-Annual Variability in California Predictions

We mapped both the intra- and inter-annual variation of each analyte in California to examine
how the spatial patterns in natural background levels vary temporally. We calculated averages
for each analyte for each season in wet, dry, and normal years. We then compared the average
values by subtracting dry years from wet years (i.e., inter-annual variation) and dry seasons from

wet seasons (i.e., intra-annual variation).

Results

Reference Sites
Our reference screening provided us enough sites to create the models at a nationwide scale and
to validate at the California scale. Chloride, sulfate, and most of the integrated measures had
>400 reference sample points whereas sodium, calcium, magnesium, and TDS all had <300 sites

within California (Table 6).
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Table 6: Summary of sample data assembled for modeling. N: number of sample segments

California Nationwide
Parameter N total N reference N total N reference | Unique Segments

fons

Cl 9643 611 15426 2238 6140

SC4 4478 502 6834 1704 1952

Na 8244 232 12786 1496 4675

Ca 8562 258 13508 1558 4918

Mg 8558 258 13504 1558 4839

Integrated measures

TDS 8873 247 9069 429 645

Hardness 5271 415 5375 493 1745

Alkalinity 2053 546 3337 1108 1891

Sp.Cond 10880 944 28470 9575 8508

Model Performance
Over half of our models explained more than 80% of the variation in water chemistry (Figures 3

and 4). In addition, the low RMSE values suggested that there was little error in our models. The
nationwide sodium model had an r? value below our 70% threshold. The model does, however,
explain over half of the variation and is still likely a useful model. The models performed very
well when validated at the California scale, with validation r? values above 70% for all analytes
(Figures 3, 4, & Table 7). The slope values close to 1 showed that the model predictions are
precise. Since our slopes are close to one, our intercepts are close to zero, and our standard errors
are low, there is a minimal chance of the models under or overpredicting natural background

values.

Partial Dependence Plot Analysis
The partial dependence plot (PDP) analysis of each model showed that the % Sulfur in the

watershed, and both the 12-month average max and mean temperatures were associated with an

increase in analyte concentrations across all models (Appendix B). This PDP analysis also
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indicated that the 3-, 6-, and 12-month precipitation averages, base flow index, and the %
Sodium Oxide in the watershed were associated with a decrease in analyte concentrations across

all models (Appendix B).

Mapping Modeled Predictions

As seen in Figure 5, alteration was most severe in the Central Valley and Southern California.
Alkalinity was an exception with a large amount of alteration occurring in the Eastern Sierras.
Some areas with a large percent change had little shifts in the absolute change, showing that the
relationship of observed over expected reacts differently than the absolute change of observed
minus expected, underscoring the value of analyzing changes in water chemistry both ways in
order to grasp larger patterns in alteration. Overall, the integrated parameters had greater shifts in
both the percent change and absolute change than the individual ionic parameters. Integrated
parameters have multiple water chemistry and environmental variables associated with them that

would likely lead to greater increases from natural background values.
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Figure 3: Random forest r2 values for all models, the numbers at the end of the bars are the amount of reference
sites for each model at the national scale.
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Figure 4: Random forest root mean squared error for all models. These values show the degree of error in our
models. Specific Conductivity has greater variation in observed concentrations due to the units of measure being
puS/cm, leading to a larger RMSE.
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Table 7:Model performance across all analytes at the Nationwide and California scale. OE r2 values were calculated
by the regression line created by plotting the data. These values are unique to the scale being analyzed (CA or
Nationwide).

Parameter Set Scale N ref OEr2 OESlope OE Slope SE OE Intercept  OE Intercept SE
fons
Cal CA 209 038 1.06 0.01 -09 0.25
Val CA 49 0.85 1.01 0.03 -06 0.91
Mg Cal Matiomai de 1247 0.81 1.55 0.0 -0.45 017
Val Mationwide an 038 0.98 0.02 -0.08 0.25
Cal CA 211 0497 1.08 0o -1.85 057
Wal CA 48 0.94 1.02 0.04 -1.63 2
Ca Cal Mati omai de 1247 0.75 1.03 0.02 -0.75 0.45
Val Mationwide an 038 0.99 0.02 -0.61 06
Cal CA 188 037 1.07 0.01 -1.38 0.31
Wal CA 44 0.92 1.09 0.05 -1.09 1.26
Na Cal [Wati ormai de 1198 063 1.05 0.02 -0.45 0.25
Val Mationwide 298 066 1.05 0.04 -0.32 0.51
Cal CA 497 038 1.1 0.01 -0.93 0.12
Val CA 114 0.8 1.14 0.05 -1 07
ci Cal MWatiomai de 1791 0.83 1.09 0.0 -0.48 0.1
Val MNatiomide 447 0.76 1.05 0.03 04 0.2
Cal CA 403 035 1.14 0.01 -4.39 0.83
S04 Val .CA . 99 0.73 1.48 0.09 -10.75 514
Cal Mationwide 1365 07 1.07 0.02 -0.74 0.66
Val Mationwide 339 0.75 141 0.05 -3.81 1.43
infegrated measures

Cal CA 201 0.95 1.08 0.02 -23.22 5.76
Val CA 46 0.78 1.08 0.09 -2.85 26.37
DS Cal Mationwide 35 08 1.01 0.03 -09 6.66
Val Matiomai de 34 0.85 1.1 0.05 -9 116
Cal CA 45 097 1.08 0.0 -21.41 2.66
Val CA 119 0.78 1.01 0.04 343 0.04

Sp.Cond ) )
Cal Mationwide 7661 082 1.03 0.01 -5.22 1.54
Val [ ati ormai de 1914 0.81 1.03 0.01 -4.35 8.2
Cal CA 334 038 1.04 0.01 -6.36 161
Val CA 81 0.73 1.09 0.07 0.12 14.02
Hardness Cal  Natiorwide 396 086 1 0.02 A7 3.23
Val Mationwide 97 0.76 1.09 0.06 -1.65 1.0
Cal CA 438 096 113 0o -14 38 1.37
o Wal CA 108 0.73 1.21 0.07 -18.32 884
Alkalinity Cal Natiorwide 631 073 108 0.03 716 7 59

Wal MNatiomwide 221 065 1.13 0.06 -14.12 2.49
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Figure 5: Alteration of water chemistry estimated as the difference in parameter values between model predictions
(expected) and observations at non-reference sites. Percent change is the ratio of "Observed/Expected". Absolute
change is "|Observed - Expected|".

Intra- and Inter-annual Analysis
This study's results show a difference in natural background water quality depending on

seasonality and precipitation for most of the analytes modeled, shown by the intra- and inter-
annual maps (Figures 6 & 7). The intra-annual results depict that ionic and integrated
concentrations will be greater in aquatic systems during the fall and winter months. This pattern

is likely due to the dilutionary effect of increased water flow in the spring and summer months
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due to snow melt in higher elevations. The inter-annual results show that dry years will have

higher concentrations of ions throughout the year compared to wet years. These results follow

the general pattern of ionic concentration and dilution with an increase or decrease in

precipitation. In years with greater rainfall, there is more water flowing through the aquatic

systems creating a dilutionary effect. While years with less rainfall have a greater evaporative

effect and this leads to an increase in aquatic ionic concentrations.

Alk
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Hardness

Intra-Annual
Differences
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— 6to8
— 8to 10

0 75150
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s
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\

— Greater than 10

Figure 6: Intra-annual differences across all analytes, displayed by percent change.
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Figure 7: Inter-annual differences across all analytes, displayed by percent change.

Discussion

Our models performed well, explaining more than 70 percent of the variation in each water
quality parameter across California. Since we created multiple models, including almost all
major ions and integrated measures, we could look at water quality in greater detail than previous
studies. The Olson and Cormier (2019) paper provided a national view of how specific

conductivity reacts with differing temporal and spatial scales, but its training dataset had fewer
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California sites than ours did, and its performance within California was not assessed. The use of
StreamCat allowed us to create predictions for each stream segment in California with associated
StreamCat data. This provided us with a more detailed view of how analyte concentrations

interact and vary over space and time. This study demonstrates that national data sets can be used

to develop models with high levels of performance suitable for state or regional applications.

Our models' spatial and temporal sensitivity will aid in adjusting aquatic life and water quality
thresholds for current climate patterns and will allow future water quality responses to climatic
shifts to be estimated. Our model predictions have the potential to help us understand the effects
of future climates on California streams. For example, these models can be used to estimate the
future shifts in natural background water quality in California streams due to climate change,
similar to work done by Olson and Cormier (2019). In addition to estimating future climatic
shifts, our model predictions may help researchers study the effects of aquatic stress, metabolic
rates, and oxygen demand by providing natural background levels to calculate the amount of

divergence and its impact on aquatic species.

The seasonal prediction capabilities of our models provide land managers and researchers with a way of
identifying streams suffering from freshwater salinization syndrome (FSS). Kaushal et al. (2018) state
that freshwater salinization syndrome has many far-reaching effects regarding ground and surface water,

the quality of drinking water, and ecosystem functions. Given the seasonal predictions our models
can make, we suggest water quality monitoring should occur multiple times a year and consider
the sampling year's precipitation levels. These patterns will help researchers and managers target
areas that need the greatest conservation and restoration efforts to decrease the occurrence of

freshwater salinization syndrome and the metabolic stress on native aquatic organisms.
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Our model predictions have the potential to be a valuable tool for ensuring that water quality
targets are both protective and achievable. To illustrate how natural background levels can
inform the development of water quality objectives, we plotted current objective values and our
predictions (Fig. 8). The plot suggests that the current Basin Plan may be under protecting many
streams, such as the Santa Ana River Reach 3, while over protecting others similar to the San
Jacinto Reach 6 (for SO4 and TDS, SWRCB Resolution No. R8-2004-0001). The predictions
created by our models encompass all seasons and a wide range of precipitation levels, providing
an in-depth analysis of what natural background analytic levels should be in California streams

that managers can use to set thresholds appropriate for each stream and season.
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Figure 8:Comparison of the Santa Ana Basin Plan objective values to our model estimations at 9 streams in the
Santa Ana area.

Natural background water quality predictions can provide much needed insight regarding
alteration from natural levels. Alteration can be calculated by comparing observations to natural
background predictions. These alteration calculations can then be modeled as response to human
activities, allowing the relative impact of different activities to be assessed. The use of models
allows for a broader understanding of potential drivers and the predictions also allows for

individual stream comparisons.
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APPENDIX C
CALIBRATION AND VALIDATION ANALYTE MAPS AT THE

CALIFORNIA SCALE
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APPENDIX D

NUMBER OF REFERENCE SITES IN EACH ECOREGION BY ANALYTE

Ecoregion Type Alkalinity Calciumn  Chloride  Hardness Magnesiur sodium Sp.Cond  Sulfate TDS
1 Calibration 38 S0 152 39 39 94 586 126
4 Calibration 29 30 20 22 20 28 78 66 A
5 Calibration 198 230 311 103 231 187 287 340
& Calibration 33 79 148 108 78 69 181 29
7 Calibration 2 1 1 2 1 1 4 1 MNA
g Calibration 24 16 59 44 16 20 130 73
g Calibration 34 3 30 20 3 11 21 29
12 Calibration 116 73 124 18 74 63 452 114
14 Calibration 1 MA A A, Q1Y RIS 4 1 MA
78 Calibration 47 25 46 27 25 20 74 44 MA
80 Calibration 12 38 38 2 38 37 130 10
85 Calibration 29 MNA 5 1 MA 1 31 13
2 Calibration  MNA 2 2 MNA 2 2 2 1 MA
10 Calibration  MNA 8 9 MA 8 9 T MA WA
11 Calibration  MNA 8 8 MNA 8 7 22 MA R
12 Calibration  MNA 1 1 MA 1 2 1 MA R
15 Calibration  MNA 22 25 MA 22 22 76 10 A
16 Calibration MNA 10 12 MA 10 13 a0 MA R
17 Calibration  MNA 52 53 MNA 52 50 273 200 WA
18 Calibration  MNA 9 T MNA 9 8 15 MA R
19 Calibration  MNA 9 12 MA 9 14 87 MA R
20 Calibration  MNA 3 3 MNA 3 2 61 MA A
21 Calibration MNA 29 33 NA 29 31 434 1 MA
22 Calibration MNA 5 5 MA 5 3 44 MA A
23 Calibration  MNA 3 7 MNA 8 7 235 MA WA
25 Calibration  MNA 5 4 MNA 5 5} 2 MA WA
26 Calibration MNA 5 5 MNA 5 6 233 MA WA
20 Calibration  MNA 5 5 MA 5 3 13 MA [4A
35 Calibration  MNA 1 2 MA 1 2 TE MA [4A
28 Calibration MNA 1 MA [ A, 1 2 T A R
29 Calibration  MNA 1 1 MA 1 WA 15 MA R
40 Calibration  MNA 1 1 MA 1 1 1 A R
41 Calibration  MNA 3 3 MA 3 2 32 MWA [4A
42 Calibration  MNA 1 1 MA 1 1 28 MA Qe
43 Calibration  MNA 12 11 MNA 12 11 S8 MNA A
44 Calibration  MNA S0 75 NA 50 50 105 78 MNA
45 Calibration  MNA 5] 7 MNA 5} 3 338 S MNA
49 Calibration MNA 3 3 MA 3 4 59 MA A
50 Calibration  MNA 153 168 MA 153 151 282 143 MA
58 Calibration MNA 202 207 MA 202 211 142 178 MA
60 Calibration MNA 3 MNA [ A, 3 3 1 MA A
62 Calibration MNA 5 51 MA 5 6 46 MA [4A
65 Calibration MNA 8 T MNA 8 7 273 MA R
66 Calibration MNA 5 5 MA 5 5 1390 MA [4A
67 Calibration MNA 3 29 MNA 3 4 141 22 MNA
68 Calibration MNA 3 2 MA 3 1 TE& MA Qe
69 Calibration  MNA 1 1 MA 1 1 131 MA R
70 Calibration MNA 1 2 MA 1 A 4 A, Qe
75 Calibration  MNA 1 1 MA 1 1 226 MA A
77 Calibration  MNA 5 S5 MA 5 4 17 MA A

47

65
84

34

94

10



79 Calibration
81 Calibration
82 Calibration
82 Calibration
28 Calibration
29 Calibration
21 Calibration
37 Calibration
46 Calibration
51 Calibration
52 Calibration
55 Calibration
63 Calibration
71 Calibration
72 Calibration
72 Calibration
74 Calibration
76 Calibration
24 Calibration

1 Walidation

4 Validation

5 Walidation

& Walidation

8 Validation

9 Validation
10 Validation
12 validation
15 Validation
17 walidation
44 \alidation
45 Validation
50 Validation
67 Validation
72 Validation
20 Validation
g5 Validation
11 validation
12 Validation
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19 validation
21 validation
25 Validation
26 Validation
20 Validation
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62 Validation NA 2 8 NA 2 1 14 NA NA
66 Validation NA 1 1 NA 1 1 352 NA NA
70 Validation NA 1 NA NA 1 2 3 NA NA
82 validation NA 3 2 NA 3 3 16 NA NA
7 Validation  NA NA 2 NA NA NA NA 1 NA
23 validation NA NA 1 NA NA 1 57 NA NA
60 Validation NA NA 3 NA NA NA 2 NA NA
65 Validation NA NA 1 NA NA 1 66 NA NA
68 Validation NA NA 1 NA NA 2 18 NA NA
20 Validation NA NA NA NA NA 1 18 NA NA
22 validation NA NA NA NA NA 2 9 NA NA
39 validation NA NA NA NA NA 1 6 NA NA
41 validation NA NA NA NA NA 1 12 NA NA
77 Validation NA NA NA NA NA 1 1 NA NA
14 Validation NA NA NA NA NA NA 3 NA NA
28 Vvalidation NA NA NA NA NA NA 12 NA NA
31 Validation NA NA NA NA NA NA 1 NA NA
37 validation NA NA NA NA NA NA 1 NA NA
42 Validation NA NA NA NA NA NA 7 NA NA
46 Validation NA NA NA NA NA NA 3 NA NA
51 validation  NA NA NA NA NA NA 12 NA NA
52 validation NA NA NA NA NA NA 1 NA NA
55 validation  NA NA NA NA NA NA 2 NA NA
63 Validation NA NA NA NA NA NA 16 NA NA
69 Validation NA NA NA NA NA NA 31 NA NA
71 Validation NA NA NA NA NA NA 5 NA NA
73 Vvalidation NA NA NA NA NA NA 8 NA NA
74 validation NA NA NA NA NA NA 5 NA NA
75 Validation NA NA NA NA NA NA 63 NA NA
76 Validation NA NA NA NA NA NA 3 NA NA
79 Validation NA NA NA NA NA NA 9 NA NA
81 validation NA NA NA NA NA NA 4 NA NA
84 validation NA NA NA NA NA NA 2 NA NA
2 validation  NA NA NA NA NA NA NA 1 NA
APPENDIX E

STREAMCAT AND PRISM VARIABLES EVALUATED IN MODEL CREATION AND

ANALYSIS

Description Variable name Unit

Mean soil erodibility of soils within catchment on

agricultural land AgKffactCat Unitless



Mean soil erodibility of soils within watershed on
agricultural land

Mean % aluminum oxide within catchment
Mean % aluminum oxide within watershed

Ground water discharge into streams in catchment

ratio

Ground water discharge into streams in watershed
ratio

Density of canals, ditches, or pipelines within
catchment

Density of canals, ditches, or pipelines within
watershed

Mean percent Calcium Oxide within catchment
Mean percent Calcium Oxide within watershed
Mean percent clay content within catchment
Mean percent clay content within watershed
Mean lithological uniaxial compressive strength
within catchment

Mean lithological uniaxial compressive strength
within watershed

Density of georeferenced dams within catchment
Density of georeferenced dams within watershed
Total possible volume of all reservoirs in
catchment

Total possible volume of all reservoirs in
watershed

Normal volume of all reservoirs in catchment
Normal volume of all reservoirs in watershed
Mean catchment elevation

Mean watershed elevation

Mean lithological ferri oxide in catchment
Mean lithological ferric oxide in watershed
Mean lithological hydraulic conductivity in
catchment

Mean lithological hydraulic conductivity in
watershed

Mean lithological potassium oxide in catchment
Mean lithological potassium oxide in watershed
Mean soil erodibility within catchment

Mean soil erodibility within watershed

Mean magnesium oxide in catchment

Mean magnesium oxide in watershed

Density of mines in catchment

Density of mines in watershed

Mean sodium oxide in catchment

AgKffactWs

AlI203Cat
AI203Ws

BFICat
BFIWs
CanalDensCat

CanalDensWs

CaOcCat
CaOWs
ClayCat
ClayWs

CompStrgthCat

CompStrgthWs

DamDensCat
DamDensWs

DamNIDStorCat

DamNIDStorWs

DamNrmStorCat
DamNrmStorWs
ElevCat
ElevWs
Fe203Cat
Fe203Ws

HydrlCondCat

HydrlCondWs

K20Cat
K20Ws
KffactCat
KffactWs
MgOCat
MgOWs
MineDensCat
MineDensWs
Na20Cat

Unitless

%
%

%
%
km/km2

km/km?2

%
%
%
%

MPa

Mpa

#/km2
#/km2

m3/km2

m3/km2

m3/km2
m3/km2
m
m
%
%

um/s

um/s

%

%
Unitless
Unitless

%

%
#/km?2
#/km?2

%
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Mean sodium oxide in watershed

Mean nitrogen in catchment

Mean nitrogen in watershed

Mean organic matter in catchment

Mean organic matter in watershed

Mean phosphorous oxide in catchment

Mean phosphorous oxide in watershed
Alkaline intrusive volcanic rock in catchment
Alkaline intrusive volcanic rock in watershed
Alluvium and fine textured coastal sediment in
catchment

Alluvium and fine textured coastal sediment in
watershed

Barren land cover in catchment

Barren land cover in watershed

Carbonate residual material in catchment
Carbonate residual material in watershed
Coarse coastal zone sediment in catchment
Coarse coastal zone sediment in watershed
Colluvial sediment in catchment

Colluvial sediment in watershed

Evergreen forest landcover in catchment
Evergreen forest landcover in watershed

Crop land use in catchment

Crop land use in watershed

Deciduous forest land cover in catchment
Deciduous forest land cover in watershed
Coarse eolian sediment in catchment

Coarse eolian sediment in watershed

Fine eolian sediment in catchment

Fine eolian sediment in waterhsed

extrusive volcanic rock in catchment

extrusive volcanic rock in watershed

Coarse textured glacial outwash and glacial lake
sediment in catchment

Coarse textured glacial outwash and glacial lake
sediment in watershed

Fine textured glacial lake sediment in catchment
Fine textured glacial lake sediment in watershed
Glacial till, clayey in catchment

Glacial till, clayey in watershed

Coarse textured glacial till in catchment
Coarse textured glacial till in watershed
Loamy glacial till in catchment

Loamy glacial till in watershed

Na20OWs
NCat
NWs
OmCat
OmWs
P205Cat
P20O5Ws
PctAlkIntruVolCat
PctAlkIntruVolWs

PctAlluvCoastCat

PctAlluvCoastWs

PctBI2016Cat
PctBI2016Ws
PctCarbResidCat
PctCarbResidWs
PctCoastCrsCat
PctCoastCrsWs
PctColluvSedCat
PctColluvSedWs
PctConif2016Cat
PctConif2016Ws
PctCrop2016Cat
PctCrop2016Ws
PctDecid2016Cat
PctDecid2016Ws
PctEolCrsCat
PctEolCrsWs
PctEolFineCat
PctEolFineWs
PctExtruVolCat
PctExtruVolWs

PctGlacLakeCrsCat

PctGlacLakeCrsWs

PctGlacLakeFineCat
PctGlacLakeFineWs
PctGlacTilClayCat
PctGlacTilClayWs
PctGlacTilCrsCat
PctGlacTilCrsWs
PctGlacTilLoamCat
PctGlacTilLoamWs

%
%
%

%/weight
%/weight

%
%
%
%

%

%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%

%

%
%
%
%
%
%
%
%



Grassland/herbaceous landcover in catchment
Grassland/herbaceous landcover in watershed
Hay land use in catchment

Hay land use in watershed

Herbaceous wetland cover in catchment
Herbaceous wetland cover in watershed

Peat and much hydric soils in catchment

Peat and much hydric soils in watershed
Ice/snow land cover in catchment

Ice/snow land cover in watershed

Mean impervious surfaces in catchment
Mean impervious surfaces in watershed
Mixed deciduous/evergreen forest cover in
catchment

Mixed deciduous/evergreen forest cover in
watershed

non-carbonate residual material in catchment

non-carbonate residual material in watershed

Open water land over in catchment

Open water land over in watershed

Saline like sediment in catchment

Saline like sediment in watershed

Shrub/scrub land cover in catchment
Shrub/scrub land cover in watershed

Silicic residual material in catchment

Silicic residual material in watershed
Developed, high-intensity land use in catchment
Developed, high-intensity land use in watershed
Developed, low-intensity land use in catchment
Developed, low-intensity land use in watershed
Developed, medium-intensity land use in
catchment

Developed, medium-intensity land use in
watershed

Developed, open space land use in catchment
Developed, open space land use in watershed
Catchment area that is water

Watershed area that is water

Woody wetland land cover in catchment
Woody wetland land cover in watershed

Mean permeability of soils in catchment

Mean permeability of soils in watershed

30 year normal mean precipitation in catchment
30 year normal mean precipitation in watershed

PctGrs2016Cat
PctGrs2016Ws
PctHay2016Cat
PctHay2016Ws
PctHbWet2016Cat
PctHbWet2016Ws
PctHydricCat
PctHydricWs
Pctlce2016Cat
Pctlce2016Ws
Pctimp2011Cat
Pctimp2011Ws

PctMxFst2016Cat

PctMxFst2016Ws

PctNonCarbResidCa
t
PctNonCarbResidW
S
PctOw2016Cat
PctOw2016Ws
PctSalLakeCat
PctSalLakeWs
PctShrb2016Cat
PctShrb2016Ws
PctSilicicCat
PctSilicicWs
PctUrbHi2016Cat
PctUrbHi2016Ws
PctUrbLo2016Cat
PctUrbLo2016Ws

PctUrbMd2016Cat

PctUrbMd2016Ws

PctUrbOp2016Cat
PctUrbOp2016Ws
PctWaterCat
PctWaterWs
PctWdWet2016Cat
PctWdWet2016Ws
PermCat
PermWs
PrecipCat
PrecipWs

%
%
%
%
%
%
%
%
%
%
%
%

%

%

%

%
%
%
%
%
%
%
%
%
%
%
%

%

%

%
%
%
%
%
%
cm/hr
cm/hr
mm
mm
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Mean depth to bedrock in catchment

Mean depth to bedrock in watershed

Density of road-stream intersections multiplied by
the NHD+ slope in catchment

Density of road-stream intersections multiplied by
NHD+ slope in watershed

Density of road-stream intersections in watershed
Density of roads in catchment

Density of roads in watershed

Sand content in catchment

Sand content in watershed

Sulfur content in catchment

Silicon dioxide content in catchment

Silicon dioxide content in watershed

Sulfur content in watershed

Evapotranspiration from PRISM

Preciptiation from PRISM

Mean Temperature from PRISM

Maximum Temperature from PRISM

Mean composite topographic index in catchment
Mean composite topographic index in watershed
Mean seasonal water table depth in catchment
Mean seasonal water table depth in watershed

All variable descriptions and units were obtained
from EPA StreamCat website
(https://www.epa.gov/national-aquatic-resource-
surveys/streamcat-metrics-and-definitions) and
Oregon State University's PRISM database
(https://www.prism.oregonstate.edu/)

RckDepCat
RckDepWs

RdCrsSlpwWtdCat

RdCrsSIpWtdWs

RdCrsWs
RdDensCat
RdDensWs

SandCat
SandWs
SCat
SiO2Cat
SiO2Ws
SWs
1 and 2 month
values, and 3-,6-,
and 12- month
averages

1 and 2 month
values, and 3-,6-,
and 12- month
averages

1 and 2 month
values, and 3-,6-,
and 12- month
averages

1 and 2 month
values, and 3-,6-,
and 12- month
averages
WetlIndexCat
WetIndexWs
WitDepCat
WitDepWs

cm
cm
(Crossings*slope/km2

(Crossings*slope/km2

crossings/km2

km/km2
km/km2

%

%

%

%

%

%

Unitless
Unitless
cm
cm
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