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Abstract

In a world of finite resources and ecosystem capacity, the prevailing model of economic growth, founded on
ever-increasing consumption of resources and emission pollutants, cannot be sustained any longer. In this
context, the “green economy” concept has offered the opportunity to change the way that society manages the
interaction of the environmental and economic domains. To enable society to build and sustain a green economy, the
associated concept of “green nanotechnology” aims to exploit nano-innovations in materials science and engineering
to generate products and processes that are energy efficient as well as economically and environmentally sustainable.
These applications are expected to impact a large range of economic sectors, such as energy production and storage,
clean up-technologies, as well as construction and related infrastructure industries. These solutions may offer the
opportunities to reduce pressure on raw materials trading on renewable energy, to improve power delivery systems to
be more reliable, efficient and safe as well as to use unconventional water sources or nano-enabled construction
products therefore providing better ecosystem and livelihood conditions.
However, the benefits of incorporating nanomaterials in green products and processes may bring challenges with
them for environmental, health and safety risks, ethical and social issues, as well as uncertainty concerning market and
consumer acceptance. Therefore, our aim is to examine the relationships among guiding principles for a green
economy and opportunities for introducing nano-applications in this field as well as to critically analyze their practical
challenges, especially related to the impact that they may have on the health and safety of workers involved in this
innovative sector. These are principally due to the not fully known nanomaterial hazardous properties, as well as to the
difficulties in characterizing exposure and defining emerging risks for the workforce. Interestingly, this review proposes
action strategies for the assessment, management and communication of risks aimed to precautionary adopt preventive
measures including formation and training of employees, collective and personal protective equipment, health
surveillance programs to protect the health and safety of nano-workers. It finally underlines the importance that
occupational health considerations will have on achieving an effectively sustainable development of nanotechnology.
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Background
The “green economy” concept has been driven into the
mainstream of policy debate by global economic crisis,
expected increase in global demand for energy by more
than one third between 2010 to 2035, rising commodity
prices as well as the urgent need for addressing global
challenges in domains such as energy, environment and
health [1-3].

The term “green economy”, chiefly relating to the princi-
ples of sustainable development, was first coined in a
pioneering 1989 report for the Government of the United
Kingdom by a group of leading environmental economists
[1]. The most widely used and reliable definition of “green
economy” comes from the United Nations Environment
Programme which states that “a green economy is one that
results in improved human well-being and social equity,
while significantly reducing environmental risks and
ecological scarcities. It is low carbon, resource efficient, and
socially inclusive” [4].

* Correspondence: iavicoli.ivo@rm.unicatt.it
1Institute of Public Health, Catholic University of the Sacred Heart, Largo
Francesco Vito 1, 00168 Rome, Italy
Full list of author information is available at the end of the article

© 2014 Iavicoli et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

Iavicoli et al. Environmental Health 2014, 13:78
http://www.ehjournal.net/content/13/1/78

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/55141194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The green economy can also be viewed as a set of prin-
ciples, aims and actions, which generally include: (i) equity
and fairness, both within and between generations, (ii)
consistency with the principles of sustainable develop-
ment, (iii) a precautionary approach to social and environ-
mental impact, (iv) an appreciation of natural and social
capital, through, for example, the internalisation of exter-
nal costs, green accounting, whole-life costing and im-
proved governance, (v) sustainable and efficient resource
use, consumption and production, and (vi) a need to fit
with existing macroeconomic goals, through the creation
of green jobs, poverty eradication, increased competitive-
ness and growth in key sectors [3-7].
The green economy concept can indeed play a very

useful role in changing the way that society manages the
interaction of the environmental and economic domains.
In this context, nanotechnology, which is the manipulation
of matter in the dimension of 1 to 100 nm, offers the
opportunity to produce new structures, materials and de-
vices with unique physico-chemical properties (i.e. small
size, large surface area to mass ratio) to be employed in
energy efficient as well as economically and environmen-
tally sustainable green innovations [8-12].
Although expected to exert a great impact on a large

range of industrial and economic sectors, the sustainability
of green nano-solutions is currently not completely clear,
and it should be carefully faced. In fact, the benefits of
incorporating nanomaterials (NMs) in processes and prod-
ucts that contribute to outcomes of sustainability, might
bring with them environmental, health and safety risks,
ethical and social issues, market and consumer acceptance
uncertainty as well as a strong competition with traditional
technologies [13].
The present review examines opportunities and prac-

tical challenges that nano-applications pose in addressing
the guiding principles for a green economy. Examples are
provided of the potential for nano-applications to address
social and environmental challenges, particularly in energy
production and storage thus reducing pressure on raw
materials, clean-up technologies as well as in fostering
sustainable manufactured products. Moreover, the review
aims to critically assess the impact that green nanotech-
nology may have on the health and safety of workers
involved in this innovative sector and proposes action
strategies for the management of emerging occupational
risks.

The potential nanotechnology impact on green
innovations
Green nanotechnology is expected to play a fundamental
role in bringing a key functionality across the whole
value chain of a product, both through the beneficial
properties of NMs included as a small percentage in a
final device, as well as through nano-enabled processes

and applications without final products containing any
NMs [13,14]. However, most of the potential green nano-
solutions are still in the lab/start-up phase and very few
products have reached the market to date. Further studies
are necessary to assess the applicability, efficiency and
sustainability of nanotechnologies under more realistic
conditions, as well as to validate NM enabled systems
in comparison to existing technologies. The following
paragraphs will describe the potential fields of applica-
tion for green nanotechnology innovations.

Nanomaterials for energy conversion
One of the most interesting and most flexible renewable
energy technologies is the direct conversion of sunlight
into electric power: the photovoltaic effect [8,15]. Carbon
NMs, including C60 fullerenes [16,17], carbon nanotubes
(CNTs) [18,19] and graphene [20,21] have been studied as
extremely efficient electron acceptors in polymer and
quantum dot solar cells [8]. Relatively new, dye sensitized
solar cells are of great promise. In these devices, a nano-
crystalline mesoporous titanium dioxide (TiO2) film, with
a monolayer of the charge transfer dye attached to its
surface, is pasted on a transparent conductive substrate
[22,23]. The large NM surface area for dye chemisorption
and the short charge migration length underlie their
power conversion efficiency [24,25].
In addition to solar cells, nanotechnology has made big

impact on fuel cells, devices able to convert chemical en-
ergy directly into electricity [24]. Nano-porous metals with
high surface area, low specific densities and rich surface
chemistry, can be highly efficient electro-catalysts for the
critical electrode oxidation/reduction reactions in fuel
cells [26,27]. Platinum nanoparticles (Pt-NPs) have been
regarded as the best cell catalyst, although the Pt-based
electrode suffers from time-dependent drift and carbon
monoxide deactivation [28]. In this regard, nano-sized
multi (bi-tri)-metallic Pt alloys have been the object of fur-
ther exploration because of their higher electro-catalytic
activities and greater resistance [29,30]. Interestingly,
CNTs and graphene, initially used in fuel cells as attractive
materials for catalyst supports with the aim to lower
precious-metal loading, enhance catalyst activity and
durability, are currently studied also as metal-free catalysts
in fuel cells [31-33]. Their advantages rely on high surface
area, mesoporosity, good electrical conductivity, stronger
mechanical strength, light weight and superb corrosion-
resistance [27].
Another important future energy option is the hydrogen

gas as an endless source of clean fuel for many applications
[34]. Semiconductor NMs, e.g. TiO2 and cadmium sulfide
nanostructures, have been studied as efficient catalysts for
water conversion into oxygen and hydrogen [35-37]. More-
over, nano-structured carbons, metal-organic frameworks
and polymers [38-41] as well as metal hydrides and related
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complex hydrides [42,43] are examples of investigated NMs
for hydrogen storage and transportation for high hydrogen
capacity and minimal deterioration during hydrogenation.

Nanomaterials for energy storage
Nanotechnology may have a profound influence on elec-
trical storage technologies, i.e. batteries and electrochemical
supercapacitors [44]. Redox-based supercapacitors with
nano-structured electrode materials have shown the poten-
tial to combine the high energy density of conventional
batteries with the high power capabilities of electrostatic
capacitors at the lab scale. Mixed metal oxides, e.g. ruthe-
nium oxide (RuO2), manganese oxide (MnO2), magnetite
(Fe3O4) [45-47], CNTs [8,48], graphene [49,50] and carbon-
metal oxide composites [51] have been investigated as
electrode NMs aimed at a high specific capacity and rate
capability [52,53].
Concerning rechargeable lithium batteries, the energy

densities and the performances of these devices largely
depend on the physical and chemical properties of the
electrode material [54]. In this regard, the reduced
dimensions and high surface area of NMs increase the
rate of electron transport and the electrode-electrolyte
contact, respectively, while the nano-structure itself
provides facile strain relaxation and resistance to
fracture [24]. For anode applications, CNTs [8,55,56], a
series of graphene-based nanostructures [21,57,58] and
silicon nanowires [59] have been studied as promising
host-high capacity materials and conductive additives.
While emerging interests has been focused on metal
oxide NMs, e.g. SnO2; TiO2 or LiFePO4-NMs, for
anode or cathode applications [60-63].

Nanomaterials for water clean-up technologies
Nanotechnology-enabled water and wastewater treatment
promises not only to overcome major challenges faced by
existing treatment technologies, but also to provide new
treatment capabilities that could allow economic utilization
of unconventional water sources to expand the water
supply [64]. Interesting applications may include the
incorporation of functional NMs, such as metal-oxide NPs
(aluminium oxide, TiO2 and zeolite) [65-67], anti-
microbial NMs (silver-NPs (Ag-NPs) and CNTs) [68] and
photocatalytic NMs (bimetallic-NPs, TiO2) [69,70] into
membranes in order to improve their permeability, fouling
resistance, biofilm control, mechanical and thermal stability,
as well as to provide pollutant degradation and self-cleaning
ability [71]. Moreover, CNTs, fullerene and metal-based
nano-adsorbents may offer significant improvement in the
adsorption capacity of organic molecules, metal ions and
heavy metals [72-75]. Interestingly, due to the NM-unique
electrochemical, optical, and magnetic properties, active
research is going on developing nano-enabled pathogen
sensors, both cells or biomolecules [76,77].

Nanomaterials for construction industry
Manufactured NMs and nanocomposites offer great
opportunities in the construction and related infrastruc-
ture industries [78]. Strength, durability, and lightness of
various materials [79,80], as well as heat-insulating, self-
cleaning, fire-retardant, anti-fogging and sensing struc-
tural health properties may be improved or provided de
novo by NMs [81,82]. Thus, CNTs, SiO2, TiO2, Fe2O3, and
magnetic nickel-NPs can remarkably improve mechanical
durability, compressive and flexural strength of cement
products [83-86]. Highly water repellent coatings incorp-
orating silica, alumina-NPs and hydrophobic polymers are
proper to be used for wood [87]. The use of TiO2-NPs in
glasses leads to the so-called self-cleaning technology due
to their photo-catalytic and anti-fouling properties
[81,88]. Fire protective glass is obtained using silica
(nano)layers, which may also function as antireflection
coatings for exterior light in order to contribute to en-
ergy and air conditioning conservation [78,89]. Ag-NPs
can be embedded in paint to inactivate pathogenic
microbes and provide antimicrobial properties to sur-
faces (e.g. hospital walls) [90].

Other nano-enhanced green applications
Several other sustainable nanotechnology applications
have been investigated [91]. Nanoporous zeolites may be
used as a slowly releasing carrier of fertilizers or as a
permanent water reservoir due to their property to hold
water molecules that may help plants to withstand dry
spell [92]. Innovative NM properties may be useful in
developing new-packaging to obtain films with good
exfoliation, barrier, fireproofing and mechanical properties
[93]. This application may permit to increase the shelf life
of the food and its safety for consumers, especially in
regions where cooling is not easily available. Nano-sensors
can improve the quality and reduce the cost of continuous
environmental monitoring [91,94].

Occupational health and safety considerations
The unique properties of nano-scale materials have made
them attractive for a number of innovative, sustainable,
green applications. A summary of the example relationships
among the guiding principles for a green economy, oppor-
tunities and practical challenges for nano-applications in a
green economy is presented in Table 1.
In this context according to the proposed principles for

green economy, it is important that society, scientific
community and industry take advantage of opportunities of
nanotechnology while overcoming its practical challenges.
However, not all revolutionary changes are sustainable per
se and a cautious assessment of the benefits addressing
economic, social and environmental implications, as well as
the occupational health and safety impact is essential
[95,96]. This latter aspect, in particular, should be carefully
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Table 1 Example relationships among guiding principles
for a green economy and the opportunities and
challenges for nano-applications
Guiding principles for a green economy (based on the proposals
of ref. [127])

(P1) Is a means for achieving sustainable
development;

(P2) Creates decent work and green jobs;

(P3) Improves governance and the rule of law – by
being inclusive; democratic; participatory;
accountable; transparent and stable;

(P4) Is equitable, fair and just – between and within
countries and between generations;

(P5) Reduces poverty, and increases well-being,
livelihoods, social protection, and access to
essential services;

(P6) Protects biodiversity and ecosystems;

(P7) Is resource and energy efficient;

(P8) Respects planetary boundaries or ecological
limits or scarcity;

(P9) Uses integrated decision making;

(P10) Internalizes externalities;

(P11) Measures beyond gross domestic product
indicators and metrics

Example opportunities for nano-applications in a green economy
(and the related principles)

Energy conversion
and storage

-Smart energy nanotechnology can improve
power delivery systems to be more efficient,
reliable and safe (P1, P2, P5).

-Nano-devices may trade on renewable energy
produced through naturally replenished
resources, i.e. sunlight and wind. This may
reduce fossils as energy resources and the
impact for the greenhouse gas emissions
balance (P3, P4, P5, P6, P7, P9).

-Energy efficient nanotechnology requires less
energy to perform the same function - getting
more use out of the already created energy
(P7, P8, P10).

Water clean-up
technologies

-Design nano-enabled infrastructure necessary to
manage water and keep it clean is inextricably
linked to prospects for economic development
and better livelihood conditions (P1, P2).

-Access to clean water and adequate sanitation
is a basic human right and is critical to the
alleviation of poverty (P3, P4, P5).

-Investment in infrastructures and considerable
greening of water policies are necessary to
reduce the cost to face water shortages (P8, P9,
P10, P11).

Construction
industry

-Nanotechnology aims to increase the
efficiency buildings use resources - energy,
water, and materials - while reducing building
impacts on environment and human health
through better siting, design, construction, and
removal (P1, P2, P6, P7, P8, P10, P11).

-NMs applied to the surfaces of structural elements
of the buildings can contribute to environmental

Table 1 Example relationships among guiding principles
for a green economy and the opportunities and
challenges for nano-applications (Continued)

cleaning by photo-catalytic reactions (P1, P2, P6,
P7, P8).

Other applications -Nano-enabled applications may provide a slow
release and dosage of fertilizers and an efficient
water reservoir for plants. This may contribute
to a greater agricultural productivity, especially
in countries with prolonged dry spells (P1, P2,
P4, P5).

-Nano-packaging - with improved barrier and
mechanical properties - may allow a longer safe
storage of food, especially in regions where
cooling is not easily available (P2, P4, P5, P8).

-Nano-sensors may improve the quality and
reduce the cost of continuous environmental
monitoring. Nano-remediation of environmental
pollution may exceed conventional methods in
efficiency and speed (P1, P2, P6, P7).

Practical challenges for nano-applications in a green economy

Technical -Efficient synthetic pathways must be
developed to obtain NMs “safe by design” (e.g.
through green chemistry; optimized reaction
chemistry; minimized energy consumption and
costs; employment of benign feed stocks and
reagents; avoidance of hazardous substances
and pollutants);

-Analytical methods must be developed to
obtain a reliable nanomaterial characterization
and tools to detect, monitor and track NMs in
the environment and biological media.

Biological -Biological impact must be determined for NM
primary and acquired physico-chemical properties
(size, surface area, chemical composition, protein
corona as a nano-bio interaction) on ecosystems,
as well as in in vitro and in vivo models;

-The “life-cycle” impact must be assessed for
NMs on the environment and biological
systems: NMs emitted from production
processes, or released from nano-enabled
devices during their assembly, use, recycling
or disposal.

Health and safety -NM key health effects must be defined: e.g.
pulmonary toxicity, genotoxicity and
carcinogenicity.

-Information must be developed on the
potential toxicity of NMs available for
employers and workers involved in NM
research and developmental areas, as well as in
nano-enabled device manufacture, assembly,
application and disposal, avoiding dispersion of
essential information.

-A highly skilled workforce must be built and
sustained, that is well trained to face emerging
risks as well as known physico-chemical risks in
new situations and also trained to avoid
accidents.

Public and
occupational policies

-Participation of scientific, governmental,
industry and workforce representatives must be
pursued for the processes of opinion forming,
education and decision making in shaping
green nanotechnology.

Iavicoli et al. Environmental Health 2014, 13:78 Page 4 of 11
http://www.ehjournal.net/content/13/1/78



addressed, in consideration of the expected widespread use
of nanotechnology and the consequent increasing likeli-
hood of NM exposure in both living and occupational envi-
ronments. Moreover, difficulties in nano-manufacturing
and handling; uncertainty concerning stability of nano-
innovations under aggressive or long-term operation
(i.e. in the case of supercapacitors with nano-structured
electrode materials or nano-enabled construction products);
the lack of information regarding the release and fate
of NMs in the environment (i.e. NMs released from
water and wastewater treatment devices) as well as the
limited knowledge concerning the NM toxicological
profile, even further support the need for a careful
consideration of the health and safety risks derived
from NM exposure.
Importantly, as shown in Figure 1, a number of poten-

tially hazardous exposure conditions can be expected for
workers involved in nanotechnology activities. In fact, NMs
may have significant, still unknown, hazards that can pose
risks for a wide range of workers: researchers, laboratory
technicians, cleaners, production workers, transportation,
storage and retail workers, employees in disposal and waste
facilities and potentially, emergency responders who deal
with spills and disasters of NMs who may be differently
exposed to these potential, innovative xenobiotics.
In this scenario, responsible green-nanotechnology

development requires careful consideration of the pos-
sible lifecycle impact of NMs on the health of workers
[97]. The earliest exposures to NMs may occur for
those workers conducting discovery research in labora-
tories involved in designing, synthesizing and testing
the usefulness of NMs in a variety of applications as
well as in determining their toxicological and environ-
mental impacts [98]. Workers in start-up and manufac-
turing companies involved in pilot processes can be
exposed during several phases such as handling nano-
powders, pouring or mixing nano-liquid solutions, re-
covering products from reactors or filters, conducting
maintenance of equipment or rooms, cleaning spills or

waste NMs or during processing, packaging and trans-
porting of dry powder [99,100]. The variability in
composition, morphology and purity of NMs due to the
developing methods of production, their dynamic behavior
once dispersed in the workplace (e.g. agglomeration,
aggregation, interaction with other airborne particles)
and the large number of parameters required for their
complete characterization, make NM exposure assess-
ment a challenging issue [78,91]. Furthermore, it may
be extremely important to assess the exposure to “fresh”
NMs, directly emitted from production processes, or “aged”
NMs released during handling of packaged NMs, when
assembling or maintaining nano-enhabled devices or re-
leased through wear and tear of nano-products [101-104].
Ambient aging conditions, may cause NMs to undergo
physical, chemical, and/or biological transformations that
may change their properties and consequently their
biological reactivity [78]. All these aspects impact the
technical difficulties to routinely monitor, measure and
characterize NMs in workplace settings principally re-
lated to the lack of easy to use instruments as well as to
the difficulty in defining dose metric parameters, other
than traditional mass, which may better reflect the NM
biologically effective dose in the nano-toxicological field
[102,105,106].
Workers should also be aware of their potential exposure

to NMs or products containing them during the disposal
stage [100]. Laboratories, industries, and disposal of prod-
ucts containing NMs may produce new forms of waste that
could challenge current waste management, product re-use
and recycling efforts. When addressing the issue of occupa-
tional NM exposure in these contexts, a variety of factors
should be carefully considered. The intrinsic potential of
different devices to release NMs, the possible disposal path-
ways for specific nano-waste, (e.g. waste-water, landfill,
incineration or recycling), the bioavailability and persistence
of NMs, and subsequent effect in and across the disposal
media such as air, soil and water all need specific attention
[100].
Nano-enhanced technologies may lead to “emerging

occupational and safety risks” principally related to the
exposure to candidate NMs whose toxicological behaviors
and mechanisms of biological reactivity are still under
research. In this regard, scientific concerns raised in con-
sideration of the preliminary results demonstrating the
pro-oxidant and pro-inflammatory action of several types
of engineered NMs in vitro [107-109] and also their ability
to induce alterations in organs such as lung, cardiovascu-
lar and central nervous system following acute to chronic
periods of treatment in vivo [110-112]. Recent evidence of
the occupational carcinogenic potential of inhaled TiO2-
NPs [113], we previously mentioned as components of
innovative solar cells or of self cleaning construction
products, the uncertainty concerning whether some

Table 1 Example relationships among guiding principles
for a green economy and the opportunities and
challenges for nano-applications (Continued)

-Nano-green jobs must redirect current path of
environmental decline and create economic
opportunity, strengthening local urban and
rural communities.

-The green economy policies must balance
nanotechnology environmental, societal,
occupational and health promotion benefits,
with commercialization costs and risks.

-Companies involved in green-nanotechnology
innovations must plan a precautionary risk
management approach by identifying actual
risks, planning/implementing control measures
and risk communication.
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types of CNTs, which may find widespread employ-
ment in a series of energy conversion and storage de-
vices, may be carcinogenic [114], as well as the
possibility of not recognizing long latency hazards of
innovative materials heighten these concerns. There-
fore, new demanding green nanotechnologies will
need a highly skilled workforce, well trained in specific
skills necessary to perform these jobs, as well as in
recognizing risks and taking occupational safety and
health measures to reduce risks induced by new pro-
cesses and products. This ambitious aim will require
large scientific efforts to overcome the current lack of
knowledge concerning NM hazardous properties as
well as governmental engagement and empowerment
of workers aimed to “assure/make sure” workforce
education and regulation in order to reach suitable
employee expertise, good workplace practices and ad-
equate health protection. Importantly, a comprehen-
sive approach to prevention and protection strategies
in green nanotechnologies should take into account also
the relevance that a careful assessment and management

of “known” physico-chemical risks, intrinsically related to
the manufacture, installation, maintenance and disposal of
nano-enabled products, may have for the health and safety
of workers.

Green nanotechnology: risk assessment, management
and communication
The newness of nano-applications in green fields, together
with concerns regarding the potential impact of NMs on
the health and safety of workers, urgently require scientific,
technological and governmental efforts to actively manage
risks for the workforce. This means to identify actual risks
derived from NM exposure in workplace (risk assessment),
to plan/implement control measures (risk management)
and to communicate the plan. Overall, these steps, whose
critical aspects will be discussed in the following sec-
tions, aim to prevent workers to be harmed and society
deprived of the timely realization of all the benefits of
the nanotechnology.

Figure 1 An analysis of potentially hazardous exposure conditions for workers involved in nanotechnology activities. Legend: Note how
the recycling of nano-enabled products over time may result in changes in the composition of workplace exposures.
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Risk assessment
Risk assessment of NMs notably includes the same
steps used for the risk assessment of other types of che-
micals [102]. These are: hazard identification; hazard
characterization with an emphasis on defining critical
target organs and dose-response relationships; assess-
ment of exposure for different scenarios and a synthe-
sizing step risk characterization [115].
Unfortunately, the NM risk assessment process still suf-

fers from a lack of toxicological data on a wide variety of
NMs. Therefore, future research should be aimed to sys-
tematically improve the understanding of metrics, such as
size, surface area, functionalization or particle number
concentration, that may be responsible for NM toxicity.
The toxico-kinetic and toxico-dynamic behaviour of NMs
in biological systems, including the influences exerted by
the protein corona formation, as the result of a dynamic
nano-bio interaction, should be deeply investigated. More-
over, the definition of key health effects such as pulmon-
ary toxicity, genotoxicity or carcinogenicity in conditions
of long-term, low-dose exposure resembling realistic
scenarios, require attention [116]. Exposure assessment
remains a fundamental condition for the characterization
of occupational NM risks [106,114,115]. Thus, efforts
should be made to overcome practical barriers related to
the newness of green-NM exposure scenarios, the incon-
sistencies over how to identify and classify NMs, and the
questions about metrics for health related-sampling and
practical instrumentation [117]. Moreover, biological
monitoring studies, are also important to define possible
biomarkers of NM exposure and effect to be prospectively
tested and validated in workplace settings and used for an
adequate evaluation of occupational risks [118].

Risk management
The ultimate goal of risk assessment is to provide quanti-
tative predictions of given risks enabling their evidence-
based management [102]. However, vast uncertainty about
hazards, exposures, and risks in the emerging green nano-
technology field, make it imperative to adopt a dynamic-
precautionary management approach before all of the
evidence is completed. This means that risk management
strategies and guidance will be changing and continuously
evaluated, improved, and verified as risk information
becomes more substantial [97].
To effectively manage potential green nanotechnology

related risks, a risk management plan including a hier-
archy of controls should be emphasized [119]. The first
step in developing such a plan is to determine which
workers may have potential exposures, measuring these
exposures and identifying how the exposure may vary
depending on the job task (as illustrated in Figure 1).
Potential worker exposures should be managed using
the hierarchy of controls starting with elimination of the

hazard, adopting a green chemistry through the substitu-
tion with a non-hazardous or less hazardous alternative
(such as modifying the molecule if possible), and introduc-
tion of engineering controls such as enclosed systems,
local exhaust ventilation, engineering hood or pressure
differentials [120]. These steps should be followed by
administrative controls, including training programs
through which companies communicate to workers infor-
mation sufficient to understand the nature and routes of
potential NM workplace exposure, possible risks, adequate
job procedures, preventive and protective measures and
policies adopted. In this context, it may be important to
overcome the frequently insufficient or inadequate infor-
mation present on safety data sheets [121]. The use of
personal protective equipment (PPE), such as respiratory
and eye protection, lab coats and gloves, should be
addressed as the final step for exposure control because
the use of PPE puts the responsibility on the employee in-
stead of the employer [119]. Among these primary pre-
ventive measures, greater efforts should also be targeted to
pursue the ambitious attempt to adopt sustainable prac-
tices, throughout the lifecycle and value chain of NMs,
which may allow to design production processes able to
reduce exposure and to obtain less toxic NMs, ”safe by
design” [120]. Good business practice includes planning for
controlling possible exposure scenarios during the design
process as this is frequently less expensive than retrofitting
existing process equipment. Aligning safety goals with
business goals can improve the profitability of the business
by protecting the employee skill, experience and know-
ledge; reducing production delays; and reducing any
costs associated with employee injuries.
Occupational health surveillance can be a useful compo-

nent of a NM risk management plan, which includes ele-
ments of hazard and medical surveillance [114,117].
Monitoring of health outcomes or biological changes in-
cluding medical surveillance of the effects at group and
individual levels is part of an occupational health surveil-
lance program [122,123]. Medical surveillance may include:
(i) an initial medical examination and collection of medical
and occupational histories; (ii) periodic medical examina-
tions at regularly scheduled intervals, including specific
medical screening tests when warranted; (iii) more frequent
and detailed medical examinations as indicated on the basis
of findings from these examinations; (iv) post-incident
examinations and medical screening following uncontrolled
or non-routine increases in exposures such as spills; (v)
worker training to recognize and report symptoms of
exposure to a given hazard, (vi) a written report of medical
findings; and (vii) employer actions in response to identifi-
cation of potential hazards and risks to health [124].
Epidemiological research may be useful to enhance the

impact of occupational health surveillance through the
periodic analysis of aggregated data in order to identify
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patterns of worker health that may be linked to work
activities and practices [114,121,125]. Exposure registries
may be useful in setting the stage for this kind of research.
Registries are important to enumerate and identify
exposed individuals, to provide them with adequate infor-
mation and guidance as well as with primary or secondary
prevention measures concerning potential NM exposure
risks [117].

Risk communication
Risk communication, is essential for the healthy innovation
and sustainable development of green nanotechnology in
view of a general public transparency [126]. In this context,
risk communication should become effective in terms of
making available complex technical and health information
in language accessible and understandable to the occupa-
tional and general population. Importantly, researchers,
regulatory scientists, representatives of the workforce,
industry and governmental authorities should be actively
engaged in facing a dialogical pro-active communication
of the potential nanotechnology risks with the aim to form
adequate perceptions and attitudes. This appears extremely
important to assure the spread, also promoted by mass
media, of appropriate information regarding benefits and
challenges of nanotechnology, protecting public and
personnel opinion from both unrealistic hopes and exces-
sive awareness in this regard.

Conclusions
Green nanotechnology aims to exploit the attractive
physico-chemical properties of NMs in a number of green-
innovative applications that are energy efficient as well as
economically and environmentally sustainable, expected to
exert an exciting impact on a large range of economic sec-
tors. These solutions may offer the opportunities to reduce
pressure on raw materials trading on renewable energy, to
improve power delivery systems to be more reliable,
efficient and safe as well as to use unconventional water
sources or nano-enabled construction products therefore
providing better ecosystem and livelihood conditions [127].
However the opportunities offered by NMs in green econ-
omy solutions, should be balanced with a number of prac-
tical challenges, critical environmental and social issues, as
well as with human health and safety concerns. In particu-
lar, NMs may have significant, still unknown, hazardous
properties related to their unique physico-chemical proper-
ties, that can pose risks for a wide range of employees
potentially exposed through the overall lifecycle of NMs.
Therefore, scientific research, technological, governmental
and workforce efforts should be focused to deeply define
the hazardous impact of NMs with the aim to reach an
adequate risk assessment. This would provide helpful infor-
mation and guidance to adopt appropriate preventive and
protective measures in a comprehensive risk management

program both for the general and occupationally exposed
populations.
Overall, green nanotechnology should not only provide

green solutions, but should also “become green” in terms of
the attention paid to occupational safety and health. In this
context, a full democratic discussion between expertise
should be pursued to carefully balance the benefits of green
nanotechnology and the potential costs for the society,
particularly in terms of environmental, public and occupa-
tional health. This careful consideration will maximize
environmental and societal benefits, health gains and cost
savings and will increase the likelihood of further invest-
ment and sustainable development of this promising
technological field.
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