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Let Γ = (G, σ) be a signed graph, where G is the underlying 
simple graph and σ : E(G) → {+, −} is the sign function 
on the edges of G. In this paper we consider the spectral 
characterization problem extended to the adjacency matrix 
and Laplacian matrix of signed graphs. After giving some 
basic results, we study the spectral determination of signed 
lollipop graphs, and we show that any signed lollipop graph 
is determined by the spectrum of its Laplacian matrix.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V (G), E(G)) be a graph of order n = |V (G)| = |G| and size m = |E(G)|, and 
let σ : E(G) → {+, −} be a mapping defined on the edge set of G. Then Γ = (G, σ) is a 
signed graph (sometimes called also sigraph). The graph G is its underlying graph, while 
σ its sign function (or signature). It is common to interpret the signs as the integers 
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{1, −1}. An edge e is positive (negative) if σ(e) = 1 (resp. σ(e) = −1). If σ(e) = 1
(resp. σ(e) = −1) for all edges in E(G) then we write (G, +) (resp. (G, −)). A cycle 
of Γ is said to be balanced, or positive, if it contains an even number of negative edges, 
otherwise the cycle is unbalanced, or negative. A signed graph is said to be balanced if 
all its cycles are balanced; otherwise, it is unbalanced. By σ(Γ) we denote the product 
of signs of all cycles in Γ. Most of the concepts defined for graphs are directly extended 
to signed graphs. For example, the degree of a vertex v in G (denoted by deg(v)) is 
also its degree in Γ. So Δ(G), the maximum (vertex) degree in G, also stands for Δ(Γ), 
interchangeably. Furthermore, if some subgraph of the underlying graph is observed, 
then the sign function for the subgraph is the restriction of the previous one. Thus, if 
v ∈ V (G), then Γ −v denotes the signed subgraph having G −v as the underlying graph, 
while its signature is the restriction from E(G) to E(G − v) (all edges incident to v are 
deleted). Similar considerations hold for the disjoint union of signed graphs. If U ⊂ V (G)
then Γ[U ] denotes the signed induced subgraph of U , while Γ − U = Γ[V (G) \ U ]. For 
Γ = (G, σ) and U ⊂ V (G), let ΓU be the signed graph obtained from Γ by reversing 
the signature of the edges in the cut [U, V (G) \ U ], namely σΓU (e) = −σΓ(e) for any 
edge e between U and V (G) \ U , and σΓU (e) = σΓ(e) otherwise. The signed graph 
ΓU is said to be (signature) switching equivalent to Γ. In fact, switching equivalent 
signed graphs can be considered as (switching) isomorphic graphs and their signatures 
are said to be equivalent. Switching equivalent graphs have the same set of positive 
cycles.

In the literature, simple graphs are studied by means of the eigenvalues of several 
matrices associated to graphs. The adjacency matrix A(G) = (aij), where aij = 1
whenever vertices i and j are adjacent and aij = 0 otherwise, is one of the most studied 
together with the Laplacian, or Kirchhoff, matrix L(G) = D(G) −A(G), where D(G) =
diag(deg(v1), deg(v2), . . . , deg(vn)) is the diagonal matrix of vertex degrees. In the last 10 
years another graph matrix has attracted the attention of many researchers, the so-called 
signless Laplacian matrix defined as Q(G) = A(G) +D(G). Matrices can be associated to 
signed graphs, as well. The adjacency matrix A(Γ) = (aσij) with aσij = σ(ij)aij is called 
the (signed) adjacency matrix and L(Γ) = D(G) −A(Γ) is the corresponding Laplacian 
matrix. Both the adjacency and Laplacian matrices are real symmetric matrices, so the 
eigenvalues are real.

In this paper we shall consider both the characteristic polynomial of the adjacency 
matrix and of the Laplacian matrix of a signed graph Γ. Hence to avoid confusion we 
denote by

φ(Γ, x) = xn + a1x
n−1 + · · · + an−1x + an,

the adjacency characteristic polynomial (or A-polynomial) whose roots, namely the ad-
jacency eigenvalues (A-eigenvalues), are denoted by λ1(Γ) ≥ λ2(Γ) ≥ · · · ≥ λn(Γ). 
Similarly, for the Laplacian matrix, we denote by
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ψ(Γ, x) = xn + b1x
n−1 + · · · + bn−1x + bn,

the Laplacian polynomial (or L-polynomial), and μ1(Γ) ≥ μ2(Γ) ≥ · · · ≥ μn(Γ) ≥ 0 are 
the Laplacian eigenvalues (L-eigenvalues). Suffix and variables will be omitted if clear 
from the context (so φ(Γ, x) = φ(Γ)). A connected signed graph is balanced if and only 
if μn = 0 (see [20]). If Γ is disconnected, then its polynomial is the product of the 
components polynomials.

Finally, it is important to observe that switching equivalent signed graphs will have 
similar adjacency and Laplacian matrices. In fact, any switching on U can be inter-
preted as a diagonal matrix SU = diag(si) having si = 1 for any i ∈ U and si = −1
otherwise. SU is usually called the state matrix. Hence, A(Γ) = SUA(ΓU )SU and 
L(Γ) = SUL(ΓU )SU . Similar effect features with eigenvectors. When we consider a 
signed graph Γ, from a spectral viewpoint, we are considering its switching isomorphism 
class [Γ]. For a (possibly) complete bibliography on signed graphs, the reader is referred 
to [22]. For all notations not given here the reader is referred to [23] for signed graphs, 
to [8] for graph spectra, and to [5,16] for some basic results on the Laplacian spectral 
theory of signed graphs.

Recently in [5] the authors have considered an expression for the coefficient of the 
L-polynomial of a signed graph and they gave some formulas which express the L-poly-
nomial by means of the A-polynomial of some related signed graphs. In this article, we 
consider those results to define some spectral invariants and study their effect on the 
combinatorial structure of the signed graphs. Hence, we consider (as in [4]) the problem 
of spectral determination (up to switching isomorphism), and we give some basic results 
for this kind of investigations. As an application, we study the Laplacian spectral deter-
mination problem for a class of signed graphs known as signed lollipop graphs, and we 
show that any signed lollipop graph is determined by the eigenvalues of its Laplacian 
matrix.

Here is the remainder of the paper. In Section 2, we consider the properties that can be 
deduced by the coefficients of the Laplacian polynomial of a signed graph. In Section 3, 
we give some results useful for the spectral determination problems. Finally, in Section 4
we study the Laplacian spectral determination of signed lollipop graphs.

2. Preliminaries

In this section we recall some basic results which will be useful for the study of signed 
graphs from a spectral viewpoint. More details on these results can be found in [5].

We first recall a formula useful to compute the coefficients of Laplacian polynomial 
of signed graphs. We need first to introduce some additional notation. A signed TU-
subgraph H of a signed graph Γ is a subgraph whose components are trees or unbalanced 
unicyclic graphs. If H is a signed TU-subgraph, then H =

⋃t
i=1 Ti

⋃c
j=1 Uj , where, if any, 

the Ti’s are trees and the Uj ’s are unbalanced unicyclic graphs. The weight of the signed 
TU-subgraph H is defined as w(H) = 4c

∏t
i=1 |Ti|. For the special case Γ = (G, −), 
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we get the formula for the signless Laplacian of simple graphs, where instead of signed 
TU-subgraphs we have the TU-subgraphs, namely subgraphs whose components are trees 
or odd unicyclic graphs [10].

Theorem 2.1. (See [5,7].) Let Γ be a signed graph and ψ(Γ, x) = xn + b1x
n−1 + · · · +

bn−1x + bn be the Laplacian polynomial of Γ. Then we have

bi = (−1)i
∑

H∈Hi

w(H), i = 1, 2, . . . , n, (1)

where Hi denotes the set of the signed TU-subgraphs of Γ built on i edges.

From the above formula it is (again) evident that the L-polynomial is invariant under 
switching isomorphisms, since switching preserves the sign of the cycles. Furthermore, 
it is important to observe that the signature is relevant only on the edges that are not 
bridges, hence we will always consider the all-positive signature for trees. In the sequel 
signed trees and unsigned trees will be considered as the same object. For the same 
reason, the edges which do not lie on some cycle are not relevant for the signature and 
they will be always considered as positive. Another straight consequence of the above 
formula is described in the following corollary.

Corollary 2.2. Let (G, σ) and (G, σ′) be two signed graphs, on the same underlying 
graph G. Let ψ(G, σ) =

∑n
i=1 bix

n−i and ψ(G, σ′) =
∑n

i=1 b
′
ix

n−i. If the girth of G
is g then bi = b′i for i = 0, 1, . . . , g − 1.

Now, we recall some useful formulas, given in [5], which relate the Laplacian polyno-
mial of a signed graph to the adjacency polynomials of its opportunely defined signed 
subdivision graph and signed line graph. In order to do so, we need to introduce a special 
oriented vertex-edge incidence matrix Bη of a signed graph Γ = (G, σ) with n vertices 
and m edges. Assign any random orientation η on the positive edges of Γ. Then, the 
n ×m matrix Bη = (bηij) is defined as

bηij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if ej is incident vi and σ(ej) = −1,
+1 if vi is the head of ej and σ(ej) = 1,
−1 if vi is the tail of ej and σ(ej) = 1,

0 if ej is not incident vi.

It is not difficult to see that L(Γ) = BηB
�
η , which implies that L(Γ) is a positive semidef-

inite matrix. From the above matrix we define two signed graphs, one of order n + m

and the other of order m, corresponding to the signed subdivision graph and the signed 
line graph, respectively. Recall that the subdivision of a simple graph G is the graph 
S(G) obtained from G by inserting in each edge a vertex of degree 2. In fact, S(G) is a 
graph whose vertex set is V (G) ∪E(G) and two vertices are adjacent if and only if they 
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Fig. 1. A signed graph and the corresponding signed subdivision and line graphs.

are incident in G. Now, let us assign an orientation η to the positive edges and consider 
the corresponding incidence matrix Bη = (bij). The signed subdivision graph, associated 
to Bη, is the signed graph S(Γη) = (S(G), σS

η ), where

σS
η (viej) = bηij

It is worth to observe that a signed subdivision graph is balanced if and only if each 
cycle in the signed root graph contains an even number of positive edges.

Next we define the signed line graph associated to Bη. The signed line graph of 
Γ = (G, σ) is the signed graph (L(G), σL

η ), where L(G) is the (usual) line graph and

σL
η (eiej) =

{
bηkib

η
kj if ei is incident ej at vk;

0 otherwise.

Note that both S(Γη) and L(Γη) depend on the chosen edge orientation η, but it is 
not difficult to see that a different orientation η′ gives rise to a, respectively, switching 
equivalent signed subdivision graph and signed line graph. For example, reverting the 
orientation of some (positive) edge corresponds to having the value −1 in the state 
matrix entry related to the vertex subdividing the edge. Hence, S(Γη) and L(Γη) are 
uniquely defined up to switching isomorphisms, and for this reason the index η will be 
not anymore specified. For further details, the interested reader is referred to [5].

An example of subdivision and line graphs of a signed graph are depicted in Fig. 1, 
where positive edges are bold lines, while negative edges are dotted lines.

The following result holds

Theorem 2.3. (See [5].) Let Γ be a signed graph of order n and size m, and φ(Γ) and 
ψ(Γ) its adjacency and Laplacian polynomials, respectively. Then

(i) φ(L(Γ), x) = (x + 2)m−nψ(Γ, x + 2),
(ii) φ(S(Γ), x) = xm−nψ(Γ, x2).
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Remark 2.4. In [5] the authors gave an interpretation of the oriented incidence matrix Bη

in terms of bi-oriented graphs, here we have considered a slightly different (but equiva-
lent) interpretation that is analogous to the Laplacian theory of mixed graphs, for which 
the edges can be either oriented or unoriented. It is clear that the Laplacian theory of 
mixed graphs is the same as that of signed graphs, e.g., [11,25]. Finally, it is necessary 
to observe that in the literature we have also different definitions of signed line graphs 
for a signed graph (see, for example, [2,21]).

The following result is the interlacing theorem in the edge variant. It can be deduced 
from the ordinary vertex variant interlacing theorem for the adjacency matrix combined 
with Theorem 2.3 (ii).

Theorem 2.5. Let Γ = (G, σ) be a signed graph and Γ − e be the signed graph obtained 
from Γ by deleting the edge e. Then

μ1(Γ) ≥ μ1(Γ − e) ≥ μ2(Γ) ≥ μ2(Γ − e) ≥ · · · ≥ μn(Γ) ≥ μn(Γ − e).

From the above theorem, we can characterize the signed graphs whose Laplacian 
spectral radius does not exceed 4. Recall that the signatures of trees are omitted. Also, 
for the sake of readability, for signed unicyclic graphs, the signature denoted by σ̄ means 
that the unique cycle is unbalanced. Note that signed unicyclic graphs have just two 
non-switching equivalent signatures: the all-positive edges, denoted by σ = +, and the 
unique cycle is unbalanced, denoted by σ̄. Under the above notation we have the following 
results (cf. also [11]).

Lemma 2.6. Let Γ = (C2n, ̄σ) be the unbalanced cycle on 2n vertices. Then μ1(C2n, ̄σ) < 4.

Proof. In view of Corollary 2.2, ψ(C2n, +) and ψ(C2n, ̄σ) have all coefficients but one 
equal. In fact, it is not difficult to see that ψ((C2n, +), x) − ψ((C2n, ̄σ), x) = −4 < 0 for 
every x ∈ R. Since the spectral radius of ψ(C2n, +) is 4, then ψ((C2n, ̄σ), x) > 0 for all 
x ≥ 4. The latter implies that the corresponding spectral radius is less than 4. �
Theorem 2.7. Let μ be the largest eigenvalue, or spectral radius, of the Laplacian of a 
connected signed graph Γ = (G, σ). The following statements hold:

(i) μ(Γ) = 0 iff Γ = K1;
(ii) μ(Γ) = 2 iff Γ = K2;
(iii) μ(Γ) = 3 iff Γ ∈ {P3, (K3, +)};
(iv) 3 < μ(Γ) < 4 iff Γ ∈ {Pn (n ≥ 4), (C2n, ̄σ), (C2n+1, +) (n ≥ 2)};
(v) μ(Γ) = 4 iff Γ ∈ {(C2n, +), (C2n+1, ̄σ) (n ≥ 2), K1,3, (K+

1,3, +), (K−
4 , +), (K4, +)},

where K+
1,3 (K−

4 ) is obtained from K1,3 (resp., K4) by adding (resp., deleting) an edge.
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Fig. 2. Forbidden subgraphs for μ1 ≤ 4.

Proof. Most of the above values of the Laplacian spectral radii of signed graphs can be 
deduced from the ordinary (signless) Laplacian theory of simple graphs (e.g., [18]). Let 
us denote by ϕ(G) the characteristic polynomial of the signless Laplacian D(G) +A(G), 
and by κ(G) the corresponding spectral radius.

Clearly, Δ(Γ) < 4, otherwise K1,4 appears and μ(Γ) ≥ 5 by Theorem 2.5. Items (i), 
(ii) and (iii) are trivial and they can be easily verified.

Regarding the graphs in Items (iv) and (v), we have the following considerations. 
From the Laplacian theory of unsigned graph we get that μ(Pn) < 4, μ(C2n+1, +) < 4, 
μ(K1,3) = μ(K+

1,3, +) = μ(K−
4 , +) = μ(K4, +) = 4. From the signless Laplacian theory 

of graphs we get that ψ(C2n, +σ) = ϕ(C2n) with κ(C2n) = 4, ψ(C2n+1, ̄σ) = ϕ(C2n+1)
with κ(C2n+1) = 4, and ψ(K+

1,3, ̄σ) = ϕ(K+
1,3) with κ(K+

1,3) > 4.
We now consider those spectra which cannot be deduced from the theory of unsigned 

graphs. One graph is (C2n, ̄σ), for which we have that μ(C2n, ̄σ) < 4 by Lemma 2.6. 
Any other (connected) graph different from the previous ones will contain a vertex of 
degree 3, and at least one of the two following graphs: (K+

1,3, ̄σ) or the tree T1,1,2 (see 
Fig. 2) which, according to Theorem 2.5, lead to signed graphs with spectral radius 
greater than 4. �

In general, we can give the following upper bound for the largest Laplacian eigenvalue 
of a signed graph. Other similar bounds can be found in [16].

Lemma 2.8. Let Γ = (G, σ) be a signed graph with Δ1 and Δ2 being the first and second 
largest vertex degrees in G, and let μ(Γ) be its Laplacian spectral radius. Then μ(Γ) ≤
Δ1 + Δ2, with equality if and only if Γ = K1,n or Γ = (Kn, −).

Proof. For any given matrix A, let |A| be the absolute value matrix whose entries are 
obtained from A by replacing each entry with the corresponding absolute value. Recall 
that the largest eigenvalue of a square matrix A is less than or equal to the largest 
eigenvalue of |A| (due to the Perron–Frobenius theorem). Hence, we have that μ(Γ) =
μ(BB�) ≤ μ(|BB�|) = μ(G, −), namely the largest L-eigenvalue of a signed graph 
is bounded by the largest L-eigenvalue of the corresponding all-negative edges signed 
graph. On the other hand, L(G, −) is the signless Laplacian of the underlying simple 
graph G, for which the inequality μ(G, −) ≤ Δ1 + Δ2 holds (e.g., Theorem 4.2 in [9]). 
The equality holds if and only if G is either the n-star K1,n or the complete graph Kn. 
This completes the proof. �

We conclude this section with two formulas (see Theorems 3.2 and 3.4 in [3]) useful 
for the computation of the A-polynomial of any weighted non-oriented graph.
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Fig. 3. A pair of A-cospectral signed graphs.

Theorem 2.9. Let A = (aij) be the adjacency matrix of a weighted graph G. Let v ∈ G

be any vertex. Then we have

φ(G, x) = (x− avv)φ(G− v, x) −
∑
u∼v

a2
uvφ(G− u− v, x) − 2

∑
C∈Cv

ω(C)φ(G \ V (C), x),

φ(G, x) = φ(G− uv, x) − a2
uvφ(G− u− v, x) − 2

∑
C∈Cuv

ω(C)φ(G \ V (C), x),

where Ca is the set of cycles passing through a and ω(C) =
∏

uw∈C auw.

The formulas in Theorem 2.9 have a natural use in the context of the adjacency 
matrix. However, they can be used for the Laplacian of signed graphs by mapping the 
Laplacian matrix of a signed graph as the adjacency matrix of a weighted multigraph. 
In fact, by doing so, any positive edge becomes a negative edge and vice versa, while 
the vertex degrees are expressed as weighted loops. The weight of an n-cycle C will be 
+1 if the cycle contains an even number of positive edges, and −1 if it contains an odd 
number of positive edges, that is (−1)nσ(C).

3. Spectral determination of signed graphs

In this section we give some results which will be useful for the study of spectral 
determination of signed graphs. This problem was, possibly, first introduced by Acharya 
in [1] in the context of the adjacency matrix.

Definition 3.1. A signed graph Γ = (G, σ) is determined by the spectrum, or the eigen-
values, of its matrix M(Γ) if and only if any signed graph Λ = (H, σ′) such that M(Λ)
has the same spectrum of M(Γ) implies that Γ and Λ are two switching isomorphic 
graphs. In the latter case, Γ is said to be determined by the spectrum of the matrix M , 
or Γ is a DMS graph for short. If Λ is not switching isomorphic to Γ but M(Λ) has the 
same spectrum of M(Γ), then the two graphs are said to be M -cospectral, or Λ is an
M -cospectral mate of Γ.

As shown in Fig. 3, there are pairs of cospectral signed graphs. However, cospectral 
mates share the spectral invariants. Let us first consider some spectral invariants which 
can be deduced from the powers of the matrices of signed graphs. For this purpose, we 
need to introduce some additional notation. A walk of length k in a signed graph Γ is a 
sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices v1, v2, . . . , vk+1 and edges e1, e2, . . . , ek
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such that vi �= vi+1 for each i = 1, 2, . . . , k; a walk is said to be positive if it contains 
an even number of positive edges, otherwise it is said to be negative. Let w+

vivj (k) (resp. 
w−

vivj (k)) denote the number of positive (resp., negative) walks of length k from the 
vertex vi to the vertex vj . Finally let t+Γ (resp., t−Γ ) denote the number of balanced 
(resp., unbalanced) triangles in Γ (the suffix is omitted if clear from the context). The 
following fact is well known (see, for example, [21]):

Lemma 3.2. Let Γ be a signed graph and A its adjacency matrix. Then the (i, j)-entry of 
the matrix Ak is w+

vivj (k) − w−
vivj (k).

Corollary 3.3. Let Γ be a signed graph, A its adjacency matrix, D the diagonal matrix of 
vertex degrees and t+ (resp., t−) the number of balanced (resp., unbalanced) triangles.

Then tr (A2) = tr(D), and tr (A3) = 6(t+ − t−).

Let Tk =
∑n

i=1 μ
k
i (k = 0, 1, 2, . . .) be the k-th spectral moment for the Laplacian 

spectrum of a signed graph Γ.

Theorem 3.4. Let Γ = (G, σ) be a signed graph with n vertices, m edges, t+ balanced 
triangles, t− unbalanced triangles, and degree sequence (d1, d2, . . . , dn). We have

T0 = n, T1 =
n∑

i=1
di = 2m, T2 = 2m +

n∑
i=1

d2
i ,

T3 = 6 ( t− − t+) + 3
n∑

i=1
d2
i +

n∑
i=1

d3
i .

Proof. Recall that trMN = trNM for any two feasible matrices M and N . The formulas 
for T0 and T1 are obvious. The formula for T2 follows from trL2 = tr (D − A)2 =
trD2+trA2, since trAD = trDA = 0 and, by Corollary 3.3, we have trA2 = trD = 2m. 
Finally, T3 = tr (D − A)3 = trD3 + 3trA2D − 3trAD2 − trA3. Since trAD2 = 0, and, 
by Corollary 3.3, tr (A3) = 6(t+ − t−) we get the assertion. �

It is well-known that the multiplicity of the eigenvalue 0 counts the number of balanced 
components (see, for example, [20]). The below result synthesizes the considerations so 
far made.

Theorem 3.5. Let Γ = (G, σ) and Λ = (H, σ′) be two L-cospectral signed graphs. Then,

(i) Γ and Λ have the same number of vertices and edges;
(ii) Γ and Λ have the same number of balanced components;
(iii) Γ and Λ have the same Laplacian spectral moments;
(iv) Γ and Λ have the same sum of squares of degrees, 

∑n
i=1 dG(vi)2 =

∑n
i=1 dH(vi)2;

(v) 6(t−Γ − t+Γ ) +
∑n

i=1 dG(vi)3 = 6(t−Λ − t+Λ) +
∑n

i=1 dH(vi)3.
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The following theorem can be useful in those situations in which a signed graph Γ and 
its signed subdivision graph S(Γ) maintain the same structure (e.g., lollipop graphs).

Theorem 3.6. Let Γ = (G, σ) be a signed graph of order n and size m, and S(Γ) the 
subdivision graph of Γ.

(i) The signed graphs Γ and Λ are L-cospectral iff S(Γ) and S(Λ) are A-cospectral;
(ii) Let Γ be a signed graph and S(Γ) a DAS-graph. Then Γ is a DLS-graph;
(iii) Let Γ be a DLS-graph. If any graph A-cospectral to S(Γ) is a subdivision of some 

graph, then S(Γ) is a DAS-graph.

Proof. (i) Since Γ and Λ are L-cospectral, then ψ(Γ, x) = ψ(Λ, x), and Γ and Λ have 
the same order and size which implies that m(Γ) − n(Γ) = m(Λ) − n(Λ). Thus,

xm(Γ)−n(Γ)ψ(Γ, x2) = xm(Λ)−n(Λ)ψ(Λ, x2),

which implies by Lemma 2.3 (i) that φ(S(Γ), x) = φ(S(Λ), x). This ends the necessity.
Conversely, since S(Γ) and S(Λ) are A-cospectral, then

φ(S(Γ), x) = φ(S(Λ), x), n(S(Γ)) = n(S(Λ)), m(S(Γ)) = m(S(Λ)).

Note that

m(S(Γ)) = 2m(Γ), m(S(Λ)) = 2m(Λ),

n(S(Γ)) = m(Γ) + n(Γ), n(S(Λ)) = m(Λ) + n(Λ).

From the above equalities, we obtain that m(Γ) = m(Λ) and n(Γ) = n(Λ), and so

(
√
x)n(Γ)−m(Γ)φ(S(Γ),

√
x) = (

√
x)n(Λ)−m(Λ)φ(S(Λ),

√
x),

which shows from that ψ(Γ, x) = ψ(Λ, x).
(ii) Assume that ψ(Λ, x) = ψ(Γ, x). Then by (i) we get φ(S(Λ), x) = φ(S(Γ), x). Since 

S(Γ) is a DAS-graph, then S(Λ) is switching isomorphic to S(Γ), that implies Λ being 
switching isomorphic to Γ.

(iii) Assume that Λ and Λ′ are two signed graphs such that Λ = S(Λ′) and φ(λ, x) =
φ(S(Λ′), x) = φ(S(Γ), x), which implies from (i) that ψ(Λ′, x) = ψ(Γ, x). Since Γ is 
a DLS-graph, then Λ′ is switching isomorphic to Γ, and so Λ = S(Λ′) is switching 
isomorphic to S(Γ) which shows that S(Γ) is indeed a DAS-graph. �

In view of Theorem 3.6 the following problem naturally arises: under which conditions 
a signed graph Γ = (G, σ) can be seen as a signed subdivision graph. The answer is the 
same as that for unsigned graphs, and the signature can be easily deduced.
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Fig. 4. The signed lollipop graph (L6,9, σ̄).

Theorem 3.7. A signed graph Γ = (G, σ) is the signed subdivision graph of Λ if and only 
if the following items hold:

(i) G is bipartite;
(ii) One of the two color classes, say S2, consists of exactly m(G)/2 vertices of degree 2;
(iii) G does not contain C4 as its subgraph.

Then Λ is obtained from Γ by replacing each vertex from S2 with an edge. The signature 
of the edge will be: a) positive, if the two deleted edges were of different sign; b) negative, 
if both deleted edges had the same sign.

4. Spectral determination of signed lollipop graphs

In this section we study the Laplacian spectral determination of signed lollipop graphs. 
Another spectral determination problem is considered in [4] for the signed graphs whose 
second largest L-eigenvalue does not exceed 3, in which signed friendship graphs are 
included. A lollipop graph is the coalescence between a cycle and a path for which the 
end vertex of the path is identified with a vertex from the cycle. By Lg,n we denote the 
lollipop graph whose girth is g and the order is n. Since the lollipop is a unicyclic graph, 
then it admits only two different non-equivalent signatures: the all positive edges σ = +, 
and σ̄ for which the unique cycle is unbalanced. In Fig. 4 we depicted an example of 
signed lollipop graph.

In the literature, the spectral determination of (unsigned) lollipop graphs, and related 
graphs, has been already considered in the papers [6,14,13,24]. Here we continue such 
investigations by extending the problem to the wider settings of signed graphs. Clearly, 
the main results from the above cited papers must be taken into account. We restate 
such results in terms of signed graphs.

Theorem 4.1. Let (Lg,n, σ) be a signed lollipop graph of order n and girth g. We have:

• (Lg,n, +) has no A-cospectral mates with only positive edges [6];
• (Lg,n, +) has no L-cospectral mates with only positive edges [14];
• (Lg,n, −) has no L-cospectral mates with only negative edges [15,24].

Now we spectrally characterize the signed lollipop graphs and extend the result of 
Theorem 4.1 to all signed lollipop graphs. The following lemma gives two bounds on the 
first and second largest eigenvalues of any signed lollipop graph.
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Lemma 4.2. Let (Lg,n, σ) be a lollipop graph. Then we have 4 < μ1(Lg,n, σ) < 5 and 
μ2(Lg,n, σ) < 4.

Proof. The upper bound for μ1(Lg,n, σ) comes from the fact that largest and sec-
ond largest vertex degrees of (Lg,n, σ) are 3 and 2, and from Lemma 2.8 we obtain 
μ1(Lg,n, σ) < 5. The lower bound for μ1(Lg,n, σ) comes from K1,3 being a subgraph 
(interlacing theorem). Finally, from the interlacing theorem applied to the edge in the 
cycle incident with the vertex of degree 3, we obtain the path Pn. Hence, in view of The-
orem 2.7 (iii), we have μ1(Lg,n, σ) ≥ 4 > μ1(Pn) ≥ μ2(Lg,n, σ). Finally, it is also easy to 
see that 4 cannot be an eigenvalue of (Lg,n, σ) (see for example, Lemma 4.15). �

In the following lemma we determine the degree sequence of any L-cospectral mate 
of a signed lollipop graph.

Lemma 4.3. Let Γ = (G, σ) be L-cospectral with (Lg,n, σ), then Γ has the same degree 
sequence of (Lg,n, σ).

Proof. Let Γ = (G, σ) be L-cospectral with (Lg,n, σ). Since μ1(Lg,n, σ) < 5, then Γ
cannot have vertices whose degree is greater than 3, otherwise K1,4 appears as a subgraph 
of Γ and μ1(Γ) ≥ 5. Let ni be the number of vertices whose degree is i, where 0 ≤ i ≤ 3. 
From Theorem 3.5 (i) and (iv) we deduce the following linear system of equations:

⎧⎪⎨
⎪⎩

n0 + n1 + n2 + n3 = n,

n1 + 2n2 + 3n3 = 2n,
n1 + 4n2 + 9n3 = 4n + 2,

whose unique (acceptable) solution is indeed n0 = 0, n1 = 1, n2 = n − 2 and n3 = 1. 
Hence the underlying graph of Γ consists of a lollipop graph with possibly one or more 
cycles as connected components. �

Now we have restricted the structure of a tentative L-cospectral mate of a signed 
lollipop graph. Let us denote by Γ a signed graph cospectral with (Lg,n, σ). We have 
proved that Γ is a signed lollipop graph with possibly one or more cycles as compo-
nents. However, Γ cannot have any kind of cycles as a component. In fact, (C2r+1, ̄σ)
and (C2r, +) are not acceptable since 4 would appear as an eigenvalue. Also, the eigen-
value 0 appears at most once, so Γ can have no more than one balanced cycle as a 
component.

The following lemma lists the spectra of signed cycles and paths (see [8] for the 
balanced ones, those unbalanced can be deduced from the balanced by Theorem 2.3), 
and it will be useful to the reader. For the sake of readability, the suffices and the 
polynomials variables will be omitted if clear from the context.
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Lemma 4.4. Let Pn and Cn be the path and the cycle on n vertices, respectively. Let 
SpecM (Γ) denote the multiset of eigenvalues of M(Γ).

SpecA (Cn,+) = {2 cos 2k
n
π, k = 0, 1, . . . , n− 1};

SpecA (Cn, σ̄) = {2 cos 2k + 1
n

π, k = 0, 1, . . . , n− 1};

SpecA (Pn) = {2 cos k

n + 1π, k = 1, 2, . . . , n};

SpecL (C2n,+) = {2 + 2 cos 2k
2nπ, k = 0, 1, . . . , 2n− 1};

SpecL (C2n+1,+) = {2 + 2 cos 2k + 1
2n + 1π, k = 0, 1, . . . , 2n};

SpecL (C2n, σ̄) = {2 + 2 cos 2k + 1
2n π, k = 0, 1, . . . , 2n− 1};

SpecL (C2n+1, σ̄) = {2 + 2 cos 2k
2n + 1π, k = 0, 1, . . . , 2n};

SpecL (Pn) = {2 + 2 cos k
n
π, k = 1, 2, . . . , n}.

Remark 4.5. In view of the above lemma we get that (C2n, +) is L-cospectral with 
(Cn, +) ∪ (Cn, ̄σ), and in view of Lemma 2.3 (i) the same applies to the spectrum of 
their corresponding adjacency matrices. Moreover, the L-spectrum of (C2n+1, +) (resp., 
(C2n+1, ̄σ)) contains the L-spectrum of (Cd, +) (resp., (Cd, ̄σ)) for any d divisor of 2n +1. 
The L-spectrum of (C2n, ̄σ) contains the L-spectrum of (Cd, ̄σ) provided that 2n

d is an 
odd number. For example, the L-spectrum (C120, ̄σ) contains the L-spectrum of (Cd, ̄σ)
only for d ∈ {8, 24, 40}. Similarly, the L-spectrum of (C2n,+) contains the L-spectrum of 
(Cd, +) for all divisors d of 2n, while it also contains the L-spectrum of (Cd, ̄σ) when 2n

d

is an even number.

The lemma below stems from the above observations.

Lemma 4.6. Let (C2n, +) be an even balanced cycle and let 2n = 2t+1r, where t
and r are positive integer and r is odd. If r ≥ 3, then (C2t+1r, +) is L-cospectral with 
(C2sr, +) 

⋃t
i=s(C2ir, ̄σ), with 0 ≤ s ≤ t. If r = 1 then (C2t+1 , +) is L-cospectral with 

(C2s , +) 
⋃t

i=s(C2i , ̄σ), with 2 ≤ s ≤ t.

Let μ(n) = 2 + 2 cos π
n be the Laplacian spectral radius of the path Pn; in view of 

Lemma 4.4 for n odd μ(n) is μ1(Cn, +), while for n even it is μ1(Cn, ̄σ). The observa-
tions of Remark 4.5 play a crucial role in the following theorem. Let GCD(a, b) be the 
greatest common divisor between the integers a and b. Also, let [c(n), σ] be the set of 
the L-eigenvalues of multiplicity two of the cycle (Cn, σ).



F. Belardo, P. Petecki / Linear Algebra and its Applications 480 (2015) 144–167 157
Theorem 4.7. The signed lollipop graph (Lg,n, σ) = Λ has simple L-eigenvalues if 
GCD(g, n) = 1. If GCD(g, n) = d ≥ 2, then we have the following possibilities

• if g is odd, then the eigenvalues of Λ of multiplicity two are those of [c(d), σ];
• if g is even, dg odd (resp., even), and σ = +, then the eigenvalues of Λ of multiplicity 

two are those of [c(d), +] (resp., [c(2d), +]);
• if g is even and σ = σ̄, then for g

d odd the eigenvalues of Λ of multiplicity two are 
those of [c(d), ̄σ], while for gd even, Λ has just simple eigenvalues.

Proof. Recall that the L-eigenvalues of signed cycles, other than 0 and 4, have multi-
plicity two.

First, note that Pn is an edge-deleted subgraph of (Lg,n, σ). Since Pn has only simple 
eigenvalues, by Theorem 2.5 each L-eigenvalue has at most multiplicity two (and it must 
be an L-eigenvalue for Pn). Similarly, for (Cg, σ) ∪ Pn−g we have:

μ1(Lg,n, σ) ≥ μ1((Cg, σ) ∪ Pn−g) ≥ μ2(Lg,n, σ) ≥ μ2((Cg, σ) ∪ Pn−g)

≥ · · · ≥ μn(Lg,n, σ) ≥ μn((Cg, σ) ∪ Pn−g). (2)

Let μ be, if any, an L-eigenvalue of multiplicity two, then μ is an L-eigenvalue of (Cg, σ) ∪
Pn−g. Consider the subdivision graph S(Lg,n, σ) = (L2g,2n, σ′). By applying Theorem 2.9
at the hanging path edge that is incident to the vertex of degree 3, we have:

φ(L2g,2n, σ
′) = φ(C2g, σ

′)φ(P2n−2g) − φ(P2g−1)φ(P2n−2g−1). (3)

Let λ = √
μ, in view of Theorem 2.3, λ is an A-eigenvalue of multiplicity two, as well. 

From μ being an L-eigenvalue of (Cg, σ) ∪ Pn−g, we deduce that λ is an A-eigenvalue of 
(C2g, σ′) ∪P2n−2g−1. Since λ is a root of φ(C2g, σ′) or a root of φ(P2n−2g−1), then in (3)
we have that λ is of multiplicity two if and only if λ is a root of both φ(C2g, σ′) and 
φ(P2n−2g−1) (note, if λ �= 4 is an A-eigenvalue of (C2g, σ′), then it is an A-eigenvalue of 
P2g−1). The latter implies that μ is an L-eigenvalue of both (Cg, σ) and Pn−g. Clearly, 
if d = GCD(g, n − g) = 1, then such a μ cannot exist and the L-eigenvalues of Λ have 
multiplicity 1. So let d ≥ 2 in the sequel.

Assume first that g is odd, then also d is odd. Since d divides both g and n − g, we 
have that [c(g), σ] ∩ SpecL(Pn−g) = [c(d), σ].

Assume next that g is even and σ = +. Since g is even then also the L-eigenvalues 
of (Cr, ̄σ) appear in SpecL(Cg,n, +) for any divisor r of g such that g

r is even (note, 
r is a proper divisor). Hence, if g

d is even, then d divides both g and n − g, and we 
have that [c(g), +] ∩ SpecL(Pn−g) = [c(2d), +]. If instead we have g

d odd, then we get 
[c(g), +] ∩SpecL(Pn−g) = [c(d), +]. In particular, if g = d or g = 2d, then the eigenvalues 
of multiplicity two are those of [c(g), +].

Finally, assume that g is even and σ = σ̄, then [c(g), ̄σ] ∩ SpecL(Pn−g) is non-empty 
if and only if gd is odd, and in the latter case we get [c(d), ̄σ]; if gd is even, then gr is even 
for all the divisors r of d, hence [c(g), ̄σ] ∩ SpecL(Pn−g) = ∅. �
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Corollary 4.8. Let Γ be a signed graph L-cospectral with (Lg,n, σ), with GCD(g, n) =
d ≥ 3. If (Cr, σ) is a component of Γ, then r divides d.

Proof. Since (Cr, σ) is a component of Γ, then μ(r) is in the spectrum of Λ with multi-
plicity two. Hence, according to Theorem 4.7, μ(r) is in the spectrum of (Cg, σ) and of 
Pn−g. Consequently, r divides both g and n − g, that is, r divides d as well. �
Corollary 4.9. Let Γ be a signed graph L-cospectral with (Lg,n, σ). If GCD(g, n) = d ≤ 2, 
then Γ is connected.

Proof. Recall that in view of Lemma 4.3, any L-cospectral mate of a signed lollipop 
graph consists of a lollipop graph with possibly one or more cycles as components. From 
Theorem 4.7, we deduce that (Lg,n, σ) has simple eigenvalues when GCD(g, n) = 1, con-
sequently any L-cospectral mate Γ cannot have cycles as components, as cycles carry 
eigenvalues of multiplicity two. If GCD(g, n) = 2 there could be eigenvalues of multiplic-
ity two but they belong to, say, degenerate cycle (C2, σ), which are not allowed. Hence, 
when GCD(g, n) ≤ 2, Γ must be connected. �
Lemma 4.10. Let ψ(Γ, x) =

∑n
i=0(−1)n bi(Γ) xn−1. Then we have:

bn(Cn,+) = 0, bn(Cn, σ̄) = 4, bn(Ln,g,+) = 0, bn(Ln,g, σ̄) = 4,

bn−1(Cn, σ) = n2, bn−1(Ln,g,+) = gn, bn−1(Ln,g, σ̄) = gn + 2(n− g)(n− g + 1).

Proof. The proof is a straightforward application of Theorem 2.1. �
Theorem 4.11. Let Γ be an L-cospectral mate of (Lg,n, ̄σ). Then Γ is connected.

Proof. By Lemma 4.3, Γ is a disjoint union of a signed lollipop graph with possibly 
one or more signed cycles. In view of Theorem 3.5, since (Lg,n, ̄σ) is unbalanced then 
Γ cannot have any balanced component, which implies that Γ can possibly have just 
unbalanced cycles as components. However if Γ consists of t ≥ 2 components, all of them 
unicyclic and unbalanced, then bn(Γ) = 4t > 4 = bn(Lg,n, ̄σ), that is a contradiction. 
Hence, Γ is a connected graph. �
Theorem 4.12. Let Γ be an L-cospectral mate of Λ = (Lg,n, +), with d = GCD(g, n) an 
odd number. If g �= d and n �= 4d, then Γ is connected.

Proof. If GCD(g, n) = d ≤ 2 the assertion is obviously true, so let GCD(g, n) = d ≥ 3
for the remainder of the proof. If Γ is disconnected then Γ has one or more cycles as 
components. Let Λ′ be the lollipop component of Γ.

Assume first that Γ has an unbalanced cycle component, say, (Cs, ̄σ) with s even. If 
so, μ(s) is in the spectrum of Λ with multiplicity two, and s divides g and n − g, and 
consequently also d. But d is odd, so s cannot divide d, and Γ cannot have unbalanced 
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cycles as component. So Γ has a positive cycle and Λ′ is an unbalanced component. 
Assume next that (Cr, +) is the positive cycle of Γ, then μ(r) is an eigenvalue of Γ with 
multiplicity two and the same applies to Λ. Similarly to above, r must divide d, so the 
only possibility is that d = kr with k odd.

Let k > 1. Hence, Λ contains the eigenvalue μ(kr), which cannot belong to the com-
ponent (Cr, +). The latter implies that μ(kr) is in Λ′, but Λ′ has an unbalanced cycle 
(Cg′ , ̄σ) as subgraph and μ(kr) cannot be an eigenvalue of (Cg′ , ̄σ). So it is k = 1 and 
r = d.

By Lemma 4.10, we have that bn−1(Γ) = 4d2 = gn = bn−1(Λ). Since d divides both g
and n, the latter equality implies that either g = d and n = 4d, or g = 2d and n = 2d, 
or g = 4d and n = d. Clearly, it is g < n and the only acceptable values are g = d and 
n = 4d. Also, Λ′ has order n′ = n − r = 3d. The latter special case requires additional 
investigation, so we will consider it separately in a subsequent lemma. In all other cases, 
Γ must be a connected signed graph, hence it reduces to the lollipop component Λ′.

This completes the proof. �
For the case d even, we need a more involved analysis due to the fact that (C2n, +) is 

not a DLS graphs.
Let Bn be the matrix of order n obtained from L(Pn+1) by deleting the row and 

column corresponding to some end-vertex of Pn+1. Let Hn be the matrix of order n
obtained from L(Pn+2) by deleting the rows and columns corresponding to both the end 
vertices of Pn+2 respectively. Both matrices represent augmented paths so their spectrum 
is not depending on the signature of the edges. The first two of the following equalities 
were given by Guo in [12], the third is proved in [19].

Lemma 4.13. Let Pn be the path of order n and Hn, Bn defined as above. Then

(i) x ψ(Bn) = ψ(Pn+1) + ψ(Pn),
(ii) ψ(Pn) = x ψ(Hn−1),
(iii) ψ(Pn) = (x − 2)ψ(Pn−1) − ψ(Pn−2).

We now express the L-polynomials of signed cycles and signed lollipop graphs in terms 
of those of paths. For a signed unicyclic graph Γ of girth g, let ς(Γ) = (−1)g+1σ(Γ).

Lemma 4.14. We have the following equalities

ψ(Cn, σ) = ψ(Pn+1)
x

− ψ(Pn−1)
x

+ 2ς(Cn, σ),

and

ψ(Lg,nσ̄) = 1
x

(ψ(Pn−g+1) + ψ(Pn−g))
[x− 3

x
ψ(Pg) −

2
x
ψ(Pg−1) + 2ς(Λ)

]
− 1 (ψ(Pn−g) + ψ(Pn−g−1))ψ(Pg).
x2
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Proof. The results can be easily obtained by iterated use of Theorem 2.9, combined with 
Lemma 4.13.

In fact, for ψ(Cn, σ), in view of Theorem 2.9, we have the following decomposition 
whose result depends on the parity of n and the value σ(Cn, σ):

ψ(Cn, σ) = ψ(Hn) − ψ(Hn−2) − 2(−1)nσ(Cn, σ)

= ψ(Pn+1)
x

− ψ(Pn−1)
x

+ 2ς(Cn, σ).

A similar computation holds for Λ = (Lg,n, σ):

ψ(Λ) = (x− 3)ψ(Hg−1)ψ(Bn−g) − 2ψ(Hg−2)ψ(Bn−g) − ψ(Hg−1)ψ(Bn−g−1)

− 2(−1)gσ(Λ)ψ(Bn−g)

= ψ(Bn−g)
[x− 3

x
ψ(Pg) −

2
x
ψ(Pg−1) + 2ς(Λ)

]
− 1

x
ψ(Bn−g−1)ψ(Pg)

= 1
x

(ψ(Pn−g+1) + ψ(Pn−g))
[x− 3

x
ψ(Pg) −

2
x
ψ(Pg−1) + 2ς(Λ)

]

− 1
x2 (ψ(Pn−g) + ψ(Pn−g−1))ψ(Pg).

This completes the proof. �
Lemma 4.15. We have

ψ(Pn, 4) = 4n; ψ((C2n,+), 4) = ψ((C2n+1, σ̄), 4) = 0;

ψ((C2n+1,+), 4) = ψ((C2n, σ̄), 4) = 4;

ψ((Lg,n,+), 4) =
{

−4g(n− g), g is even,
−4[g(n− g) − (2n− 2g + 1)], g is odd;

ψ((Lg,nσ̄), 4) =
{

−4[g(n− g) − (2n− 2g + 1)], g is even,
−4g(n− g), g is odd.

Proof. The results can be easily obtained by Lemma 4.14. In fact, ψ(P1, 4) = 4 and by 
induction ψ(Pn, 4) = (4 − 2)ψ(Pn−1, 4) − ψ(Pn−2, 4) = 2(4n − 4) − (4n − 8) = 4n.

ψ((Cn, σ), 4) = ψ(Pn+1, 4)
4 − ψ(Pn−1, 4)

4 + 2ς(Cn, σ)

= n + 1 − n + 1 + 2ς(Cn, σ) = 2 + 2ς(Cn, σ).

A similar computation holds for Λ = (Lg,n, σ):
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ψ(Λ, 4) = 1
4(ψ(Pn−g+1, 4) + ψ(Pn−g, 4))

[4 − 3
4 ψ(Pg, 4) − 2

4ψ(Pg−1, 4) + 2ς(Λ)
]

− 1
42 (ψ(Pn−g, 4) + ψ(Pn−g−1, 4))ψ(Pg, 4)

= −4[g(n− g) + (2 + 2ς(Λ))(2n− 2g + 1)].

This completes the proof. �
Lemma 4.16. Let (Lg,n, σ) = Λ and (Lg′,n′ , σ′) = Λ′ be two signed lollipop graphs such 
that 2n′ ≤ n. Then μ2(Λ) > μ2(Λ′).

Proof. Since the L-eigenvalues of Λ are interlaced by those of Pn, we have that μ2(Λ) ≥
μ2(Pn) ≥ μ1(Pn′) ≥ μ2(Λ′). We next prove that it is μ1(Pn) �= μ2(Λ), so that the last 
inequality is strict.

Assume first that either g odd and σ = +, or g even and σ = σ̄, then by Lemma 4.4
and (2) for n > g it is μ1(Pn) > μ1((Cg, σ) ∪ Pn−g) ≥ μ2(Λ).

Consider next the case when either g is even and σ = +, or g odd and σ = σ̄; in 
both cases the subdivision graph of (Lg,n, σ) is (L2g,2n, +), since they both contain an 
even number of positive edges in the cycle. We show that (L2g,2n, +) does not have 
λ1(P2n−1) =

√
μ1(Pn) = λ as an A-eigenvalue, which implies that (Lg,n, σ) cannot have 

μ1(Pn) as an L-eigenvalue. Apply Theorem 2.9 to one vertex in the cycle of degree 2
adjacent to the vertex of degree 3. We have:

φ((L2g,2n,+), x) = xφ(P2n−1) − φ(P2n−2, x) − φ(P2g−2, x)[2 + φ(P2n−2g, x)],

from which we deduce that

φ((L2g,2n,+), λ) = −φ(P2n−2, λ) − φ(P2g−2, λ)[2 + φ(P2n−2g, λ)] < 0.

Consequently, μ2(Λ) ≥ μ1(Pn′) > μ2(Λ′). This completes the proof. �
Lemma 4.17. Let Γ be a disconnected L-cospectral mate of Λ = (Lg,n, +). If either n �= 2g, 
or n = 2g with g even, then μ2(Γ) is not an eigenvalue of the cycle components of Γ.

Proof. Since Γ is disconnected than Γ has at least one cycle as component. Let 
GCD(g, n) = d, if d ≤ 2, Γ must be connected, so we consider d ≥ 3. Recall that d divides 
both g and n − g, hence n = kd with k ≥ 2. According to Corollary 4.8, if (Cr, σ) is a 
cycle of Γ, then r divides d; recall that μ1(Cr, σ) < 4. So r is at most n2 , and the latter 
equality is possible if and only if g = n − g = d, that is n = 2g. Assume that n �= 2g, 
then r < n

2 . Consequently, by interlacing, we have μ2(Γ) = μ2(Λ) ≥ μ2(Pn) > μ1(Cr, σ).
To complete the proof we need to consider the case n = 2g and g even. So assume that 

Γ has one cycle of order g. Clearly, μ1(Cg, +) = 4, so we need to consider only (Cg, ̄σ). 
Observe that μ1(Cg, ̄σ) = μ1Pg = μ2(Pn). We will use a similar strategy to the one used 
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in Lemma 4.16, in fact we will show that μ1(Pg) is not an L-eigenvalue of (Lg,2g, +) by 
showing that λ1(P2g−1) is not an A-eigenvalue of (L2g,4g, +). Let us use Theorem 2.9 at 
the vertex of degree 3, we then obtain

φ(L2g,4g,+) = xφ(P2g)φ(P2g−1) − 2φ(P2g)φ(P2g−2) − φ2(P2g−1) − 2φ(P2g).

By computing the polynomials in λ1(P2g−1) = λ we have

φ((L2g,4g,+), λ) = −2φ(P2g, λ)[φ(P2g−2, λ) + 1] > 0,

since λ2(P2g) < λ < λ1(P2g) and λ1(P2g−2) < λ. The latter shows that indeed 
λ2(Lg,2g, +) > μ2(Pn) = μ1(Pg) = μ1(Cg, ̄σ). This completes the proof. �

We can finally prove the result below.

Theorem 4.18. Let Γ be an L-cospectral mate of Λ = (Lg,n, +), with d = GCD(g, n) an 
even number. Then Γ is connected.

Proof. Since Λ is a balanced lollipop whose GCD(g, n) = d is even, then by Theorem 4.7
the eigenvalues of multiplicity two for Λ are those of [c(2k), +], for some number k equal 
to either d or 2d. The even number 2k can be written in the form 2t+1r, where r is a 
positive odd number. We give the proof for r ≥ 3, the case r = 1 can be solved similarly. 
By Lemma 4.6 we have that (C2t+1r, +) is cospectral with (C2sr, +) 

⋃t
i=s(C2ir, ̄σ) for 

any 0 ≤ s ≤ t.
Let Γ be a disconnected tentative cospectral mate of Λ, and denote by Λ′ = (Lg′,n′ , σ)

the lollipop component of Γ. In the sequel we show that Γ should be one of the two 
following signed graphs:

(i) Γ = Λ′ ∪ (Cr, +) 
⋃t

i=0(C2ir, ̄σ);
(ii) Γ = Λ′ ⋃t

i=s(C2ir, ̄σ).

From Γ being disconnected, we have that Γ has at least one cycle.
Assume that there is a balanced cycle (Cq, +) among its components, then Λ′ is 

unbalanced. The value q divides g and n − g (see Corollary 4.8), but then it divides r as 
well, due to r being the greatest odd factor of GCD(g, n − g). Evidently, q = r otherwise 
if q < r, μ(r) cannot be an eigenvalue of (Cq, +) or of Λ′, and thus of Γ, while it appears 
in Λ. Also, Λ′ must contain the eigenvalues of [c(r), ̄σ] with the same multiplicity, since 
these eigenvalues cannot appear in some cycle component, and the latter implies that 
GCD(g′, n′) = kr, with k odd. However it is k = 1, otherwise Λ′ contains the eigenvalues 
of multiplicity two of a longer odd unbalanced cycle whose eigenvalues do not appear 
in Λ. In addition g′ is odd, otherwise g′ is even, g′

r is also even, and the eigenvalues 
of [c(r), ̄σ] cannot appear in Λ′ with multiplicity two. Now, since GCD(g′, n′) is odd, 
then Λ′ cannot have the eigenvalues of unbalanced even cycles, necessary to complete 
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the spectrum of (C2tr, +), the latter implies that Γ must have an unbalanced even cycle 
for each necessary even multiple of r. Consequently, Γ is of type (i).

Assume next that Γ has not any balanced cycle as a component. In this case Λ′ is bal-
anced and it contains the eigenvalues of both [c(r), +] and [c(r), ̄σ] with multiplicity two, 
which implies that Λ′ has the eigenvalues of [c(2r), +] with multiplicity two. The latter 
implies that 2r divides g′, and g′ must be even. Let (Cq′ , ̄σ) be the shortest unbalanced 
even cycle component of Γ. Clearly, q′ must divide 2tr, but it must be of the form 2sr, 
where s ≥ 1. In fact, let q′ = 2s for some 2 ≤ s ≤ t. If so, for any s′ ≥ s, neither Γ can 
have some cycle component C(2s′r, ̄σ), as it would lead to common eigenvalues of mul-
tiplicity two among the cycle components, nor Λ′ can have as eigenvalues of multiplicity 
two those of [c(2s′r), ̄σ], because then those of [c(2s′+1r), +] are in Λ′ with multiplicity 

two and, due to 2s′+1r
2s′ = 2r being even, we get that also the eigenvalues of [c(2s′), ̄σ]

are eigenvalues for Λ′ with multiplicity two, leading again to eigenvalues of multiplicity 
greater than two. Hence, q′ must be of the form 2sr. If s > 1, the eigenvalue μ(2s′r), 
with 0 ≤ s′ ≤ s − 1 is in Λ and it must appear in Γ as well. Since (C2sr, ̄σ) does not 
contain the eigenvalues of (C2s′r, ̄σ) for s′ < s, it implies that μ(2s′r) cannot appear in 
some cycle component (C2s′r, ̄σ) (due to the minimality of s), so it must appear in Λ′. 
The latter implies that the eigenvalues of [c(2sr), +] appear with multiplicity two for Λ′. 
Now, for every s ≤ s′ ≤ t we have the cycle (C2s′r, ̄σ) is a component of Γ. If not, then 
some μ(2s′r), with s′ > s, appears in Λ′ with multiplicity two, together with the eigen-
values [c(2s′+1r), +]. Then μ(2sr) appears in both Λ′ and (C2sr, ̄σ), and the multiplicity 
of μ(2sr) jumps to four, a contradiction. Hence, Γ is of the form (ii).

The next step is to show that both forms (i) and (ii) are not admissible for Γ, by 
comparing the spectral invariants bn−1 (cf. Lemma 4.10) and the polynomial computed 
at 4 (cf. Lemma 4.15). For Λ we have that bn−1(Λ) = gn and ψ(Λ, 4) = −4g(n − g).

Assume first that Γ is of type (i). Recall that Λ′ is unbalanced and g′ is odd. In this 
case, we have that bn−1(Γ) = 4t+1r2 and ψ(Γ, 4) = −4t+2(g′(n′ − g′). So we get the 
system

{
gn = 4t+1r2;
−4g(n− g) = −4t+2g′(n′ − g′),

from which we get that g2 = 4t+1(r2 − g′(n′ − g′)) (recall that n′ > g′). Clearly, the 
quantity r2−g′(n′−g′) must be positive, that is r2 > g′(n′−g′) but the latter inequality 
has no solutions since r divides both g′ and n′ − g′. Hence Γ is not of type (i).

Assume now that Γ is of type (ii). Recall that Λ′ is balanced and g′ is even. In this 
case we have that bn−1(Γ) = 4t−s+1g′n′ and ψ(Γ, 4) = −4t−s+2g′(n′−g′). Now we obtain 
the system

{
gn = 4t−s+1g′n′;
−4g(n− g) = −4t−s+2g′(n′ − g′),
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whose solutions are g = 2t−s+1g′ and n = 2t−s+1n′. The latter equality implies that 
n ≥ 2n′ and by Lemmas 4.16 and 4.17, we obtain that μ2(Λ) > μ2(Γ). Hence, Γ is not 
of type (ii).

If r = 1, an analogous proof holds, in which Γ = (Lg′,n′ , +) 
⋃t

i=s(C2i , ̄σ), with s ≥ 2
being the shortest length of the unbalanced cycle component of Γ. We leave the details 
to the reader.

This completes the proof. �
Theorem 4.19. No two non-switching isomorphic signed lollipop graphs are L-cospectral.

Proof. Let Λ = (Lg,n, σ) be a signed lollipop graph. In Lemma 4.15 we have decomposed 
the L-polynomial of Λ in the combination of paths polynomials.

ψ(Λ, x) = 1
x

(ψ(Pn−g+1) + ψ(Pn−g))
[x− 3

x
ψ(Pg) −

2
x
ψ(Pg−1) + 2ς

]
− 1

x2ψ(Pg)(ψ(Pn−g) + ψ(Pn−g−1)). (4)

Consider Lemma 4.13 (iii), the formula ψ(Pn) = (x − 2)ψ(Pn−1) − ψ(Pn−2) can be seen 
as a homogeneous second order recurrence equation

pn = (x− 2)pn−1 − pn−2,

with p0 = 0 and p1 = x as boundary conditions. It is a matter of computation (cf. [19]
for the details) to check that the solution is

pn = (y2n − 1)(y + 1)
yn(y − 1) ,

where y is the solution of the characteristic equation y2 − (x − 2)y + 1 = 0.
For any signed graph Γ, let

Φ(Γ) = yn (y − 1)2 ψ(Γ, y) − (y2n+2 − 2y2n+1 − 2y + 1),

then, by applying the above described transformation to (4), we get

Φ(Lg,n, σ) = 2ςy2n−g+2 − 2ςy2n−g+1 + y2n−2g+2 + y2g − 2ςyg+1 + 2ςyg. (5)

From the above polynomial, it is evident that two signed lollipop graphs are L-cospec-
tral if and only if both g and σ(Λ) are the same, namely, the two signed lollipop graphs 
are also switching equivalent. This completes the proof. �

By using the comparison technique of the above theorem, we now deal with the last 
case, left by Theorem 4.12.
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Lemma 4.20. The signed graphs (Ld,4d, +) and (Lg′,3d, ̄σ) ∪ (Cd, +), with d odd, are not 
L-cospectral.

Proof. We compare the polynomials in order to obtain compatible values for g′.
From Lemma 4.14, we have the polynomial of the odd balanced cycle (Cd, +), that is

ψ(Cd,+) = ψ(Pd+1)
x

− ψ(Pd−1)
x

+ 2.

Let ς ′ = ς(Lg′,3d). After some computations we get for Γ = (Lg′,3d, ̄σ) ∪ (Cd, +) the 
below polynomial

Φ(Γ) = 2ς ′y8d−g′+2 − 2ς ′y8d−g′+1 + y8d−2g+2 + 4ς ′y7d−g′+2 − 4ς ′y7d−2g′+2

+ 2ς ′y6d−g′+2 − 2ς ′y6d−g′+1 + y6d−2g′+2 + y6d+2 − 2y6d+1 + y2d+2g

− 2ς ′y2d+g′+1 + 2ς ′y2d+g′ − 2y2d+1 + y2d + 2yd+2g − 4ς ′yd+g′+1

+ 4ς ′yd+g′+1 + 4ς ′yd+g′
+ y2g′ − 2ς ′yg

′+1 + 2ς ′yg − 4yd+1 + 2yd.

For the ease of comparison, we also write the polynomial corresponding to Λ = (Ld,4d, +). 
Recall that d is odd and σ = +, hence ς = 1.

Φ(Ld,4d,+) = 2y7d+2 − 2y7d+1 + y6d+2 + y2d − 2yd+1 + 2yd.

We next compare the lowest degree monomials of both the above polynomials. For 
Φ(Λ) it is 2yd, while for Φ(Γ) we have three candidates, namely y6d−2g′+2, 2ςyg′ and 
2yd. Since the polynomial must be the same, we deduce that g′ > d and g′ < 1

2 (5d + 2). 
If we look at the monomials of degree d + 1, we have for Φ(Λ) that it is 2yd+1. So Φ(Γ)
should have the same monomial, and the only possibility is that g′ = d + 1 and ς ′ = 1. 
But with the latter substitution the two polynomials do not coincide. Hence, Γ cannot
be cospectral with Λ. �

We can finally state the main result of this section.

Theorem 4.21. The signed lollipop graph (Lg,n, σ) is determined by the spectrum of its 
Laplacian matrix.

Proof. Let Γ be a tentative L-cospectral mate of (Lg,n, σ) = Λ. According to Lemma 4.3, 
Γ is a signed lollipop graph with possibly one or more signed cycles. If σ(Λ) = σ̄, by 
Theorem 4.11 we get that Γ is connected, and it reduces to a signed lollipop graph. If 
σ(Λ) = + by Theorems 4.12 and 4.18, we get that, excluding the special case n = 4g and 
σ = +, the tentative cospectral mate Γ is connected, and it reduces to a signed lollipop 
graph. By Theorem 4.19, if Γ is a signed lollipop graph, then it is switching isomorphic 
to (Lg,n, σ). The remaining special case is considered in Lemma 4.20 and it leads to 
non-cospectral graphs. �
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From Theorem 3.6 (iii), we deduce that the (signed) subdivisions of signed lollipop 
graphs that A-cospectral mates cannot be subdivision graphs. Since the subdivision of 
lollipop graph is a lollipop graph with even order and even girth not less than 6, the 
following corollary holds:

Corollary 4.22. Let Γ be A-cospectral with a signed lollipop graph (L2g,2n, σ), where g ≥ 3. 
If Γ is a subdivision graph, then Γ is switching isomorphic to (Lg,2n, σ).

Clearly, it is interesting to solve the spectral determination problem of signed lollipop 
graph with respect to the adjacency spectrum, using the results of this paper together 
with those from [17,18] and others. However, we shall not attempt to do it within this 
article.
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