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Abstract

For a graph G, the first Zagreb index is defined as the sum of the squares of
the vertices degrees. By investigating the connection between the first Zagreb index
and the first three coefficients of the Laplacian characteristic polynomial, we give a
lower bound for the first Zagreb index, and we determine all corresponding extremal
graphs. By doing so, we generalize some known results, and, as an application, we
use these results to study the Laplacian spectral determination of graphs with small
first Zagreb index.

1 Introduction

All graphs considered here are simple, undirected and finite. Let G = G(V (G), E(G)) be

a graph with order n = n(G) = |V (G)|, size m = m(G) = |E(G)| and di = dG(vi) being

the degree of vertex vi of G (1 ≤ i ≤ n). Let M = M(G) be a graph matrix defined in a

prescribed way. The M-polynomial of G is defined as det(λI−M), where I is the identity

matrix. The M-spectrum of G is a multiset consisting of the eigenvalues of M(G). The

largest eigenvalue ofM(G) is called theM-spectral radius ofG. Usually the graph matrices

considered are the adjacency matrix A(G), the Laplacian matrix L(G) = D(G) − A(G),

the signless Laplacian matrix Q(G) = D(G) + A(G), where D(G) = diag(d1, d2, . . . , dn).

Graphs sharing the spectrum of a graph matrix M are called M-cospectral graphs. A

graph G is said to be determined by its M-spectrum if the M -cospectral graphs to G are

also isomorphic to G. For some basic results on graph spectra, we refer the reader to [8].
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For other notation and graphs used throughout this paper, we refer the reader to see the

appendix.

Among graph topological indices, one of the most studied is surely the first Zagreb

index [25], here denoted by M1(G), that is defined as

M1(G) =
n∑

i=1

d2i .

In more than forty years after its first appearance, a significant number of papers have

appeared in various scientific journals, including those specialized in mathematics and/or

chemistry. For some recent results, we refer the reader to see, for example, [1, 3, 7, 14,

15, 34]; for less recent results, those most relevant are surveyed in the papers [24, 35].

Regarding the bounds on the M1-index, our impression is that the results about the lower

bounds of general graphs are less numerous than to those about the upper bounds. Let

us recall some known lower bounds for M1-index for a graph G of order n and size m. By

bxc (resp., dxe), we denote the largest integer not greater (resp., not less) than x.

(A) Das [13] and Gutman [23]:

M1(G) ≥ 2m(2p+ 1)− pn(1 + p),

with equality if and only if the difference of the degrees of any two vertices of graph

G is at most one, where p = b2m
n
c;

(B) Das [13]:

M1(G) ≥ d21 + d2n +
(2m− d1 − dn)2

n− 2
,

with equality if and only if d2 = d3 = · · · = dn−1;

(C) Yoon and Kim [59]:

M1(G) ≥ 4m2

n
,

with equality if and only if G is a regular graph.

(D) Cheng et al. [6]: If G is bipartite of order n ≥ 2 and size 0 ≤ m ≤
⌊
n
2

⌋ ⌈
n
2

⌉
, then

the minimum possible value of M1(G) is
(4m− n− nt)t+ 2m if n is even; or nt+ t ≤ 2m ≤ nt+ n− t− 1;

(4m+ 1− nt)t, if n is odd and nt ≤ 2m < nt+ t;
(4m− n+ 1− nt)(t+ 1) if n is odd and nt+ n− t+ 1 ≤ 2m < nt+ n,

where t = b2m
n
c.
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Investigating the relations among the graph parameters is a well-studied research field

due to many relevant applications. For example, Gutman and Das [24] have showed that

the M1-index is related to various quantities of interest in Chemical Graph Theory. Fur-

thermore, they have pointed out some of its general mathematical properties, including

the relations between the M1-index and other invariants as the number of pairs of inde-

pendent edges, the second Laplacian spectral moment, the coefficients of characteristic

polynomial, the variance of vertex degrees, etc. It is worth to mention that in the litera-

ture [3, 19, 30, 31, 57, 58, 61] we find relations involving the M1-index with the Wiener

index, the hyper-Wiener index, the diameter, the connectivity, the number of pendent

vertices, and the clique number.

In this paper, for a given graph, we consider the relation between the M1-index and the

first three coefficients of its L-polynomial. By doing so, we deduce a lower bound for M1-

index and we identify the corresponding extremal graphs. From the connections among

these extremal graphs, we give a construction to characterize all the connected graphs

with a given M1-index. The readers will see that some known results can be deduced

as special cases of the results presented here. Finally, we make use of such results to

investigate the Laplacian spectral determination of graphs with small M1-index.

The paper is organized as follows. In Section 2, we investigate the relation between the

M1-index and the first three coefficients of the Laplacian polynomial, and we determine

a lower bound for the M1-index with the corresponding extremal graphs. In Section 3,

we make use of the M1-index to study the Laplacian spectral determination problem of

graphs. Finally, Section 4 is an appendix where the graphs considered through this paper

are depicted.

2 Lower bounds for M1(G)

Let the L-polynomial of a graph G be

ψ(G, λ) = det(λI − L(G)) =
n∑

i=0

qi(G)λn−i.

Lemma 2.1. [36] Let G be a graph with order n, size m and degree sequence d =

(d1, d2, · · · , dn). Then

q0(G) = 1 q1(G) = −2m q2(G) = 2m2 −m− 1

2

n∑
i=1

d2i .

The authors of [43] used these three coefficients in Lemma 2.1 to define the following

-37-



invariant

I1(G) =

{
0 if q1(G) = 0;

−q2(G) +
(−q1 (G)−1

2

)
− q0(G) if q1(G) 6= 0,

(1)

which is a quantity evidently determined by the L-spectrum. Here, our interest is the

relation between I1(G) and the M1-index. Clearly, if G has at least one edge, then by (1)

and Lemma 2.1 we have I1(G) = 1
2

∑n
i=1 d

2
i − 2m(G). Note, M1(G) =

∑n
i=1 d

2
i . Hence,

I1(G) is the difference 1
2
M1(G)− 2m(G). From this point of view, I1(G) is the algebraic

transformation of M1(G). In order to keep the notation consistent, we adopt M1(G)

instead of I1(G) and rewrite the above difference as

M1(G) =
1

2
M1(G)− 2m(G). (2)

Observe that ifG has no edges (soG consists of isolated vertices), by (2) we haveM1(G) =

0, and thus it is more convenient than (1). We next show that, in order to study of M1(G),

investigating M1(G) instead of M1(G) gives some advantages.

We now present a lower bound forM1(G) and we identify the corresponding extremal

graphs. Before that, we consider some algebraic properties of M1(G). The first one is

that M1(G) is an integer, due to the well-known fact that the number of vertices of odd

degree is even.

For a graph G and e = uv ∈ E(G), the neighbor set and the degree of edge e are

respectively defined as NG(e) = NG(u) ∪ NG(v) − {u, v} and dG(e) = |NG(e)| = d(u) +

d(v)− 2, where NG(u) is the neighbor set of vertex u.

Lemma 2.2. Let G be a non-empty connected graph with size m and e = uv ∈ E(G).

Then

M1(G) =M1(G− e) + dG(e)− 1.

Proof. From (2) we have that

M1(G− e) =
1

2

( ∑
w∈G\{u,v}

d2G(w) +
(
dG(u)− 1

)2
+
(
dG(v)− 1

)2)− 2(m− 1)

=
1

2

∑
w∈G

d2G(w)− 2m− dG(u)− dG(v) + 3

=M1(G)− dG(e) + 1.

This completes the proof.

If G is connected graph with no edges, then G = P1 and M1(P1) = 0. If G = P2 and

e ∈ E(G), thenM1(P2) = −1 <M1(P2−e) = 0. If G 6∈ {P1, P2}, then dG(e) ≥ 1 for any

edge e ∈ E(G). Hence, the following corollary immediately follows from (2) and Lemma

2.2.
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Corollary 2.3. Let G be a connected graph with G 6∈ {P1, P2}. Then

(i) if H is a subgraph of G, then M1(G) ≥M1(H) with equality iff H = G.

(ii) M1(G) = M1(G− e) + dG(e) + 2.

Lemma 2.4. [46] Let (d1, d2, · · · , dn) be the degree sequence of a graph G of order n and

size m, and d the average degree. Then
∑n

i=1 d
2
i is minimal if and only if

d1 = · · · = dt(G) = bdc+ 1 and dt(G)+1 = · · · = dn = bdc,

that is, G is an almost regular graph, where t(G) =
∑n

i=1 di − nbdc. Further, G is a

d-regular graph for t = 0, and G is a (bdc, bd+ 1c)-almost regular graph for t 6= 0.

We now are in position to find some lower bounds of M1(G) and to characterize the

corresponding extremal graphs. The following lemma is a part of Theorem 2.2 in [42],

but we provide a straightforward proof in this paper.

Let Gi = {G |G is connected,M1(G) = i, i ≥ −1is an integer}.

Lemma 2.5. Let G be a connected graph with order n and size m. Then, under the

notation reported in Section 4, we have:

(i) M1(G) ≥ −1, the equality holds if and only if G ∈ G−1 = {Pn

∣∣n ≥ 2};

(ii) M1(G) = 0 if and only if G ∈ G0 = {P1, Cn | n ≥ 3} ∪ {Tl1,l2,l3 | n ≥ 4};

(iii) M1(G) = 1 if and only if G ∈ G1 = {Lg,l | n ≥ 4} ∪ {P a1,a2
z1,z2,l

| n ≥ 6};

(iv) M1(G) = 2 if and only if G ∈ G2 = {Ca1,a2
z1,z2,g

, Tl1,l2,l3,l4 | n ≥ 5} ∪ {M g
l1,l2,l3

| n ≥
6} ∪ {P a1,a2,a3

z1,z2,z3,l
| n ≥ 8};

Proof. If G ∈ {P1, P2}, then M1(P1) = 0 and M1(P2) = −1. Now suppose that G is a

connected graph with at least two edges. A straightforward calculation shows M(Pn) =

−1 by (2). From Lemma 2.4 we get that
∑n

i=1 d
2
i reaches the minimum if and only if

|di − dj| ≤ 1 for 1 ≤ i, j ≤ n. In other words,

max{M1(T ) | T is a tree of order n} ≥ M1(Pn) = −1. (3)

Since G is connected, G contains a spanning tree T . By Corollary 2.3(i) and (3) we have

M1(G) ≥M1(T ) ≥M1(Pn) = −1,

and so the lower bound of M1(G) follows.
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Let m = n + δ. For connected graphs δ ≥ −1, note that δ + 1 is the cyclomatic

number. By (2) we obtain
n∑

i=1

d2i = 4m+ 2M1(G).

Substituting 2m =
∑n

i=1 di into the above equality we arrive at

n∑
i=1

di(di − 2) = 2M1(G). (4)

In view of
∑n

i=1 di = 2n+ 2δ, thus

n∑
i=1

(di − 2) = 2δ. (5)

From (4) and (5) it follows that

n∑
i=1

(di − 1)(di − 2) = 2M1(G)− 2δ. (6)

Note that the vertices of degree 1, degree 2, degree 3 and degree 4 in G contribute,

respectively, 0, 0, 2 and 6 to
∑n

i=1(di− 1)(di− 2). Furthermore,
∑n

i=1(di− 1)(di− 2) ≥ 0.

By the values of δ we distinguish the following cases.

Case 1. δ = −1. Thus, G is a tree. Recall that M1(G) ≥ −1 is an integer.

Subcase 1.1. M1(G) = −1. By (6) we get
∑n

i=1(di − 1)(di − 2) = 0 implying G ∼= Pn.

Subcase 1.2. M1(G) = 0. By (6) we have
∑n

i=1(di − 1)(di − 2) = 2. So, G has exactly

one vertex of degree 3 and n− 1 vertices of degree 1 or 2. Hence, G ∼= Tl1,l2,l3 .

Subcase 1.3. M1(G) = 1. By (6) we get
∑n

i=1(di − 1)(di − 2) = 4, which implies that G

only has two vertices of degree 3 and n−2 vertices of degree 1 or 2. Therefore, G ∼= P a1,a2
z1,z2,l

.

Subcase 1.4. M1(G) = 2. Thus,
∑n

i=1(di − 1)(di − 2) = 6. The latter implies that G

has either one vertex of degree 4 and the others are degree of 1 or 2, or G has exactly

three vertices of degree 3 and n − 3 vertices of 1 or 2. Consequently, G ∼= Tl1,l2,l3,l4 or

G ∼= P a1,a2,a3
z1,z2,z3,l

.

Case 2. δ = 0. In this case, G is a unicyclic graph.

Subcase 2.1. M1(G) = −1. Then,
∑n

i=1(di− 1)(di− 2) = −2, a contradiction. That is to

say, there exists no graph such that δ = 0 and M1(G) = 1. In Table 1, we use the word

“none” to express such a case.

Subcase 2.2. M1(G) = 0. Thus,
∑n

i=1(di − 1)(di − 2) = 0 showing G ∼= Cn.

Subcase 2.3. M1(G) = 1. So,
∑n

i=1(di− 1)(di− 2) = 2, hence G has one vertex of degree

3 and n− 1 vertices of degree 1 or 2. Therefore, G ∼= Lg,l.
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Subcase 2.4. M1(G) = 2. Thereby,
∑n

i=1(di − 1)(di − 2) = 4. This implies that G has

exactly two vertices of degree 3 and n− 2 vertices of degree of 1 or 2. If the two vertices

of degree 3 lie in the cycle of G, then G ∼= Ca1,a2
z1,z2,g

. Otherwise, G ∼= M g
l1,l2,l3

.

Case 3. δ = 1. In this case, G is a bicyclic graph.

Subcase 3.1. M1(G) = −1. Then,
∑n

i=1(di − 1)(di − 2) = −4, a contradiction.

Subcase 3.2. M1(G) = 0. Then,
∑n

i=1(di − 1)(di − 2) = −2, a contradiction.

Subcase 3.3. M1(G) = 1. Thus,
∑n

i=1(di − 1)(di − 2) = 0, so that the maximum degree

of G is 2, which is impossible.

Subcase 3.4. M1(G) = 2. Thus,
∑n

i=1(di − 1)(di − 2) = 2. Therefore, G contains exactly

one vertex of degree 3 and n− 1 vertices of degree 1 or 2 which is again impossible, since

connected bicyclic graphs either have at least two vertices of degree 3, or they have a

vertex of degree 4.

Additionally, if there are no graphs with M1(G) = k and m = n+ δ, then, in view of

Corollary 2.3(i), the same applies for graphs withM1(G) = k and m = n+δ+1. Namely,

if a slot in Table 1 is filled with “none” , then all the right blank slots in the same row

must be written as “none”, as well.

This completes the proof.

M1(G)

δ
Q

Q
QQ

−1

0 1 ≥ 2−1

Pn(n ≥ 2) none

0 P1, Tl1,l2,l3 Cn none

1 P a1,a2

z1,z2,l
Lg,l none

2 Tl1,l2,l3,l4 , P
a1,a2,a3

z1,z2,z3,l
Ca1,a2

z1,z2,g, M
g
l1,l2,l3

none

Table 1: Graphs with −1 ≤M1(G) ≤ 2.

From the above results, we deduce the following theorem which gives the lowest bounds

for the M1-index together with the corresponding extremal graphs.

Theorem 2.6. Let G be a connected graph with order n and size m. Then, under the

notation reported in Lemma 2.5, we have:

(i) M1(G) ≥ 4m− 2, the equality holds iff G ∈ G−1;

(ii) if G 6∈ G−1, then M1(G) ≥ 4m with equality iff G ∈ G0;

(iii) if G 6∈ G−1 ∪ G0, then M1(G) ≥ 4m+ 2 with equality iff G ∈ G1;

(iv) if G 6∈ G−1 ∪ G0 ∪ G1, then M1(G) ≥ 4m+ 4 with equality iff G ∈ G2.
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Proof. In view of (2) we have the following expression of M1(G):

M1(G) = 4m(G) + 2M1(G). (7)

From Lemma 2.5(i) it follows that M1(G) ≥ 4m(G) − 2 with equality iff G ∈ G−1, and

thus (i) follows.

For (ii), since G 6∈ G−1, by Lemma 2.5(i) and (ii) we obtainM1(G) ≥ 0, and therefore

M1(G) ≥ 4m with equality iff G ∈ G0.

For (iii), due to G 6∈ G−1 ∪ G0, by Lemma 2.5(i)–(iii) we have M1(G) ≥ 1, and

consequently M1(G) ≥ 4m+ 2 with equality iff G ∈ G1.

Finally, (iv) similarly holds. This completes the proof.

Remark 2.7. The above theorem contains information about M1(G) that includes or

extends some known results.

(i) Gutman and Das in [24] showed that among n-vertex tree, the path Pn minimizes the

M1-index; Li et al. in [32] extended this result to all graphs. Actually, their results

are a special cases of Theorem 2.6, since it characterizes the graphs (or trees) with

the first four smallest M1-indices.

(ii) Deng in [16] determined the unicylic graph with the smallest M1-index; Xia and

Chen in [56] identified the unicyclic graphs with the first two smallest M1-indices.

As a matter of fact, Theorem 2.6(ii)-(iv) identifies the unicyclic graphs with the first

three smallest M1-indices but it is extended to all graphs.

The method used to prove Lemma 2.5 is quite effective whenM1(G) is a small number.

Inspired by the essential relationships among the graphs in families G−1−G2, we will offer

a construction to find all the connected graphs with larger M1(G), which will certainly

provide a more general lower bound for the M1-index. In the sequel, we proceed to further

investigate the algebraic properties of M1(G).

Lemma 2.8. Let G be a graph with k connected components G1, G2, · · · , Gk. Then

M1(G) =
k∑

i=1

M1(Gi).

Proof. Let G and Gi have sizes m and mi (1 ≤ i ≤ k) respectively. So, m =
∑k

i=1mi.
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From (2) it follows that

k∑
i=1

M1(Gi) =
k∑

i=1

( 1

2

∑
v∈V (Gi)

d2Gi
(v)− 2mi

)

=
1

2

k∑
i=1

∑
v∈V (Gi)

d2Gi
(v)− 2

k∑
i=1

mi

=
1

2

∑
v∈V (G)

d2G(v)− 2m

=M1(G).

This completes the proof.

Let [G]E be the edge-induced subgraph of a graph G, where E = E(G). Note that if

G is a connected graph having at least one edge, then there exists an edge e ∈ E(G) such

that [G − e]E is also connected. It can be realized by taking the edge e which is one of

pendent edges of some spanning tree of G.

Lemma 2.9. Let G be a graph. Then M1(G) =M1([G]E).

Proof. It is easy to see that [G]E is the graph obtained from G by deleting the isolated

vertices (if any). Without loss of generality, suppose G has k isolated vertices. So, G =

[G]E∪kP1. By Lemma 2.8 and Theorem 2.5(ii) we getM1(G) =M1([G]E)+M1(kP1) =

M1([G]E).

Lemma 2.10. Let G ∈ Gk, e ∈ E(G) and [G− e]E be connected. Then

(i) dG(e) ≤ k + 2.

(ii) If dG(e) = j, then [G− e]E ∈ Gk−j+1.

Proof. Assume that dG(e) > k + 2. By Lemma 2.2 we get

M1(G− e) =M1(G)− dG(e) + 1 < k − k − 2 + 1 = −1,

a contradiction by Lemma 2.5(i).

For (ii), from Lemma 2.9 we obtain

M1([G− e]E) =M1(G− e) =M1(G)− dG(e) + 1 = k − j + 1,

and so [G− e]E ∈ Gk−j+1 by the condition that [G− e]E is connected.
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Set G 0
k = {G ∈ Gk | there exists no edge e ∈ E(G) such that dG(e) = 1}. Evidently,

any graph belonging to Gk can be obtained from the graph in G 0
k by adding edge e of

degree 1. Let G ∈ G 0
k , e ∈ E(G) and [G − e]E be connected. By the definition of G 0

k we

know dG(e) = j ≥ 2. From Lemma 2.10(ii) it follows that [G− e]E ∈ G 0
k−j+1 = G 0

t , where

t ≤ k − 1 (by t = k − j + 1 we get j = k + 1− t ≥ 2 and so t ≤ k − 1).

On the basis of the above discussion, we obtain the following facts.

Fact. Under the above notation, we have:

(i) Set G ∈ Gt (t < k). If e 6∈ E(G) and dG+e(e) = k − t+ 1, then G+ e ∈ Gk.

(ii) For any graph G ∈ G 0
k , there exists t < k, G′ ∈ Gt and e 6∈ E(G′) such that G = G′+e

(here, dG(e) = k − t+ 1).

Now we give the following construction which can characterize all the connected graphs

in Gk.

Construction: Suppose that G−1,G0, · · · ,Gk−1 have been defined. For each graph G ∈ Gt

(−1 ≤ t ≤ k − 1), we search for all the possible edges e such that e 6∈ E(G) and

dG+e(e) = k − t + 1 to construct the graph G + e (add some vertices where necessary).

Collect these new graphs G+ e in G
′

k. By adding all the possible edges of degree 1 to the

graphs in G
′

k, we obtain all the graphs belonging to Gk.

Proof. Note that G 0
k ⊆ G

′

k ⊆ Gk. Then Facts (i) and (ii) guarantee that the construction

of Gk is valid.

As an example to the above described construction, we characterize all the connected

graphs with M1(G) = 3; in fact, M1(G) = 3 if and only if

G ∈ G3 = {P a1,a2,a3,a4
z1,z2,z3,z4,l

, Ca1,a2,a3
z1,z2,z3,g

, Fn, Dl,g1,g2 , Jg,l1,l2 , θi,j,k, F
g,l
l1,l2,l3

, Sl,l1,l2
h1,h2,h3

, Kg,a1,a2
l,z1,z2

} ,

where the graphs are shown in Subsection 4.2. At the same time, we give the following

result as an extra case of Theorem 2.6.

Theorem 2.6. (v) if G 6∈ G−1 ∪ G0 ∪ G1 ∪ G2, then M1(G) ≥ 4m+ 6 with equality if and

only if G ∈ G3.

Remark 2.11. Deng [16] determined the bicyclic graphs with smallest M1-index, which

are the graphs Dl,g1,g2 and θi,j,k (see Subsection 4.2). It is, however, a special case of

Theorem 2.6(v). Furthermore, for a fixed number k, by Construction we can get all k-

cyclic graphs with smallest M1-index.

By (7), Theorem 2.6 and Construction, a basic property of the M1-index is summarized

below.
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Theorem 2.12. For a fixed connected graph G with order n and size m, its M1-index

is equal to an even number 4m + 2k; Moreover, all the connected graphs with the same

M1-index as G belong to the family Gk, where k ≥ −1 and Gk is defined in Construction.

The following theorem generalizes Theorem 2.6.

Theorem 2.13. Let G be a connected graph with order n and size m. Then

(i) M1(G) ≥ 4m− 2 with equality if and only if G ∈ G−1.

(ii) if G 6∈ G−1 ∪ G0 ∪ · · · ∪ Gk−1 (k ≥ 0), then

M1(G) ≥ 4m+ 2k

with equality if and only if G ∈ Gk.

Proof. We only need to show (ii). Since G 6∈ G−1∪G0∪· · ·∪Gk−1, then G belongs to some

Gx withM1(G) = x ≥ k. Hence, by (7) we get M1(G) = 4m+ 2x ≥ 4m+ 2k. Obviously,

the equality holds if and onlyM1(G) = k if and only if G ∈ Gk, and Construction makes

Gk valid.

It is worth to observe that the minimum value of e in each item of Theorems 2.6

and 2.13 should make the graphs meaningful (take the cycle Ce as an example, e is at

least 3). Otherwise, the graphs may not exist, for example, there is no a cycle with less

than three edges. More precisely, let e(G, k) = min{e(G)|G ∈ Gk} with k ≥ −1, then

this minimum value is just e(G, k). By the graphs shown in Subsection 3.2, it is easy to

obtain e(G,−1) = 1, e(G, 0) = 3, e(G, 1) = 4, e(G, 2) = 4 and e(G, 3) = 5.

Recall, M1(G) = 4e(G) + 2k is an even number. All such numbers consist of S1 =

{4e − 2 | e is an integer} and S2 = {4e | e is an integer}. Obviously, 4 and 8 belong to

S2 and the corresponding e’s are e = 1 and e = 2, respectively. By Theorem 2.6(ii) we

know that the number of edges of graphs with M1(G) = 3 is at least 3 (i.e., e(G, 0)=3).

Therefore, there is no graph with M1(G) = 4 or 8. On the other hand, with the exception

of 4 and 8, we can always use Construction to find all graphs with M1(G) being any even

number. In fact, let α 6= 4 or 8 be an even number. Clearly, it can be decomposed into

α = 4e + 2k. In order to find all the connected graphs with M1(G) = α = 4e + 2k, we

need to solve the valid solutions (e, k) of the following equations with the below given

conditions:

α = 4e+ 2k,

e ≥ 0: the number of edges of G,

k ≥ −1: M(G) = k is an integer.
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By the theory of indeterminate equations, the above equation always has integral solu-

tions. After picking up all valid solutions (e, k), for each k we employ Construction to

obtain the family Gk, and therefore all graphs are obtained.

As a consequence of the above discussion, we get the following theorem.

Theorem 2.14. For any given even number α 6= 4 or 8, all the connected graphs with

M1(G) = α can be determined.

Remark 2.15. The above theorem generalizes a result due to Li et al, which said that

“for any given even number m1 6= 4 or 8, there exists a tree T such that M1(T ) = m1”

(see [32], Theorem 5.3).

In the end of this section, we use the example of α = 20 to illustrate the application

of Theorem 2.14. Solving the indeterminate equation 4e+ 2k = 20, we get e = 5 + t and

k = −2t, where t is an integer. Note that e ≥ 0 and k ≥ −1. Hence, −5 ≤ t ≤ 0, and

thus the integer solutions

(e, k) ∈ {(5, 0), (4, 2), (3, 4), (2, 6), (1, 8), (0, 10)}.

For e = 0, 1, 2, the corresponding graphs are the paths P1, P2 and P3 with M(P1) = 0

andM(P2) =M(P3) = −1 by Theorem 2.5(i) and (ii). Thereby, the solutions (2,6),(1,8)

and (0,10) are invalid. For e = 3, the corresponding graphs are the path P4, the cycle C3

and the T -shape tree T1,1,1; whileM(P4) = −1 andM(C3) =M(T1,1,1) = 0. Thus, (3, 4)

is also invalid. Then the valid solutions are

(e, k) ∈ {(5, 0), (4, 2)}.

For (e, k) = (5, 0) we get G ∈ G0 with e(G) = 5, and consequently G is the cycle C5 and

the T -shape trees T1,1,3 and T1,2,2 by Lemma 2.5(ii). For (e, k) = (4, 2), we get G ∈ G2

with e(G) = 4, and thus G is star T1,1,1,1 by Lemma 2.5(vi). Finally, all the connected

graphs with M1(G) = 20 are collected into the following set

{C5, T1,1,3, T1,2,2, T1,1,1,1}.

3 The spectral characterization of extremal graphs

The spectral characterization (or, determination) problem of graphs consists in the de-

tection of all cospectral graphs to a given graph with respect to some graph matrix. The

latter problem was considered in 1956 by Günthard and Primas [21] in the context of
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Hückel’s theory. Under the motivation of [11], many researchers have devoted their at-

tention to study the spectral determination of families of graphs. For more details on this

topic and basic results, we refer the reader to [11, 12]. In general, we can consider two

categories of graphs so far studied. The first category is about those graphs with rather

good algebraic properties, such as the distance regular graphs [2, 10], the strongly regular

graphs [11], the graphs with A-least eigenvalue at least −2 [11, 50], and so on. The second

one consists of graphs with simple structures. For the latter, several covered families of

graphs include some extremal graphs described in Subsection 4.2.

In particular, for the graphs with −1 ≤M1(G) ≤ 1, the above question was trivial for

the path Pn, the cycle Cn and the isolated vertices nK1 (but not for their disjoint unions,

cf. [9, 52]), while it was not trivial for the T -shape tree Tl1,l2,l3 [37, 53]. Also lollipop

graphs Lg,l were considered in [26, 28, 60]. Thus, it remains only the so-called H-shape

tree P a1,a2
z1,z2,l

. For M1(G) = 2, 3, the jellyfish graph Jg
l1,l2

[33], the starlike tree Tl1,l2,l3,l4

[38], the dumbbell graph Dl,g1,g2 [46, 48] and the θ-graph θi,j,k [39, 47] were discussed. For

the larger M1(G), only the line graphs of lollipop graphs [51] and the ∞-graphs [49]

appear to be studied. In fact, even for the graphs with simple structures, it is pretty

complicated to study their spectral characterization, and the reasons is that there are not

many effective methods. Nevertheless, Theorem 2.6 is helpful for this topic with respect

to the L-spectrum, since many graph structures can be discarded at once.

As an example to the above discussion, we now study the spectral determination prob-

lem for a subfamily of the H-shape trees. In fact, we consider the H-shape trees without

internal vertices of degree 2 and we prove that they are determined by the spectrum of

their Laplacian matrix. Let H(a, b, c, d) be such a tree (cf. Fig. 1) and without loss of

generality we may assume that 1 ≤ a ≤ b, c ≤ d and a ≤ c.

a

b

2

2

1

1

c

d

Figure 1: The graph H(a, b, c, d).

Note, if G and H are L-cospectral graphs, then they have the same order, size, M1-

index, and number of components [11, 44]. Thus, by (2) we obtain

M1(G) =M1(H),

that is M1(G) is determined by L-spectrum. In our case, the connected graphs G with

M1(G) = 1 are the H-shape trees and the lollipop graphs. Since the lollipop graphs
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are known to be determined by their spectra, then the Laplacian cospectral mate of

H(a, b, c, d) must be another (possibly nonisomorphic) H-shape tree. We first show that

a cospectral mate of H(a, b, c, d) can be only another H(a′, b′, c′, d′). In order to do prove

this, we need the three following lemmas.

Lemma 3.1. Let G be a graph and µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) ≥ 0 be its Laplacian

eigenvalues. For any edge e ∈ G we have

µ1(G) ≥ µ1(G− e) ≥ µ2(G) ≥ µ2(G− e) ≥ · · · ≥ µn(G) ≥ µn(G− e).

Hoffman and Smith [29] defined an internal path as a walk v0, v1, . . . , vk, with (k ≥ 1),

where the vertices v1, . . . , vk are distinct (v0, vk need not be distinct), d(v0) > 2, d(vk) > 2

and d(vi) = 2 whenever 0 < i < k, with d(v) as the degree of vertex v in G. The

lemma below is a (reduced) Laplacian variant of a well-known result for internal paths

(see Theorem 2.1 in [45]).

Lemma 3.2. Let T be a tree, Tuv be obtained from T by subdividing its edge uv, and µ(G)

be the Laplacian spectral radius of G. Hence, we have that

(i) if uv is not in an internal path of T , then µ(Tuv) > µ(T );

(ii) if uv belongs to an internal path of T , then µ(Tuv) < µ(T ).

Let Hk(a, b, c, d) be obtained from H(a, b, c, d) by inserting k vertices of degree 2

between the two vertices of degree 3.

Lemma 3.3. Let µ(G) be the Laplacian spectral radius of a graph G. Then,

i) µ(H1(a, b, c, d)) < 4.66, µ(H1(1, t, 1, t)) < 4.56 and µ(H1(1, 1, t, t)) < 4.58.

ii) µ(Hk(a, b, c, d)) < 4.59, for k ≥ 2.

Proof. Let H = Hk(a, b, c, d) be a H-shape tree. Assume first that k ≥ 2 and let t =

max{a, b, c, d}. In view of Lemma 3.2 we have that µ(H) ≤ µ(H2(t, t, t, t)) = µ. So we now

compute the limit for the spectral radius when t tends to infinity. Since trees are bipartite

graphs, we can consider, instead of the Laplacian matrix, the the signless Laplacian matrix

Q = D+A and the corresponding Perron eigenvector x = (x1, x2, . . . , xn). The eigenvalue

equation now reads

(µ− d(v))xv =
∑
u∼v

xu.

By symmetry, for the graph H2(t, t, t, t) we have that the vertices at the same distance

from the center of the tree do get the same Perron component. Let us naturally label
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the vertices of the paths such that the vertex of degree 3 correspond to v0. So the

eigenvalue equation (in each pendant path) is (µ− 2)xi = xi+1 + xi−1 (1 ≤ i ≤ t− 1). By

solving the latter recurrence equations and by letting t tending to infinity, we obtain that

x1 = 1
2
(µ − 2 −

√
µ2 − 4µ)x0. By computing the eigenvalue equations at the vertices of

degree 3, at the central vertices of degree 2, and by combining the equations, we arrive

at the following polynomial whose largest root is an upper bound for µ:

µ4 − 10µ3 + 32µ2 − 32µ− 4 = 0,

and the largest root is approximately µ ∼= 4.58155. For the other bounds, similar routine

works, for example, the upper bound for µ(H1(t, t, t, t)) comes from the polynomial µ3 −
8µ2 + 19µ− 16 = 0. The details are left to the reader. This completes the proof.

Lemma 3.4. Let H = Hk(a′, b′, c′, d′) be Laplacian cospectral with H(a, b, c, d). Then

k = 0.

Proof. Let µ(G) be the Laplacian spectral radius of G. First assume that k ≥ 2, then by

Lemmas 3.1 and 3.3 we have µ(Hk(a′, b′, c′, d′)) < 4.59 < 4.62 < µ(H(1, 1, 1, 2)), and the

two graphs cannot be cospectral. So assume in the remainder that k = 1. Similarly, we

have that

µ(H1(a
′, b′, c′, d′)) < 4.66 < 4.68 < min {µ(H(1, 2, 1, 2)), µ(H(1, 1, 2, 2))},

so k = 0 if two pendant paths in H(a, b, c, d) have length at least 2. It remains to consider

H1(a
′, b′, c′, d′) and H(1, 1, 1, t). Since µ(H(1, 1, 1, 2)) > 4.62, in view of Lemma 3.3, we

have that both H1(1, b, 1, d) and H1(1, 1, c, d) have spectral radius too small and must be

discarded. So H1(a
′, b′, c′, d′) contains the graph H1(1, 2, 2, 2). But µ2(H1(1, 2, 2, 2)) > 4

and by interlacing the same applies to H1(a
′, b′, c′, d′), while µ2(H(1, 1, 1, t)) < 4, again by

interlacing 4 > µ1(Pt+2) ≥ µ2(H(1, 1, 1, t)). So also k = 1 is not allowed. This completes

the proof.

Now we just need to compare the polynomial of any two H(a, b, c, d)’s and check

whether they can be the same. This will be done by decomposing the L-polynomial and

by using a transformation on the variable which facilitates this comparison.

The formulas in the lemma below have a natural use in the context of the adjacency

matrix. However, they can be used for the Laplacian or signless Laplacian of graphs by

mapping the Laplacian matrix of a signed graph as the adjacency matrix of a weighted

multigraph. Note that the degrees in the main diagonal are interpreted as weighted loops.
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Lemma 3.5 ([4]). Let A = (aij) be the adjacency matrix of a weighted graph G and

φ(G, x) = φ(G) be the characteristic polynomial of A. Then we have

φ(G) = (x− avv)φ(G− v)−
∑
u∼v

a2uvφ(G− u− v)− 2
∑
C∈Cv

ω(C)φ(G \ V (C)),

φ(G) = φ(G− uv)− a2uvφ(G− u− v)− 2
∑

C∈Cuv

ω(C)φ(G \ V (C)),

where Ca is the set of cycles passing through a and ω(C) =
∏

uw∈C auw.

Let Bn be the matrix of order n obtained from L(Pn+1) by deleting the row and column

corresponding to some end-vertex of Pn+1. The first of the following items is given by

Guo in [22], the second is proved in [42].

Lemma 3.6. Let Pn be the path of order n and Hn, Bn defined as above. Then

(i) xψ(Bn) = ψ(Pn+1) + ψ(Pn),

(ii) ψ(Pn) = (x− 2)ψ(Pn−1)− ψ(Pn−2).

Now we are able to prove the main result of this section.

Theorem 3.7. The tree H(a, b, c, d) is determined by its L-spectrum.

Proof. By Lemma 3.5 stepwise applied to the degree 3 vertices of H = H(a, b, c, d), we

obtain

ψ(H) = [(x− 3)ψ(Ba)ψ(Bb)− ψ(Ba−1)ψ(Bb)− ψ(Ba)ψ(Bb−1)][(x− 3)ψ(Bc)ψ(Bd)

−ψ(Bc−1)ψ(Bd)− ψ(Bc)ψ(Bd−1)]− ψ(Ba)ψ(Bb)ψ(Bc)ψ(Bd).

Consider Lemma 3.6 (ii), the formula ψ(Pn) = (x− 2)ψ(Pn−1)− ψ(Pn−2) can be seen as

a second order recurrence equation pn = (x − 2)pn−1 − pn−2, with p0 = 0 and p1 = x as

boundary conditions. It is a matter of computation (cf. [42] for the details) to check that

the solution is

pn =
(y2n − 1)(y + 1)

yn(y − 1)
,

where y is the solution of the characteristic equation y2 − (x − 2)y + 1 = 0. In view of

Lemma 3.6 (i) and by the latter transformation, we get

ψ(Bn) =
y2n+1 − 1

yn(y − 1)
.
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Let Φ(H) =
y2n(y + 1)

(y − 1)3
ψ(H)− (y2n+2 − 2y2n+1 − y2n + y2 + 2y − 1), we have

Φ(H) = +y2a+2b+2c+4 + y2a+2b+2d+4 + y2a+2c+2d+4 + y2b+2c+2d+4

−y2a+2b+4 + y2a+2b+2 − y2c+2d+4 + y2c+2d+2 − y2a+2

−y2b+2 − y2c+2 − y2d+2.

It is routine to check that two cospectral H(a, b, c, d)’s must be isomorphic as well. This

completes the proof.

To conclude, let us mention that in order to spectrally characterize all graphs in G1,

then it remains to consider all the H-shape trees, denoted in Section 4 by P a1,a2
z1,z2,l

. This

problem might be solved using the tools shown so far, but we will not attempt to do it

within this paper. So we pose the following conjecture.

Conjecture 1. No two non-isomorphic H-shape trees are L-cospectral.

4 Appendix

4.1 Notations

(i) Let Pn, Cn, Kn and K1,n−1 denote the path, the cycle, the complete graph and the

star of order n respectively.

(ii) Lg,l denotes the lollipop graph obtained from Cg and Pl by identifying a vertex of

Cg with an end-vertex of Pl, where g ≥ 3, l ≥ 2 and n = g + l − 1.

(iii) Tl1,l2,...,lk stands for the starlike tree with a vertex u of degree k satisfying Tl1,l2,...,lk−
u = Pl1 ∪ Pl2 ∪ . . . ∪ Plk , where lk ≥ . . . l2 ≥ l1 ≥ 1 and n =

∑k
i=1 li + 1. Tl1,l2,l3 is

also named as T -shape tree.

(iv) The centipede graph P a1,a2,...,at
z1,z2,...,zt,l

is defined as a path of l vertices (1 ∼ 2 ∼ . . . ∼
l) with pendant paths of zi edges joining at vertex ai for i = 1, 2, . . . , t, where

{a1, a2, . . . , at} ⊆ {2, . . . , l − 1}, zi ≥ 1(1 ≤ i ≤ t) and n = l +
∑t

i=1 zi.

(v) The sun-like graph Ca1,a2,...,at
z1,z2,...,zt,g

is defined as a cycle with grith g (1 ∼ 2 ∼ . . . ∼
g ∼ 1) with pendant paths of zi edges joining at vertex ai for i = 1, 2, . . . , t, where

{a1, a2, . . . , at} ⊆ {1, . . . , g}, zi ≥ 1(1 ≤ i ≤ t) and n = g +
∑t

i=1 zi.

(vi) The dumbbell graph Dl,g1,g2 is obtained by joining two cycles Cg1
and Cg2

with a

path of length l, where g1 , g2 ≥ 3, k ≥ 1 and n = g1 + g2 + l − 1.
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(vii) M g
l1,l2,l3

stands for the mirror graph obtained from Cg and Tl1,l2,l3 by identifying a

vertex of Cg with an end-vertex of Tl1,l2,l3 , where li ≥ 1(1 ≤ i ≤ 3), g ≥ 3 and

n = g +
∑3

i=1 l1.

(viii) The θ-graph θi,j,k consists of two vertices joined by three disjoint paths whose order

are i, j and k, respectively, where n = i+ j + k − 4.

(ix) Let Jg
l1,l2,...,lk

be the jellyfish graph obtained from Cg and Tl1,l2,...,lk by identifying a

vertex of Cg with the center of Tl1,l2,...,lk , where g ≥ 3, li ≥ 1(1 ≤ i ≤ k).

(x) The fish graph F g,l
l1,l2,l3

is obtained from Pl and M g
l1,l2,l3

by identifying an end-vertex

of Pl with a vertex of degree 2 which lies in the cycle of M g
l1,l2,l3

, where g ≥ 3,

l, l1, l2, l3 ≥ 1.

(xi) The key graph Kg,a1,a2
l,z1,z2

is obtained from Cg and P a1,a2
z1,z2,l

by overlapping a vertex of Cg

with an end-vertex of P a1,a2
z1,z2,l

, where g ≥ 3 and z1, z2 ≥ 1.

(xii) The double-starlike tree Sl
l1,l2,...,lk;h1,h2,...,hs

is obtained by joining the centers of Tl1,l2,...,lk
and Th1,h2,...,hs with a path Pl, where li, hj ≥ 1.

4.2 The family Gi = {G | G is a connected graph,M(G) = i, i ≥ −1}
G− 1

Pn

G0

Cn Tl1,l2 ,l3 P1

G1

Lg,l Pa1,a2z1,z2,l

G2

Pa1,a2,a3z1,z2,z3,l M g
l1,l2 ,l3 Ca1,a2z1,z2,g Tl1,l2 ,l3 ,l4

G3

Pa1,a2,a3,a4z1,z2,z3,z4,l Ca1,a2,a3z1,z2,z3,g

...

Fn

Dl,g1,g2 θi ,j ,k J gl1 ,l2

F g,ll1 ,l2 ,l3 K g,a1,a2
l ,z1 ,z2,l Sll1 ,l2 ;h1,h2,h3

Remark 4.1. In the above graphs, the length of the dotted lines (or the dotted cycles) is
at least 1 (or 3).
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after, Croat. Chem. Acta 76 (2003) 113–124.

[36] C. S. Oliveira, N. M. Maia de Abreu, S. Jurkiewicz, The characteristic polynomial
of the Laplacian of graphs in (a, b)-linear classes, Lin. Algebra Appl. 356 (2002)
113–121.

[37] G. R. Omidi, On a signless Laplacian spectral characterization of T -shape trees, Lin.
Algebra Appl. 431 (2009) 1607–1615.

[38] G. R. Omidi, K. Tajbakhsh, Starlike trees are determined by their Laplacian spec-
trum, Lin. Algebra Appl. 422 (2007) 654–658.

[39] F. Ramezani, N. Broojerdian, B. Tayfeh–Rezaie, A note on the spectral characteri-
zation of θ-graphs, Lin. Algebra Appl. 431 (2009) 626–632.

[40] A. J. Schwenk, Computing the characteristic polynomial of a graph, in: R. A. Bari,
F. Harary (Eds.), Graphs and Combinatorics , Springer–Verlag, Berlin, 1974, pp.
153–172.

[41] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors , Wiley–VCH, Wein-
heim, 2000.

[42] J. F. Wang, F. Belardo, Q. L. Zhang, Signless Laplacian spectral characterization of
line graphs of T -shape trees, Lin. Multilin. Algebra 62 (2014) 1529–1545.

[43] J. F. Wang, Q. X. Huang, X. H. An, F. Belardo, Some results on the signless Lapla-
cians of graphs, Appl. Math. Lett. 23 (2010) 1045–1049.

[44] J. F. Wang, Q. X. Huang, F. Belardo, On the spectral characterizations of 3-rose
graphs, Util. Math. 91 (2013) 33–46.

[45] J. F. Wang, Q. X. Huang, F. Belardo, E. M. Li Marzi, On graphs whose signless
Laplacian index does not exceed 4.5, Lin. Algebra Appl. 431 (2009) 162–178.

[46] J. F. Wang, Q. X. Huang, F. Belardo, E. M. Li Marzi, A note on the spectral
characterization of dumbbell graphs, Lin. Algebra Appl. 431 (2009) 1707–1714.

[47] J. F. Wang, Q. X. Huang, F. Belardo, E. M. Li Marzi, On the spectral characteriza-
tion of theta graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 581–598.

[48] J. F. Wang, Q. X. Huang, F. Belardo, E. M. Li Marzi, Spectral characterizations of
dumbbell graphs, El. J. Comb. 17 (2010) #R42 (pp. 1–16).

[49] J. F. Wang, Q. X. Huang, F. Belardo, E. M. Li Marzi, On the spectral characteriza-
tions of ∞-graphs, Discr. Math. 310 (2010) 1845–1855.

-55-



[50] J. F. Wang, Y. F. Shen, Q. X. Huang, Notes on graphs with least eigenvalue at least
-2, El. J. Lin. Algebra 23 (2012) 387–396.

[51] J. F. Wang, S. N. Shi, The line graphs of lollipop graphs are determined by their
spectra, Lin. Algebra Appl. 436 (2012) 2630–2637.

[52] J. F. Wang, S. K. Simić, Q. X. Huang, F. Belardo, E. M. Li Marzi, Laplacian spectral
characterization of disjoint union of paths and cycles, Lin. Multilin. Algebra 59 (2011)
531–539.

[53] W. Wang, C. X. Xu, Note: The T -shape tree is determined by its Laplacian spectrum,
Lin. Algebra Appl. 419 (2006) 78–81.

[54] W. Wang, C. X. Xu, A sufficient condition for a family of graphs being determined
by their generalized spectra, Eur. J. Comb. 27 (2006) 826–840.

[55] W. Wang, C. X. Xu, On the asymptotic behavior of graphs determined by their
generalized spectra, Discr. Math. 310 (2010) 70–76.

[56] F. L. Xia, S. B. Chen, Ordering unicyclic graphs with respect to Zagreb indices,
MATCH Commun. Math. Comput. Chem. 58 (2007) 663–673.

[57] K. X. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math.
Lett. 24 (2011) 1026–1030.

[58] S. Yamaguchi, Relations between three topological indices, MATCH Commun. Math.
Comput. Chem. 61 (2009) 615–621.

[59] Y. S. Yoon, J. K. Kim, A relationship between bounds on the sum of squares of
degrees of a graph, J. Appl. Math. Comput. 21 (2006) 233–238.

[60] Y. Zhang, X. Liu, B. Zhang, X. Yong, The lollipop graph is determined by its Q-
spectrum, Discr. Math. 309 (2010) 3364–3369.

[61] B. Zhou, I. Gutman, Relations between Wiener, hyper–Wiener and Zagreb indices,
Chem. Phys. Lett. 394 (2004) 93–95.

-56-


