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a b s t r a c t

Chronic inflammation, a condition frequently associated with several pathologies, is characterized by
angiogenic and fibrogenic responses that may account for the development of granulomatous tissue.
We previously demonstrated that the chymase, rat mast cell protease-5 (rMCP-5), exhibits pro-
inflammatory and pro-angiogenic properties in a model of chronic inflammation sustained by mast
cells (MCs), granuloma induced by the subcutaneous carrageenan-soaked sponge implant in rat. In this
study, we investigated the effects of palmitoylethanolamide (PEA), an anti-inflammatory and analgesic
endogenous compound, on rMCP-5 mRNA expression and Microphtalmia-associated Transcription Factor
(MITF) activation in the same model of chronic inflammation. The levels of rMCP-5 mRNA were detected
using semi-quantitative RT-PCR; the protein expression of chymase and extracellular signal-regulated
kinases (ERK) were analyzed by western blot; MITF/DNA binding activity and MITF phosphorylation were
assessed by electrophoretic mobility shift assay (EMSA) and immunoprecipitation, respectively. The
administration of PEA (200, 400 and 800 mg/ml) significantly decreased rMCP-5 mRNA and chymase
protein expression induced by λ-carrageenan. These effects were associated with a significant decrease
of MITF/DNA binding activity and phosphorylated MITF as well as phosphorylated ERK levels.

In conclusion, our results, showing the ability of PEA to inhibit MITF activation and chymase
expression in granulomatous tissue, may yield new insights into the understanding of the signaling
pathways leading to MITF activation controlled by PEA.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Rat mast cell protease-5 (rMCP-5) belongs to a family of serine
proteases classified as chymases (Sanker et al., 1997). Among
rodent chymases, rMCP-5 is predominantly expressed in connec-
tive tissue type mast cells (MCs) and also in early phase of MC
development (Sanker et al., 1997). Like other MC proteases (MCPs),
rMCP-5 is packed in the MC secretory granules intimately bound
to proteoglycans and is released, together with several other
stored mediators, following degranulation (Forsberg et al., 1999).
Several evidences show that MCPs play a crucial role in the
inflammatory/immune process in mammals (Badertscher et al.,
2005). It is known that MCPs play an important role in the

allergen-induced biphasic skin reaction (Tomimori et al., 2002)
and in eliciting or maintaining cutaneous inflammation in atopic
dermatitis (Badertscher et al., 2005). Moreover, chymases have
been proposed to increase vascular permeability both in skin
disease (He and Walls, 1998) and brain edema during intracerebral
hemorrhage (Strbian, et al., 2009). Chymases have been shown to
induce the release of neutrophil chemoattractants by eosinophils
(Terakawa et al., 2006) and to mediate interaction between MCs
and eosinophils in allergic diseases (Wong et al., 2009).

We have previously demonstrated that rMCP-5 chymase exhibits
pro-inflammatory and pro-angiogenic effects in rat λ-carrageenan-
induced granuloma, i.e., a model of chronic inflammation actively
sustained by MC activation (Russo et al., 2005). It has been demon-
strated that Microphthalmia-associated Transcription Factor (MITF)
controls the transcription of a spectrum of genes in MCs, including
several MCPs, adhesion molecules, metabolic enzyme and growth
factor receptors (Kitamura et al., 2006; Razin et al., 1999; Morii et al.,
2001). MITF belongs to Myc supergene family of basic helix–loop–
helix leucine zipper (bHLH-Zip) DNA-binding protein which is
predominantly expressed in MCs, melanocytes, heart and skeletal
muscles (Hershey and Fish, 2004).
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Palmitoylethanolamide (PEA) is an endogenous lipid signaling
molecule produced locally “on demand” and exhibits potent anti-
inflammatory properties, which define PEA as ALIAmide (autacoid
local inflammation antagonist amide) (Aloe et al., 1993). The ALIA
mechanism is based on the important role played by PEA on
MCs during inflammation; PEA is able to naturally control MC
hyperactivity, which occurs not only in inflammation, but also in
hyperalgesia and allodynia (Skaper et al., 2013; De Filippis et al.,
2013). Although it has been suggested that PEA can activate
different receptors, a specific receptor responsible for PEA effects
is still under debate. In fact, PEA exhibits low affinity for canna-
binoid CB1 (Ki 45 μM) and CB2 (Ki 45 μM) receptors, and the
activation of a CB2-like receptor has only been hypothesized
(Calignano et al., 1998). It has also been described that PEA is able
to activate and desensitize the transient receptor potential cation
channel V type1 (TRPV1) and K(þ) channels (Kv4.3 and Kv1.5)
(Ambrosino et al., 2013; De Novellis et al., 2012). Moreover, some
anti-inflammatory and anti-nociceptive effects of PEA have been
ascribed to a PPAR-α (peroxisome proliferator-activated receptor)
direct mechanism (Lo Verme et al., 2005). In addition, the ability of
PEA to potentiate anandamide tone (Lambert and Di Marzo, 1999),
known as “entourage effect”, has been used to explain its pleio-
tropic effects (Scuderi et al., 2011; D0Agostino et al., 2012). Finally,
a so-called orphan receptor GPR-55 has been evoked as respon-
sible for some other PEA-mediated actions (Cantarella et al., 2011).

We have previously demonstrated that PEA was able to reduce
granuloma formation in a model of chronic inflammation, the
subcutaneous implant of carrageenan-soaked sponge in rat (De
Filippis et al., 2010). On the basis of these observations, the aim of
the present study was to investigate the effect of PEA on MITF
activation and rMCP-5 expression in the same model of chronic
inflammation.

2. Material and methods

2.1. Sponge implantation

Male Wistar rats (Harlan, Italy), weighing 200–220 g, were
used in all experiments. Animals were provided with food and
water ad libitum. Sponge implant in the rat was performed as
previously described (De Filippis et al., 2010). λ-Carrageenan (1%
w/v) (Sigma) was dissolved in pyrogen-free saline (0.5 ml/sponge),
in the presence or absence of 100 ml of micronized synthetic
PEA (kindly provided by Epitech Group; purity498%) at different
concentrations (200, 400, and 800 μg/ml) in final volume of
0.5 ml/sponge; saline (0.5 ml/sponge) was used as control. 96 h
after sponge implant rats were sacrificed in an atmosphere of CO2.
The granulomatous tissue around the sponge was dissected by
using a surgical blade, weighed, quickly frozen in liquid nitrogen,
and stored at �80 1C. Animal care as well as all experiments
was in accordance with European Community Council Directive
86/609/EEC and efforts were made to minimize animal suffering
and to reduce the number of animals used.

2.2. Preparation of cytosolic and nuclear extracts

Cytosolic and nuclear extracts from granulomatous tissues were
performed as previously described (De Filippis et al., 2010). Protein
concentration was determined by Bio-Rad protein assay kit.

2.3. mRNA analysis

The mRNA level of rMCP-5 in granulomatous tissue was
determined using the semi-quantitative RT-PCR method as pre-
viously described (Russo et al., 2006, 2008). The PCR-primers were

selected according to the rat rMCP-5 cDNA sequence (forward
primer 50-TCCTGCAAACACTTCACCAG-30, and reverse primer
50-CGAGATCCAGAGTTAATTCT-30); and rat β-actin cDNA (forward

Fig. 1. (A) Effect of PEA on rMCP-5 transcription induced by λ-carrageenan in
granulomatous tissue. Representative Vistra green-stained agarose gel of RT-PCR
products, corresponding to rMCP-5mRNA in sponges injected with saline,
λ-carrageenan (1% w-v), or λ-carrageenan in the presence of increasing amount
of PEA (200, 400, and 800 mg/ml). β-actin, a housekeeping gene, was used as
control. (B) Effect of PEA on λ-carrageenan-induced chymase expression in
granulomatous tissue. Representative western blot analysis and relative densito-
metric analysis of chymase levels in sponges injected with saline, λ-carrageenan
(1% w-v), or λ-carrageenan in the presence of increasing amount of PEA (200, 400,
and 800 mg/ml). Tubulin expression is shown as control. Quantification of results is
expressed as mean7S.E.M. of three experiments. nnnPo0.001 vs. saline.; 1Po0.05,
11Po0.01, and 111Po0.001 vs. λ-carrageenan alone.
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primer 50-GGCACCACACCTTCTACA-30 nucleotide positions 330–348,
and reverse primer 50-CAGGAGGAGCAATGATCT-30). 15 μl aliquots
of PCR products were electrophoretically fractionated through 1%
agarose gel containing the fluorescent Vistra green dye (Amer-
sham Pharmacia Biotech, GE Healthcare; Switzerland). Labeling
intensity of the PCR product, which is linear to the amount of DNA,
was quantified using the Molecular Imager FX and Quantity One
software (Bio-Rad, Milan, Italy).

2.4. Electrophoretic mobility shift assay (EMSA)

Double stranded oligonucleotides containing the MITF recogni-
tion sequence (50-CCT AGA CAG ACA AAA CCT AGA CAA TCA CGT
GGC TGG-30) were end-labeled with 32P–γ–ATP (Amersham,
Milan, Italy), and EMSA was performed as previously described
(De Filippis et al., 2010).

2.5. Immunoprecipitation

Immunoprecipitation assay was performed as previously described
(Russo et al., 2013) by using anti-mouse MITF (Lifespam; WA, USA).
The beads were washed and boiled in the SDS sample buffer. The
eluted proteins were loaded on 12% SDS-PAGE and analyzed by
western blotting.

2.6. Western blotting

Immunoblotting analysis of chymase, ERK, pERK and tubulin
proteins was performed on total protein fractions of granuloma-
tous tissue homogenates, as previously described (De Filippis et al.,
2010). Membranes were saturated by incubation at 4 1C overnight

with 10% non-fat dry milk in 1 X PBS and then incubated with the
appropriate antiserum: anti-mouse chymase (1:1000 v-v; Santa-
cruz Biotechnology, CA), anti-phosphoserine (1:1000 v-v; Pierce,
Rockford, Illinois), anti-pERK (1:2000 v-v, Cell Signaling Technol-
ogy Inc, MA) and anti-mouse tubulin (1:1000 v-v, Santa Cruz,
CA, USA) for 2 h at room temperature. Membranes were washed
three times with 1% Triton X-100 in 1 X PBS and then incubated
with anti-mouse or anti-rabbit immunoglobulins coupled to
peroxidase (1:2000 v-v; Dako, Denmark). The immune complexes
were revealed by using enhanced chemiluminescence detection
reagents (Amersham, GE Healthcare; Switzerland) according to
the manufacturer0s instructions in Image quant 800 apparatus.
The protein bands were analyzed by densitometric analysis with a
GS-800 imaging densitometer.

2.7. Statistical analysis

Results were expressed as the mean7S.E.M. of n animals
where each value is the average of responses in duplicate sites.
Statistical comparisons were made by one-way ANOVA followed
by Bonferroni0s test for multiple comparisons. Po0.05 was
considered to be significant.

3. Results

3.1. Effect of PEA on rMCP-5 transcription induced by λ-carrageenan
in granulomatous tissue

In order to investigate whether PEA was able to influence
rMCP-5 levels, we analyzed the amount of rMCP-5 mRNA in

Fig. 2. Effect of PEA on DNA binding activity and characterization of MITF complex in λ-carrageenan-induced granuloma. (A) EMSA showing the MITF binding activity in
nuclear extracts from granulomatous tissues. Data are representative of three separate assays. Densitometric data are expressed as mean7S.E.M. of three sponges from three
rats. nnnPo0.001 vs. saline; 1Po0.05, and 11Po0.001 vs. λ-carrageenan. (B) In competition reaction, nuclear extracts were incubated with radiolabeled MITF probe in the
absence or presence of identical but unlabeled oligonucleotide (WT, 50� ), mutated non-functional MITF probe (Mut., 50� ) or unlabeled oligonucleotide containing the
consensus sequence for Sp-1 (Sp-1, 50� ). Data are representative of three experiments.
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λ-carrageenan-induced granulomatous tissue in the presence or
absence of PEA. As expected, λ-carrageenan treatment resulted
in accumulation of rMCP-5 transcript compared to saline.
Co-treatment of λ-carrageenan and PEA (200, 400 and 800 mg/ml),
locally injected, caused a dose-dependent reduction of rMCP-5
mRNA levels in tissue homogenates compared to λ-carrageenan
alone (Fig. 1A). The inhibition of rMCP-5 expression induced by
PEA was also confirmed by western blot analysis. As shown in
Fig. 1B, PEA treatment decreased the chymase rMCP-5 protein
amounts in a dose dependent manner.

3.2. Effect of PEA on MITF DNA binding activity in λ-carrageenan-
induced granuloma

MITF has been reported to regulate the development of MCs
and the expression of some MCPs in mouse (Ge et al., 2001).
In the attempt to understand the mechanism by which PEA is able
to regulate rMCP-5 expression, we investigated whether PEA
was able to influence MITF DNA binding activity. To this aim,
nuclear extracts of granulomatous tissues from saline-treated,
λ-carrageenan-treated or λ-carrageenan and PEA co-treated ani-
mals were analyzed by EMSA. Although a basal level of MITF DNA
binding activity was detected in nuclear extracts from tissues
of saline-treated sponges evaluated 96 h after implant, λ-
carrageenan treatment induced a marked increase of MITF DNA
binding activity. Intrestingly, the local administration of PEA
resulted in a significant and dose-dependent reduction of MITF
DNA binding activity (Fig. 2A). The specificity of MITF DNA
complex was determined by competition experiments. In fact,
50-fold molar excess of unlabeled MITF probe was able to
completely displace MITF from DNA. In contrast, a 50-fold molar
excess of unlabeled mutated MITF probe or Sp-1 had no effect on
DNA binding activity (Fig. 2B).

3.3. Effect of PEA on MITF phosphorylation in granulomatous tissues
induced by λ-carrageenan

Proteins phosphorylation–dephosphorylation is a key step in
the regulation of protein–protein interactions. To further analyze
MITF-mediated down-regulation of rMCP-5 expression caused by
PEA administration, we verified whether PEA was able to control
the phosphorylation status of MITF in granulomatous tissue.
To this purpose, immunoprecipitation experiment was performed.
MITF was specifically immunoprecipitated from protein extracts
of tissue from saline-treated, λ-carrageenan-treated or λ-
carrageenan and PEA co-treated animals and the amount of
phosphorylated form of MITF was detected by western blotting
using anti-phosphoserine antibody. Fig. 3B shows that a significant
increase (2.6-fold) of the amount of phosphorylated MITF in
λ-carrageenan-induced granulomatous tissue compared to saline
was observed. Interestingly, PEA treatment caused a decrease in
the levels of phosphorylated MITF compared to λ-carrageenan-
induced granulomatous tissue. Our data are in agreement with
several evidences indicating that phosphorylation of MITF Ser73
increases its transcriptional activity (Price et al., 1998).

3.4. Effect of PEA on ERK protein expression induced
by λ-carrageenan

One signaling module that controls MITF is the RAS–RAF–MEK–
ERK signaling cascade. It is known that MITF is phosphorylated on
Ser73 by ERK, and this modification enhances its transcriptional
activity (Price et al., 1998). In order to evaluate the role of ERK in
the phosphorylation of MITF upon PEA treatment, proteins were
extracted from tissue of saline-treated, λ-carrageenan-treated
or λ-carrageenan and PEA co-treated animals and were analyzed

by western blotting. Fig. 4 shows a significant increase in the
amount of phosphorylated ERK in λ-carrageenan-induced granu-
lomatous tissue compared to saline. On the contrary, PEA treat-
ment caused a decrease of phosphorylated ERK levels compared to
λ-carrageenan-induced granulomatous tissue. The intracellular
levels of ERK protein were not affected by λ-carrageenan or PEA
treatment (Fig. 4).

4. Discussion

Several evidences indicate that PEA is able to control both acute
and chronic inflammations, including that mediated by MC (Skaper
et al., 2013). We have previously studied rMCP-5 chymase, a
protease selectively stored in MC, for its pivotal role in granuloma
formation induced by λ-carrageenan in rat (Russo et al., 2005).
In the same model of chronic inflammation, we demonstrated that
the local administration of PEA, by controlling MC activation,
accounted for a significant reduction of both granulomatous tissue
and associated angiogenesis (De Filippis et al., 2010, 2011). On the
basis of these evidences, in the present study we investigated the
effects of PEA on the expression of rMCP-5 chymase, a pro-
inflammatory and pro-angiogenic mediator. We found that PEA
was able to down-regulate rMCP-5 chymase mRNA and protein
expression in the granulomatous tissue induced by λ-carrageenan
in rat. It has been reported that MITF is essential in the regulation of

Fig. 3. (A) Effect of PEA on λ-carrageenan-induced MITF protein phosphorylation in
granulomatous tissue. Representative western blot analysis and relative densito-
metric analysis of phosphorylated MITF protein levels. MITF was specifically
immunoprecipitated from granulomatous tissues treated with saline, λ-carragee-
nan (1% w-v), or λ-carrageenan in the presence of PEA 800 mg/ml. After immuno-
precipitation, the phosphorylation of MITF was detected by immunoblot analysis by
using phospho-serine (pSer) antibody. The levels of proteins were quantified by
PhosphorImager (Bio-Rad). Quantification of results is expressed as mean7S.E.M.
of three experiments. nnnPo0.001 vs. saline.; 1Po0.05, 11Po0.01, and 111Po0.001
vs. λ-carrageenan alone.
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MCP-5 chymase (Morii et al., 1997). Our results, for the first time,
show that PEA significantly inhibited MITF/DNA binding activity
induced by λ-carrageenan in granuloma.

Changes in protein phosphorylation represent a mechanism
to modulate the activity of MITF and three serine sites (Ser73,
Ser298 and Ser409) for MITF phosphorylation have been reported
(Sonnenblick et al., 2004). The phosphorylation of these serine
sites positively correlates with the up-regulation of MITF tran-
scriptional activity (Price et al., 1998; Takeda et al., 2000). In our
study, we found that PEA was able to regulate the switch from the
phosphorylated MITF (active state) to the unphosphorylated MITF
(inactive state), preventing the phosphorylation of MITF triggered
by λ-carrageenan in rat granulomatous tissue. Moreover, we
demonstrated PEA treatment was able to reduce the amount of
ERK phosphorylated form. This evidence suggests that the reduc-
tion in the phosphorylated form of MITF may be a consequence of
the inhibition of the classical MAP kinase pathway. It has been
reported that PEA controls the signal transduction involved in the
activation of important pro-inflammatory transcription factors
including AP-1 (Scuderi et al., 2011) and NF-κB (D0Agostino
et al., 2009). Therefore, it is reasonable to hypothesize that PEA
may affect the signaling pathways leading to the activation of MITF
and MITF-dependent chymase expressions in granuloma forma-
tion. The inhibition of chymase rMCP-5 expression by PEA thus
suggests that the control of MC activation, previously demon-
strated in the same model of chronic inflammatory (De Filippis
et al., 2010), may occur via MITF.

In conclusion, our results put new insights into the long history
of experiments connecting PEA and MCs, firstly hypothesized by
the Nobel prize winner Rita Levi-Montalcini, indicating the inhibi-
tion of MITF a new mode of action for PEA in inflammatory
diseases. Otherwise, these data could also be useful to strengthen
the previously reported use of PEA in cancers, above all in
melanoma (Hamtiaux et al., 2012), where MITF activation plays a

crucial role (for review see Koludrovic and Davidson, 2013).
Therefore, this study may open the way to a pharmacological
approach with PEA for all those chronic-degenerative pathologies
which are dependent on MITF activation.
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