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Regulation of Stearoyl Coenzyme A Desaturase 1 Gene
Promoter in Bovine Mammary Cells

O. di Martino,1 A. Troiano,1 L. Addi,2 A. Guarino,1 S. Calabrò,2 R. Tudisco,2

N. Murru,2 M. I. Cutrignelli,2 F. Infascelli,2 and V. Calabrò1

1Department of Biology, University of Naples ‘‘Federico II’’, Naples, Italy
2Department of Veterinary Medicine and Animal Production, University of Naples ‘‘Federico II’’,
Naples, Italy

Stearoyl-Coenzyme A desaturase 1 (SCD1) belongs to the fatty acid family of desaturases. In
lactating ruminants, the SCD1 protein is highly expressed in the mammary gland and is relevant
for the fatty acid composition of milk and dairy products. Bovine mammary epithelial cells
(BME-UV1), cultured in vitro, have been proposed as a model to reproduce the biology of the
mammary gland. The present study was designed to investigate the responsiveness of bovine
SCD1 promoter to serum, insulin, oleic acid, and NFY transcription factor in BME-UV1 cells.
A luciferase-based reporter assay was used to monitor the transcriptional activity of the SCD1
promoter region in BME-UV1 cells treated or not with insulin and/or oleic acid. The level of
endogenous SCD1 mRNA was evaluated by Real time PCR. Insulin (20 ng/mL) induced a 2.0
to 2.5-fold increase of SCD1 promoter activity. Additionally, the effect of insulin was inhibited
by oleic acid, serum components, and NFY enforced expression. Serum and NFY showed no
synergistic or additive effect on SCD1 promoter activity suggesting that they repress SCD1
transcription through the same responsive element.

Keywords Bovine mammary cells; Fatty acids; Insulin; Regulation of gene expression;
Stearoyl coenzyme a desaturase

INTRODUCTION

Understanding the basis of lipid homeostasis is
fundamental for developing new strategies to combat
obesity, diabetes, and other diseases of abnormal lipid
metabolism. Stearoyl CoA desaturase 1 (SCD1, also called
D9-desaturase) (EC 1.14.99.5) is a short-lived endoplasmic
reticulum-bound enzyme that catalyzes the D9-cis desatu-
ration of saturated fatty acyl-CoA substrates (SFAs) to
monounsaturated fatty acids (MUFAs), primarily
palmitoyl-CoA and stearoyl-CoA into palmitoleoleyl-CoA
and oleyl-CoA, respectively (1). Oleic acid, the main pro-
duct of SCD1 reaction, is the predominant fatty acid of
human adipose tissue triacylglycerols, associating SCD1
with the development of obesity and metabolic syndrome.
Moreover, as the SFA=MUFA ratio affects membrane
phospholipid composition and fluidity; it has been impli-
cated in obesity, diabetes, neurological disease, skin disor-
ders, and cancer (2). Stearoyl CoA desaturase 1 gene
homologs have been identified in a range of species, many
of which express multiple isoforms, with SCD1 being the
most abundant isoform in lipogenic tissues (3, 4). The
SCD1 gene plays an important role in converting trans-11

C18:1 vaccenic acid into cis-9, trans-11 C18:2 CLA (5) and
is highly expressed in the mammary gland of lactating
ruminant (6). Early after parturition, the SCD1 activity
in adipose tissue decreases while increasing in mammary
gland (7).

Activity and expression of SCD1 have been reported to
be regulated by fatty acids, although the responses appear
to vary among the species. For instance, oleic acid was
shown to reduce rat and bovine SCD1 promoter activity
(8, 9) but had no effect on human SCD1 mRNA synthesis
(10). Promoter elements that are responsible for the PUFA
repression localize with the promoter elements for
SREBP-mediated regulation of the SCD gene (11). In
Bos Taurus, the PUFA response region (PUFA-RE,
60 bp) is essential for the control of SCD1 expression by
PUFA (12). This region encompasses the binding sites for
Sp1 and NFY transcription factors and the Sterol
Response Element (SRE), which is the binding site for
the SREBP1 protein. Recently, it has been demonstrated
that SREBP1 cooperates extensively with NFY in the con-
trol of genes involved in lipid metabolism. Moreover, pro-
moters of genes involved in lipid metabolism were
preferentially occupied by the combination of SREBP1
and NFY factors, whereas genes involved in carbohydrate
metabolism were enriched among targets of SREBP1 alone
(13). In the present study, we have explored the ability of
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oleic acid and serum to repress SCD1 promoter activity in
control and insulin-stimulated BME-UV1 immortalized
cells that can mimic the in vivo response of bovine mam-
mary cells. Moreover, as oleic acid was reported to have
no effect on human SCD1 mRNA synthesis (10), we per-
formed similar experiments in MCF7 cells, a human breast
cancer cell line previously defined as a model for the study
of insulin action on mammalian cell metabolism (14).

MATERIALS AND METHODS

Cell Culture

The BME-UV1 cell line was established from primary
bovine mammary epithelial cells by stable transfection with
a plasmid, carrying the sequence of the simian virus 40
early region mutant tsA58, encoding the thermolabile large
T antigen (15). BME-UV1 cells were provided to us by the
Laboratory of Cell Culture-Department of Veterinary
Science and Technologies for Food safety at the Veterinary
Medicine Faculty (University of Milan, Milan, Italy) and
cultured according to Cheli et al. (15). Human breast can-
cer MCF7 cells were purchased from Cell Line Service
(CLS, Berlin-Aldershof, Germany). MCF7 cells were routi-
nely grown into 100 cm2 plates (Corning Life Science,
Corning, NY, USA) as a monolayer culture in Dulbecco’s
modified Eagle’s medium (DMEM) (EuroClone, Pero, MI,
Italy) supplemented with 10% (v=v) fetal bovine serum
(FBS) (EuroClone), in humidified incubator with 5% CO2

at 37�C.

Construction of SCD1_PGL3 Reporter Plasmid
Containing the Bovine SCD1 Promoter

A 600 bp genomic fragment containing the SCD1 proxi-
mal promoter region, -590 from the transcription start site
(þ1) was amplified by PCR. The amplified region is shown
in Fig. 1A and contains the SP1, SRE, and NFY binding
sites (Fig. 1A and B). Whole genomic DNA was isolated
from leucocytes of cow peripheral blood and used as a
template for PCR using bovine SCD1-promoter specific
primers: Forward 5’GCATGGTACCCCAGTGCCCATC and
Reverse 5’GGTACCGCGCTGCACGGTGC. The primers
included 8 extra-bases (indicated by small caps) to generate
protected XhoI or KpnI restriction sites. The PCR con-
ditions are given as follows: 94�C for 30 seconds, 40 cycles
of 57�C for 1 minute, and a final extension step at 72�C for
1 minute. The PCR fragment was gel purified and appro-
priately digested with XhoI or KpnI restriction enzyme
(Roche Diagnostics, Milan, Italy) to produce cohesive
ends. After a step of purification, the digested DNA insert
was directionally cloned into the promoter-less luciferase
reporter vector, pGL3-Basic (Promega, Madison, WI,
USA), using XhoI and KpnI cloning sites. Ligation reaction
was set up at a vector to insert ratio of 1:5, using 50 ng of

pGL3-Basic vector. T4 DNA ligase and 1X ligase buffer
were used according to manufacturer’s instructions. Posi-
tive clones were first selected for the presence of the XhoI
and KpnI 600 bp restriction fragment, by agarose gel
electrophoresis, and then sequenced.

The 2.4 Kb fragment containing the p21WAF promoter
was retrieved from the p21WAF-CAT plasmid (16)
and ligated into the HindIII site of pGL3-basic Vector
(Promega) to obtain the p21WAF-Luciferase reporter
construct.

The cDNAs encoding human NFYA, NFYB, and
NFYC proteins cloned in pBK-CMV expression vector
(Stratagene) were provided by Dr. Maria Morasso (NIH,
Bethesda, MD, USA).

Transient Transfections and Luciferase Assay

The MCF-7 or BME-UV1 cells were counted and
seeded in 6-well plates at a density of 2.5� 105 cells=well

FIG. 1. The SCD1 gene promoter. (A) Sequence alignment of the

PUFA-RE sequence in the SCD1 proximal promoter region underlined

the sequences corresponding to the Sp1 protein binding site, the Sterol

Responsive Element, and the NF-Y=NFI consensus. (B) The SCD1 proxi-

mal promoter region. The primers used for PCR and subsequent cloning

are indicated in italics. Underlining highlights the sequences correspond-

ing to the Sp1 protein binding site, the Sterol Responsive Elemen,t and

the NF-Y=NFI consensus. The transcription start site (þ1) is indicated

in capitals.
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in 4 mL of complete medium. For luciferase assay, each
experimental point was transfected with 1 mg of PGL
plasmid (SCD1_PGL3, p21WAF_PGL3, or PGL3 basic
vector). Briefly, plasmid DNA was diluted in 250 mL of
DMEM serum free and mixed with 2.5 mL of Lipofecta-
mine 2000 (Life Technologies, CA, USA) in 250 mL
DMEM serum free. Transfection master mixtures were
incubated at room-temperature for 20 minutes, prior to
drop-wise addition to MCF7=BME-UV1 cells. Complexes
were added to the cells containing 1 mL of DMEM and
0, 5, or 10% FBS=FCS). After 24-hour transfection, the
medium was removed, cells were washed twice with PBS
and then lysed using the Lysis Buffer (Promega) according
to manufacturer’s instructions. Firefly luciferase activity in
cell lysates was measured using Dual Luciferase Assay kit
(Promega), according to the manufacturer’s instructions.
Results were normalized against protein concentration
(Bradford Assay, Biorad).

To evaluate the effect of NFY transcription factor,
MCF7 cells were co-transfected with 0.5 c of SCD1_PGL3
basic construct and 0.5 c of each NFY subunit (NFY-A,
NFY-B, NFY-C). Four hours after transfection, the cells
were incubated with 0, 5, or 10% FBS, for 24 hours. The
promoter activity was evaluated by Luciferase assay.

To evaluate the effect of insulin on SCD1 promoter
activity, insulin was added to MCF7 and BME-UV1 cells,
at a concentration of 20 ng=mL (3.4 10�9 M), 4 hours after
transfection. Physiologic concentrations of insulin range
between 10�8 and 10�11 (14); therefore, treatment with
3.4 10�9 M insulin is expected to induce a physiological
response in mammalian cells.

Cells were then incubated for 24 hours. To evaluate the
promoter response to MUFA, oleic acid (�99% purity,
Calbiochem) was added to a concentration of 30 and
50 mM according to a previously published manuscript
(17).

Immunoblot

Immunoblots (IB) was performed as previously
described (18). The NF-YA (G2, sc-17753) and NF-YB
(FL207, sc13045) antibodies (Santa Cruz Biotechnology
Inc., Dallas, TX, USA) were used to specifically detect
expression of NFYA or B subunits and used at 1:200
dilution. The anti-GAPDH (6C5) was purchased from
Santa Cruz Biotechnology Inc.

mRNA Quantification by qPCR

The SCD1 specific transcript was amplified by quanti-
tative PCR. The primers designed for qPCR reaction are:
Forward TCCGACCTAAGAGCCGAGAA and Reverse
AGCACAACAACAGGACACCA (NCBI Reference
Sequence: NM_173959.4, from 751 to 823, amplified frag-
ment 72 bp). Total RNA was extracted from BME-UV1
cells maintained in culture with FCS 0% or 10%, with or

without insulin (20 ng=mL) (Sigma-Aldrich, St. Louis,
MO, USA) using Cells to Ct kit (Ambion, Life Technolo-
gies, Austin, TX, USA), according to the manufacturer’s
instructions. To evaluate the response of SCD1 endogen-
ous gene in BME-UV1 cells to MUFA, oleic acid �99%
purity (Calbiochem, Millipore, Darmstadt, Germany) was
added to a concentration of 30 and 50 mM.

For PCR analysis total RNA was isolated using the
RNA Extraction Kit from Qiagen (Hilden, Germany)
according to the manufacturer’s instructions. RNA
(2-5 mg) was treated with DNAse I (Promega, Madison,
WI, USA) and used to generate reverse transcribed cDNA
using SuperScript III (Life Technologies, Carlsbad, CA,
USA) and random examers in 20 mL of total reaction
volume. All samples in each experiment were reverse tran-
scribed at the same time and the resulting cDNA diluted
1:5 in nuclease-free water and stored in aliquots at
�80�C until used.

Real Time PCR with SYBR green detection was
performed with a 7500 RT-PCR Thermo Cycler (Applied
Biosystem, Foster City, CA, USA). The thermal cycling
conditions were composed of 50�C for 2 minutes followed
by an initial denaturation step at 95�C for 10 minutes,
45 cycles at 95�C for 30 seconds, 60�C for 30 seconds,
and 72�C for 30 seconds. For the qPCR, the relative
quantification in gene expression was determined using
the 2�DDCt method (19). As previously suggested, Eukaryo-
tic translation initiation factor 3 subunit K (EIF3K) and
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
were used as an internal control to normalize all data
(20). After normalization, the data were presented as fold
change relative to the control sample. Appropriate no-RT
and non-template controls were included in each 96-well
PCR reaction and dissociation analysis was performed at
the end of each run to confirm the specificity of the
reaction.

Statistical Analysis

All experiments were performed in triplicate and
repeated at least two times. Quantitative data were pre-
sented as mean �standard deviation (SD). Comparison
between data was analyzed using t-tests. Significant differ-
ences were accepted when P values is less than 0.05.

RESULTS

Effect of Fetal Bovine Serum and Insulin on SCD1
Promoter Activity

The sequence of full length SCD1 promoter in Bos
Taurus (1880 base pairs) is annotated in the (EMBL
BANK) with the accession number AY241932, whereas a
partial promoter region of Bubalus bubalis SCD1 is
included in the ENA database (EMBL gene BANK) with

SCD1 GENE PROMOTER ACTIVITY IN BOVINE MAMMARY CELLS 253

D
ow

nl
oa

de
d 

by
 [

V
io

la
 C

al
ab

ro
] 

at
 2

3:
15

 1
2 

Ju
ly

 2
01

5 



the accession number FM876222. Comparison of the
SCD1 proximal promoter region of several mammalian
species, using the TFBIND and the TRANSFAC
(ver.3.4) software, reveals high homology. The SCD1
proximal promoter sequences of Bos Taurus and Bubalus
bubalis share 97% of identity. Figure 1a shows the
PUFA-responsive SCD1 promoter region encompassing
the perfectly conserved binding sites for Sp1, the
SREBP-1c, and NF-Y transcription factors, as previously
described (8).

To evaluate bovine SCD1 promoter activity we gener-
ated the SCD1_PGL3 luciferase reporter construct. The
bovine SCD1 promoter region including the PUFA-RE
was PCR amplified from genomic cow DNA and appropri-
ate primers (see Materials and Methods). The 600 bp
amplified fragment was cloned upstream of the luciferase
gene in the PGL3 promoter-less vector (Promega,
Madison, WI, USA) to generate the SCD1_PGL3 reporter
construct.

Cell culture conditions can have a profound impact on
intracellular signaling cascade and may be a fondamental
source of variability accounting, at least in part, for the
conflicting results in the SCD1 literature. For instance,
oleic acid was reported to reduce rat and bovine SCD1
promoter activity (8, 9) while having no effect on human
SCD1 mRNA synthesis (10). To determine the extent to
which serum affects SCD1 promoter activity, MCF7 cells
were grown in serum-free or serum-supplemented medium
(5–10% FBS) and transiently transfected with the
SCD1_PGL3 construct or the p21WAF_PGL3 plasmid,
containing a serum-independent promoter (our previous
observations). The promoter-less pGL3 basic vector was
used to evaluate the background signal. At 24 hours
after transfection, cells were collected; whole cell extracts
were prepared and subjected to luciferase assay. As shown
in Fig. 2a, in presence of serum, the p21WAF promoter
activity was unaffected while the SCD1 promoter
activity was significantly reduced (p< 0.02). In 10% FBS
the SCD1 promoter activity was about 4.3-folds lower
than in serum-free medium, with a residual activity
ranging between 15 and 25%. The background activity of
pGL3 basic construct was negligible in both serum con-
ditions (4.3þ =� 1.5 RLU, arbitrary units of luciferase
activity).

Next, we monitored the effect of insulin on SCD1
promoter activity. The experiments were performed in
serum-free condition or 10% serum as this is the most com-
monly used condition for the growth of mammalian cell
lines. Insulin was added to the medium at the concen-
tration of 20 ng=mL. In serum-free medium, insulin treat-
ment caused a 2.5-fold induction of the SCD1 promoter
reporter (Fig. 2b). After FBS-supplementation, the SCD1
promoter basal activity was reduced and insulin treatment
was unable to evoke any response (Fig. 2b). The results

demonstrate that serum components exert a strong
repression on the SCD1 promoter and that insulin appears
to be unable to overcome this repression.

Role of NFY Transcription Factor in the Regulation of
SCD1 Promoter Activity

The NFY factor has been suggested to be a PUFA-
specific transcription factor for SCD1 gene repression
(11). The transcription factor NFY is a hetero-trimeric pro-
tein, composed of three subunits NFY-A, NFY-B, and
NFY-C. The NF-YB and NF-YC must interact and dimer-
ize for association with NF-YA and consequent binding to
CCAAT motifs in the promoter regions of a variety of
genes. The NFY interacts with the Sterol Regulatory
Element-Binding Proteins (SREBPs). The SREBPs, indeed,
are weak transcriptional activators on their own and inter-
act with their target promoters in cooperation with
additional regulators, most commonly including one or
both NFY and SP1 transcription factors. To investigate

FIG. 2. Effect of FBS on SCD1 promoter activity. (A) The

SCD1_PGL3 or p21WAF_PGL3 promoter constructs were transfected

into MCF7 cells and treated with different concentrations of serum (0%,

5%, 10%). After 24 hours, the luciferase assay was performed. The

p21WAF_PGL3 promoter was used as a serum independent control.

The basal activity of the promoters at 0% FBS was fixed as 100%. Each

experimental point was performed in triplicate and the results are pre-

sented as the mean of three biological replicates. (B) The SCD1_PGL3

promoter construct was transfected into MCF7 cells grown in serum-free

or 10% Fetal Bovine Serum. Insulin was added at a concentration of

20 ng=mL. After 24 hours, the luciferase assay was performed. The basal

activity of the promoters at 0% FBS was fixed as 100%. Each experimental

point was performed in triplicate and the results are presented as the mean

of three biological replicates.
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the effect of NFY enforced expression on SCD1 promoter
activity, we transiently transfected the SCD1_PGL3
reporter construct into MCF7 cells along with an equal
amount of each plasmid encoding NFY subunit A, B, or
C. Four hours after transfection, the culture medium was
replaced and cells were maintained in serum-free, 5% or
10% FBS-supplemented medium for 24 hours. The
expression of transfected NFY subunit A and B was
monitored by immunoblot analysis using NFY specific
antibodies (Fig. 3A). The SCD1_PGL3 activity was then
evaluated by Luciferase assay. As expected, in serum-
supplemented media the basal activity of SCD1 promoter
was lower than in serum-free medium (Fig. 3A). However,
both in absence and 5% serum NFY expression causes a
significant decline of luciferase activity (p< 0.02) indicating
that NFY is a transcriptional repressor of SCD1 gene.
However, in 10% serum the residual activity of SCD1 pro-
moter was 50% of the control and NFY caused only a 15%
reduction, thereby suggesting that serum and NFY
compromise SCD1 promoter activity by acting at the same
regulatory element.

Regulation of SCD1 Promoter Activity in Bovine
Mammalian Cells

The regulation of SCD1 expression in bovine mammary
cells affects milk yield and fatty acid profile (21). The SCD1
is induced by insulin (22). It was interesting to study
the effect of insulin on SCD1 gene expression in BME-
UV1 cells, immortalized, but not transformed, bovine
mammary cells that closely mimic the in vivo mammary
epithelial cells. The promoter reporter construct was tran-
siently transfected into BME-UV1 grown in serum-free,
5% or 10% FCS with or without insulin (20 ng=mL). The
BME-UV1 cells were transiently transfected with SCD1_
PGL3 construct and after 24 hours whole cell extracts were
prepared and subjected to the luciferase assay. According
to what was observed in MCF7 cells, serum-addition
repressed SCD1 activity in bovine mammary cells
(Fig. 4A). Again, we observed a 2.5-fold promoter acti-
vation by insulin only in serum-starved cells showing that
the repressive activity of serum is dominant over the induc-
tive effect of insulin. To corroborate these data, we decided
to examine the level of SCD1 endogenous mRNA in
BME-UV1 cells by quantitative Real Time PCR. Cells

FIG. 3. Effect of NFY transcription factor and on SCD1 promoter

activity into MCF7 cells. MCF7 cells were co-transfected with 0.5 mg of

SCD-1-PGL3 construct along with 0.5 mg of each plasmid encoding

NFY-A, NFY-B, and NFY-C subunits. Cells were grow in serum-free

medium or media supplemented with 5 or 10% FBS for 24 hours.

(A) Expression of transfected NFYA and NFYB protein was evaluated

by immunoblot analysis with specific antibodies. (B) Promoter activity

was evaluated by luciferase assay. Each experimental point was performed

in triplicate and the results are presented as the mean of three biological

replicates.

FIG. 4. Effect of serum and Insulin on SCD1 promoter activity.

(A) SCD1_PGL3 promoter construct was transfected into BME-UV1 cells

treated with the indicated concentrations of serum (0%, 5%, 10%) with or

without insulin (20 ng=mL), as indicated. After 24 hours, the promoter

activity was evaluated by luciferase assay. Each experimental point was

performed in triplicate and the results are presented as the mean of three

biological replicates. (B) BME-UV1 cells were treated with the indicated

concentrations of serum (0%, 10%) with or without insulin (20 ng=mL),

for 24 hours. The SCD1 specific transcript was quantified by Real Time

PCR and expressed as the relative amount corresponding to the level

expressed in cells grown in serum and insulin-free medium. The results

are presented as the mean of three experimental replicates.

SCD1 GENE PROMOTER ACTIVITY IN BOVINE MAMMARY CELLS 255

D
ow

nl
oa

de
d 

by
 [

V
io

la
 C

al
ab

ro
] 

at
 2

3:
15

 1
2 

Ju
ly

 2
01

5 



were grown in serum-free or 10% FCS medium and treated
or not with insulin (20 ng=mL) for 24 hours. Total RNA
was isolated and subjected to quantitative PCR using pri-
mers to specifically amplify bovine SCD1 mRNA. The level
of SCD1 specific transcript was normalized against the
EIF3K and GAPDH RNA and expressed as relative
amount respect to the sample obtained in serum and
insulin-free medium. As shown in Fig. 4B, we confirmed
that insulin treatment enhanced SCD1 mRNA expression
level only in serum-deprived cells.

Regulation of SCD1 promoter by oleic acid is still contro-
versial. Oleic acids concentrations up to 100mM were
previously demonstrated do not affect MCF7 cell proliferation
and viability (23). However, we performed preliminary tests by
treating MCF7 and BME-UV1 with increasing amount of
oleic acid (15, 30, 50, 80, and 100mM) for 24 and 48 hours.
In each experimental point the cells behave healthy. Moreover,
cells lysates were analyzed by immunoblot with antibodies
against Caspase3 and PARP and we did not detect signs of
apoptosis, neither in terms of Caspase 3 induction nor Poli
ADP-ribose polymerase cleavage.

Caspase 3 induction nor Poly (ADP-ribose) polymerase
cleavage (data not shown). To check the effect of oleic acid
in the control of bovine SCD1 promoter we transiently
transfected BME-UV1 cells with the SCD1 promoter-
luciferase reporter in serum-free medium supplemented or
not with 30 or 50 mM oleic acid.

The combined effect of insulin and oleic acid was
checked by adding insulin at a concentration of 20 ng=mL
in cells treated or not with oleic acid. After 24 hours of
transfection, whole cell extracts were prepared and
subjected to the luciferase assay.

As shown in Fig. 5A, oleic acid alone did not signifi-
cantly change the basal activity of SCD1 promoter, which
was instead efficiently activated by insulin. Interestingly,
insulin-dependent activation was almost completely abol-
ished by oleic acid addition to the culture medium showing
that, similar to serum, the repressive activity of oleic acid
overrides the inductive effect of insulin. To substantiate
these data, we decided to examine the level of SCD1
endogenous mRNA in BME-UV1 cells by quantitative
Real Time PCR. Cells were grown in serum-free medium
supplemented or not with 30 or 50 mM oleic acid for 24
hours. The combined effect of insulin and oleic acid was
checked by adding insulin at a concentration of 20 ng=
mL. Total RNA was isolated and subjected to quantitative
PCR using primers to specifically amplify bovine SCD1
mRNA. The level of SCD1 specific transcript was normal-
ized against the EIF3K and GAPDH RNA and expressed
as relative amount respect to the sample obtained in oleic
acid and insulin-free medium. As shown in Fig. 5B, we
confirmed the induction of SCD1 endogenous gene tran-
scription by insulin which was completely suppressed by
oleic acid.

DISCUSSION

Alignment of the highly conserved region of bovine
SCD1 promoter region shows the expected high homology
of the putative PUFA-RE between different farm animal
species. This region is known to be involved in the response
of SCD promoter to insulin, fatty acids and sterols (24).
The PUFA-RE contains binding sites for SREBP1, NFY,
and SP1 transcription factors. Genome-wide analysis of
promoter co-occupancy in human liver cells have recently
shown that SREBP1 cooperates extensively with NFY
and SP1 throughout the genome, thereby suggesting that
the regulatory circuitry among SREBP, NFY, and SP1 is
highly interconnected. Concerning the metabolic pathways,
combination of all three factors was reported to be
involved in the control of cholesterol biosynthesis and
aminoacid activation while the combination of SREBP1
and NFY alone was shown to regulate lipid metabolism
and RNA processing (13).

The expression of the SCD l gene is under complex con-
trol mechanisms such as hormones and, possibly, inter-
mediates of carbohydrate and fat metabolism; therefore,
it is difficult to dissect all the agents that regulate SCD1
gene transcription by in vivo models. The aim of this study

FIG. 5. Effect of insulin and oleic acid on SCD1 promoter activity.

(A) SCD1_PGL3 promoter construct was transfected into BME-UV1 cells

cultured in serum-free medium with or without insulin (20 ng=mL), as

indicated. Oleic acid (30 and 50 mM) was supplemented to the medium

as indicated. After 24 hours, the promoter activity was evaluated by

luciferase assay. Each the experimental point was performed in triplicate

and the results are presented as the mean of three biological replicates.

(B) BME-UV1 cells were treated as indicated in (A) for 24 hours. The

SCD1 specific transcript was quantified by Real Time PCR and expressed

as the relative amount respect to the level expressed in cells grown in

serum-free medium without insulin and oleic acid. The results are pre-

sented as the mean of three experimental replicates.
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was to investigate the responsiveness of bovine SCD1 pro-
moter to insulin, oleic acid, and NFY in BME-UV1 cells, a
potential in vitro model for studying biotransformation in
bovine mammary gland.

In the mammary gland of ruminants, SCD1 is known to
be responsible for the production of about 63–97% of c9t11
CLA coming from vaccenic acid as estimated using either
direct (13C-labelled fatty acids) or indirect methods (inhi-
bition of SCD by sterculic acid or duodenal and milk FA
flows) (25). The SCD1 activity can be measured by
comparing the product=substrate ratios of certain fatty
acids. There are four main products of SCD1 activity in
the mammary gland of ruminants: c9C14:1, c9C16:1,
c9C18:1, and CLA, which are produced from C14:0,
C16:0, C18:0, and trans11 C18:1, respectively. According
to Lock and Garnsworthy (26), the best indicator of
SCD1 activity is the c9C14:1=C14:0 ratio because all of
the C14:0 in milk fat is produced via de novo synthesis
in the mammary gland; consequently, desaturation is the
only source of C14:1. Increasing c9C14:1=C14:0 ratio
values would indicate an increase of SCD1 activity.

The regulation of SCD1 by dietary factors has been lar-
gely investigated in rodents (11), while in ruminants the
results are conflicting. Ahnadi et al. (27) and Harvatine
and Bauman (28) found a depression of mammary SCD1
mRNA abundance when lactating cows were fed protected
PUFA. Researches affected on goats showed that the
supplementation of sunflower seed oil (29) and linseed oil
(30) did not affect both SCD1 expression and=or activity
in maize silage-based diets; whereas, the same supplemen-
tation to diets based on grass hay decreased only the
SCD1 activity (31). Similar results have been reported sup-
plementing soya beans to lucerne hay-based diets (32).
Finally, supplementing grass hay-based diets with
formaldehyde-treated linseed decreased mammary SCD1
mRNA without effect on the SCD1 activity (32).

Tudisco et al. (33) reported higher SCD1 expression in
the somatic cells of milk yielded from goats bred according
to either organic system than those bred in stable. The
authors justify the results for a higher amount of both
C18:2 and C18:3 ingested by organic group than the stable
group, as registered in previous research (34, 35), thus prob-
ably resulting in an up-regulation of the SCD expression.

Bernard et al. (36) evaluated the importance of interac-
tions between the composition of the basal diet and lipid
supplement with the implication that specific PUFA escap-
ing metabolism in the rumen or specific biohydrogenation
intermediates may inhibit SCD1 activity via transcriptional
or post- transcriptional regulatory mechanisms.

More recently, Tudisco et al. (37) reported that the graz-
ing season as well as lactation stage can affect the SCD1
mRNA abundance determined from milk somatic cells
with values that progressively decreased from April until
June, increased in July, and decreased again in August.

In keeping with previous findings (38), we found that
insulin treatment induces a significant increase of SCD 1
gene promoter activity in BME-UV1 cells, providing
further evidence of its pro-lipogenic role. However, atten-
tion must be paid to the evaluation of SCD1 promoter
regulation in serum-supplemented cell culture as the
repressive effect of serum on SCD1 promoter activity over-
comes induction by insulin and this was consistently shown
both in human MCF7 and bovine BME-UV1 cells.
Remarkably, oleic acid was also able to repress SCD1
promoter activation only in insulin treated cells thereby
providing a possible explanation of the controversial litera-
ture about the inhibitory effect of oleic on SCD1
expression (11). We confirmed our data on SCD1 endogen-
ous transcription of BME-UV1 cells, thereby demonstrat-
ing that our reporter system truly reflects the response of
the endogenous SCD1 gene promoter and can be a useful
tool to investigate the modulation of SCD1 promoter
activity by nutrients and extracellular stimuli. Finally,
our study provides evidences that NFY enforced
expression represses SCD1 promoter activity. It has to be
mentioned that Tabor and coworkers (22) reported that
NFY transcription factor is a SCD1 transcriptional acti-
vator in adipocytes; our data are in contrast with Tabor’s
conclusion and this might depend on the specific cell type
and growing condition used. However, whether NFY
works in cooperation or not with other transcription fac-
tors, deserves more attention and will be the subject of
further investigation.
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33. Tudisco R, Calabrò S, Cutrignelli MI, Moniello G, Grossi M,
Gonzalez OJ, Piccolo V, Infascelli F. Influence of organic sys-
tems on Stearoyl-CoA-Desaturase in goat milk. Small Rumin
Res 2012; 106:37–42.

34. D’Urso S, Cutrignelli MI, Calabrò S, Bovera F, Tudisco R,
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